
1 

 

We thank the two anonymous referees and the editor for the extensive general and specific comments and remarks that 

addressed important issues which  help us to improve the quality of the manuscript considerably.  

 

Referee #2 comments 

The authors have substantially improved the quality of this manuscript in terms of language, comprehensibility, and 5 

conclusiveness. However, there are still some minor linguistic corrections necessary and some content-wise questions to be 

answered. 

I will summarise only the major issues here, but please consider all the comments in the attached pdf file. 

 

Deep groundwater, page 10 In how far was the DA used in this study? It is a very important water balance component in 10 

SWAT, which is often misused as a means to let water simply "disappear". I can't find any information on this in the 

manuscript. Please report if the DA was used and if yes, how large is the fraction percolating to the DA relative to the other 

water balance variables. 

 

Authors response: accepted and corrected. Yes, deep aquifer is a very important water balance component in SWAT and it is 15 

simulated in our study. The losses due to deep percolation over the whole UBNRB is negligible (Steenhuis et al., 2009). In 

this study, the simulated long term mean annual water that is lost due to deep percolation is 16.1 mm, which accounted about 

6 % as compared  to the total annual water yield. We added this information in the manuscript as shown in the marked up 

manuscript on page 18, L33-L34. 

 20 

Contradiction 1: 

On page 12 line 29ff the Authors state: "For daily time series, the computed probability values (p-values) for seven stations 

was greater, although for eight stations it was less, than the given significance level (α =5 %). This means that no statistically 

significant trends existed in seven stations, but a monotonic trend occurred in the remaining eight." 

>>On page 13 lines 13-15, it is stated: "The MK test showed increasing trends for annual, monthly, and long-rainy-season 25 

rainfall series whereas no trend for daily, short rainy, and dry-season  rainfall series appeared." 

 

Authors response: There is no contradiction between the two paragraphs. The first paragraph is explaining about the MK 

trend result for the 15 stations, while the second paragraph is describing about the MK trend test result for basin-wide areal 

rainfall. This has shown in the marked up manuscript on page 13, L17-L30 and on page 14, L1-L10. 30 

 

When we observe the MK trend result at station level. For daily time series, no trend for seven station, increasing trend for 

six stations (Bahirdar, Dangila, Debre Markos, G/bet, Assosa and Angergutten) and decreasing trend for two stations 

(Alemketema and Nedjo) were observed. On monthly basis, it showed no trend in eleven stations, increasing trend in three 

stations (Dangila, G/bet and Shambu) and decreasing trend in one station (Alemketema). On an annual time scale, MK trend 35 
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test could not find any trend in eleven stations, although the Alemketema, Debiremarkos, Gimijabet, and Shambu stations 

did exhibit a trend. The basin-wide areal UBNRB rainfall (calculated from point rainfall station data using Thiessen polygon 

method) trend and change point analysis was again carried out on daily, monthly, seasonal, and annual time scales using the 

MK and Pettitt tests respectively, as summarized in Table 3 and Figure 3. The MK test showed increasing trends for annual, 

monthly, and long-rainy-season rainfall series whereas no trend for daily, short rainy, and dry-season rainfall series 5 

appeared.  

 

On daily basis, the increasing trend in six stations and decreasing trend in two stations and no change in seven stations result 

no trend change in areal rainfall.  Increasing trend in three stations, decreasing trend in one station and no change in eleven 

station result increasing trend of areal rainfall on monthly time series. Annually, the increasing trend of three stations, the 10 

decreasing trend in one station with the no change in eleven station result in the increasing trend of areal annual rainfall. 

 

Contradiction 2: 

On page 13 line 16-17, the authors state that "the Pettitt test could not detect any jump point in basin-wide rainfall series 

except for daily time-series rainfall (see Figure S01)."  15 

>>On page 14 line 5-7, it is stated: "The change point detected by the Pettitt test for annual rainfall series occurred in 1995 

whereas for daily and dry seasons it is respectively in 1985 and 1987."  

So, what is true, is there a jump point in the annual rainfall time series or not? Moreover, it is not indicated in the 

corresponding figure. 

The authors conduct a change/jump point analysis (Pettitt test) for the rainfall and streamflow time series. But this is treated 20 

a bit stepmotherly. It is stated, for instance, that a change point was detected in the annual rainfall time series in 1995 and for 

the daily and dry season in 1985 and 1987, respectively. What I am missing is an interpretation of the change points, 

otherwise this is a bit pointless.   

 

Authors response: accepted and corrected. As it is clearly seen in the manuscript, "section 5.1.2" is describing about the 25 

result of the streamflow trend analysis. So,  "rainfall series" was mistakenly written in the "The change point detected by the 

Pettitt test for annual "rainfal" series occurred in 1995 whereas for daily and dry seasons it is respectively in 1985 and 1987".  

So, it is corrected as " change point detected by the Pettitt test for annual "streamflow" series occurred in 1995 whereas for 

daily and dry seasons it is respectively in 1985 and 1987." as shown on page 14, L30-L31 in the marked up manuscript. This 

has also shown in Table 3. 30 

 

Although, the results of the MK test for annual and long-rainy-season rainfall and streamflow show an increasing trend for 

the last 40 years in the UBNRB, the magnitude of Sen's slope for streamflow is much greater than it is for rainfall (Table 3). 

The mismatch between rainfall and streamflow trend magnitude could be associated with evapotranspiration and attributable 
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to the combined effect of LULC change and climate change, infiltration rate due to changing soil properties, rainfall 

intensity, and extreme events. This has shown in the marked up manuscript on page 15, L9-L13 

 

Soil and water conservation measures  

On page 17 lines 18-25 the authors talk about the effect of SWCs and that those might have impacted the surface and 5 

baseflow ratios from the 1990s to the 2000s. SWAT would theoretically provide such an option, but it is not clear whether 

SWCs have been considered in the model or not.  

Authors response: SWCs have not been considered in the model, but as it is described in the manuscript on page 17, lines 18-

25, there exist high community and government interventions on the SWCs. As a result, it is proved that the hydrology of the 

basin is  improved by decreasing the surface runoff and increasing the baseflow contribution, which aligned with our model 10 

results.  

 

Although the SWAT model calibration, in terms of NSE, R2 and RVE is indeed quite good, the model does also have a 

systematic error, which is not captured by the performance criteria. It is the systematic underestimation of discharges in the 

dry season, particularly at the beginning of the low flow season in more or less all years. In many years it is caused by a too 15 

quick recession after the peak in August/September. I think, it is important to mention this in section 5.3, because it might 

also have an impact on the MK and Pettitt tests. 

 

Authors response: The underestimation of dry season streamflow was mentioned in the manuscript on page 17, L6-L7. It has 

no any impact on the MK and Pettitt tests as they have been applied on the observed streamflow. 20 

 

Curve number 

While reading the manuscript the third time, I am asking myself, why do the CN2 values actually change in the four 

optimised calibration runs? At a first glance, this is quite obvious, because different land cover types should have different 

infiltration properties etc. and therefore different CN2 values. But, aren't the CN2 values somehow fixed to the HRUs with a 25 

certain land cover type? So, why, if the forest area increases or decreases should the CN2 values change for this land use 

type? I would only understand it, if average (area-weighted) CN2-values would have been calculated for the entire basin. Is 

this the case or are different CN values used for the same land use classes in the four periods? Please explain. 

 

Authors response: SWAT divides the watershed into HRUs based on soil types, land coverage and slope. Therefore, a 30 

potential value can be assigned for each parameter and for each HRU, which will generate a large number of parameter. 

However, they can be calibrated using single global modification term that can scale the initial estimates by a multiplication 

or an additive term.  
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It is correct that different landcover types have different CN2 values and those are fixed to the HRUs with a certain 

landcover type for initial estimate. For example, HRUs with cultivated landcover type should have similar CN2 values in 

four periods. However, if the landcover type changes definitely the CN2 values are also changed. So, if the forest area 

decreases, this means that the number of HRUs with the forest landcover types also decreases as the result the area-ratio 

CN2 values for forest landcover types further decreases. Furthermore, the initial parameter values assigned by the SWAT 5 

should be modified by the multiplying factor during the calibration period, due to the fact that parameter value is depend on 

many factors such as driving variables (rainfall and temperature). Hence, different calibrated parameter value could be 

obtained for the different model runs with different landcover and climatic variables. For example, in this study, the initial 

average CN2 value for the entire UBNRB in the period 1970s, 1980s, 1990s and 2000s were changed from 81.9, to  82.1, 

82.2, 81.8 respectively. These changes are due to the landcover type changes. Later, after calibration these values were 10 

changed to 72.9, 74.7, 75.6 and 73.6 respectively for the 1970s, 1980s, 1990s and 2000s. These change were due to the 

calibrated multiplying factor of 0.88, 0.91, 0.92 and 0.9 respectively for the 1970s, 1980s, 1990s and 2000s. Hence for 

clarity purpose, we put the absolute average CN2 values for the period 1970s, 1980s, 1990ss, and 2000s respectively as 

shown in the marked up manuscript on page 17, L10-13.  

 15 

In this study, we tried to evaluate the performance of the model runs by keeping the calibrated parameter values of the 

baseline period 1970s constant against with changing the calibrated parameter values for the different periods. We obtained 

lower statistical performance values when the parameter values are unchanged than the actual calibrated performance values. 

For instance, the statistical performance values of (R2, NSE, % bias) for the model run for the period 1990s was (0.91, 0.91, 

1.7) respectively during calibration as indicated in the Table 6. This was achieved by changing the CN2 parameter values 20 

from 0.88 (1970s value)  to 0.92. However, the performance values of (R2, NSE, % bias) obtained by keeping the 1970s 

parameter value constant was decreased to (0.89, 0.88, -4.8%). Therefore, we preferred to calibrate the parameter values for 

each time period in order to investigate the responses of streamflow to the changes of LULC and climate as accurately as 

possible. 

 25 

Specific commentsOn page 1, L23: Remove spaces between number and % symbol everywhere in the text!  I commented 

this already in the previous review!!  

Authors response: When preparing the manuscript we followed HESS guideline for authors that says spaces are entered 

between number and unit (e.g. 1 %, 1 m). 

On page 2, L22: Add "is".....and "is" strongly.. 30 

Authors response: accepted and corrected as shown in the marked up manuscript on page 2, L27. 

On page 2, L24 and L25: This sentence is grammatically and not entirely correct. ....validity, which strongly 

characterize/influence Upper Blue Nile discharges/streamflow? 
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Authors response: accepted and corrected as " The precipitation and ET cycles are characterized by  seasonal and inter-

annual variability, that affect the UBNRB streamflow characteristics", it is shown in the marked up manuscript on page 2, 

L30-L31. 

On page 2, L26: The literature list is of course not complete here, but I wouldn't consider it a "few". Compared to other 

African River basins, there were actually quite "some" studies conducted and published in the UBNRB. 5 

Authors response: accepted and corrected by replacing "few" with "several" as it is shown in the marked up manuscript on 

page 3, L1. 

On page 3, L3: Correct ElDiem into El Diem 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 3, L10. 

On page 3, L29: Delete "A" and replace by "The". The central and.... 10 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 4, L5. 

