
Reply to Referee #1 for “Evaluation of ORCHIDEE-MICT

simulated soil moisture over China and impacts of different

atmospheric forcing data” on HESSD

Z. Yin on behalf of all co-authors

1 General comments

1.1 “The comparison against CCI soil moisture only for 2007 until 2009 is
a odd choice. CCI is a unique soil moisture dataset in being based on ob-
servations and covering a long time period. This makes it different to other
available long-term soil moisture datasets based on model output and other
observation based datasets which are usually much shorter. Therefore it
should be taken as what it was designed for without cherry-picking the best
period. Also, these long time periods will be likely much more interesting
for most readers as a limited amount of specific years. Also, the comparison
is not too meaningful if the other datasets experiments are not compared
for the same time period.”
A: The primary aim of the comparison using ESA CCI soil moisture (SM) is to assess our
model outputs. The availability of ESA CCI SM varies a lot due to changes in sensors.
Figure R1 shows the fraction of days with valid observations in different periods from
Dorigo et al. (2015). It is clear that the fraction is extremely low in China (less than
0.2) until 2006. If we zoom in China and check CCI SM time series at some grid cells
(Fig. R2), the availability varies not only temporally but also spatially. Once again,
as our aim is to evaluate ORCHIDEE simulated soil moisture (spatial and temporal
patterns), we have to select a period which presents the less gaps in the time series in
order to be able to compare our evaluation metrics and their spatial variations. This
explains why we choose the more recent period in the dataset, covering our simulations.
In the manuscript, we modified as: “The data availability also varies along the period
according to the number of instruments available and the increase of their temporal and
spatial resolutions. In China, the fraction of days with available records (Figure 4 of
Dorigo et al. (2015)) is lower than 20% from 1979 to 2006. More importantly, large spa-
tial variation of gaps exists before 2006 (Fig. A1). ... To provide a reliable validation,
we only use the CCI data between 2007-2009.”
However, we agree that it is interesting for readers to see a long time period compari-
son. Thus we will provide the comparison between ESA CCI and ORCHIDEE SM from
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1981 to 2009 in online supplementary, as Figure R3 and Table R1. Comparing to the
same analysis based on period 2007-2009 (Fig. 7 and Table 3 in the main text), there
is no significant change of spatial patterns. Although the values of r and RMSE change
slightly, they do not influence our conclusion that GSWP3 and WFDEI performance
better then the other two. If both reviewer think that the long time period comparison
is more important, we will thow the 1981-2009 comparison it in the revised manuscript
instead.

1.2 “Please make the choice of GLEAM clearer. It uses a lot of observations
but it essentially is also model output. So you are comparing your model out-
put to another model (which uses a different precipitation forcing?) Possibly
give a little more literature on other soil moisture datasets, why specifically
GLEAM, e.g. long time period?”
A:True. GLEAM SM is a model output, but it is corrected by numerous satellite and
in-situ measurements through data assimilation. The comparison to GLEAM SM is to
provide an assessment of SM dynamics at longer time period. In the introduction, we
will explain the aim of using different SM datasets, as: “The resulting SM is evaluated by
different SM datasets including in-situ, remote sensing measurements and reanalysis. In-
situ measurements including ISMN (International Soil Moisture Network; Dorigo et al.
(2011)) and PKU (in-situ SM from Peking University; Piao et al. (2009); Xu (2014)) are
used to evaluate temporal validation of ORCHIDEE SM. To evaluate spatio-temporal
variations of simulated SM, the satellite based dataset ESA CCI SM (European Space
Agency Climate Change Initiative Soil Moisture; Wagner et al. (2012)) is applied in the
comparison. Note that both in-situ and satellite SM datasets represent the ‘truth’ to
some extent. This implies that real-world soil moisture is influenced by processes that
are not modeled such as irrigation and wetlands. Thus mismatches between measured
and simulated SM may exist in some regions strongly affected by anthropogenic factors.”
“Finally the GLEAM SM data (The Global Land Evaporation Amsterdam Model;
Martens et al. (2017)) is compared to the simulated SM. Different from other SM
datasets, GLEAM SM results from a land surface model constrained with a number
of satellite and in-situ observations. This is not a direct observation but GLEAM was
shown to reproduce reasonable long period SM dynamics at global scale (Martens et al.,
2017), which is valuable to evaluate ORCHIDEE simulations for both surface and root
zone moisture. Furthermore, GLEAM assimilates CCI data, so that evaluation of our
model against root zone moisture from GLEAM is consistent with evaluation against
surface moisture from CCI. Details of the SM datasets are shown in Sect. 2.3.”

