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Abstract: Understanding responses by changes in land use/land cover (LULC) and climate over the past decades on 

streamflow in the Upper Blue Nile River Basin is important for water management and water resource planning  in the Nile 

basin at large. This study assesses the long-term trends of rainfall and streamflow and  analyze the responses of steamflow to 15 

changes in LULC and climate in the Upper Blue Nile River basin. Findings of the Mann-Kendal (MK) test indicate 

statistically insignificant increasing trends for basin-wide annual, monthly, and long rainy-season rainfall but no trend for 

daily, short rainy, and dry season rainfall. The Pettitt test did not detect any jump point in basin-wide rainfall series except 

for daily time series rainfall. Findings on MK test for daily, monthly, annual, and seasonal streamflow showed a statistically 

significant increasing  trend. Landsat satellite images for 1973, 1985, 1995, and 2010 were used for LULC change detection 20 

analysis. The LULC change detection findings indicate increases in cultivated land  and decreases in forest coverage prior to 

1995 but increases forest area after 1995 with area of cultivated land that diminished. Statistically, forest coverage changed 

from 17.4 % to 14.4 %, 12.2 %, and 15.6 % while cultivated land changed from 62.9 % to 65.6 %, 67.5 %, and 63.9 % from 

1973 to 1985, in 1995, and in 2010 respectively. Results of hydrological modeling indicate that mean annual streamflow 

increased by 16.9 % between the 1970s and 2000s due to the combined effects of LULC and climate change. Findings on 25 

effects by LULC change only on streamflow indicate that surface runoff and base flow are affected and is attributed to the 

5.1 % reduction in forest coverage and 4.6 % increase in cultivated land area. Effects by climate change only revealed that 

the increased rainfall intensity and number of extreme rainfall events from 1971 to 2010 significantly affected the surface 

runoff and base flow. Hydrological impacts by climate change are more significant as compared to the impacts of LULC 

change for streamflow of  the Upper Blue Nile river basin. 30 
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1. Introduction 

 The Abay (Upper Blue Nile) River in Ethiopia contributes more than 60 % of the water resources in the Nile River 

(McCartney et al., 2012). Due to the high potential of Abay river flows, the Ethiopian government conducted a series of 

studies since 1964 (USBR, 1964) for supporting the national development and reducing poverty (BCEOM, 1998) by 

increasing the number of water storage reservoirs in the Upper Blue Nile River Basin (UBNRB), both for irrigation and 5 

hydropower development. As a result, large-scale irrigation and hydropower projects such as the Grand Ethiopian 

Renaissance Dam (GERD), that will be the largest dam in Africa after completion, have been planned and realized along the 

main stem of  the Blue Nile River. However, its hydrology exhibiting high seasonal flows as influenced by large variations 

in climate, altitude/topography, and land use/cover (LULC) change. Over the past decades, changes in climate (e.g. (Haile et 

al., 2017)) and changes in  LULC (e.g. Woldesenbet et al. (2017b)) have affected the magnitude of streamflow. Effective 10 

planning, management, and regulation of water resources development is therefore required to avert conflicts between the 

competing water users. 

 

Only understanding the hydrological processes and sources impacting water quantity, such as LULC change and climate 

                                         k                                      w        ’                w           b      15 

(Oki and Kanae, 2006; Woldesenbet et al., 2017b; Yin et al., 2017b). LULC change can modify the rainfall path to generate 

basin runoff by altering critical water balance components, such as, groundwater recharge, infiltration, interception, and 

evaporation. McCartney et al. (2012) and Alemseged and Tom (2015) described that the UBNRB experiences significant 

spatial and temporal climate variability. Less than 500 mm of precipitation falls annually near the Sudanese border whereas 

more than 2000 mm falls annually in some areas of the southern basin (Awulachew et al., 2009). Potential 20 

evapotranspiration (ET) also varies considerably and is strongly correlated with altitude. At annual bases, it varies from more 

than 2200 mm near the Sudanese border to between about 1300 mm and 1700 mm in the Ethiopian highlands (McCartney et 

al., 2012). The precipitation and ET cycles are characterized by seasonal and inter-annual variability, that affect the  

characteristic of  the UBNRB streamflow. 

 25 

A literature review shows that several sub-basin or basin level studies are conducted in the UBNRB. Most of the studies 

were focused on trend analysis of precipitation and streamflow, for example, those by (Bewket and Sterk, 2005; Cheung et 

al., 2008; Conway, 2000; Gebremicael et al., 2013; Melesse et al., 2009; Rientjes et al., 2011; Seleshi and Zanke, 2004; 

Teferi et al., 2013; Tekleab et al., 2014; Tesemma et al., 2010), all reported no significant trend in annual and seasonal 

precipitation totals within the Lake Tana sub-basin, whereas Mengistu et al. (2014) reported statistically non significant 30 

increasing trends in annual and seasonal rainfall series, except for a short rainy season (Belg) from February to May.  

 

Gebremicael et al. (2013) reported statistically significant increasing long-term annual streamflow (1970-2005) at the El 

D                              N  ’           w.   w      (Tesemma et al., 2010) reported no statistically significant 



3 

 

trend for long term annual streamflow (1964-2003) at the El Diem gauging station, but did report a significantly increasing 

trend at the Bahirdar and Kessie stations. At the sub-basin scale, Rientjes et al. (2011) reported a decreasing trend for the low 

flows of Gilgel Abay sub-basin (Lake Tana catchment, the Blue Nile headwaters) during the 1973–2005 period, specifically 

by 18.1 % and 66.6 % in the periods 1982–2000 and 2001–2005, respectively. However, the high flows for the same periods 

show an increase by 7.6 % and 46.6 % due to LULC change and seasonal rainfall variability.  5 

 

A         p            b                            p        L L                               N  ’        ogy, only 

a few studies have endeavored to assess the attribution of changes in the water balance to LULC change and climate change. 

Woldesenbet et al. (2017b), used partial least squares regression (PLSR) and a SWAT modeling approach to quantify the 

contributions of changes in individual LULC classes to changes in hydrological components in the Lake Tana and Beles sub-10 

b     ’. Woldesenbet et al. (2017b) reported that increases of cultivation land area and decreases in woody shrub/woodland 

appear to be major environmental stressors affecting local water resources such as increasing surface runoff and decreasing 

of ground water contribution in both watersheds; however, the impacts of climate change were not considered. Nonetheless, 

proper water resource management requires an in-depth understanding of the aggregated and disaggregated effects of LULC 

and climate changes on streamflow and water balance components as the interaction between LULC, climate characteristics, 15 

and the underlying hydrological processes are complex and dynamic (Yin et al., 2017b).   

 

          ’   bj                         ( )                -term trend of rainfall and streamflow (ii) analyze LULC change, 

and (iii) examining streamflow responses to the combined and isolated effects of LULC and climate changes in the UBNRB. 

This is doable by combining analysis of statistical trend test, change detection of LULC derived from satellite remote 20 

sensing, and hydrological modelling during the 1971–2010 period. 

2. Study area 

The UBNRB is located in northwestern Ethiopia. Its catchment area is about 172760 km
2
. Highlands, hills, valleys, and 

occasional rock peaks with elevations ranging from 500 m.a.s.l. to above 4000 m.a.s.l. typically characteriz      b    ’  

topography (Figure 1). According to BCEOM (1998), two thirds of the b                  p  ’            w           25 

rainfall ranging from 800 mm to 2200 mm. The central and southeastern area is characterized by relatively high rainfall 

(1400 mm to 2200 mm), whereas in most of the eastern and northwestern parts of the basin  rainfall is less than 1200 mm. 

Mekonnen and Disse (2018) showed that the UBNRB has a mean areal annual rainfall of 1452 mm and mean annual 

minimum and maximum temperatures of 11.4 
o
C and 24.7 

o
C, respectively.  

 30 

The sub-tropical climate of the basin is affected by the movement of the Inter-Tropical Convergence Zone (ITCZ) (Conway, 

2000; Mohamed et al., 2005). NMA (2013) classified the climate in Ethiopia into three distinct seasons. The main rainy 
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season (Kiremit) generally lasts from June to September during which southwest winds bring rains from the Atlantic Ocean. 