On page 4, L1: Delete "tropical" and replace by "Sub-tropical" 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 4, L11 

On page 4, L2: Delete "Convergent" and replace it with "Convergence" 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 4, L12 15 

On page 4, L7: 49.4 Billion Cubic Meter (BCM), Based on which period was this estimated 

Authors response: accepted and corrected as " 1960 to1992", it is shown in the marked up manuscript on page 4, L17. 

On page 4, L16: The authors may add the SWAT version used in this study 

Authors response: accepted and corrected as "SWAT 2012", it is shown in the marked up manuscript on page 11, L22 

On page 4, L24: Delete "This" and add "These" 20 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 5, L4. 

On page 4, L25 and 27: Delete "was" and replace by "were", please use the plural form in connection with "data" 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 5, L4,6 and 8. 

On page 5, L5: Add "the"....Because of "the" study area's 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 5, L19. 25 

On page 5, L11: Add "to".....and to establish ranking system. 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 5, L25 

On page 5, L14: Delete "was" and replace by "were" aggregated.... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 5, L29. 

On page 6, L14: I think "von" should start with an upper case "V" at the beginning of a sentence 30 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 7, L1. 

On page 6, L19: Delete "a"... "a" trend in time series data with..... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 7, L6 
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On page 6, L25-L28: This paragraph is not easy to understand and I am not sure if the description is entirely correct. What is 

"N" the number of values, the time step? I would replace " a sequence of random variables" by something like "the 

precipitation and/or streamflow data". Is there a difference between "XT" and "Xt" or "t" and "T"?. 

Authors response: random variiables (Xt), can be precipitation or streamflow in our case but difficult to put two different 

variables and explaining the general principles of Pettitt test.  Xt , refers the value of the variable at time step t. So, N also 5 

refers to the time step. XT refers the values of the variable at time step T. Hence, t=1,2,...,N, N+1,...,T and Xt= X1, 

X2,...,XN,XN+1,....,XT. If the change occurred at N, X1,X2,...,XN=F1(X) may have the same distribution. And, XN+1, 

XN+2,...,XT=F2(X) has also the same distribution, but F1(X)≠F2(X). Corrected as shown in the marked up manuscript on 

page 7, L11-L15 

On page 7, L13: Add "the " .....criteria of "the" acquisition period.. 10 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 7, L30 

On page 7, L21: "s02" upper case "S02" 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 8, L7. 

On page 8, L24: Add "a" .....is "a" considerable time gap... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 9, L9. 15 

On page 8, L26: Add "from" into.....were subtracted "from" each other.. 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 9, L11. 

On page 9, L13: the authors use a different symbol here for multiplication as in line 4 

Authors response: accepted and corrected by the symbol "*" as it is shown in the marked up manuscript on page 9, L30 

On page 10, L17: Add "see" into...."see" figure 2 20 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 11, L1. 

On page 10, L18: Replace "subwatershed"  with "sub-watershed" outlet is directly....... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 11, L2 

On page 10, L27: was the CN method seriously "tested" or was it simply "applied" by the cited studies? 

Authors response: accepted and corrected as "was applied"  shown in the marked up manuscript on page 11, L11 25 

On page 10, L34: In how far was the DA used in this study? It is a very important water balance component in SWAT, 

which is often misused as a means to let water simply "disappear". I can't find any information on this in the result sections. 

Please report if the DA was used and if yes, how large is the fraction percolating to the DA relative to the other water 

balance variables. 

Authors response: accepted and corrected. Yes, deep aquifer is a very important water balance component in SWAT and it is 30 

simulated in our study. The losses due to deep percolation over the whole UBNRB is negligible (Steenhuis et al., 2009). In 

this study, the simulated long term mean annual water that is lost due to deep percolation is 16.1 mm, which accounted about 

6 % as compared  to the total annual water yield. We added this information in the manuscript as shown in the marked up 

manuscript on page 18, L33. 
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On page 11, L4: ....."can be done" or ....."was done"? 

Authors response: accepted and corrected as "was done",  shown in the marked up manuscript on page 11, L22 

On page 11, L8: SWAT is a hydrological model. Therefore, saying "The first step in SWAT" does make no sense in this 

context. Determining the most sensitive parameters is rather the first step in the model calibration/validation process 5 

Authors response: accepted and corrected as "Determining the most sensitive parameters is the first step in the model 

calibration/validation process using the global sensitivity analysis option", which is shown in the marked up manuscript on 

page 11, L27. 

On page 11, L18: Delete "in"......simulation period 1971-2100. 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 12, L3. 10 

On page 13, L5: Add "a" ....on "a" monthly basis...... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 13, L23. 

On page 13, L10: Add "a" ..... is "a" critical factor... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page14, L2. 

On page 13, L13-L15: isn't this the opposite of what has been stated in the previous paragraph? Where significant trends 15 

were only detected in the daily time series? 

Authors response: accepted and corrected. As it is clearly seen in the manuscript, "section 5.1.2" is describing about the 

result of the streamflow trend analysis. So,  "rainfall series" was mistakenly written in the "The change point detected by the 

Pettitt test for annual "rainfal" series occurred in 1995 whereas for daily and dry seasons it is respectively in 1985 and 1987".  

So, it is corrected as " change point detected by the Pettitt test for annual "streamflow" series occurred in 1995 whereas for 20 

daily and dry seasons it is respectively in 1985 and 1987." as shown on page14, L30-L31 in the marked up manuscript. This 

has also shown in Table 3. 

 

Although, the results of the MK test for annual and long-rainy-season rainfall and streamflow show an increasing trend for 

the last 40 years in the UBNRB, the magnitude of Sen's slope for streamflow is much greater than it is for rainfall (Table 3). 25 

The mismatch between rainfall and streamflow trend magnitude could be associated with evapotranspiration and attributable 

to the combined effect of LULC change and climate change, infiltration rate due to changing soil properties, rainfall 

intensity, and extreme events. This has shown in the marked up manuscript on page 15, L9-L13 

 

On page 13, L20: Add "exists".....rainfall series across the UBNRB "exists", which..... 30 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 14, L13. 

On page 14, L2-L3: Replace "time series streamflow" by "streamflow time series" 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 14, L27. 
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On page 14, L6: There is no change point in the annual rainfall series, as described above and as is shown in Figure S01 in 

the supplement same as true for dry season. 

Authors response: accepted and corrected. The rainfall was wrongly written. So, it is corrected  as "streamflow" shown in the 

marked up manuscript on page 14, L30. 

On page 16, L18: Replace "In contrary" by "On the contrary"..... 5 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 17, L12. 

On page 16, L22: It would be interesting to know, if the streamflow observations indicates the same trend. 

Authors response: The observed streamflow also indicates the same trend with the simulation. The mean annual observed 

streamflow increased by 15.3% during the period from 1970s to 2000s. It is added in the marked up manuscript on page 17, 

L17-18. 10 

On page 17, L18-25: This is interesting, but the authors are analysing simulated discharges, these measurments are most 

likely not represented by the simulated data. They would possibly, if streamflow observations would have been used instead 

of simulations. Or did the authors account for SWC measures in the simulations? If not, this statement is a bit misleading in 

this connection? 

Authors response: Yes, we analysed the simulated discharge as it is difficult to get and/or measure different water balance 15 

components in UBNRB. However, it is proved that SWCs improve the hydrology of the basin by decreasing the surface 

runoff as it is shown in the manuscript on page 18, Lines 12-19. 

On page 17, L28: This sentence is a bit confusing as an introduction. There is something missing, like: "but in this (our) 

study we applied....". If such statement is not included, the reader may interprete that the following sentence does also refer 

to the cited study. Or is the method the authors are using also a "fixing-changing method". If yes, you may write something 20 

like: "which was also applied in this study...."Later in the text I see that the "fixing-changing" method has been applied in 

this study, but I wonder if you have introduced this already here? 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 18, L22. 

On page 17, L32: According to the numbers above, the highest value is 41.2! 

Authors response: accepted and corrected. This is shown in the marked up manuscript on page 18, L26.  25 

On page 18, L4-L5: This is of course very generic and derived from a global perspective. How is this in the case of the 

UBNRB? The available water is provided by precipitation, but what about the losses? I am referring here again to the deep 

groundwater aquifer. Do we know the surface and groundwater catchments of the UBNRB are similar? Is a fraction of the 

losses in your SWAT model setup also attributable to deep groundwater recharge? 

Authors response: accepted and corrected. The losses due to deep percolation over the whole UBNRB is negligible 30 

(Steenhuis et al., 2009). The simulated long term mean annual water that is lost due to deep percolation is 16.1 mm, which 

accounted about 6 % as compared  to the mean annual water yield. This information is added  as it is shown in the marked up 

manuscript on page 18, L33 and on page 19 L1-L2. 

On page 18, L22: Changing instead of increasing. Because it is an up and down rather than an continuous increase. 
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Authors response: accepted and corrected as it is shown in the marked up manuscript on page 19, L19. 

On page 18, L27: Add "the" ...around "the" Upper.... 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 19, L25. 

On page 19, L6-L7: Why are you using different units (mm/h, cm/h) 

Authors response: accepted and corrected as it is shown in the marked up manuscript on page 20, L3-5 5 

On page 19, L15: What means R1mm and R20mm? Please explain briefly. Does it indicate a threshold for daily precipitation 

like >1mm or > 20 mm? 

Authors response: accepted and corrected. R1mm is the number of days when the rainfall >1mm, likewise, R20mm is 

number of days when rainfall >20mm were observed.  This is shown in the marked up manuscript on page 20, L14. 

On page 19, L17-L18: I am not sure if this conclusion is entirely correct. It remain an assumption from my point of view. 10 

What one can possibly derive from the results (increased ratio of Qs/Qt) is that more surface runoff contribution to Qs. But is 

the conclusion correct that Qs due to infiltration excess "dominate" unsaturated Qs? 

Authors response:  The model simulation result in this study showed that surface runoff ratio increases irrespective of the 

total rainfall amount but extreme rainfall event and rainfall intensities were increased from 1970s to 2000s. Although, we did  

not use hourly rainfall data for our mode, the results contribute to the arguments on the runoff mechanisms in the UBNRB 15 

between saturated excess runoff versus infiltration excess runoff, showing that the rainfall-runoff processes are better 

represented by the infiltration excess. However, further research is recommended no page 22, L20-L22  that involves rainfall 

intensity and event-based analysis of hydrographs, as we were not used hourly rainfall data for our SWAT model. The 

conclusion is corrected as it is shown in the marked up manuscript on page 20, L16-L17. 