1.3 “Describe why you specifically chose those four forcing datasets. Are
they being frequently updated? Also usable for global studies?, etc.”
A: These four datasets are widely used in large scale hydrological studies, which are
suitable for global simulation for next step. In the introduction, we added: “Four global
atmospheric forcing datasets are chosen to drive the simulations in China, including
GSWP3 (Global Soil Wetness Project Phase 3), PGF (Princeton Global meteorologi-
cal Forcing), CRU-NCEP (Climatic Research Unit-National Center for Environmental
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Prediction) and WFDEI (WATCH Forcing Data methodology applied to ERA-Interim
reanalysis data), due to their widely applications in numerous hydrological studies (Ge-
tirana et al., 2014; Guimberteau et al., 2014, 2017, 2018; Hirschi et al., 2014; Van Den
Hurk et al., 2016; Polcher et al., 2016; Schmied et al., 2016; Tangdamrongsub et al., 2018;
Yang et al., 2015; Zhao et al., 2017; Zhou et al., 2018). Although they provide gridded
surface climate variables at global scale, their uncertainties of representing regional cli-
mate are not clear. Through comparison of simulated SM, our study also addresses
which forcing has the best performance in SM simulation in China. In fact, there is
a 0.1◦ well-calibrated forcing data available for China (He and Yang, 2011). But the
simulations driven by it are time consuming due to the resolution, which is not suitable
for model validation at early stages and this forcing is not freely available on a regularly
updated basis.”

1.4 “The motivation of carrying out the study specifically over China is in
my view lacking a little. Also, are there no locally optimised forcing datasets
available? Why run a land surface model specifically over China using global
input data? Again, just make the motivation of the study a bit clearer. Why
was this specific model used for the experiments, does it have any advantages
specifically for China (this is actually mentioned in the model section but
might be also helpful in the introduction with a little more detail)?”
A: China is selected as the study area before global application, because (1) It covers mul-
tiple climate zones, which can help us understand different mechanisms under different
climate regimes; (2) It has almost all types of anthropogenic impacts: irrigation, defor-
estation, afforestation, dam operations, polders, inter basin water transfer, etc, which is
an ideal example to investigate climate-water-human interactions in the next step. In
the introduction, we added: “Climate change strongly influences the hydrological cycle,
which in turn affects ecosystems services, food security and water resources (Bonan,
2008; Piao et al., 2010; Seneviratne et al., 2010; Zhu et al., 2016). More importantly,
the mechanisms of hydrological process vary across climate regimes under anthropogenic
factors (Guimberteau et al., 2012; Wada et al., 2016, 2017). Covering different climate
zones and most types of human activities (Rogers et al., 2016; Basheer and Elagib, 2018;
Feng et al., 2016; Bouwer et al., 2009; An et al., 2017; Wu et al., 2018) China is a good
test bed to investigate the hydrological complexity of climate-water-human interactions.”
Yes, there is a high resolution Chinese forcing dataset but not regularly updated. More-
over, using global forcing can help us to fast extend some of the metrics developed in
this study at global scale. And it will be easy to compare other parallel works using the
same forcing. Related modification is shown in the reply to Comment 1.3.
To further understand the interactions between climate change, water cycle and human
activities, a model that has been carefully evaluated is necessary, which integrates im-
portant mechanisms of CO2, water and surface energy balances, ecological dynamics and
anthropogenic processes, such as ORCHIDEE. In the introduction, the text is modified
as: “Land surface models (LSMs) are able to simulate the short-term and long term SM
dynamics consistently with atmospheric forcing and surface information (Rebel et al.,
2012; Xia et al., 2014; Pierdicca et al., 2015) by reproducing physical processes, and
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interactions with other climatic, hydrological and ecological factors (Seneviratne et al.,
2010). ... In this study, the land surface model: ORCHIDEE-MICT (ORganizing Car-
bon and Hydrology in Dynamic EcosystEms: aMeliorated Interactions between Carbon
and Temperature; Guimberteau et al. (2018)) is used to simulate SM over China (OR-
CHIDEE instead of ORCHIDEE-MICT for brevity). Besides land surface hydrology,
ORCHIDEE simulates energy budgets and vegetation dynamics (mechanistic phenol-
ogy, photosynthesis and ecosystem carbon cycling), which interact with the water cycle
and climate (Guimberteau et al., 2012). Moreover, this evaluation of simulated SM con-
trolled only by natural processes is useful to identify human effects (e.g., crops, irrigation
and dam operation) on water budget in regions where there is a large misfit between
model and observation.”