Some 70–90 % of the total rainfall occurs during this season. A dry season (Bega) lasts from October to January and the 

short rainy season (Belg) lasts from February to May. According to BCEOM (1998), the average annual discharge (1960 to 

1992), at the Ethio-Sudan border (El Diem), is about 49.4 Billion Cubic Meter (BCM), with the low-flow month (April) 

equivalent to less than 2.5 % of that of the high-flow month (August). The analysis of this study revealed that the long-term 5 

(1971–2010) mean annual volume of streamflow at El Diem is 50.7 BCM, with low streamflow volume (dry season) 

contributing 21.1 % and the short rainy season contributing for about 6.2 %. As such some 73 % of streamflow occurred 

during the rainy season (Table 1).     b    ’                              w             b  w                   w    . 

Predominantly farmlands (about 90 %), bush, and shrubs cover the highlands. The lowlands, in contrast, are still largely 

untouched by development. As a result, woodlands, bush, and shrub lands are the dominant forms of land cover (BCEOM, 10 

1998).   

3. Input data sources 

In this study, nonparametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistics and the Soil and Water Assessment 

Tool (SWAT), developed by the Agricultural Research Service of the United States Department of Agriculture (USDA-

ARS) (Arnold et al., 1998), are used for statistical trend analysis and water balance modelling, respectively. Details of both 15 

methods are available in section 4. The input datasets used for the SWAT model can be categorized into those containing 

weather and streamflow data, and spatially distributed datasets. 

3.1 Weather and streamflow data 

The daily weather variables used in this study for trend analysis and for driving the water balance model are precipitation, 

minimum air temperature (Tmin), maximum air temperature (Tmax), relative humidity (RH), hours of sunshine (SH), and 20 

wind speed (WS). Weather data from 40 meteorological stations were obtained from the Ethiopian National Meteorological 

Service Agency (ENMSA) for the 1971–2010 period. Daily streamflow data for 25 gauging stations were collected from the 

Federal Ministry of Water, Irrigation and Electricity of Ethiopia for the same period 1971–2010. After screening and 

rigorous analyses of the weather data, a considerable amount of time series data were found to be missed in most of the 

stations (see Table S01). The occurrences of civil war, defective and outdated devices were the main causes for the missing 25 

data records. As a result, only the 15 stations (Figure 1), in which rainfall data is relatively more complete proved to be 

suitable for trend analysis. Some 10 stations having complete climate variables, such as Tmax, Tmin, RH, WS, and SH were 

used as input for the SWAT model Figure 1. 

 

We resorted to spatial interpolation techniques, such as the inverse distance weighting (IDW), and linear regression (LR) to 30 

fill the gaps. Uhlenbrook et al. (2010) applied similar approaches or methods to the Gilgel Abbay sub-basin, which is the 
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  N  ’      w    .                      b        j                        p              p                           

interpolated values. As mentioned by Woldesenbet et al. (2017a), different authors used different criteria to select 

neighboring stations. Because of the relatively low number of network stations, a geographic distance of 100 km was 

considered for most stations when selecting neighboring stations. If no station is located within 100 km of the target station, 

then the search distance is increased until at least one suitable station is reached. After the neighboring stations were 5 

selected, the two methods (IDW and LR) were tested by means of cross-validation to fill in missing datasets. The candidate 

       ’ p            w                                                               q           (  S )        b       

error (MAE), correlation coefficient (R
2
), and percent bias (% bias) between observed and estimated values for the target 

stations. Equally weighted statistical metrics are applied to compare the performances of selected methods at target stations 

and to establish the ranking. A score was assigned to each candidate method according to the individual metrics. For 10 

example, the candidate achieving the smallest values of RMSE and MAE, or % bias received score 1, and score 2 for the one 

having larger value. The final score is obtained by summing up the score pertaining to each candidate approach at each 

station. The method with the smallest score is the best. The monthly, seasonal, and annual weather data were aggregated 

from the daily time-series data after filling the gaps. While filling in the missing data, uncertainty is expected due to low 

station density, poor correlations, and the considerable number of missing records. Similar techniques and approaches were 15 

used for the analysis and filling in of missing streamflow data records. 

3.2 Spatial data 

Spatially distributed data required for the SWAT model includes tabular and spatial soil data, tabular and spatial land use 

/cover information, and elevation data. A Shuttle Radar Topographic Mission Digital Elevation Model (SRTM DEM) of 90 

      ’                     Consultative Group on International Agricultural Research-Consortium for Spatial Information 20 

(CGIAR-CSI; http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) was used to represent land surface drainage patterns. 

Terrain characteristics such as slope gradient, slope length of the terrain, and stream network characteristics such as channel 

slope, length, and width were derived from the DEM. 

 

The soil map (1:5000000) developed by the Food and Agriculture Organization of the United Nations (FAO-UNESCO)  was 25 

downloaded from http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-ofthe-world/en/. 

Soil information such as soil textural and physiochemical properties needed for the SWAT model were extracted from 

Harmonized World Soil Database v1.2, a database that combines existing regional and national soil information 

(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-databasev12/en/) with 

information provided by the FAO-UNESCO soil map (Polanco et al., 2017).  30 

 

The LULC maps were produced from satellite-remote-sensing Landsat images for 1973, 1985, 1995, and 2010 at a scale of 

30 m x 30 m resolution. Detailed descriptions on image processing and classification are available under section 4.2.  



6 

 

4. Methodology 

4.1 Trend analysis 

The nonparametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistic is chosen to detect trends for rainfall and 

streamflow time-series data as it is widely used for water resource planning, design, and management (Yue and Wang, 

2004). Its advantage over parametric tests such as t-test is that the MK test is more suitable for non-normally distributed and 5 

missing data, which are frequently encountered in hydrological time-series (Yue et al., 2004). However, the existence of 

positive serial correlation in time-series data affects the MK-test result. If serial correlation exists in time-series data, the MK 

test rejects the null hypothesis of no trend detection more often than specified by the significance level (Von Storch, 1995).  

 

Von Storch (1995) proposed prewhitening technique to limit the influence of serial correlation on the MK test. The Effective 10 

or Equivalent Sample Size (ESS) method developed by Hamed and Rao (1998) has also been proposed to modify the 

variance. However, the study by (Yue et al., 2002) reported that von Stroch's prewhitening is effective only when no trend 

 x              SS  pp     ’    j                                                                        (Yue et al., 2004). 

Yue et al. (2002) then proposed trend-free prewhitening (TFPW) prior to applying the MK trend test in order to minimize it's 

limitation. This study therefore employed TFPW to remove the serial correlation and to detect a trend in time data series 15 

with significant serial correlation. Further details can be found in (Yue et al., 2002). All the trend results in this study have 

been evaluated at the 5 % level of significance to ensure effective exploration of the trend.. 

 

Change point test 

The Pettitt test is used to identify whether or not there is a point change or jump in the data series (Pettitt, 1979). This 20 

                     k  w         p     b                  q                     b    (X )  X1  X2  …  X           

have a change point at N if Xt variable       = 1  2  …  N time step has a common distribution function, F1(x) and Xt for 

  = N + 1  …    time step                    b                 2(x)  w      1(x) ≠  2(x).  

 

Sen’s slope estimator 25 

The trend magnitude is estimated using a nonparametric median-based slope estimator proposed by (Sen, 1968) as it is not 

greatly affected by gross data errors or outliers, and can be computed when data are missing. The slope estimation is given 

by 

         
     

   
  for all k < j,                                                                       (1)  

where xj and xk are the sequential data values, n is the number of the recorded data. 1 < k < j <        β    considered as the 30 

              p    b      b            p             w             . A p                 β               pw    (          ) 
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trend and a negative value indicates a downward (decreasing) trend in the time series. All MK trend tests, Pettitt change-

point detections, and Sen's slope analyses were conducted using the XLSTAT add-ins tool from excel (www.xlstat.com). 