 20 

Reference 
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Abstract: Understanding the responses byof changes in land use/land cover (LULC) change and climate change over the 15 

past decades on to the streamflow of thein the Upper Blue Nile River Basin has become a priority issue for is important for 

water management and water resource planning utilization  in the Nile basin at large. This study assesses the long-term 

trends of rainfall and streamflow to and  analyze the responses of steamflow to changes in effect of LULC and climate 

changes on the hydrology ofin the Upper Blue Nile River basin. Findings of Tthe Mann-Kendal (MK) test indicate showed 

statistically insignificant increasing trends for basin-wide annual, monthly, and long rainy-season rainfall series whereas but 20 

no trend for daily, short rainy, and dry season rainfall. series . However, tThe Pettitt test did not failed to detect any jump 

point in basin-wide rainfall series except for daily rainfall time series rainfall. In contrast, the Findings on MK test’s result 

for daily, monthly, annual, and seasonal (long and short rainy season and dry season) time-series streamflow showed a 

statistically significant increasing positive trend. Landsat satellite images for 1973, 1985, 1995, and 2010 were used for 

LULC change detection analysis. The LULC change detection findings indicate significant expansion of increases in 25 

cultivated land area and the reduction of decreases in forest coverage  before prior to 1995 but increases . After 1995, the 

forest area after 1995 with coverage increased while the amount of area of cultivated land that diminished. Statistically, 

forest coverage changed from 17.4 % to 14.4 %, 12.2 %, and 15.6 % while cultivated land changed from 62.9 % to 65.6 %, 

67.5 %, and 63.9 % from 1973 to 1985, in 1995, and in 2010 respectively. Results of The hydrological modeling  result 

indicate showed that mean annual streamflow increased by 16.9 % between the 1970s and the 2000s as by due to the 30 

combined effects of LULC and climate change. The isolated effect of Findings on effects by LULC change only on 

streamflow  suggested that LULC change affects  indicate that surface runoff and base flow are affected and is . This could 

be attributed to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated land area. Effects by of climate 

mailto:dagnfenta@yahoo.com
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change only revealed that the increased rainfall intensity and number of extreme rainfall events from 1971 to 2010 have 

significantly affected the surface runoff and base flow. The isolated iHydrological impacts by of climate change are more 

significant as compared to the impacts of LULC change for streamflow the hydrology of  the Upper Blue Nile river 

basin.study area. 

1. Introduction 5 

 The Abay (Upper Blue Nile) River in Ethiopia contributes more than 60 % of the water resources in the Nile River 

(McCartney et al., 2012). Due to the high potential of Abay river flows,Hence, the Ethiopian government has conducted a 

series of studies since 1964 (USBR, 1964) for supporting the national development and reducing poverty (BCEOM, 1998) 

by to tap this huge potential water resource with intent to significantly increas increasing e the number of large water storage 

reservoirs in the Upper Blue Nile River Basin (UBNRB), both for irrigation and hydropower development., to support 10 

national development and reduce poverty (BCEOM, 1998).  As a result, large-scale irrigation and hydropower projects such 

as the Grand Ethiopian Renaissance Dam (GERD), that , which will be the largest dam in Africa after it is completion. ed, 

have been planned and realized along the main stem of  the Blue Nile River. However, its hydrology exhibiting high 

seasonal flows as influenced by large variations in climate, altitude/topography, and land use/cover (LULC) change. Over 

the past decades, changes in climate (e.g. (Haile et al., 2017)) and changes in  LULC (e.g. Woldesenbet et al. (2017a)) have 15 

affected the magnitude of streamflow. Effective planning, management, and regulation of water resources development is 

therefore required to avert conflicts between the competing water users. particularly with the downstream countries of Sudan 

and Egypt. Establishing careful water resource management can mitigate potential conflicts and maximize benefits. 

 

Only understanding the hydrological processes and sources impacting water quantity, such as LULC change and climate 20 

change, can achieve this as they are the key driving forces that can modify the watershed’s hydrology and water availability 

(Oki and Kanae, 2006; Woldesenbet et al., 2017a; Yin et al., 2017a). LULC change can modify the rainfall path to generate 

into basin runoff by altering critical water balance components, such as, surface runoff, groundwater recharge, infiltration, 

interception, and evaporation (Marhaento et al., 2017; Woldesenbet et al., 2017a). McCartney et al. (2012) and Alemseged 

and Tom (2015) described that The the UBNRB experiences significant spatial and temporal climate variability. Less than 25 

500 mm of precipitation falls annually near the Sudanese border whereas more than 2000 mm falls annually in some areas of 

the southern basin (Awulachew et al., 2009). Potential evapotranspiration (ET) also varies considerably and is strongly 

correlated with altitude. At annual bases, Iit varies from more than 2200 mm annually near the Sudanese border to between 

about 1300 mm and 1700 mm annually in the Ethiopian highlands (McCartney et al., 2012). The precipitation and ET cycles 

are characterized by cause extreme seasonal and inter-annual variability, that affect the   to strongly characterize 30 

characteristic of  the UBNRB stream flow. 
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A literature review shows that few several sub-basin or basin level studies are conducted in the UBNRB. Most of the studies 

were focused on trend analysis of precipitation and streamflow, for example, those by (Bewket and Sterk, 2005; Cheung et 

al., 2008; Conway, 2000; Gebremicael et al., 2013; Melesse et al., 2009; Rientjes et al., 2011; Seleshi and Zanke, 2004; 

Teferi et al., 2013; Tekleab et al., 2014; Tesemma et al., 2010), all reported no significant trend in annual and seasonal 

precipitation totals within the Lake Tana sub-basin, whereas Mengistu et al. (2014) reported statistically non significant 5 

increasing trends in annual and seasonal rainfall series, except for a short rainy season (Belg) from February to May.  

 

Gebremicael et al. (2013) reported statistically significant increasing long-term mean annual streamflow (1970-2005) at the 

El Diem gauging station for the UBNRB’s streamflow. However, (Tesemma et al., 2010) reported no statistically significant 

trend for long term annual streamflow (1964-2003) at the El Diem gauging station, but did report a significantly increasing 10 

trend at the Bahirdar and Kessie stations. At the sub-basin scale, Rientjes et al. (2011) reported a decreasing trend for the low 

flows of Gilgel Abay sub-basin (Lake Tana catchment, the Blue Nile headwaters) during the 1973–2005 period, specifically 

by 18.1 % and 66.6 % in the periods 1982–2000 and 2001–2005, respectively. However, the high flows for the same periods 

show an increase by 7.6 %  and 46.6 % due to LULC change and seasonal rainfall variability.  

 15 

Although, substantial progress has been made in assessing the impacts of LULC and climate changes on the UBNRB’s 

hydrology, only a few studies have endeavored to assess the attribution of changes in the water balance to LULC change and 

climate change. Woldesenbet et al. (2017a), used an integrated approach comprising SWAT hydrological modeling and 

partial least squares regression (PLSR) and a SWAT modeling approach to quantify the contributions of changes in 

individual LULC classes to changes in hydrological components in the Lake Tana and Beles sub-basins’. Woldesenbet et al. 20 

(2017a) reported that increases expansion of cultivation land area and decreases decline in woody shrub/woodland appear to 

be major environmental stressors affecting local water resources such as increasing surface runoff and decreasing of ground 

water contribution in both watersheds; however, the impacts of climate change were not considered. Nonetheless, proper 

water resource management requires an in-depth understanding of the aggregated and disaggregated effects of LULC and 

climate changes on streamflow and water balance components as the interaction between LULC, climate characteristics, and 25 

the underlying hydrological processes are complex and dynamic (Yin et al., 2017a).   

 

This study’s objectives are therefore to (i) assess the long-term trend of rainfall and streamflow (ii) analyze LULC change, 

and (iii) examining streamflow responses to the combined and isolated effects of LULC and climate changes in the UBNRB. 

This is doable by combining analysis of statistical trend test, change detection of LULC derived from satellite remote 30 

sensing, and hydrological modelling during the 1971–2010 period. 
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2. Study area 

The UBNRB is located in northwestern Ethiopia.  Its catchment area is about 172760 km
2
. Highlands, hills, valleys, and 

occasional rock peaks with elevations ranging from 500 m.a.s.l. to above 4000 m.a.s.l. typically characterize the basin’s 

topography (Figure 1Figure 1Figure 1Figure 1). According to BCEOM (1998), two thirds of the basin lies in Ethiopia’s 

highlands with annual rainfall ranging from 800 mm to 2200 mm. A The central and southeastern area is characterized by 5 

relatively high rainfall (1400 mm to 2200 mm), whereas in most of the eastern and northwestern parts of the basin  although 

rainfall is less than 1200 mm. rain fell in most of the eastern and northwestern parts of the basin. Mekonnen and Disse 

(2018) showed that the UBNRB has a mean areal annual rainfall of 1452 mm and mean annual minimum and maximum 

temperatures of 11.4 
o
C and 24.7 

o
C, respectively.  

 10 

The sub-tTropical climate of the basin characterizes the study area, which is dominated by its high altitude. is affected by the 

Mmovement of the Inter-Tropical Convergent Convergence Zone (ITCZ) also governs the climate (Conway, 2000; 

Mohamed et al., 2005). NMA (2013) classified the climate in Ethiopia into three distinct seasons. in Ethiopia. The main 

rainy season (Kiremit) generally lasts from June to September during which southwest winds bring rains from the Atlantic 

Ocean. Some 70–90 % of the total rainfall occurs during this season. A dry season (Bega) lasts from October to January and 15 

the short rainy season (Belg) lasts from February to May. According to BCEOM (1998), the average annual discharge (1960 

to 1992), at the Ethio-Sudan border (El Diem), is estimated about 49.4 Billion Cubic Meter (BCM), with the low-flow month 

(April) equivalent to less than 2.5 % of that of the high-flow month (August), at the Ethio-Sudan border (El Diem). The 

analysis of this study revealed that the long-term (1971–2010) mean annual volume of stream flow at El Diem is 50.7 BCM, 

with the low streamflow volume (dry season) contributing 21.1 % and the short rainy season accountingcontributing for 20 

about 6.2 %. As such some 73 % Most of streamflow occurred during the rainy season , contributing about 73 % (Table 

1Table 1Table 1Table 1). The basin’s land cover essentially follows the divide between highland and lowland. 

Predominantly farmlands (about 90 %), bush, and shrubs cover the highlands. The lowlands, in contrast, are still largely 

untouched by development. As a result, woodlands, bush, and shrub lands are the dominant forms of land cover (BCEOM, 

1998).   25 

3. Input data sources 

In this study, nonparametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistics and the Soil and Water Assessment 

Tool (SWAT), developed by the Agricultural Research Service of the United States Department of Agriculture (USDA-

ARS) (Arnold et al., 1998), are used for statistical trend analysis and water balance modelling, respectively. Details The of 

both methods ’ details are available described underin section 4. The input datasets used for the SWAT model can be 30 

categorized into those containing weather and streamflow data, and spatially distributed datasets. 
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3.1 Weather and streamflow data 

The daily weather variables used in this study for trend analysis and for driving the water balance model are precipitation, 

minimum air temperature (Tmin), maximum air temperature (Tmax), relative humidity (RH), hours of sunshine (SH), and 

wind speed (WS). This wWeather data from 40 meteorological stations was were obtained from the Ethiopian National 

Meteorological Service Agency (ENMSA) for the 1971–2010 period. The dDaily streamflow data for over 25 gauging 5 

stations was were collected from the Federal Ministry of Water, Irrigation and Electricity of Ethiopia for the same period 

1971–2010. period. After screening intensive and rigorous analyses of the weather data, a considerable amount of time series 

data was were found to be missed in most of the stations (see Table S01). The occurrences of civil war, defective and 

outdated devices were the main causes for the missing data records. As a result, the available data constrained us to focus on 

only the 15 stations (Figure 1Figure 1Figure 1Figure 1), in which rainfall data is relatively more complete proved to be 10 

suitable  All 15 stations were used for trend analysis.  whereas the Some 10 stations having complete climate variables, such 

as Tmax, Tmin, RH, WS, and SH were used as input for the SWAT model Figure 1Figure 1Figure 1Figure 1. 