1.5 “Concerning the validation as a whole, the model outputs for the four
experiments are compared to, in addition to in-situ measurements, GLEAM
and CCI soil moisture. However, these datasets (CCI and GLEAM) should
also be compared to the in-situ measurements since the mere comparison
does not result in any helpful answer on which of these datasets performs any
better when compared to the actual ground measurements. Both GLEAM
and the CCI dataset will likely have their own problems with accurately
simulating soil moisture within certain areas. At the current state of the
study they are used as a kind of additional ground-truth, which they most
certainly are not (and in fact, as correctly noted, GLEAM shares some of
the same input data with the forcing data used for the experiments).”
A:True. Comparison to in-situ measurement is an essential part of model validation. But
this is not enough. Firstly, in-situ measurements cannot be used to estimate spatial and
temporal variations of simulated SM. Secondly, because of spatial variations of climate
variables and landscape, in-situ measurements can provide high accurate validation only
if the atmospheric forcing is at the same spatial scale. A remote sensing product derived
from multiple observations averaged or aggregated at daily time step is probably more
comparable to model simulations obtained with meteorological reanalysis than local in-
situ measurements.
We agree that ESA CCI and GLEAM SM should be validated before comparing to the
simulations. In fact, the ESA CCI SM has been validated both at global scale (Dorigo
et al., 2015) and in China (Peng et al., 2015; An et al., 2016). The GLEAM SM has
been validated by ISMN as well (Martens et al., 2017). We will cite these works in
the introduction of ESA CCI and GLEAM dataset. All in all, we use SM datasets for
different purposes: 1) In-situ measurements are used for evaluation of fast variability,
mainly decrease and recharge of top and middle soil horizons from rain events; 2) ESA
CCI and GLEAM are used mainly to evaluate seasonal, inter-annual and spatial patterns
of SM. This will be explained in the revised Introduction (see reply to Comment 1.2).
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2 Specific comments

2.1 “P2L21-32: Possibly add a sentence on soil moisture (products or raw
data) data assimilation in the introduction, since the advantage / disadvan-
tages of satellite based soil moisture products and land surface models are
discussed. Data assimilation exactly tries to combine the strengths of these
different types of data, such as in the GLEAM dataset.”
A: Thanks for the suggestion. A short description about data assimilation has been
added in the introduction: “To overcome the uneven coverage of raw data, data assim-
ilation is widely applied to analyze soil moisture from in-situ or satellite observations
(Reichle et al., 2007; Draper et al., 2012; Martens et al., 2016). Analyzed products
help us understanding SM variation and its relation to climate (Taylor et al., 2012; Liu
et al., 2015b, 2017). However, to capture changes of hydrological mechanisms for future
projections, measurements are not enough.”

2.2 “P3L22-29: GSWP3 is very coarse, but downsampled. Could this be
especially problematic in areas within China with complex terrain?”
A: Yes, coarse resolution is inaccurate over complex terrain regions from the Tibetan
Plateau to the Sichuan Basin (Fig. 1). It is difficult to produce a high accurate forcing
reanalysis dataset and simulated SM in these areas. Disagreements of simulated SM
are shown in Fig. 2 and 9(a). Mismatches of meteorological variables among forcing
datasets are found in these regions as well (Fig. 9(c) and 9(e)). However, according
to the results, the simulated SM driven by GSWP3 is not worse than others. So in
our opinion, GSWP3 is not obviously less realistic in complex terrain regions. Inter-
comparison should be applied among forcing datasets to further address this question,
e.g. comparison with weather stations data, but it is beyond our ability and not the
scope of this study.

2.3 “P4L2-8: Is PGF still being updated? Maybe add this information to the
other datasets too, or to the motivation of choosing these specific datasets.”
A: The last update of the PGF is on 13th July 2014 (http://hydrology.princeton.edu/data.pgf.php).
The version information of each dataset will be added. The motivation of using these
forcing date is added in the introduction. Please see our reply to Comment 1.3.