4.2 Remote sensing land use/cover map  

4.2.1. Landsat image acquisition   

Landsat images from the years 1973, 1985, 1995, and 2010 were accessed from the US Geological Survey (USGS) Center 5 

for Earth Resources Observation and Science (EROS) via http://glovis.usgs.gov. The Landsat images were selected based on 

the criteria of the acquisition period, availability, and percentage of cloud cover. Hayes and Sader (2001), recommend 

acquiring images from the same acquisition period to reduce image-to-image variation caused by sun angle, soil moisture, 

atmospheric condition, and vegetation-phenology differences. Cloud free-images were hence collected for the dry months of 

January to May. However, as the basin cover                            L L    p’  p          p      16 L             . 10 

Accessing all the images during a dry season in a single year was therefore difficult. Hence, images were acquired ±1 year 

for each time period and some images were also acquired in the months of November and December. For example, 16 

Landsat MSS image scenes were acquired in 1973 (10 images in January, 4 images in December and 2 images in November;  

±1 years) and merged to arrive at one LULC representation for selected years. Please see supplement Table S02 for the 

details on Landsat images. 15 

4.2.2 Preprocessing and processing images  

Several standard preprocessing methods including geometric and radiometric correction were implemented to prepare the 

LULC maps from Landsat images. Although many different classification methods exist, supervised and unsupervised 

classifications are the two most widely used methods for landcover classification from remote-sensing images. Hence, in this 

study, a hybrid supervised/unsupervised classification approach was adopted to classify the images from 2010 (LandsatTM). 20 

Iterative Self-O     z    D    A        (ISODA A)            w         p                               ’   p               

or land cover classes. Polygons for all of the training samples based on the identified LULC classes were then digitized using 

ground truth data. The samples for each land cover type were then aggregated. Finally, a supervised classification was 

performed using a maximum likelihood algorithm to extract four LULC classes. 

 25 

A total of 488 Ground Control Points (GCPs) regarding landcover types and their spatial locations were collected from field 

observation in March and April 2017 using a Global Positioning System (GPS). Reference data were collected and taken 

from areas where there had not been any significant landcover change between 2017 and 2010. These areas were identified 

b          w                  p  p          pp                                            I                          ’  

priori knowledge. As many as 288   P’  w                                     200 p                                   30 
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generate a signature for each land-        p .                    ’          w            b     p                     x (     

known as the confusion matrix), which compares the classification result with ground truth information as suggested by 

DeFries and Chan (2000). A confusion matrix lists the values for                   ’  known cover types in the columns and 

for the classified data in the rows (Banko, 1998) as shown in Table 5. From the confusion matrix, a statistical metrics of 

overall accuracy, producers' accuracy and users' accuracy are used. Another discrete multivariate technique useful in 5 

accuracy assessment is called KAPPA (Congalton, 1991). The statistical metric for KAPPA analysis is the Kappa 

coefficient, which is another measure of the proportion of agreement or accuracy. The Kappa coefficient is computed as 

  
               

 
   

   
   

             
 
   

                                                             (2) 

 

where r is the number of rows in the matrix, xii is the number of observations in row i and column i, xi+ and x+i are the 10 

marginal totals of row i and column i, respectively. N is the total number of observations.  

 

Once the landcover classification of the year 2010 Landsat image had been completed and its accuracy checked, the NDVI 

differencing technique (Mancino et al., 2014) was applied to classify the images from 1973, 1985, and 1995. This technique 

was chosen to increase the accuracy of classification as it is hard to find an accurately classified digital or analog LULC map 15 

of the study area during 1973, 1985, and 1995. The information obtained from the elders is also more subjective and its 

reliability is questionable when there is a considerable time gap. We first calculated the NDVI from the Landsat MSS (1973) 

and three preprocessed Landsat TM images (1985, 1995, and 2010) following the general normalized difference between 

band TM4 and band TM3 images (eq. 3). The resulting successive NDVI images were subtracted from each other to assess 

    ΔNDVI image with positive (vegetation increase), negative (vegetation cleared) and no change at a 30 m x 30 m pixel 20 

resolution (eqs.4–6). The Landsat MSS 60 m x 60 m pixel-size data sets were resampled to a 30 m x 30 m pixel size using 

    “             b  ”       q            q    p x     z                            w                              ’           

pixel values. 

 

     
         

         
    

           

           
                                 (3) 25 

                                     (4) 

                                     (5) 

                                     (6) 
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    ΔNDVI       w                                                           μ ±  *σ; w     μ   p            ΔNDVI p x    

                σ                       .                                                           b     : ( )               

(ΔNDVI < μ −  *σ)  (b)                (ΔNDVI > μ +  *σ)      ( )                                        b      (μ −  *σ < 

ΔNDVI < μ +  *σ). P x    w           w                     b                    z   b                                 

whereas pixels in the central region represent no change. To be more conservative, n = 1 was selected for this study to 5 

     w                               b                 .                        (σ)                    w       pp            ld 

identification approaches for different natural environments based on different remotely sensed imagery (Hu et al., 2004; 

Jensen, 1996; Lu et al., 2004; Mancino et al., 2014; Singh, 1989) as cited by Mancino et al. (2014).  

 

ΔNDVI p x          (2010–1995)                                           b      (μ −  *σ < ΔNDVI < μ +  *σ)   p          10 

absence of landcover change between two different periods (i.e., 1995 and 2010); therefore, pixels from 1995 corresponding 

to no landcover change can be classified as similar to the 2010 landcover classes. Pixels with significant NDVI change are 

reclassified using supervised classification, taking signatures from the already classified, no-change pixels. Likewise, 1985 

and 1973 landcover images were classified based on the classified images of 1995 and 1985 respectively. Finally, after 

classifying the raw Landsat images into different landcover classes, change detection, which requires the comparison of 15 

independently produced classified images (Singb, 1989), was performed by the postclassification method. The 

postclassification change-detection comparison was conducted to determine changes in LULC between two independently 

classified maps from images of two different dates. Although this technique has some limitations, it is the most common 

approach because it does not require data normalization between two dates (Singh, 1989). This is because data from two 

dates are separately classified, thereby minimizing the problem of normalizing for atmospheric and sensor differences 20 

between two dates.  

 

4.3 SWAT hydrological model 

The Soil and Water Assessment Tool (SWAT) is an open-source-code, semi-distributed model with a large and growing 

number of model applications in a variety of studies ranging from catchment to continental scales (Allen et al., 1998; Arnold 25 

et al., 2012; Neitsch et al., 2002). It enables the impact of LULC change and climate change on water resources to be 

evaluated in a basin with varying soil, land use, and management practices over a set period of time (Arnold et al., 2012).  

 

In SWAT, the watershed is divided into multiple sub-basins, which are further subdivided into hydrological response units 

(HRUs) consisting of homogeneous landuse management, slope, and soil characteristics (Arnold et al., 1998; Arnold et al., 30 

2012). HRUs are the smallest units of the watershed in which relevant hydrologic components such as evapotranspiration, 
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surface runoff and peak rate of runoff, groundwater flow, and sediment yield can be estimated. Water balance is the driving 

force behind all of the processes in the SWAT calculated using eq. 7,  

 

                                 
 
        (7) 

 5 

where SWt is the final soil-water content (mm H2O), SWo is the initial soil-water content on day i (mm H2O), t is the time 

(days), Rday is the amount of precipitation on day i (mm H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is 

the amount of evapotranspiration on day i (mm H2O), Wseep is the amount of water entering the vadose zone from the soil 

profile on day i (mm H2O), and Ql is the amount of return flow on day i (mm H2O).  

 10 

Runoff is calculated separately for each HRU and routed to obtain the total streamflow for the watershed using either the soil 

conservation service (SCS) curve number (CN) method (Mockus, 1964) or  Green & Ampt infiltration method (GAIM) 

(Green and Ampt, 1911), see Figure 2. However, spatial connectivity and interactions among HRUs are ignored. Instead, the 

cumulative output of each spatially discontinuous HRU at the sub-watershed outlet is directly routed to the channel (Pignotti 

et al., 2017). This lack of spatial connectivity among HRUs makes implementation and impact analysis of spatially targeted 15 

management such as soil and water conservation structure difficult to incorporate into the model. Different authors have 

made efforts to overcome this problem for instance, a grid-based version of the SWAT model (Rathjens et al., 2015) or 

landscape simulation on a regularized grid (Rathjens and Oppelt, 2012). Moreover, (Arnold et al., 2010) and (Bosch et al., 

2010) further modified SWAT so that it allows landscapes to be subdivided into catenas comprising upland, hillslope, and 

floodplain units, and flow to be routed through these catenas. However, SWATgrid, developed to overcome this limitation, 20 

remains largely untested and computationally demanding (Rathjens et al., 2015).  