 

We resorted to used spatial interpolation techniques, such as the by inverse distance weighting method (IDWM), and linear 

regression techniques (LR) to fill the gaps. Uhlenbrook et al. (2010) applied similar approaches or methods to the Gilgel 15 

Abbay sub-basin, which is the UBNRB’s headwater. The selection and number of adjacent stations for interpolation are 

critically important for the accuracy of interpolated values. the estimated results. As mentioned by Woldesenbet et al. 

(2017b), different authors used different criteria to select neighboring stations. Because of the relatively low number study 

area’s low station of network stationsdensity, a geographic distance of 100 km was considered for most stations when 

selecting neighboring stations. If no station is located within 100 km of the target station, then the search distance is 20 

increased until at least one suitable station is reached. After the neighboring stations were selected, the two methods (IDWM 

and LR) were tested by means of cross-validation to fill in missing datasets. The candidate methods’ performances were 

evaluated using the statistical metrics such as root mean square error (RMSE), mean absolute error (MAE), correlation 

coefficient (R
2
), and percent bias (% bias) between observed and estimated values for the target stations. Equally weighted 

statistical metrics are applied to compare the performances of selected methods at target stations and to establish the ranking. 25 

A score was assigned to each candidate method according to the individual metrics. For example, the candidate achieving the 

smallest values of RMSE and MAE, or % bias received got score 1, and score 2 for the one having larger value. o on. The 

final score is obtained by summing up the score pertaining to each candidate approach at each station. The method with the 

smallest score is the best. The monthly, seasonal, and annual weather data was were aggregated from the daily time-series 

data after filling the gaps. While filling in the missing data, uncertainty is expected due to low station density, poor 30 

correlations, and the considerable number of missing records. Similar techniques and approaches were used for the analysis 

and filling in of missing streamflow data records. 
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3.2 Spatial data 

Spatially distributed data required for the SWAT model includes tabular and spatial soil data, tabular and spatial land use 

/cover information, and elevation data. A Shuttle Radar Topographic Mission Digital Elevation Model (SRTM DEM) of 90 

meters’ resolution from the Consultative Group on International Agricultural Research-Consortium for Spatial Information 

(CGIAR-CSI; http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) was used to delineate the watershed and to analyze the 5 

to represent land surface terrain’s drainage patterns. Terrain characteristics Sub-basin parameters such as slope gradient, 

slope length of the terrain, and the stream network characteristics such as channel slope, length, and width were derived from 

the DEM. 

 

The soil map (1:5000000) developed by the Food and Agriculture Organization of the United Nations (FAO-UNESCO) at a 10 

scale of 1:5000000 andwas downloaded from http://www.fao.org/soils-portal/soil-survey/soil-maps-and-

databases/faounesco-soil-map-ofthe-world/en/. was used for the SWAT model. Soil information such as soil textural and 

physiochemical properties needed for the SWAT model was were extracted from Harmonized World Soil Database v1.2, a 

database that combines existing regional and national soil information (http://www.fao.org/soils-portal/soil-survey/soil-

maps-and-databases/harmonized-world-soil-databasev12/en/) with information provided by the FAO-UNESCO soil map 15 

(Polanco et al., 2017).  

 

The LULC maps, representing one of the most important driving factors affecting surface runoff and evapotranspiration in a 

basin were produced from satellite-remote-sensing Landsat images for 1973, 1985, 1995, and 2010 at a scale of 30 m x 30 m 

resolution. Detailed descriptions on image processing and classification approaches are available described under section 20 

4.2.  

4. Methodology 

4.1 Trend analysis 

The nonparametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistic is chosen to detect trends for precipitation 

rainfall and streamflow time-series data as it is widely used for effective water resource planning, design, and management 25 

(Yue and Wang, 2004). Its advantage over parametric tests such as t-test is that the MK test is more suitable for non-

normally distributed and missing data, which are frequently encountered in hydrological time-series (Yue et al., 2004). 

However, the existence of positive serial correlation in time-series data affects the MK-test result. If serial correlation exists 

in time-series data, the MK test rejects the null hypothesis of no trend detection more often than specified by the significance 

level (Von Storch, 1995).  30 
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Von Storch (1995) proposed prewhitening technique to limit the influence of serial correlation on the MK test. The Effective 

or Equivalent Sample Size (ESS) method developed by Hamed and Rao (1998) has also been proposed to modify the 

variance. However, the study by (Yue et al., 2002) reported that von Stroch's prewhitening is effective only when no trend 

exists and the ESS approach’s rejection rate after modifying the variance is much higher than the actual (Yue et al., 2004). 

Yue et al. (2002) then proposed trend-free prewhitening (TFPW) prior to applying the MK trend test in order to minimize it's 5 

limitation. This study therefore employed TFPW to remove the serial correlation and to detect a trend in a time data series 

with significant serial correlation. Further details can be found in (Yue et al., 2002). All the trend results in this study paper 

have been evaluated at the 5 % level of significance to ensure effective exploration of the trend. characteristics within the 

study area. 

 10 

Change point test 

The Pettitt test is used to identify whether or not there is a point change or jump in the data series (Pettitt, 1979). This 

method detects one unknown change point by considering a sequence of random variables (Xt), X 1, X 2, …, XT that may 

have a change point at N if Xt variable for t = 1, 2, …, N time step has a common distribution function, F1(x) and Xt for 

t = N + 1, …, T time step has a common distribution function, F2(x), and where F1(x) ≠ F2(x).  15 

 

Sen’s slope estimator 

The trend magnitude is estimated using a nonparametric median-based slope estimator proposed by (Sen, 1968) as it is not 

greatly affected by gross data errors or outliers, and can be computed when data is are missing. The slope estimation is given 

by 20 

         
     

   
  for all k < j,                                                                       (1)  

where xj and xk are the sequential data values, n is the number of the recorded data. 1 < k < j < n, and β is considered as the 

median of all possible combinations of pairs for the whole data set. A positive value of β indicates an upward (increasing) 

trend and a negative value indicates a downward (decreasing) trend in the time series. All MK trend tests, Pettitt change-

point detections, and Sen's slope analyses were conducted using the XLSTAT add-ins tool from excel (www.xlstat.com). 25 

4.2 Remote sensing land use/cover map  

4.2.1. Landsat image acquisition   

Landsat images from the years 1973, 1985, 1995, and 2010 were accessed free of charge from the US Geological Survey 

(USGS) Center for Earth Resources Observation and Science (EROS) via http://glovis.usgs.gov. The Landsat images scenes 

were selected based on the criteria of the acquisition period, availability, and percentage of cloud cover. Hayes and Sader 30 

(2001), recommend acquiring images from the same acquisition period to reduce sceneimage-to-scene image variation 
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caused by sun angle, soil moisture, atmospheric condition, and vegetation-phenology differences. Cloud free-images were 

hence collected for the dry months of January to May. However, as the basin covers a large area, each of the LULC map’s 

periods comprised 16 Landsat scenesimages. Accessing all the scenes images during a dry season in a single year was 

therefore difficult. Hence, images were acquired ±1 year for each time period and some images were also acquired in the 

months of November and December. For example, 16 Landsat MSS image scenes were acquired in 1973 (10 images in 5 

January, 4 images in December and 2 images in November;  ±1 years) and merged to arrive at one LULC representation for 

selected years. Please see supplement Table s02 S02 for the details on Landsat images. 

4.2.2 Preprocessing and processing images  

Several standard preprocessing methods including geometric and radiometric correction were implemented to prepare the 

LULC maps from Landsat images. Although many different classification methods exist, supervised and unsupervised 10 

classifications are the two most widely used methods for landcover classification from remote-sensing images. Hence, in this 

study, a hybrid supervised/unsupervised classification approach was adopted to classify the images from 2010 (LandsatTM). 

Iterative Self-Organizing Data Analysis (ISODATA) clustering was first performed to determine the image’s spectral classes 

or land cover classes. Polygons for all of the training samples based on the identified LULC classes were then digitized using 

ground truth data. The samples for each land cover type were then aggregated. Finally, a supervised classification was 15 

performed using a maximum likelihood algorithm to extract four LULC classes. 

 

A total of 488 Ground Control Points (GCPs) regarding landcover types and their spatial locations were collected from field 

observation in March and April 2017 using a Global Positioning System (GPS). Reference data (GCPs) was were collected 

and taken from areas where there had not been any significant landcover change between 2017 and 2010. These areas were 20 

identified by interviewing local elderly people, and supplemented using high resolution Google Earth Images and the first 

author’s priori knowledge. As many as 288 GCP’spoints were used for accuracy assessment and 200 points servedwere used 

for developing as training sites to generate a signature for each land-cover type. The classifications’ accuracy was assessed 

by computing the error matrix (also known as the confusion matrix), which compares the classification result with ground 

truth information as suggested by DeFries and Chan (2000). A confusion matrix lists the values for the reference data’s 25 

known cover types in the columns and for the classified data in the rows (Banko, 1998) as shown in Table 5. From the 

confusion matrix, a statistical metrics of overall accuracy, producers' accuracy and users' accuracy are used. Another discrete 

multivariate technique useful in accuracy assessment is called KAPPA (Congalton, 1991). The statistical metric for KAPPA 

analysis is the Kappa coefficient, which is another measure of the proportion of agreement or accuracy. The Kappa 

coefficient is computed as 30 

  
               

 
   

   
   

             
 
   

                                                             (2) 
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where r is the number of rows in the matrix, xii is the number of observations in row i and column i, xi+ and x+i are the 

marginal totals of row i and column i, respectively. N is the total number of observations.  

 

Once the landcover classification of the year 2010 Landsat image had been completed and its accuracy checked, the NDVI 5 

differencing technique (Mancino et al., 2014) was applied to classify the images from 1973, 1985, and 1995. This technique 

was chosen to increase the accuracy of classification as it is hard to find an accurately classified digital or analog LULC map 

of the study area during 1973, 1985, and 1995. The information obtained from the elders is also more subjective and its 

reliability is questionable when there is a considerable time gap. We first calculated the NDVI from the Landsat MSS (1973) 

and three preprocessed Landsat TM images (1985, 1995, and 2010) following the general normalized difference between 10 

band TM4 and band TM3 images (eq. 3). The resulting successive NDVI images were subtracted from each other to assess 

the ΔNDVI image with positive (vegetation increase), negative (vegetation cleared) and no change at a 30 m x 30 m pixel 

resolution (eqs.4–6). The Landsat MSS 60 m x 60 m pixel-size data sets were resampled to a 30 m x 30 m pixel size using 

the “nearest neighbor” technique to have similar equal pixel sizes for the different images without altering the image data’s 

original pixel values. 15 

 

     
         

         
    

           

           
                     (3) 

                                     (4) 

                                     (5) 

                                     (6) 20 

The ΔNDVI image was then reclassified using a threshold value calculated as μ ± n*σ; where μ represents the ΔNDVI pixels 

value mean, and σ the standard deviation. The threshold identifies three ranges in the normal distribution: (a) the left tail 

(ΔNDVI < μ − n*σ), (b) the right tail (ΔNDVI > μ + n*σ), and (c) the central region of the normal distribution (μ − n*σ < 

ΔNDVI < μ + n*σ). Pixels within the two tails of the distribution are characterized by significant landcover changes, 

whereas pixels in the central region represent no change. To be more conservative, n = 1 was selected for this study to 25 

narrow the threshold ranges for reliable classification. The standard deviation (σ) is one of the most widely applied threshold 

identification approaches for different natural environments based on different remotely sensed imagery (Hu et al., 2004; 

Jensen, 1996; Lu et al., 2004; Mancino et al., 2014; Singh, 1989) as cited by Mancino et al. (2014).  