2.4 “P4L18-22: WFDEI, why only available until 2009? Both corrected with
GPCC v5 and v6?”
A: The WFDEI GPCC we have access to is only available until 2009 (version 31 July
2012). The version we used was only corrected with GPCC v5. The initial WFDEI
forcing should be bias corrected for rainfall for use in ORCHIDEE. However, this work
had not been completed when we ran the simulations.
Currently the latest WFDEI GPCC is available. We can re-do the simulation with
the latest WFDEI forcing if the reviewer strongly recommend. However, please note
that there will be only one year (2010) extension due to the constraint of other forcing
(e.g., GSWP3 is available only until 2010). Moreover, there is no difference of the
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version we used and the latest version, except for the period length (http://www.eu-
watch.org/gfx content/documents/README-WFDEI%20(v2016).pdf).

2.5 “P5L20: GLEAM has 0.5◦ resolution? I thought 0.25. It’s 0.25◦ in Table
2, please recheck.”
A: True, it is 0.25◦. Corrected.

2.6 “P5L28 GLEAM assimilates GLDAS? I’m not so sure about this. I think
it’s somehow used for the background error estimation within the assimila-
tion scheme, but please check this.”
A: We made a mistake here. The GLDAS was only used in the GLEAM data assimila-
tion system to estimate the errors on annual basis (Martens et al., 2017). We corrected
as: “... results from a combination of simulated SM from the GLEAM soil module,
SMOS (the Soil Moisture Ocean Salinity satellite mission) and ESA CCI SM (ESA Cli-
mate Change Initiative Soil Moisture) through the data assimilation system developed
by Martens et al. (2016). The Community Noah land surface model SM fields in GLDAS
(Global Land Data Assimilation System) was used to estimate the errors of these SM
products.”

2.7 “P6L26: 13 PFTs are grouped, did not understand. Only three land
cover classes?”
A: No. We used 13-PFT map including one bare soil. Each PFT has its own param-
eterization. PFT fractions are assigned to three soil tiles corresponding to bare soil,
short vegetation (grass and crop PFTs) and forests (all tree PFTs). So each grid cell
can include up to three soil tiles. The soil moisture budget of each soil tile is calcu-
lated separately, but different PFTs in the same soil tile interact as they share the same
soil moisture source. In the manuscript, we modified as “Each grid cell can include up
to three soil tiles: bare soil, trees and grasscrops, which are filled by the correspond-
ing plant functional types (PFT) of the 13-PFT scheme of ORCHIDEE-MICT to allow
better representation of their specific hydrology. The hydrological budget is calculated
separately in each soil tile.”

2.8 “P7L10. Why aggregate results to 1 degree? This likely deteriorates
the impact of ‘high resolution’ forcing datasets, such as WFDEI. Rather
upsample coarser data by simply multiplying grid cells?”
A: Agreed. In the revised manuscript, we will sample the simulated SM driven by PGF
from 1◦ to 0.5◦ by a nearest neighbour method and re-do all analysis and plots at 0.5◦.
Values of metrics will be updated as well. But there is no significant impact on our
results and conclusion.

2.9 “P7L15: ‘distributed to the first half of the forcing time step..’ why the
first half.”
A: This is the default setting of ORCHIDEE. To avoid underestimation of infiltration,
precipitation amount should be assigned in the half of forcing time step. The ‘first
half’ is the default setting of ORCHIDEE-MICT. It also can be modified as ‘middle
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half’ or ‘second half’, which has no effect on hydrological simulation in principle. In the
manuscript, we added: “Note that there is no effect whether the precipitation is assigned
in the first or the second half time step in principle.”

2.10 “P8L1-3: Which time shift was used? Between UTC and local time
(several time zones) between model and in-situ measurements. Not vital but
good to know.”
A: We used UTC for all SM records. In the manuscript, we added: “In addition, the
timing of all SM datasets is uniformed to the Coordinated Universal Time (UTC).”

2.11 “P8L24: What is the exact motivation for the lag analysis? It does not
seem to give any added value. How do you know one or the other are better
in temporal terms? You are comparing two models.”
A: We agree that we are not able to explain which one is better by the comparison of the
dynamics of SM decrease after rain events. The differences of autocorrelation can tell
us the uncertainty of simulated SM from runoff, drainage and transpiration loss after
a rainfall. For example, a large mismatch is found in the Yellow RB (Fig. 6h), which
indicates that some unknowns existed in this region strongly influenced decrease of SM
after rain events. In the paper, we discussed: “The bias of Rk can be explained by
higher/lower simulated evapotranspiration in YLRB/YZRB in ORCHIDEE compared
to GLEAM (not shown) suggesting that the decline of ORCHIDEE θs is faster/slower
after rainfall events than in GLEAM and lead to a lower/higher Rk.”
Furthermore, we demonstrate that the Rk curves vary among our simulations. It indi-
cates that the autocorrelation is not only determined by the model but also by forcing
data, such as precipitation intensity and frequency, which underlines our motivation:
which atmospheric forcing is suitable for further hydrological study in China.