 

Hence, the standard SWAT CN method was chosen for this study because it was applied in many Ethiopian watersheds such 

as (Gashaw et al., 2018; Gebremicael et al., 2013; Setegn et al., 2008; Woldesenbet et al., 2017b). Furthermore,  its ability to 

use daily input data (Arnold et al., 1998; Neitsch et al., 2011; Setegn et al., 2008) as compared to GAIM, which requires 25 

subdaily precipitation as a model input, and that can be difficult to obtain in data-scare regions like the UBNRB. This study 

                          L L                                   b    ’  w     b          p   nts, which include the 

components of inflows, outflows, and the change in storage. Precipitation is the main inflow whereas evapotranspiration 

(Et), surface runoff (Qs), lateral flow (Ql), and base flow (Qb) are the outflows. SWAT has three storages: soil moisture 

(SM), shallow aquifer (SA) and deep aquifer (DA). Water movement from the soil-moisture storage to the shallow aquifer is 30 

due to percolation, whereas water movement from the shallow aquifer reverse upward to the soil-moisture storage is Revap. 

For a more detailed description of the SWAT model, refer to Neitsch et al. (2011). 
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The SWAT model setup and data preparation was done using arcSWAT2012 tool in the arcGIS environment, whereas 

parameter sensitivity analysis, and model calibration and validation was performed using the SWAT-CUP (Calibration and 

Uncertainty Procedures) interface Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2008). During model set 

up, the observed daily weather and streamflow data from the given period was divided into three different periods: the first 

to warm up the model, the second to calibrate it, and the third to validate it. Determining the most sensitive parameters is the 5 

first step in the model calibration/validation process using the global sensitivity analysis option (Arnold et al., 2012). The 

          p          p             b       p         k                j                      ’    p   p                   

model output with observed data thereby reducing the prediction uncertainty. Initial parameter estimates were taken from the 

default lower and upper bound values of the SWAT model database and from earlier studies in the basin such as 

(Gebremicael et al., 2013). The final step, model validation, involves running a model using parameters that were 10 

determined during the calibration process and comparing the predictions to independently observed data not used in the 

calibration. 

 

In this study, both manual and automatic calibration strategies were applied to attain the minimum differences between 

observed and simulated streamflows in terms of surface flow, and peak and total flow following the steps recommended by 15 

Arnold et al. (2012). For the purpose of impact analysis, we divided the simulation period 1971–2010 into four decadal 

periods hereafter referred as the 1970s (1971–1980), 1980s (1981–1990), 1990s (1991–2000) and 2000s (2001–2010) as 

shown in Table 2.          ’  p                            w w                                            (        et al., 

2007) such as the Nash-Sutcliffe coefficient of efficiency (NSE), the coefficient of determination (R
2
), and the relative 

volume error (RVE %), which are shown by eq.8-10. Furthermore, graphical comparisons of the simulated and observed 20 

         w       w     b           k   w                              ’  p          .  

   
                       

 

           
 
         

        (8) 

      
          

 

          
        (9) 

            
         

 
   

     
 
   

      (10) 

where Qm,i is the measured streamflow in m
3
s

-1
,     are the mean values of the measured streamflow (m

3
s

-1
), Qs,i is the 25 

simulated streamflow in m
3
s

-1 
, and     are the mean values of simulated data in m

3
s

-1
.  
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4.4 SWAT simulations   

Three different approaches were applied for assessing the effects of LULC change and climate change on streamflow and 

water balance components. The first approach is to assess the response of streamflow  for the combined effects of LULC 

change and climate change. We followed the approach in (Marhaento et al., 2017) and  divided the analysis period, 1971–

2010, into four periods of similar length (four decades). These are periods when land use changes are expected to change the 5 

hydrological regime within a catchment (Marhaento et al., 2017; Yin et al., 2017a). The first period, the 1970s, was regarded 

as the baseline period. The other periods, the 1980s, 1990s, and 2000s, were regarded as altered periods. LULC maps of 

1973, 1985, 1995, and 2010 were used to represent LULC patterns during the 1970s, 1980s, 1990s, and 2000s respectively. 

For analyses, the SWAT model was calibrated and validated for each respective period using the respective LULC map and 

weather data (Table 2). The DEM and soil data sets remained unchanged. The differences between the simulation result of 10 

the baseline and altered periods represent the combined effects of LULC and climate changes on streamflow and water 

balance components  

 

The second approach included simulations to attribute effects from LULC changes alone. It aimed to investigate whether 

LULC change is the main driver for changes in water balance components. To identify the hydrological impacts caused 15 

solely by LULC, "A fixing-changing" method was used (Marhaento et al., 2017; Woldesenbet et al., 2017b; Yan et al., 

2013; Yin et al., 2017b). The calibrated and validated SWAT model and its parameter settings in the baseline period were 

forced by weather data from baseline period, 1973–1980, while changing only the LULC maps from 1985, 1995, and 2010, 

keeping the DEM and soil data constant as suggested by (Hassaballah et al., 2017a; Marhaento et al., 2017; Woldesenbet et 

al., 2017b; Yin et al., 2017b). We ran the calibrated SWAT model for the baseline period (1970s) four times changing only 20 

the LULC map for the years 1973, 1985, 1995, and 2010 and retaining the constant weather data set from the 1970s (Table 

2). The third approach is similar to the second, but the simulations are attributed only for climate changes. The calibrated 

models for the base line period was run again four times, corresponding to the LULC periods using a unique LULC map of 

the year 1973 but altering the four different periods of weather data sets for respective periods.    

5. Results and discussions 25 

5.1 Trend test 

5.1.1 Rainfall  

The summary of the MK trend tests result for the rainfall recorded at the 15 selected stations located in and around the 

UBNRB revealed a mixed trends (increasing, decreasing, and no change). For daily time series, the computed probability 

values (p-      )                    w                                           w                                              (α 30 
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= 5 %). This means that no statistically significant trend existed in seven stations, but a monotonic trend occurred in the 

remaining eight. Positive trends developed only at six stations, four of which were concentrated in the northern and central 

highlands (Bahirdar, Dangila, Debre Markos, and G/bet). The other two stations, Assosa and Angergutten, are located in the 

southwestern and southern lowlands (see Figure 1). The other two stations, Alemketema and Nedjo, which are located in the 

East and Southwest of the UBNRB, respectively showed a decreasing trend. On a monthly basis, the MK trend test result 5 

showed that no trend existed in eleven stations while statistically non significant increasing trends exist in three stations 

(Dangila, G/bet and Shambu) and a decreasing trend in Alemketema station. On an annual time scale, MK trend test could 

not find any trend in eleven stations but did exhibit a trend in four stations. Debiremarkos, and Shambu stations showed 

statistically non significant increasing trend while G/bet and Alemketema showed statistically significant positive trend and 

non significant decreasing trend respectively. The trend analysis result for the annual rainfall time series agrees well with a 10 

previous study by Gebremicael et al. (2013), who reported no significant annual rainfall change at eight out of nine stations 

during the 1973–2005 period. Hence, it is interesting to note that the time scale of analysis is a critical factor in determining 

the given trends. 

 

The basin-wide areal UBNRB rainfall trend and change point analysis was again carried out on daily, monthly, seasonal, and 15 

annual time scales using the MK and Pettitt tests respectively. We applied a widely used spatial interpolation technique, the 

Thiessen polygon method, to calculate basin-wide rainfall series from station data. A summary is provided in Table 3 and 

Figure 3. The MK test showed increasing trends for annual, monthly, and long-rainy-season rainfall series whereas no trend 

for daily, short rainy and dry-season rainfall series appeared. The magnitude of trends for annual, monthly, and long-rainy-

season rainfall series are not statistically significant, as explained by the values of Sen's slope. However, the Pettitt test could 20 

not detect any jump point in basin-wide rainfall series except for daily time-series rainfall (see Figure S01). 