 

ΔNDVI pixel values (2010–1995) in the central region of the normal distribution (μ − n*·σ < ΔNDVI < μ + n*·σ) represent 30 

an absence of landcover change between two different periods (i.e., 1995 and 2010); therefore, pixels from 1995 
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corresponding to no landcover change can be classified as similar to the 2010 landcover classes. Pixels with significant 

NDVI change are again reclassified using supervised classification, taking signatures from the already classified, no-change 

pixels. Likewise, 1985 and 1973 landcover images were classified based on the classified images of 1995 and 1985 

respectively. Finally, after classifying the raw Landsat images into different landcover classes, change detection, which 

requires the comparison of independently produced classified images (Singb, 1989), was performed by the postclassification 5 

method. The postclassification change-detection comparison was conducted to determine changes in LULC between two 

independently classified maps from images of two different dates. Although this technique has some limitations, it is the 

most common approach because it does not require data normalization between two dates (Singh, 1989). This is because data 

from two dates are separately classified, thereby minimizing the problem of normalizing for atmospheric and sensor 

differences between two dates.  10 

 

4.3 SWAT hydrological model 

The Soil and Water Assessment Tool (SWAT) is an open-source-code, semi-distributed model with a large and growing 

number of model applications in a variety of studies ranging from catchment to continental scales (Allen et al., 1998; Arnold 

et al., 2012; Neitsch et al., 2002). It enables the impact of LULC change and climate change on water resources to be 15 

evaluated in a basin with varying soil, land use, and management practices over a set period of time (Arnold et al., 2012).  

 

In SWAT, the watershed is divided into multiple sub-basins, which are further subdivided into hydrological response units 

(HRUs) consisting of homogeneous landuse management, slope, and soil characteristics (Arnold et al., 1998; Arnold et al., 

2012). HRUs are the smallest units of the watershed in which relevant hydrologic components such as evapotranspiration, 20 

surface runoff and peak rate of runoff, groundwater flow, and sediment yield can be estimated. Water balance is the driving 

force behind all of the processes in the SWAT calculated using eq. 7,  

 

                                   
        (7) 

 25 

where SWt is the final soil-water content (mm H2O), SWo is the initial soil-water content on day i (mm H2O), t is the time 

(days), Rday is the amount of precipitation on day i (mm H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is 

the amount of evapotranspiration on day i (mm H2O), Wseep is the amount of water entering the vadose zone from the soil 

profile on day i (mm H2O), and Qgw is the amount of return flow on day i (mm H2O).  

 30 

Runoff is calculated separately for each HRU and routed to obtain the total streamflow for the watershed using either the soil 

conservation service (SCS) curve number (CN) method (Mockus, 1964) or  Green & Ampt infiltration method (GAIM) 
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(Green and Ampt, 1911), see Figure 2Figure 2Figure 2Figure 2. However, spatial connectivity and interactions among HRUs 

are ignored. Instead, the cumulative output of each spatially discontinuous HRU at the sub-watershed outlet is directly routed 

to the channel (Pignotti et al., 2017). This lack of spatial connectivity among HRUs makes implementation and impact 

analysis of spatially targeted management such as soil and water conservation structure difficult to incorporate into the 

model. Different authors have made efforts to overcome this problem for instance, a grid-based version of the SWAT model 5 

(Rathjens et al., 2015) or landscape simulation on a regularized grid (Rathjens and Oppelt, 2012). Moreover, (Arnold et al., 

2010) and (Bosch et al., 2010) further modified SWAT so that it allows landscapes to be subdivided into catenas comprising 

upland, hillslope, and floodplain units, and flow to be routed through these catenas. However, SWATgrid, developed to 

overcome this limitation, remains largely untested and computationally demanding (Rathjens et al., 2015).  

 10 

Hence, the standard SWAT CN method was chosen for this study because it is was tested applied in many Ethiopian 

watersheds such as (Gashaw et al., 2018; Gebremicael et al., 2013; Setegn et al., 2008; Woldesenbet et al., 2017a). 

Furthermore,  its ability to use daily input data (Arnold et al., 1998; Neitsch et al., 2011; Setegn et al., 2008) as compared to 

GAIM, which requires subdaily precipitation as a model input, and that can be difficult to obtain in data-scare regions like 

the UBNRB. This study focused on the effects of LULC change and climate change on the basin’s water balance 15 

components, which include the components of inflows, outflows, and the change in storage. Precipitation is the main inflow 

whereas evapotranspiration (Et), surface runoff (Qs), lateral flow (Ql), and base flow (Qb) are the outflows. SWAT has three 

storages: soil moisture (SM), shallow aquifer (SA) and deep aquifer (DA). Water movement from the soil-moisture storage 

to the shallow aquifer is due to percolation, whereas water movement from the shallow aquifer reverse upward to the soil-

moisture storage is Revap. For a more detailed description of the SWAT model, refer to Neitsch et al. (2011). 20 

 

The SWAT model setup and data preparation can was be done using arcSWAT2012 tools in the arcGIS environment, 

whereas parameter sensitivity analysis, and model calibration and validation was performed using the SWAT-CUP 

(Calibration and Uncertainty Procedures) interface Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2008). 

During model set up, the observed daily weather and streamflow data from the given period was divided in to three different 25 

periods: the first to warm up the model, the second to calibrate it, and the third to validate it. The first step in SWAT is to 

determineDetermining the most sensitive parameters for a given watershedis the first step in the model calibration/validation 

process using the global sensitivity analysis option (Arnold et al., 2012). The second step is to complete the calibration 

process making necessary adjustments for the model’s input parameters to match model output with observed data thereby 

reducing the prediction uncertainty. Initial parameter estimates were taken from the default lower and upper bound values of 30 

the SWAT model database and from earlier studies in the basin such as (Gebremicael et al., 2013). The final step, model 

validation, involves running a model using parameters that were determined during the calibration process and comparing 

the predictions to independently observed data not used in the calibration. 
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In this study, both manual and automatic calibration strategies were applied to attain the minimum differences between 

observed and simulated streamflows in terms of surface flow, and peak and total flow following the steps recommended by 

Arnold et al. (2012). For the purpose of impact analysis, we divided the simulation periods in 1971–2010 into four decadal 

periods hereafter referred as the 1970s (1971–1980), 1980s (1981–1990), 1990s (1991–2000) and 2000s (2001–2010) as 

shown in Table 2. The model’s performance for the streamflow was then evaluated using statistical methods (Moriasi et al., 5 

2007) such as the Nash-Sutcliffe coefficient of efficiency (NSE), the coefficient of determination (R
2
), and the relative 

volume error (RVE %), which are shown by eq.8-10. Furthermore, graphical comparisons of the simulated and observed 

data, as well as water balance checks, were used to evaluate the model’s performance.  
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where Qm,i is the measured streamflow in m
3
s

-1
,     are the mean values of the measured streamflow (m

3
s

-1
), Qs,i is the 

simulated streamflow in m
3
s

-1 
, and     are the mean values of simulated data in m

3
s

-1
.  

 

4.4 SWAT simulations   15 

Three different approaches were applied for assessing the individual and combined effects of LULC change and climate 

change on streamflow and water balance components. The first approach is to assess the response of streamflow to combined 

for the combined effects of LULC change and climate change. We followed the approach in (Marhaento et al., 2017) and We 

divided the analysis period, 1971–2010, into four equal periods of similar length (four decades). These are periods when land 

use changes are expected to change the hydrological regime within a catchment (Marhaento et al., 2017; Yin et al., 2017b). 20 

The first period, the 1970s, was regarded as the baseline period. The other periods, the 1980s, 1990s, and 2000s, were 

regarded as altered periods. LULC maps of 1973, 1985, 1995, and 2010 were used to represent LULC patterns during the 

1970s, 1980s, 1990s, and 2000s respectively. To analyze the response of streamflow and water balance components caused 

by the combined effects of LULC and climate change during decadal time periods, For analyses, the SWAT model was 

separately calibrated and validated for each respective perioddecade using the respective LULC map and weather data (Table 25 

2Table 2Table 2Table 2). The DEM and soil data sets remained unchanged. The differences between the simulation result of 

the baseline and altered periods represent the combined effects of LULC and climate changes on streamflow and water 

balance components  

 



13 

 

The second approach included simulations to attribute effects from LULC changes alone. It aimed to investigate whether 

LULC change is the main driver for changes in water balance components. To identify the hydrological impacts caused 

solely by LULC, "A fixing-changing" method was used (Marhaento et al., 2017; Woldesenbet et al., 2017a; Yan et al., 2013; 

Yin et al., 2017a). The calibrated and validated SWAT model and its parameter settings in the baseline period were forced 

by weather data from baseline period, 1973–1980, while changing only the LULC maps from 1985, 1995, and 2010, keeping 5 

the DEM and soil data constant as suggested by (Hassaballah et al., 2017b; Marhaento et al., 2017; Woldesenbet et al., 

2017a; Yin et al., 2017a). We ran the calibrated SWAT model for the baseline period (1970s) four times changing only the 

LULC map from for the years 1973, 1985, 1995, and 2010 and retaining the constant weather data set from the 1970s (Table 

2). The third approach is similar to the second, but the simulations are attributed only for climate changes. The calibrated A 

models for the base line period was run again four times, corresponding to the LULC periods using a unique LULC map of 10 

the year 1973 but altering the four different periods of weather data sets for respective periods. (1970s, 1980s, 1990s, and 

2000s).   

5. Results and discussions 

5.1 Trend test 

5.1.1 Rainfall  15 

The summary of the MK trend tests result for the rainfall recorded at the 15 selected stations located in and around the 

UBNRB revealed a mixed trends (increasing, decreasing, and no change). For daily time series, the computed probability 

values (p-values) for seven stations was greater, although for eight stations it was less, than the selectedgiven significance 

level (α = 5 %). This means that no statistically significant trends existed in seven stations, but a monotonic trend occurred in 

the remaining eight. Positive trends developed only at six stations, four of which were concentrated in the northern and 20 

central highlands (Bahirdar, Dangila, Debre Markos, and G/bet). The other two stations, Assosa and Angergutten, are located 

in the southwestern and southern lowlands (see Figure 1Figure 1Figure 1Figure 1). The other two stations, Alemketema and 

Nedjo, which are located in the East and Southwest of the UBNRB, respectively showed a decreasing trend. On a monthly 

basis, the MK trend test result showed that no statistically significant trend existed in all 15eleven stations while statistically 

non significant increasing trends exist in three stations (Dangila, G/bet and Shambu) and a decreasing trend in Alemketema 25 

station. On an annual time scale, MK trend test could not find any trend in 11 eleven stations but did exhibit a trend in four 

stations., although the Alemketema, Debiremarkos, Gimijabet, and Shambu stations did exhibit showed statistically a non 

significant increasing trend while G/bet and Alemketema showed statistically significant positive trend and non significant 

decreasing trend respectively. The trend analysis result for the annual rainfall time series agrees well with a previous study 

by Gebremicael et al. (2013), who reported no significant annual rainfall change at eight out of nine stations during the 30 
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1973–2005 period. Hence, it is interesting to note that the time scale of analysis is a critical factor in determining the given 

trends. 