2.12 “P9L12: Monthly values of other variables also considered ... How?”
A: We wanted to explain that not only P and Np, but also other meteorological variables
are inclued as indicator as well. We modified as: “We look at different climate variables
to explain SM differences among simulations. ... Other meteorological indicators are
incoming short/long wave radiation (Rs/Rl), air temperature (Ta), air humidity (Qa)
and wind speed (W ).”

2.13 “P9L23: These two rivers are the main ones? How much of China do
these two watersheds cover? Maybe obvious for some but more background
on the study region could be valuable (here and / or in the introduction).”
A: Yes. Yangtze and Yellow are the two largest rivers in China. The watersheds of them
cover 23% area of China. More importantly, the two basins cover most of agricultural
and industrial regions in China. Motivation of the study area has been added in the
Introduction as our reply to Comment 1.4.
More detailed explanation has been added in an extra subsection “study area” in Sec-
tion 2, as: “China has multiple climate regimes, which makes hydrological simulations
influenced by different variables in different regions. The land water budgets in China
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is influenced by anthropogenic factors, such as irrigation (Puma and Cook, 2010), af-
forestation (Peng et al., 2014; Liu et al., 2015a), deforestation (Wei et al., 2018), polders
(Yan et al., 2016), dams (Deng et al., 2016) and inter-basin water transfer (Li et al.,
2015). Two river basins are of main interest: the Yangtze River Basin (YZRB) and the
Yellow River Basin (YLRB) (red and magenta contours respectively in Fig. 1), which
cover the main regions of industry and agriculture (grey regions in Fig. 1). The Yangtze
River originates in the Qinghai-Tibetan Plateau and flows through two wetted tradi-
tional agricultural zones: Sichuan Basin and the plain at the downstream of the Yangtze
River (Fig. 1). The Yellow River originates in the Qinghai-Tibetan Plateau as well,
but it flows through another two agricultural regions (the Loess Plateau and the North
China Plain) under semi-arid and semi-humid zones (Kottek et al., 2006). Our simula-
tions cover the main part of China ([85-124◦E]×[20-44◦N]) including the two watersheds
to assess SM dynamics not only in China but also at catchment scale.”

2.14 “This seasonality is computed across the boundaries depicted in Figure
1? A little more geographically distributed information would be helpful.”
A: Not exactly. The resolution of our simulations is coarser than the GIS data shown in
Fig. 1. Thus in the analysis, the specific masks of the two river basins (not illustrated
in the manuscript) do not perfectly cover the basins shown in Fig. 1. To avoid this
confusion, we wrote at the end of this paragraph: “Note that in the analysis, the specific
regions of the two river basins are coarser than the exact basin contours shown in Fig. 1
due to the interpolation of routing files at the resolution of our simulations.”

2.15 “P10L3: The soil moisture patterns do not necessarily match the an-
nual mean precipitation patterns, maybe mention something about obvious
monthly differences, or stronger evaporation using a specific forcing dataset?
Soil moisture is not just the result of precipitation but also the other input
data and model internal mechanics. No in-depth analysis is needed but some
additional maps or statistics for the most important other water balance vari-
ables, e.g. evapotranspiration, or at least some sentences on the issue would
be helpful. The GLEAM model you are comparing to is actually primarily
developed for evapotranspiration.”
A: True. SM does not only depend on MAP. Precipitation frequency and intensity, and
evapotranspiration influence SM patterns. And all of them depend on the input: atmo-
spheric forcing. This is the third question we addressed through this study. Considering
the length of the paper, Section 4.1 will be removed in the revised version, as it is not
tightly related to the topic. The comparison of simulated ET to GLEAM ET has been
performed and will be shortly discussed in the autocorrelation analysis.