 

Previous studies such as (Conway, 2000; Gebremicael et al., 2013; Tesemma et al., 2010), conducted trend analysis of basin-

wide rainfall and reported that no significant change in annual and seasonal rainfall series across the UBNRB exists, which 

contradicts with the result of this study. This disagreement could be due to the number of stations and their spatial 25 

distribution across the basin, time period of the analysis, approach used to calculate basin-wide rainfall from gauging 

stations, and data sources. Tesemma et al. (2010) used monthly rainfall data downloaded from Global Historical 

Climatology Network (GHCN) data base and 10-day rainfall data for the 10 selected stations obtained from the National 

Meteorological Service Agency of Ethiopia from 1963–2003. Conway (2000) also constructed basin-wide annual rainfall in 

the UBNRB for the 1900–1998 period from the mean of 11 gauges. Furthermore, (Conway, 2000) employed simple linear 30 

regressions over time to detect trends in annual rainfall series without removing the serial autocorrelation effects. 

Gebremicael et al. (2013), used only nine stations from the 1970–2005 period. However, in this study, we used daily 

observed rainfall data from 15 stations collected from Ethiopian Meteorological Agency from 1971–2010. The stations are 

more or less evenly distributed over the UBNRB.  
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5.1.2 Streamflow 

     K     ’             daily, monthly, annual, and seasonal (long and short rainy season and dry season) streamflow time 

series showed a positive trend, the magnitude of which is statistically significant, as summarized in Table 3 . The Pettitt test 

also detected change point for daily, annual, and short-rainy-season streamflow but did not detect change point for monthly, 

long, and dry season streamflow (see Figure 3 and Figure S02). The change point detected by the Pettitt test for annual 5 

streamflow is in 1995 whereas for daily and short rainy seasons it is in 1985 and 1987, respectively. The result obtained from 

the MK test agrees well with the findings in Gebremicael et al. (2013), who reported an increasing trend in the observed 

                                    ’          w           D                     b                                           -

season streamflow. Furthermore, the increasing trend of long-rainy-season streamflow agrees well with the result of 

Tesemma et al. (2010), but disagrees with the results of short rainy season and annual flows. (Tesemma et al., 2010), 10 

reported that the short rainy season and the annual flows are constant for the 1964–2003 period. This disagreement is likely 

attributable to the difference in analysis period, as can be seen from Figure 3. The last seven years, 2004–2010, had 

relatively higher streamflow records. 

 

Although, the results of the MK test for annual and long-rainy-season rainfall and streamflow show an increasing trend for 15 

the last 40 years in the UBNRB, the magnitude of Sen's slope for streamflow is much greater than it is for rainfall (Table 3). 

Moreover, short-rainy-season streamflow shows a statistically significant positive increase whereas the rainfall shows no 

change. The mismatch between rainfall and streamflow trend magnitude could be associated with evapotranspiration and 

attributable to the combined effect of LULC change and climate change, infiltration rate due to changing soil properties, 

rainfall intensity, and extreme events. 20 

5.2 LULC change analysis  

According to the confusion-     x   p                         80 %  p       ’                                              

75.4 % to 100 %, user's accuracy values ranging from 83.7 % to 91.7 % and a kappa coefficient (k) of 0.77 were attained for 

the 2010 classified image (Table 5). Monserud (1990) suggested a kappa value of <40 % as poor, 40–55 % fair, 55–70 % 

good, 70–85 % very good, and >85 % as excellent. According to these ranges, the classification in this study has very good 25 

agreement with the validation data set and meets the minimum accuracy requirements to be used for further change detection 

and impact analysis.  

 

The classified images of the basin (Figure 4) have shown different LULC proportions at four distinct time periods, as shown 

in Figure 5. Cultivated land dominantly covers (62.9 %) of UBNRB, followed by bushes and shrubs (18 %), forest (17.4 %), 30 

and water (1.74 %) in 1973. In 1985, cultivated land area increased to 65.6 %, followed by bushes and shrubs (18.3 %), 

while forest decreased to 14.4 %, and water remained unchanged at 1.7 %. In 1995, cultivated land area further increased to 
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67.5 %, followed by bushes and shrubs (18.5 %). Forest further decreased to 12.2 % and water remained unchanged at 1.7 

%. In 2010, cultivated land decreased to 63.9 %, bushes and shrubs increased to 18.8 %, forest increased to 15.6 %, and 

water remained unchanged at 1.7 %. During the entire 1973–2010 period, cultivated land, along with bushes and shrubs 

remained the major proportions compared to the other LULC classes. The highest increase (2.7 %) and the largest decrease 

(−3.6 %) in cultivated land occurred during the 1973–1985 and 1995–2010 periods respectively. The largest increase in 5 

bushes and shrubs was 0.3 % from 1973 to 1985, whereas the largest increase in forest coverage (3.4 %) was recorded during 

the 1995–2010 period. Water coverage remained unchanged from 1973 to 2010.  

 

Although, the image classification results show very good accuracy, uncertainties in classification could be expected. First, 

as elsewhere in Ethiopia, LULC may change rapidly over the land surface of the basin and image reflectance may be 10 

confusing due to the topography and variation in the image acquisition date. Landsat images were not all available for one 

particular year or one season (as described under section 4.2.1); images from different years and different seasons might 

harbor errors. Secondly, the workflow associated with LULC classification involves many steps and can be a source of 

uncertainty. The errors are observed in the classified LULC map as shown in Figure 4. On the western side of the map in 

Figure 4 (a) a rectangular section with forest appears, that  completely disappears in 4(b). Rectangular forest cover appears in 15 

the northern part of the country in 4(b), which again disappears completely in 4(c). In 4(d), forest cover with linear edges 

(North-S    )  pp              p’              . That being recognized, the land-cover mapping is reasonably accurate 

overall, providing a good base for land-cover estimation and for providing basic information for the hydrological impact 

analysis.  

 20 

The rate of expansion of cultivated land before 1995 was higher than after 1995. Conversely, the area of the forest land 

             1985     1995 w                     1973 b       .   w            1995            ’    z                  

whereas cultivated land decreased. The increased forest coverage and the decrease in cultivated land over the period 1995 to 

2010 showed that the environment was recovering from the devastating drought, and forest clearing for firewood and 

cultivation due to population growth has been minimized. This could be due to the afforestation program, which the 25 

Ethiopian government initiated, and to the extensive soil and water conservation measures carried out by the community. 

Since 1995, eucalyptus tree plantation expanded significantly across the country at homestead level for fire wood, 

construction material, charcoal production, and income generation (Woldesenbet et al., 2017b). In summary, forest coverage 

decreased by 1.8 %, while both bushes and shrubs as well as cultivated land increased by 0.8 % and 1 % respectively during 

the 2010 period from the original 1973 level. This result agrees well with other studies (Gebremicael et al., 2013; Rientjes et 30 

al., 2011; Teferi et al., 2013; Woldesenbet et al., 2017b), who reported a significant conversion of natural vegetation cover 

into agricultural land.   
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5.3 SWAT model calibration and validation 

    SWA       ’                 p                                  w w                        b                           

SWAT-CUP. Their optimized values were determined by the calibration process that Arnold et al. (2012) recommended. 

Parameters such as SCS curve number (CN2), base flow alpha factor (ALPHA_BF), soil evaporation compensation factor 

(ESCO), threshold water depth in the shallow aquifer required for return flow to       ( WQ N)        w     “    p” 5 

coefficient (GW_REVAP), and available water capacity (SOL_AWC) were found to be the most sensitive parameters for the 

streamflow predictions.  