 

The basin-wide areal UBNRB rainfall trend and change point analysis was again carried out on daily, monthly, seasonal, and 

annual time scales using the MK and Pettitt tests respectively. We applied a widely used spatial interpolation technique, the 5 

Thiessen polygon method, to calculate basin-wide rainfall series from station data. A summary is provided , as summarized 

in Table 3Table 3Table 3Table 3 and Figure 3Figure 3Figure 3Figure 3. The MK test showed increasing trends for annual, 

monthly, and long-rainy-season rainfall series whereas no trend for daily, short rainy and dry-season rainfall series appeared. 

The magnitude of trends for annual, monthly, and long-rainy-season rainfall series are not statistically significant, as 

explained by the values of Sen's slope. However, the Pettitt test could not detect any jump point in basin-wide rainfall series 10 

except for daily time-series rainfall (see Figure S01). 

 

Previous studies’ authors, such as (Conway, 2000; Gebremicael et al., 2013; Tesemma et al., 2010), conducted trend analysis 

of basin-wide rainfall and reported that no significant change in annual and seasonal rainfall series across the UBNRB exists, 

which contradicts with the result of this study. This disagreement could be due to the number of stations and their spatial 15 

distribution across the basin, time period of the analysis, approach used to calculate basin-wide rainfall from gauging 

stations, and data sources. Tesemma et al. (2010) used monthly rainfall data downloaded from Global Historical 

Climatology Network (GHCN) data base and 10-day rainfall data for the 10 selected stations obtained from the National 

Meteorological Service Agency of Ethiopia from 1963–2003. Conway (2000) also constructed basin-wide annual rainfall in 

the UBNRB for the 1900–1998 period from the mean of 11 gauges. Furthermore, (Conway, 2000) employed simple linear 20 

regressions over time to detect trends in annual rainfall series without removing the serial autocorrelation effects. 

Gebremicael et al. (2013), also used only nine stations from the 1970–2005 period. However, in this study, we used daily 

observed rainfall data from 15 stations collected from Ethiopian Meteorological Agency from 1971–2010. The stations are 

more or less evenly spatially distributed over the UBNRB. We applied a widely used spatial interpolation technique, the 

Thiessen polygon method, to calculate basin-wide rainfall series from station data.  25 

5.1.2 Streamflow 

The MK test’s result for daily, monthly, annual, and seasonal (long and short rainy season and dry season) time-series 

streamflow time series showed a positive trend, the magnitude of which is statistically significant, as summarized in Table 

3Table 3Table 3Table 3 . Meanwhile, although Tthe Pettitt test also detected detects change point for daily, annual, and 

short-rainy-season streamflows, butit did cannot detect change point for monthly, long, and dry season streamflows (see 30 

Figure 3 and Figure S02). The change point detected by the Pettitt test for annual rainfall streamflow series occurred  is in 

1995 whereas for daily and dry short rainy seasons it is respectively in 1985 and 1987, respectively. The result obtained from 
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the MK test agrees well with the findings in previous study conducted by Gebremicael et al. (2013), whoich reported an 

increasing trend in the observed annual, short, and long rain seasons’ streamflow at the El Diem gauging station, but our 

results disagrees to with the result findings for dry-season streamflow. Furthermore, the increasing trend of long-rainy-

season streamflow agrees well with the result of Tesemma et al. (2010), but disagrees with the results of short rainy season 

and annual flows. (Tesemma et al., 2010), reported that the short rainy season and the annual flows are constant for the 5 

1964–2003 period. analyzed. This disagreement is likely attributable to the difference in analysis period, as can be seen from 

Figure 3. The last seven years, 2004–2010, had relatively higher streamflow records. 

 

Although, the results of the MK test for annual and long-rainy-season rainfall and streamflow show an increasing trend for 

the last 40 years in the UBNRB, the magnitude of Sen's slope for streamflow is much greater than it is for rainfall (Table 10 

3Table 3Table 3Table 3). Moreover, short-rainy-season streamflow shows a statistically significant positive increase 

whereas the rainfall shows no change. The mismatch between rainfall and streamflow trend magnitude could be associated 

with evapotranspiration and attributable to the combined effect of LULC change and climate change, infiltration rate due to 

changing soil properties, rainfall intensity, and extreme events. 

5.2 LULC change analysis  15 

According to the confusion-matrix report, overall accuracy of 80 %, producer’s accuracy values for all classes ranged from 

75.4 % to 100 %, user's accuracy values ranging from 83.7 % to 91.7 % and a kappa coefficient (k) of 0.77 were attained for 

the 2010 classified image (, as shown in Table 5Table 5Table 5Table 5). Monserud (1990) suggested a kappa value of <40 % 

as poor, 40–55 % fair, 55–70 % good, 70–85 % very good, and >85 % as excellent. According to these ranges, the 

classification in this study has very good agreement with the validation data set and meets the minimum accuracy 20 

requirements to be used for further change detection and impact analysis.  

 

The classified images of the basin (Figure 4Figure 4Figure 4Figure 4) have shown different LULC proportions at four 

distinct time periods, as shown in Figure 5. Cultivated land dominantly covers (62.9 %) of UBNRB, followed by bushes and 

shrubs (18 %), forest (17.4 %), and water (1.74 %) in 1973. In 1985, cultivated land area increased to 65.6 %, followed by 25 

bushes and shrubs (18.3 %), while forest decreased to 14.4 %, and water remained unchanged at 1.7 %. In 1995, cultivated 

land area further increased to 67.5 %, followed by bushes and shrubs (18.5 %). Forest further decreased to 12.2 % and water 

remained unchanged at 1.7 %. In 2010, cultivated land decreased to 63.9 %, bushes and shrubs increased to 18.8 %, forest 

increased to 15.6 %, and water remained unchanged at 1.7 %. During the entire 1973–2010 period, cultivated land, along 

with bushes and shrubs remained the major proportions compared to the other LULC classes. The highest increase gain (2.7 30 

%) and the largest decreaseloss (−3.6 %) in cultivated land occurred during the 1973–1985 and 1995–2010 periods 

respectively. The largest increase gain in bushes and shrubs was 0.3 % from 1973 to 1985, whereas the largest gain increase 
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in forest coverage (3.4 %) was recorded during the 1995–2010 period. Water coverage remained unchanged from 1973 to 

2010.  

 

Although, the image classification results enjoys show very good accuracy, uncertainties in classification could be expected. 

for the following reasons. Firstly, as elsewhere in Ethiopia, LULCs may change rapidly over the land surface of the basin 5 

and image reflectance may be confusing due to the topography and variation in the image acquisition date. Landsat images 

were not all available for one particular year or one season (as described under section 4.2.1); images thus came from a mix 

of from different years may and a variety different of seasons might harbor errors. Secondly, the workflow associated with 

LULC classification involves many steps and can be a source of uncertainty. The errors are observed in the classified LULC 

map as shown in Figure 4Figure 4Figure 4Figure 4Figure 4. On the western side of the map in Figure 4 (a) a rectangular 10 

section with forest appears, that which completely disappears in 4(b). Rectangular forest cover appears in the northern part of 

the country in 4(b), which again disappears completely in 4(c). In 4(d), forest cover with linear edges (North-South) appears 

on the map’s eastern side. That being recognized, the land-cover mapping is reasonably accurate overall, providing a good 

base for land-cover estimation and for providing basic information for the hydrological impact analysis.  

 15 

The rate of expansion of cultivated land before 1995 was higher than that after 1995. Conversely, the area of the devoted to 

forest land decreased in 1985 and 1995 with reference to from the 1973 baseline. However, after 1995, the forest’s size 

began to increased again whereas ile the amount of cultivated land decreased. The increased forest coverage and the 

reductiondecrease in cultivated land over the period 1995 to 2010 showed that the environment was recovering from the 

devastating drought, and forest clearing for firewood and cultivation due to population growth has been minimized. This 20 

could be due to the afforestation program, which the Ethiopian government initiated, and to the extensive soil and water 

conservation measures carried out by the community. Since 1995, eucalyptus tree plantation expanded significantly across 

the country at homestead level for fire wood, construction material, charcoal production, and income generation 

(Woldesenbet et al., 2017a). In summary, forest coverage decreased lined by 1.8 %, while both bushes and shrubs as well as 

cultivated land increased by 0.8 % and 1 % respectively during the 2010 period from the original 1973 level. This result 25 

agrees well with other studies (Gebremicael et al., 2013; Rientjes et al., 2011; Teferi et al., 2013; Woldesenbet et al., 2017a), 

who reported a significant conversion of natural vegetation cover into agricultural land.   

 

5.3 SWAT model calibration and validation 

The SWAT model’s most sensitive parameters for simulating streamflow were identified using global sensitivity analysis of 30 

SWAT-CUP. Their optimized values were determined by the calibration process that Arnold et al. (2012) recommended. 

Parameters such as SCS curve number (CN2), base flow alpha factor (ALPHA_BF), soil evaporation compensation factor 
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(ESCO), threshold water depth in the shallow aquifer required for return flow to occur (GWQ N), groundwater “revap” 

coefficient (GW_REVAP), and available water capacity (SOL_AWC) were found to be the most sensitive parameters for the 

streamflow predictions.  

 

Figure 6Figure 6Figure 6Figure 6 shows the calibration and the validation results for monthly streamflow hydrographs for 5 

each models. These results revealed that the model represents captured the monthly hydrographs well as also indicated by . 

The R
2
, NSE, and RVE (%) statistical performance measures (, as presented in Table 6Table 6Table 6Table 6). , re verified 

this. For the calibration period, the values of R
2
,
 
NSE, and RVE (%)  from the four model range from 0.79 to 0.91, 0.74 to 

0.91, and −3.4 % to 4 %, respectively. For the validation period they ranged from 0.84 to 0.94, 0.82 to 0.92 and −7.5 % to 

7.2 % respectively.   According to the rating of Moriasi et al. (2007), the SWAT model’s performance over the UBNRB can 10 

be categorized as very good, although underestimation was observed in the baseflow simulation. The optimal parameter 

values of the four calibrated-model runs are shown in Table 7Table 7Table 7Table 7. A change was obtained for CN2 

parameter values, which can be attributed to the catchment’s response behavior. For instance, an increase in the absolute 

average (basin-wide) CN2 value in the 1980s and 1990s from 0.8872.9 to 0.9174.7 and 0.9275.6 compared to the 1970s 

respectively, indicate a reduction in forest coverage and expansion of cultivated land. In On the contrary, a decrease in CN2 15 

value was attained during the period 1990s to 2000s from 0.9275.6 to 0.973.6, attributed to the increase in forest coverage 

and reduction in cultivated land.  