2.16 “‘Comparison with ISMN and PKU in-situ data’ seems to be a summary
of the model performance for all four forcing datasets when compared to in-
situ measurements. It should be noted that these are the average statistics
for all carried out experiments. Instead of the next section being ‘Compar-
ison with GLEM ...’ I as a reader would expect a more detailed analysis
to follow (or the other way round), which now seems to be in section 4.3
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and 4.4. Thus I would recommend to first do the in-depth comparison to
in-situ measurements, followed by a comparison to other datasets thereafter.
As stated at the beginning, I strongly believe that GLEAM and the CCI
dataset should be validated against the in-situ measurements if you want to
quantify which model actually performs better in which geographical area.”
A: The comparison between simulated SM and in-situ measurement is a key part of
validation. We will introduce the priorities of these comparisons in the Introduction (see
reply to Comment 1.2). However we don’t agree to move the contents in Section 4.3 and
4.4 ahead of the comparison using GLEAM and ESA CCI SM datasets. There are three
research questions in this study (see Introduction). The Section 4.2 presents comparison
results in order to address question: Is ORCHIDEE able to reproduce reasonable SM
dynamics? The Section 4.3 is aim to demonstrate which forcing is suitable for hydrolog-
ical studies in China. And the Section 4.4 is for the third research question. We think
the current order is logical for readers to follow our steps to address the three questions
one by one.
However, we recognize that the paragraphs of comparison with in-situ measurements
were less detailed than others. In the revised manuscript, we provide a more explicit
explanation to the IMSN-PKU section and reduced the GLEAM comparison and Sec-
tion 4.4, as recommended by reviewer #2. Regarding the validation of ESA CCI and
GLEAM SM, please check our replies to Comment 1.2 and 1.5.

2.17 “The main finding that WFDEI performs best among forcing data is not
so surprising when compared to some other studies. Again, more emphasis
should be put on why this study is important specifically for China. Maybe
compare the outcome of the study to other studies.”
A: True. Motiviation of the study area has been added in the Introduction. Please check
our reply to comment 1.4.

2.18 “Table 2: Correlations are stated as being significant. Was the autocor-
relation of the datasets taken into account? Also valid for the correlation at
the individual stations.”
A: No. This table does not include autocorrelation. Because the k-lag is an array of cor-
relations and is difficult to show in a table. Moreover, as the answer to Comment 2.11,
the autocorrelation analysis provides another aspect of the dynamics of simulated SM
after rainfall. It is hard to distinguish which forcing performs better in this metrics also
reflecting model processes.
We found that the initial caption of Table 2 is confusing. We checked the median p-
value of each comparison and all of them are below 0.05. However, in a few grid cells (or
stations), the p-value is > 0.05. We added the quantile of the samples with significant
correlation in Table 2, and modified the caption as: “The subscripts of correlation co-
efficients indicate the quantile of stations (samples) with significant correlation (p-value
< 0.05).”

2.19 “Figure 10: Should include description of variable names. Use same
variable names in Figures 9 and 10.”
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A: We agree. In the revised manuscript, the variable names in Fig. 9 are replaced by
their abbreviations as Fig. 10. And the description of the abbreviations is added in the
caption of Fig. 9.

Table R1: Median of metrics in the comparison between ESA CCI and ORCHIDEE SM
for period 1981-2009. The subscripts of correlation coefficients indicate the quantile of
stations (samples) with significant correlation (p-value < 0.05).

Dataset Simulations Correlation RMSE (m3.m−3)

China Yangtze Yellow China Yangtze Yellow

ESA
CCI

GSWP3 0.330.96 0.290.97 0.451 0.06 0.06 0.06
PGF 0.210.90 0.220.95 0.241 0.07 0.07 0.07

CRU-NCEP 0.370.96 0.340.97 0.461 0.07 0.08 0.07
WFDEI 0.470.98 0.420.97 0.571 0.06 0.06 0.06
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Figure R1: Number of days with available data per month of the ESA CCI soil moisture
product.
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Figure R2: Top panel: annual averaged ESA CCI soil moisture from 1979 to 2010.
Bottom panel: fraction of days with available data per month in two grid cells shown in
the top panel.

12



Figure R3: Left panel: Correlation coefficients of the ESA CCI SM and the corre-
sponding ORCHIDEE SM from 1981 to 2009. Gray pixels indicate non and negative
correlation. Right panel: decomposition of the MSD between the daily ESA CCI SM and
the corresponding ORCHIDEE SM. Cyan, magenta and yellow indicate the fractions of
SB, SDSD and LCS respectively.
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