 

Figure 6 shows the calibration and the validation results for monthly streamflow hydrographs for each models. These results 

revealed that the model represents the monthly hydrographs well as also indicated by  R
2
, NSE, and RVE (%) statistical 10 

performance measures (Table 6). For the calibration period, the values of R
2
,
 
NSE, and RVE (%) range from 0.79 to 0.91, 

0.74 to 0.91, and −3.4 % to 4 %, respectively. For the validation period they ranged from 0.84 to 0.94, 0.82 to 0.92 and −7.5 

% to 7.2 % respectively. According to the rating of Moriasi et al. (2007)      SWA       ’  p                      N   

can be categorized as very good, although underestimation was observed in the baseflow simulation. The optimal parameter 

values of the four calibrated-model runs are shown in Table 7. A change was obtained for CN2 parameter values, which can 15 

be attributed to the catchment’     p     b       .                                   b               (b    -wide) CN2 value 

in the 1980s and 1990s from 72.9 to 74.7 and 75.6 compared to the 1970s respectively, indicate a reduction in forest 

coverage and expansion of cultivated land. On the contrary, a decrease in CN2 value was attained during the period 1990s to 

2000s from 75.6 to 73.6, attributed to the increase in forest coverage and reduction in cultivated land.  

5.4 Combined effects of LULC change and climate change on streamflow and water balance components 20 

The simulation results of the four independent, decadal-time-scale calibrated and validated SWAT model runs reflect the 

combined effect of both LULC and climate change during the past 40 years (Table 8). From the simulation result, mean 

annual streamflow increased by 16.9 % between the 1970s and the 2000s, while the observed mean annual streamflow 

increased by 15.3 % for the same period. However, the rate of change is different in different decades. For example, it 

increased by 3.4 % and 9.9 % during the 1980s and 1990s respectively from the baseline 1970s period.  25 

 

The ratio of mean annual streamflow to mean annual precipitation (Qt/P) increased from 19.4 % to 22.1 % while the actual 

evaporation to precipitation (Ea/P) ratio decreased from 61.1 % to 60.5 % from the 1970s to 2000s. Moreover, the ratio of 

surface runoff to streamflow (Qs/Qt) increased notably from 40.7 % in the 1970s to 50.1 % and 55.4 % in the 1980s and 

1990s respectively, and decreased to 43.7 % in the 2000s. In contrast, the base flow to streamflow ratio (Qb/Qt) notably 30 

decreased from 17.1 % in the 1970s to 10.3 % and 3.2 % respectively during the 1980s and 1990s, but has increased to 20 % 

in the 2000s. The result for surface runoff agrees to findings in (Gebremicael et al., 2013), but disagreement is observed for 
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baseflow. The study reported that surface runoff (Qs) contribution to the total river discharge increased by 75 %, while the 

baseflow (Qb)  decreased by 50 % from the 1970s to 2000s.  

 

In general, 1.8 % forest cover loss and 1 % increased cultivated land combined with 2.2 % increased rainfall from the 1970s 

to the 2000s led to a 16.9 % increase in simulated streamflow. The 1990s was the period during which the greatest 5 

deforestation and expansion of cultivated land was reported; meanwhile, it is the time when the rainfall intensity and the 

number of rainfall events have significantly increased compared to the 1970s and 1980s, as shown in Table 4. Hence, the 

increased mean annual streamflow could be ascribed to the combined effects of LULC and climate change. In the case of 

(Qs/Qt), the increasing pattern could be ascribed to increasing rainfall intensities and the expansion of cultivated land and 

diminution of forest coverage, which might adversely affect soil/water storage and decrease rainfall infiltration, thereby 10 

increasing water yield or streamflow. In contrast, the decreasing Qb/Qt is positively related to the increasing 

evapotranspiration linked to both LULC and climate factors (Table 8). This hypothesis can be explained with the change in 

CN2 parameter values obtained during calibration of the four SWAT model runs. The CN2 parameter value which is a 

function of evapotranspiration derived from LULC, soil type, and slope increased in the 1980s and 1990s relative to the 

1970s, and could be associated with the expansion of cultivated land and shrinkage of forest land. The increasing CN2 15 

results reflect more surface runoff and less baseflow being generated.  

 

Another important factor contributing to decreasing of surface runoff and increasing base flow ratio from 1990s to the 2000s 

could be the establishment of soil and water conservation (SWC) measures. According to Haregeweyn et al. (2015), various 

nationwide SWC initiatives such as Food for Work (FFW), Managing Environmental Resources to Enable Transition 20 

(MERET) to more sustainable livelihoods, Productive Safety Net Programs (PSNP), Community Mobilization through free-

labor days, and the National Sustainable Land Management Project (SLMP) have been undertaken since the 1980s. 

Haregeweyn et al. (2015)                            ’                                              b     b   z            

to be the best approach. This can reduce mean seasonal surface runoff by 40 %, with broad spatial variability ranging from 4 

% in Andit Tid (northwest Ethiopia) to 62 % in Gununo (south Ethiopia).  25 

5.5 Effects of an isolated LULC change on streamflow and water balance components 

(Yan et al., 2013) used "A fixing -changing" method, which was also applied to this study, to identify the hydrological 

impacts of LULC change alone. The calibrated and validated SWAT model and its parameter settings in the baseline period 

was forced by weather data from the baseline 1973–1980 period while changing only the LULC maps from 1985, 1995, and 

2010, keeping the DEM and soil data constant as suggested by Hassaballah et al. (2017b). The result from Figure 7 indicated 30 

that Qs/Qt ratio changed from 40.7 % to 41.2 %, 41.9 %, and 40.9 % respectively by using the LULC maps from 1973, 

1985, 1995 and 2010, whereas the Qb/Qt ratio changed from 17.1 % to 16.8 %, 16.5 %, and 16.9 % respectively. The largest 

Qs/Qt ratio (41.9 %) and the smallest Qb/Qt ratio (16.5 %) were recorded with the 1995 LULC map. This could be attributed 
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to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated land with the 1995 LULC map relative to the 1973 

LULC map.  

 

On a basin scale over a decadal time period, water gains mainly from precipitation. The losses are mainly due to runoff and 

evapotranspiration (Oki et al., 2006) as the losses due to the deep percolation over the whole UBNRB is negligible 5 

(Steenhuis et al., 2009). The long term mean annual deep percolation simulated in this study is about 16.7 mm constant in 

four decadal periods, which is about 6 % of the total water yield. With the fixing-changing approach, the change in 

streamflow attributable to LULC change was essentially the change in evapotranspiration between the two periods, as the 

amount of precipitation was constant (1970s) and the change in water storage during the two periods was similar (Yan et al., 

2013). Annual Ea losses from seasonal crops are smaller than those from forests, because seasonal crops transpire during a 10 

relatively shorter time interval than perennial trees do (Yan et al., 2013). As a result, the actual mean annual Ea simulated by 

the SWAT model was 871.6 mm at the baseline. It decreased to 871.4 mm and 871 mm in 1985 and 1995 respectively and 

increased to 872.1 mm in 2010. This could be due to simultaneous expansion of cultivated land and shrinkage in forest 

coverage in the 1985 and 1995 LULC maps relative to the 1973 base line. Furthermore, this deforestation may reduce 

canopy interception of the rainfall, decrease soil infiltration by increasing raindrop impacts, and reducing plant transpiration, 15 

which can significantly increase surface runoff and reducing base flow (Huang et al., 2013). Here, the evapotranspiration 

change caused by the LULC change is minimal. As a result, the change for surface runoff and baseflow is not significant.  

5.6 Effects of isolated climate change on streamflow and water balance components 

The impacts of climate change are analyzed by running the four models using a unique LULC map from 1973 with its model 

parameters while changing only the weather data sets from 1970s, 1980s, 1990s, and 2000s. The simulated water balance 20 

components shown in Figure 7 indicate that the Qs/Qt ratio increased from 40.7 % to 45.2 %, 45.6 %, and 46.2 % during the 

1970s, 1980s, 1990s and 2000s respectively, while the Qb/Qt ratio changed from 17.1 % to 13.5 %, 14.9 %, and 12.7 % for 

the same simulation periods. The decreasing Qb/Qt ratio for the altered periods compared to the baseline period could be 

attributed to evapotranspiration changing from 872 mm to 854 mm, 906 mm, and 884 mm respectively in 1970s, 1980s, 

1990s, and 2000s, which can be linked to temperature and amount of rainfall. However, it is important to know the dominant 25 

rainfall-runoff process in the study area to fully understand the effect of climate change on the water balance components.   