5.4 Combined effects of LULC change and climate change on streamflow and water balance components 

The simulation results of the four independent, decadal-time-scale- calibrated and validated SWAT model runs reflect the 

combined effect of both LULC and climate change during the past 40 years (Table 8Table 8Table 8Table 8). From the 20 

simulation result, mean annual streamflow increased by 16.9 % between the 1970s and the 2000s, while the observed mean 

annual streamflow increased by 15.3 % fromor the same period 1970s to 2000s. However, the rate of change is different in 

different decades. For example, it increased by 3.4 % and 9.9 % during the 1980s and 1990s respectively from the baseline 

1970s period.  

 25 

The ratio of mean annual streamflow to mean annual precipitation (Qt/P) increased from 19.4 % to 22.1 % while, and the  

actual evaporation to precipitation (Ea/P) ratio decreased from 61.1 % to 60.5 % from the 1970s to 2000s. Moreover, the 

ratio of surface runoff to streamflow (Qs/Qt) has increased significantly notably from 40.7 % in the 1970s to 50.1 % and 

55.4 % in the 1980s and 1990s respectively, and decreased to 43.7 % in the 2000s. In contrast, the base flow to streamflow 

ratio (Qb/Qt) has significantly notably decreased from 17.1 % in the 1970s to 10.3 % and 3.2 % respectively during the 30 

1980s and 1990s, but has increased to 20 % in the 2000s. The result for surface runoff agrees with the previous study done 

byto findings in (Gebremicael et al., 2013), but disagreement is observed s for baseflow. The study They reported that 
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surface runoff (Qs) contribution to the total river discharge has increased by 75 %, while the baseflow (Qb) flow has 

decreased by 50 % from the 1970s to 2000s.  

 

In general, 1.8 % forest cover loss and 1 % increased cultivated land combined with 2.2 % increased rainfall from the 1970s 

to the 2000s led to a 16.9 % increase in simulated streamflow. The 1990s was the period during which the greatest 5 

deforestation and expansion of cultivated land was reported; meanwhile, it is the time when the rainfall intensity and the 

number of rainfall events have significantly increased compared to the 1970s and 1980s, as shown in Table 4Table 4Table 

4Table 4. Hence, the increased mean annual streamflow could be ascribed to the combined effects of LULC and climate 

change. In the case of (Qs/Qt), the increasing pattern could be ascribed to increasing rainfall intensities and the expansion of 

cultivated land and diminution of forest coverage, which might adversely affect soil/water storage and decrease rainfall 10 

infiltration, thereby increasing water yield or streamflow. In contrast, the decreasing Qb/Qt is positively related to the 

increasing evapotranspiration linked to both LULC and climate factors (Table 8). This hypothesis can be explained with the 

change in CN2 parameter values obtained during calibration of the four SWAT model runs. The CN2 parameter value which 

is a function of evapotranspiration derived from LULC, soil type, and slope increased in the 1980s and 1990s relative to the 

1970s, and could be associated with the expansion of cultivated land and shrinkage of forest land. The increasing CN2 15 

results reflect more surface runoff and less baseflow being generated.  

 

Another important factor contributing to decreasing of surface runoff and increasing base flow ratio from 1990s to the 2000s 

could be the establishment of soil and water conservation (SWC) measures. According to Haregeweyn et al. (2015), various 

nationwide SWC initiatives such as Food for Work (FFW), Managing Environmental Resources to Enable Transition 20 

(MERET) to more sustainable livelihoods, Productive Safety Net Programs (PSNP), Community Mobilization through free-

labor days, and the National Sustainable Land Management Project (SLMP) have been undertaken since the 1980s. 

Haregeweyn et al. (2015) evaluated these initiatives’ effectiveness and concluded that community labor mobilization seems 

to be the best approach. This can reduce mean seasonal surface runoff by 40 %, with broad spatial variability ranging from 4 

% in Andit Tid (northwest Ethiopia) to 62 % in Gununo (south Ethiopia).  25 

 

5.5 Effects of an isolated LULC change on streamflow and water balance components 

(Yan et al., 2013) used "A fixing -changing" method, which was also applied to this study, to identify the hydrological 

impacts of LULC change alone. The calibrated and validated SWAT model and its parameter settings in the baseline period 

was forced by weather data from the baseline 1973–1980 period while changing only the LULC maps from 1985, 1995, and 30 

2010, keeping the DEM and soil data constant as suggested by Hassaballah et al. (2017a). The result from Figure 7 indicated 

that Qs/Qt ratio changed from 40.7 % to 41.2 %, 41.1 9 %, and 40.9 % respectively by using the LULC maps from 1973, 

1985, 1995 and 2010, whereas the Qb/Qt ratio changed from 17.1 % to 16.8 %, 16.5 %, and 16.9 % respectively. The largest 
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Qs/Qt ratio (41.9 %) and the smallest Qb/Qt ratio (16.5 %) were recorded with the 1995 LULC map. This could be attributed 

to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated land with the 1995 LULC map relative to the 1973 

LULC map.  

 

On a basin scale over a decadal time period, water gains mainly from precipitation. The losses are mainly due to runoff and 5 

evapotranspiration (Oki et al., 2006) . as the losses due to the deep percolation over the whole UBNRB is negligible 

(Steenhuis et al., 2009). The long term mean annual deep percolation simulated in this study is about 16.1 mm constant in 

four decadal periods, which is about 6 % of the total water yield. With the fixing-changing approach, the change in 

streamflow attributable to LULC change was essentially the change in evapotranspiration between the two periods, as the 

amount of precipitation was constant (1970s) and the change in water storage during the two periods was similar (Yan et al., 10 

2013). Annual Ea losses from seasonal crops are smaller than those from forests, because seasonal crops transpire during a 

relatively shorter time interval than perennial trees do (Yan et al., 2013). As a result, the actual mean annual Ea simulated by 

the SWAT model was 871.6 mm at the baseline. It decreased to 871.4 mm and 871 mm in 1985 and 1995 respectively and 

increased to 872.1 mm in 2010. This could be due to simultaneous expansion of cultivated land and shrinkage in forest 

coverage in the 1985 and 1995 LULC maps relative to the 1973 base line. Furthermore, this deforestation may reduce 15 

canopy interception of the rainfall, decrease soil infiltration by increasing raindrop impacts, and reducing plant transpiration, 

which can significantly increase surface runoff and reducing base flow (Huang et al., 2013). Here, the evapotranspiration 

change caused by the LULC change is minimal. As a result, the change for surface runoff and baseflow is not significant.  

5.6 Effects of isolated climate change on streamflow and water balance components 

The impacts of climate change are analyzed by running the four models using a unique LULC map from 1973 with its model 20 

parameters while changing only the weather data sets from 1970s, 1980s, 1990s, and 2000s. The simulated water balance 

components shown in Figure 7 indicate that the Qs/Qt ratio increased from 40.7 % to 45.2 %, 45.6 %, and 46.2 % during the 

1970s, 1980s, 1990s and 2000s respectively, while the Qb/Qt ratio changed from 17.1 % to 13.5 %, 14.9 %, and 12.7 % for 

the same simulation periods. The decreasing Qb/Qt ratio for the altered periods compared to the baseline period could be 

attributed to evapotranspiration increasing changing from 872 mm to 854 mm, 906 mm, and 884 mm respectively in 1970s, 25 

1980s, 1990s, and 2000s, which can be linked to temperature and amount of rainfall. However, it is important to know the 

dominant rainfall-runoff process in the study area to fully understand the effect of climate change on the water balance 

components.   

 

Although, no detailed research has been conducted on the Upper Blue Nile basin to investigate the runoff-generation 30 

processes, Liu et al. (2008) investigated the rainfall-runoff processes at three small watersheds located inside and around the 

Upper Blue Nile basin, namely, Mayber, AnditTid, and Anjeni. Their analysis showed that, unlike in temperate watersheds, 

in monsoonal climates, a given rainfall volume at the onset of the monsoon produces a different runoff volume than the same 



20 

 

rainfall at the end of the monsoon. Liu et al. (2008) and Steenhuis et al. (2009) showed that the ratio of discharge to 

precipitation minus evapotranspiration, Q/(P − ET), increases with cumulative precipitation from the onset of monsoon. This 

suggests that saturation excess processes play an important role in watershed response.  

 

Furthermore, the infiltration rates that Engda (2009) measured in 2008 were compared with rainfall intensities in the Maybar 5 

and Andit Tid watersheds located inside and around the UBNRB. In the Andit Tid watershed, which has an area of less than 

500 ha, the measured infiltration rates at 10 locations were compared with rainfall intensities considered from the 1986 –

2004 period. The analysis showed that only 7.8 % of rainfall intensities were found to be higher than the lowest soil 

infiltration rate of 25.5 cm mm h
-1

. Derib (2005) performed a similar analysis in the Maybar watershed (with a catchment 

area of 113 ha). The infiltration rates measured from 16 measurements ranged from 19 mm h
-1

 to 600 mm h
-1

 with a 240 cm 10 

mm h
-1

 average and 180 cm mm h
-1

 median whereas the average daily rainfall intensity from 1996 to 2004 was 8.5 mm hr
-1

. 

Hence, he suggested from these infiltration measurements that infiltration excess runoff is not a common feature in these 

watersheds.  

 

From the above discussion points, it is to be noted that surface runoff could increase with increasing total rainfall amount 15 

regardless of rainfall intensity. However, the mean annual rainfall amount in this study was decreasing from the 1970s to the 

1980s (1428 mm and 1397 mm respectively) while the (Qs/Qt) ratio increased from 40.7 % to 45.2 %. Similarly, the mean 

annual rainfall amount in the 1990s (1522 mm) was greater than the mean annual rainfall amount in the 2000s (1462 mm) 

while the (Qs/Qt) increased from 45.6 % to 46.2 %. In contrast, climate indexes such as 99-percentile rainfall, SDII (ratio of 

total precipitation amount to number of days when rainfall >1 mm (R1mm)), and number of days when rainfall >20 mm 20 

(R20mm) increase consistently from 1970 to the 2000s, as shown in Table 4Table 4Table 4Table 4. This indicates that the 

increasing of surface runoff might be due to an increasing of number of extreme rainfall events and rainfall intensity. In 

other words Although, we did not use hourly rainfall data for the SWAT model, this study revealed suggested that 

infiltration excess of overland flow dominates the rainfall-runoff processes in the UBNRB, not saturation excess of overland 

flow. The contradiction from the previous studies might be due either to the limitation of the SWAT- CN method when 25 

applied in monsoonal climates or the overlooked of tillage activities, which significantly impact the soil infiltration rate. 

Extensive tillage activities are carried out across the basin at the beginning of the rainy season. Soils get disturbed as a result, 

which can increase the infiltration rate and ultimately decrease the amount of rainfall converted to runoff.  

 

Although, the CN method is easy to use and provides acceptable results for discharge at the watershed outlet in many cases, 30 

researchers have concerns about its use in watershed models (Steenhuis et al., 1995; White et al., 2011). The SWAT-CN 

model relies with a statistical relationship between soil moisture condition and CN value obtained from plot data in the 

United States with a temperate climate that was never tested in a monsoonal climate exhibiting two extreme soil moisture 

conditions. In monsoonal climates, long periods of rain can lead to prolonged soil saturation whereas during the dry period, 
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the soil dries out completely, which may not happen in temperate climates (Steenhuis et al., 2009). Hence, further research 

that considers bio-physical activities such as tillage and seasonal effects on soil moisture at representative watersheds of the 

basin is necessary to properly assess the rainfall-runoff processes.  