 

Although, no detailed research has been conducted on the Upper Blue Nile basin to investigate the runoff-generation 

processes, Liu et al. (2008) investigated the rainfall-runoff processes at three small watersheds located inside and around the 

Upper Blue Nile basin, namely, Mayber, AnditTid, and Anjeni. Their analysis showed that, unlike in temperate watersheds, 30 

in monsoonal climates, a given rainfall volume at the onset of the monsoon produces a different runoff volume than the same 

rainfall at the end of the monsoon. Liu et al. (2008) and Steenhuis et al. (2009) showed that the ratio of discharge to 
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precipitation minus evapotranspiration, Q/(P − ET), increases with cumulative precipitation from the onset of monsoon. This 

suggests that saturation excess processes play an important role in watershed response.  

 

Furthermore, the infiltration rates that Engda (2009) measured in 2008 were compared with rainfall intensities in the Maybar 

and Andit Tid watersheds located inside and around the UBNRB. In the Andit Tid watershed, which has an area of less than 5 

500 ha, the measured infiltration rates at 10 locations were compared with rainfall intensities considered from the 1986 –

2004 period. The analysis showed that only 7.8 % of rainfall intensities were found to be higher than the lowest soil 

infiltration rate of 25mm h
-1

. Derib (2005) performed a similar analysis in the Maybar watershed (with a catchment area of 

113 ha). The infiltration rates measured from 16 measurements ranged from 19 mm h
-1

 to 600 mm h
-1

 with a 240 mm h
-1

 

average and 180 mm h
-1

 median whereas the average daily rainfall intensity from 1996 to 2004 was 8.5 mm hr
-1

. Hence, he 10 

suggested from these infiltration measurements that infiltration excess runoff is not a common feature in these watersheds.  

 

From the above discussion points, it is to be noted that surface runoff could increase with increasing total rainfall amount 

regardless of rainfall intensity. However, the mean annual rainfall amount in this study was decreasing from the 1970s to the 

1980s (1428 mm and 1397 mm respectively) while the (Qs/Qt) ratio increased from 40.7 % to 45.2 %. Similarly, the mean 15 

annual rainfall amount in the 1990s (1522 mm) was greater than the mean annual rainfall amount in the 2000s (1462 mm) 

while the (Qs/Qt) increased from 45.6 % to 46.2 %. In contrast, climate indexes such as 99-percentile rainfall, SDII (ratio of 

total precipitation amount to number of days when rainfall >1 mm (R1mm)), and number of days when rainfall >20 mm 

(R20mm) increase consistently from 1970 to the 2000s, as shown in Table 4. This indicates that the increasing of surface 

runoff might be due to an increasing of number of extreme rainfall events and rainfall intensity. Although, we did not use 20 

hourly rainfall data for the SWAT model, this study suggested that infiltration excess of overland flow dominates the 

rainfall-runoff processes in the UBNRB, not saturation excess of overland flow. The contradiction from the previous studies 

might be due either to the limitation of the SWAT- CN method when applied in monsoonal climates or the overlooked of 

tillage activities, which significantly impact the soil infiltration rate. Extensive tillage activities are carried out across the 

basin at the beginning of the rainy season. Soils get disturbed as a result, which can increase the infiltration rate and 25 

ultimately decrease the amount of rainfall converted to runoff.  

 

Although the CN method is easy to use and provides acceptable results for discharge at the watershed outlet in many cases, 

researchers have concerns about its use in watershed models (Steenhuis et al., 1995; White et al., 2011). The SWAT-CN 

model relies with a statistical relationship between soil moisture condition and CN value obtained from plot data in the 30 

United States with a temperate climate that was never tested in a monsoonal climate exhibiting two extreme soil moisture 

conditions. In monsoonal climates, long periods of rain can lead to prolonged soil saturation whereas during the dry period, 

the soil dries out completely, which may not happen in temperate climates (Steenhuis et al., 2009). Hence, further research 
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that considers bio-physical activities such as tillage and seasonal effects on soil moisture at representative watersheds of the 

basin is necessary to properly assess the rainfall-runoff processes.  

6. Conclusions 

          ’   bj        w                          -term variations of rainfall and streamflow in the UBNRB using 

statistical techniques (MK and Pettitt tests), and to assess the combined and isolated effects of climate and LULC change 5 

using a semi-distributed hydrological model (SWAT). Although the results of the MK test for annual and long-rainy-season 

rainfall and streamflow show an increasing trend over the last 40 years, the magnitude of Sen's slope for streamflow is much 

larger than the Sen's slope of areal rainfall. Moreover, for the short-rainy-season streamflow shows a statistically significant 

positive increase while the rainfall shows no change. The mismatch of trend magnitude between rainfall and streamflow 

could be attributed to the combined effect of LULC and climate change, associated with decreasing actual evapotranspiration 10 

(Ea) and increasing rainfall intensity and extreme events.  

 

LULC change detection was assessed by comparing the classified images. The result showed that the dominant process is 

largely the expansion of cultivated land and decrease in forest coverage. The rate of deforestation is high during the 1973–

1995 period. This is probably due to the severe drought that occurred in the mid-1980s and to a large population increase 15 

resulting from the expansion of agricultural land. On the other hand, forest coverage increased by 3.4 % during the period 

1995 to 2010. This indicates that the environment was recovering from the devastating drought in the 1980s, regenerating of 

forests as the result of afforestation program initiated by the Ethiopian government, and due to soil and water conservation 

activities accomplished by the communities. 

 20 

The SWAT model was used to analyze the combined and isolated effects of LULC and climate changes on the monthly 

streamflow at the basin outlet (El Diem station, located on the Ethiopia-Sudan border). The result showed that the combined 

effects of the LULC and climate changes increased the mean annual streamflow by 16.9 % from the 1970s to the 2000s. The 

increased mean annual streamflow could be ascribed to the combined effects of LULC and climate change. The LULC 

change alters the catchment responses. As a result, SWAT model parameter values could be changed. For instance, the 25 

expansion of cultivation land and the shrinkage of forest coverage from 1973 to 1995 changed the basin average CN2 

parameter values from 72.9 in 1973 to 74.7 and 75.6 in 1985 and 1995 respectively. Increasing of CN2 value might increase 

surface runoff and decrease base flow. Similarly, the increase in rainfall intensity and extreme precipitation events led to a 

substantial increase in Qs/Qt, a substantial decrease in Qb/Qt, and ultimately to increases in the streamflow during the 1971–

2010 simulation period.  30 
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The "fixing-changing" approach result using the SWAT model revealed that the isolated effect of LULC change could 

potentially alter the streamflow generation processes. Expansion of cultivated land might reduce evapotranspiration because 

seasonal crops transpire less than perennial trees do (Yan et al., 2013) resulting in increased surface runoff. Alternatively, 

reduction of forest coverage may reduce canopy interception of the rainfall, decrease the soil infiltration by increasing 

raindrop impacts, and reduce plant transpiration, which can significantly increase surface runoff and reduce baseflow (Huang 5 

et al., 2013). In general, a 5.1 % reduction in forest coverage and a 4.6 % increase in cultivated land led to a 9.9 % increase 

in mean annual streamflow from 1973 to 1995. This study provides a better understanding and substantial information about 

how climate and LULC change affects streamflow and water balance components separately and jointly, which is useful for 

basin-wide water resources management. The SWAT simulation indicated that the impacts of climate change are more 

substantial than the impacts of LULC change, as shown in Figure 7. Surface water is no longer used for agriculture and plant 10 

consumption in areas such as the UBNRB, where water-storage facilities are scarce. On the other hand, base flow provides 

the most reliable source for the irrigation needed to increase agricultural production. Hence, the increasing amount of surface 

water and diminished base flow caused by both LULC and climate changes negatively affect socio-economic developments 

in the basin.  

 15 

Protecting and conserving the natural forests and expanding soil-and-water conservation activities is therefore highly 

recommended, not only to increase the base flow available for irrigation but also to reduce soil erosion. Doing so might 

increase productivity, and improve the livelihoods and regional-water-resource-use cooperation. However, the uncertainties 

of Landsat image classification and the model uncertainty of SWAT simulation might limit this study. To improve the 

accuracy of LULC classification from Landsat images, further efforts such as integrating other images with Landsat images 20 

through image-fusion techniques (Ghassemian, 2016) are required. The SWAT model does not adjust CN2 for slopes greater 

than 5%. This could be significant in areas where the majority of the area has a slope greater than 5%, such as in the 

UBNRB. We therefore suggest adjusting CN2 values for slope >5 % outside of the SWAT model might improve the results. 

Moreover, further research involving rainfall intensity, infiltration rate, and event-based analysis of hydrographs and critical 

evaluation of rainfall-runoff processes                                            ’             .                      w     25 

like to point out that the impacts of current and future water resource developments should be investigated to establish 

comprehensive, holistic water resource management in the Nile basin. 
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Table 1:       N  ’                  (1971–2010) mean annual and seasonal rainfall and streamflow  

 

Amount Contribution (%)    

Station Kiremit Belg  Bega  Total  Kiremit Belg  Bega Mean Area (km
2
) 

Flow (m
3
s

-1
) 3506.3 300.4 1018.4 4825.1 72.7 6.2 21.1 1608 172254 

Flow (BCM) 36.4 3.1 10.6 50.7 

     Rainfall (mm) 1070.1 140.8 238.9 1449.8 73.8 9.7 16.5 

  Kiremit: long rainy season, Belg: short rainy season, Bega: dry season 

 5 

Table 2: Data sets of the baseline and altered periods for the SWAT simulation used to analyze the combined and isolated 

effect of LULC and climate changes on streamflow and water balance components 

Model run 

no. Combined effect 

Isolated LULC change 

effect 

Isolated climate change 

effect 

Remark   

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

1 1970s 1973 1970s 1973 1970s 1973 Base period 

2 1980s 1985 1970s 1985 1980s 1973 

altered 

Period1 

3 1990s 1995 1970s 1995 1990s 1973 

altered 

Period2 

4 2000s 2010 1970s 2010 2000s 1973 

altered 

Period3 

 

 

Table 3:  K     P                       N  ’                        w         PW                          10 

  Stream flow Rainfall 

  p-value        p-value        

Time 

scale After* Before* 

Sen's 

slope: 

Change 

point Pettit test After* Before* 

Sen's 

slope 

Change 

point Pettit test 

Daily < 0.0001 < 0.0001 0.013 1987 Increasing 0.387 0.953 0.000 1988 Increasing 

Monthly < 0.0001 0.031 0.378 

 

No change 0.010 0.640 0.009 

 

No change 

annually < 0.0001 0.009 9.619 1995 Increasing 0.006 0.260 1.886 

 

No change 

Kiremit < 0.0001 0.014 20.30 

 

No change 0.010 0.348 1.364 

 

No change 

Belg < 0.0001 0.004 3.593 1985 Increasing 0.822 0.935 0.068 

 

No change 

Bega 0.000 0.214 4.832 

 

No change 0.527 0.755 0.169 

 

No change 

* Before and after TFPW; p: probability at 5% significance level  
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Table 4: S                N  ’  p    p                                       

Indices 1970s 1980s 1990s 2000s 

Mean (mm) 4.17 4.05 4.42 4.16 

95 percentile (mm) 12.57 12.52 13.66 13.31 

99 percentile (mm) 17.34 17.77 19.44 19.65 

1-day max (mm) 27.15 25.67 32.24 32.38 

R20mm (days) 16 15 30 35 

SDII (mm/day) 7.22 7.38 7.66 7.77 

SDII is the ratio of total precipitation (mm) to R1mm (days). 

 

Table 5: Confusion (error) matrix for the 2010 land use/cover classification map 5 

LULC class Water Forest Cultivated  

Bushes 

and 

shrubs Row total 

P        ’ 

accuracy 

Water 44 0 0 0 44 100 

Forest 1 46 6 8 61 75.4 

Cultivated land 2 3 77 15 97 79.4 

Bushes and shrubs 1 3 9 73 86 84.9 

Column total 48 52 92 86 288   

User's accuracy (%) 91.7 88.5 83.7 84.9     

Over all accuracy(%) 80           

Kappa 0.77           

 

 

Table 6:     SWA       ’              p                           

Period   R2 NSE RVE (%) 

1970s 

Calibration (1973–1977) 0.79 0.74 −3.41 

Validation (1978–1980) 0.84 0.83 7.18 

1980s 

Calibration (1983–1987) 0.80 0.74 −0.72 

Validation (1988–1990) 0.86 0.82 0.73 

1990s 

Calibration (1993–1997) 0.91 0.91 1.79 

Validation (1998–2000) 0.87 0.84 −3.56 

2000s 

Calibration (2003–2007) 0.86 0.86 3.99 

Validation (2008–2010) 0.94 0.92 −7.51 
 

 10 
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Table 7: SWAT sensitive model parameters and their (final) calibrated values for the four model runs 

Parameter 

Optimum value 

 1970s 1980s 1990s 2000s 

R-CN2 0.88 0.91 0.92 0.9 

a-Alpha-BF 0.028 0.028 0.028 0.028 

V-GW_REVAPMN 0.7 0.45 0.7 0.34 

V-GWQMN 750 750 750 750 

V-REVAPMN 550 450 425 550 

a-ESCO −0.85 −0.85 −0.85 −0.85 

R-SOL_AWC 6.5 6.5 6.5 6.5 

R: value from the SWAT database is multiplied by a given value; V: replace the initial parameter by the given value;  

a: adding the given value to initial parameter value. 5 

 

Table 8: Mean annual water-balance-components analysis in the Upper Blue Nile River Basin by considering LULC and 

climate change over respective periods. All streamflow estimates are for El Diem station. 

 

  Unit 1970s 1980s 1990s 2000s 

Precipitation (P) mm 1428.1 1397.1 1522.2 1462.5 

Surface flow (Qs) mm 112.8 143.4 168.6 141.4 

Lateral flow (Ql) mm 116.8 113.4 125.9 117.6 

Base flow (Qb) mm 47.3 29.6 9.8 64.7 

Revap (from shallow aquifer) mm 269.2 257.2 310.6 241.0 

PET mm 1615.1 1627.3 1614.7 1732.9 

Ea mm 871.6 852.6 904.3 885.0 

Recharge (to deep aquifer) mm 16.7 15.0 16.7 16.3 

Total water yield (Qt) mm 276.9 286.3 304.3 323.7 

Change in soil water content mm -6.3 -14.0 -13.7 -3.5 

Qs/Qt % 40.7 50.1 55.4 43.7 

Qb/Qt % 17.1 10.3 3.2 20.0 

Ea/P % 61.0 61.0 59.4 60.5 

Qt/P % 19.4 20.5 20.0 22.1 

where: water yield (Qt) =Qs+ Ql + Qb; Change in soil storage =P-Qs-Ql-Qb-Ea-Revap-Recharge 10 

 



29 

 

 

 

Figure 1: Locations of study area and meteorological and discharge stations, with the Digital Elevation Model (DEM) data as 

the background (where: 1: Stations used for SWAT model, 2: Stations used for trend analysis, 3: Stations removed from the 

analysis).  5 

. 
 

 

 

Figure 2: Schematic representation of the SWAT model structure from (Marhaento et al., 2017) 
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Figure 3: The Pettitt homogeneity test a) annual rainfall, b) annual flow of the UBNRB, c) linear trend of mean annual 

rainfall and d) linear trend of mean annual streamflow.  
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Figure 4: Landcover map of UBNRB derived from Landsat images a) 1973, b) 1985, c) 1995, and d) 2010 5 

 

 

 

 

 10 

 

a) b) 

d) c) 
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a)                                                    b) 

 

   

 

Figure 5: a) LULC composition, b) LULC change in the UBNRB during the period from 1973 to 2010  5 

 

a) 

  

 

b)  10 
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 c) 

  

 

  d) 5 

  

   

Figure 6: Calibration and validation of the SWAT hydrological model (left and right) respectively at monthly time scale; 

a) 1970s, b) 1980s, c) 1990s, and d) 2000s  
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Figure 7: Ratio of water balance component analysis at the El Diem station using an isolated effect (LULC/climate change) 
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