 

6. Conclusions 5 

This study’s objectives were to understand the long-term variations of rainfall and streamflow in the UBNRB using 

statistical techniques (MK and Pettitt tests), and to assess the combined and isolated effects of climate and LULC change 

using a semi-distributed hydrological model (SWAT). Although the results of the MK test for annual and long-rainy-season 

rainfall and streamflow show an increasing trend in the UBNRB overfor the last 40 years, the magnitude of Sen's slope for 

streamflow is much larger than the Sen's slope of areal rainfall. Moreover, for the short-rainy-season streamflow shows a 10 

statistically significant positive increase while the rainfall shows no change. The mismatch of trend magnitude between 

rainfall and streamflow could be attributed to the combined effect of LULC and climate change, associated with decreasing 

actual evapotranspiration (Ea) and increasing rainfall intensity and extreme events.  

 

LULC change detection was assessed by comparing the classified images. The result showed that the dominant process is 15 

largely the expansion of cultivated land and decrease in forest coverage. The rate of deforestation is high during the 1973–

1995 period. This is probably due to the severe drought that occurred in the mid-1980s and to a large population increase 

resulting from the expansion of agricultural land. On the other hand, forest coverage increased by 3.4 % during the period 

1995 to 2010. This indicates that the environment was recovering from the devastating drought in the 1980s, regenerating of 

forests as the result of afforestation program initiated by the Ethiopian government, and due to soil and water conservation 20 

activities accomplished by the communities. 

 

The SWAT model was used to analyze the combined and isolated effects of LULC and climate changes on the monthly 

streamflow at the basin outlet (El Diem station, located on the Ethiopia-Sudan border). The result showed that the combined 

effects of the LULC and climate changes increased the mean annual streamflow by 16.9 % from the 1970s to the 2000s. The 25 

increased mean annual streamflow could be ascribed to the combined effects of LULC and climate change. The LULC 

change alters the catchment responses. As a result, SWAT model parameter values could be changed. For instance, the 

expansion of cultivation land and the shrinkage of forest coverage from 1973 to 1995 changed the basin average CN2 

parameter values from 0.8972.9 in 1973 to 0.9174.7 and 0.9275.6 in 1985 and 1995 respectively. Increasing of CN2 value 

might increase surface runoff and decrease base flow. Similarly, the increase in rainfall intensity and extreme precipitation 30 

events led to a substantial increase in Qs/Qt, a substantial decrease in Qb/Qt, and ultimately to increases in the streamflow 

during the 1971–2010 simulation period.  
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The "fixing-changing" approach result using the SWAT model revealed that the isolated effect of LULC change could 

potentially alter the streamflow generation processes. Expansion of cultivated land might reduce evapotranspiration because 

seasonal crops transpire less than perennial trees do (Yan et al., 2013) resulting in increased surface runoff. Alternatively, 

reduction of forest coverage may reduce canopy interception of the rainfall, decrease the soil infiltration by increasing 5 

raindrop impacts, and reduce plant transpiration, which can significantly increase surface runoff and reduce baseflow (Huang 

et al., 2013). In general, a 5.1 % reduction in forest coverage and a 4.6 % increase in cultivated land led to a 9.9 % increase 

in mean annual streamflow from 1973 to 1995. This study provides a better understanding and substantial information about 

how climate and LULC change affects streamflow and water balance components separately and jointly, which is useful for 

basin-wide water resources management. The SWAT simulation indicated that the impacts of climate change are more 10 

substantial than the impacts of LULC change, as shown in Figure 7Figure 7Figure 7Figure 7. Surface water is no longer used 

for agriculture and plant consumption in areas such as the UBNRB, where water-storage facilities are scarce. On the other 

hand, base flow provides the most reliable source for the irrigation needed to increase agricultural production. Hence, the 

increasing amount of surface water and diminished base flow caused by both LULC and climate changes negatively affect 

socio-economic developments in the basin.  15 

 

Protecting and conserving the natural forests and expanding soil-and-water conservation activities is therefore highly 

recommended, not only to increasing increase the base flow available for irrigation but also to reduce soil erosion. Doing so 

might increase productivity, and improve the livelihoods as well asand regional-water-resource-use cooperation might 

improve. However, the uncertainties of Landsat image classification and the model uncertainty of SWAT-model simulation 20 

might limit this study. To improve the accuracy of LULC classification from Landsat images, further efforts such as 

integrating other images with Landsat images through image-fusion techniques (Ghassemian, 2016) are required. The SWAT 

model does not adjust CN2 for slopes greater than 5%. This could be significant in areas where the majority of the area has a 

slope greater than 5%, such as in the UBNRB. We therefore suggest adjusting CN2 values for slope >5 % outside of the 

SWAT model might improve the results. Moreover, further research involving rainfall intensity, infiltration rate, and event-25 

based analysis of hydrographs and critical evaluation of rainfall-runoff processes in the study area might overcome this 

study’s limitations. Finally, the authors would like to point out that the impacts of current and future water resource 

developments should be investigated to establish comprehensive, holistic water resource management in the Nile basin. 
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Table 1: The UBNRB’s areal long term (1971–2010) mean annual and seasonal rainfall and streamflow  

 

Amount Contribution (%)    

Station Kiremit Belg  Bega  Total  Kiremit Belg  Bega Mean Area (km
2
) 

Flow (m
3
s

-1
) 3506.3 300.4 1018.4 4825.1 72.7 6.2 21.1 1608 172 254 

Flow (BCM) 36.4 3.1 10.6 50.7 

     Rainfall (mm) 1070.1 140.8 238.9 1449.8 73.8 9.7 16.5 

  Kiremit: long rainy season, Belg: short rainy season, Bega: dry season 10 

 

Table 2: Data sets of the baseline and altered periods for the SWAT simulation used to analyze the combined and isolated 

effect of LULC and climate changes on streamflow and water balance components 

Model run 

no. Combined effect 

Isolated LULC change 

effect 

Isolated climate change 

effect 

Remark   

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

1 1970s 1973 1970s 1973 1970s 1973 Base period 

2 1980s 1985 1970s 1985 1980s 1973 

altered 

Period1 

3 1990s 1995 1970s 1995 1990s 1973 

altered 

Period2 

4 2000s 2010 1970s 2010 2000s 1973 

altered 

Period3 

 

 15 

Table 3: MK and Pettitt tests for the UBNRB’s rainfall and streamflow after TFPW at different time scales 

  Stream flow Rainfall 

  p-value        p-value        

Time 

scale After* Before* 

Sen's 

slope: 

Change 

point Pettit test After* Before* 

Sen's 

slope 

Change 

point Pettit test 

Daily < 0.0001 < 0.0001 0.013 1987 Increasing 0.387 0.953 0.000 1988 Increasing 
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Monthly < 0.0001 0.031 0.378 

 

No change 0.010 0.640 0.009 

 

No change 

annually < 0.0001 0.009 9.619 1995 Increasing 0.006 0.260 1.886 

 

No change 

Kiremit < 0.0001 0.014 20.30 

 

No change 0.010 0.348 1.364 

 

No change 

Belg < 0.0001 0.004 3.593 1985 Increasing 0.822 0.935 0.068 

 

No change 

Bega 0.000 0.214 4.832 

 

No change 0.527 0.755 0.169 

 

No change 

* Before and after TFPW; p: probability at 5% significance level  

 

 

Table 4: Summary of the UBNRB’s precipitation indices at decadal time series 

Indices 1970s 1980s 1990s 2000s 

Mean (mm) 4.17 4.05 4.42 4.16 

95 percentile (mm) 12.57 12.52 13.66 13.31 

99 percentile (mm) 17.34 17.77 19.44 19.65 

1-day max (mm) 27.15 25.67 32.24 32.38 

R20mm (days) 16 15 30 35 

SDII (mm/day) 7.22 7.38 7.66 7.77 

SDII is the ratio of total precipitation (mm) to R1mm (days). 5 

 

Table 5: Confusion (error) matrix for the 2010 land use/cover classification map 

LULC class Water Forest Cultivated  

Bushes 

and 

shrubs Row total 

Producers’ 

accuracy 

Water 44 0 0 0 44 100 

Forest 1 46 6 8 61 75.4 

Cultivated land 2 3 77 15 97 79.4 

Bushes and shrubs 1 3 9 73 86 84.9 

Column total 48 52 92 86 288   

User's accuracy (%) 91.7 88.5 83.7 84.9     

Over all accuracy(%) 80           

Kappa 0.77           

 

 

Table 6: The SWAT model’s statistical performance measure values  10 

Period   R2 NSE RVE (%) 

1970s 

Calibration (1973–1977) 0.79 0.74 −3.41 

Validation (1978–1980) 0.84 0.83 7.18 
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1980s 

Calibration (1983–1987) 0.80 0.74 −0.72 

Validation (1988–1990) 0.86 0.82 0.73 

1990s 

Calibration (1993–1997) 0.91 0.91 1.79 

Validation (1998–2000) 0.87 0.84 −3.56 

2000s 

Calibration (2003–2007) 0.86 0.86 3.99 

Validation (2008–2010) 0.94 0.92 −7.51 
 

 

 

 

 5 

 

Table 7: SWAT sensitive model parameters and their (final) calibrated values for the four model runs 

Parameter 

Optimum value 

 1970s 1980s 1990s 2000s 

R-CN2 0.88 0.91 0.92 0.9 

a-Alpha-BF 0.028 0.028 0.028 0.028 

V-GW_REVAPMN 0.7 0.45 0.7 0.34 

V-GWQMN 750 750 750 750 

V-REVAPMN 550 450 425 550 

a-ESCO −0.85 −0.85 −0.85 −0.85 

R-SOL_AWC 6.5 6.5 6.5 6.5 

R: value from the SWAT database is multiplied by a given value; V: replace the initial parameter by the given value;  

a: adding the given value to initial parameter value. 

 10 

Table 8: Water-balance-components analysis in the Upper Blue Nile River Basin (mm/year) by considering LULC and 

climate change over respective periods. All streamflow estimates are for El Diem station. 

Water balance components 1970s 1980s 1990s 2000s 

Surface flow (Qs) 112.8 143.4 168.6 141.4 

Lateral flow (Ql) 116.8 113.35 125.9 117.6 

Base flow (Qb) 47.3 29.6 9.8 64.7 

PET (mm) 1615.1 1627.3 1614.7 1732.9 

Ea (mm) 871.6 852.6 904.3 885 

Precipitation (P) 1428.1 1397.1 1522.2 1462.5 

Total yield ( Qt) 276.9 286.3 304.3 323.7 

Qs/Qt (%) 40.7 50.1 55.4 43.7 
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Qb/Qt (%) 17.1 10.3 3.2 20.0 

Ea/P (%) 61.0 61.0 59.4 60.5 

Qt/P (%) 19.4 20.5 20.0 22.1 

 

 

Figure 1 : Locations of study area and meteorological and discharge stations, with the Digital Elevation Model (DEM) data 

as the background.  

 5 

 

Figure 2: Schematic representation of the SWAT model structure from (Marhaento et al., 2017) 

1: Stations used for 

SWAT model 

2: Stations used for trend 

analysis 

3: Stations removed from 

the analysis 
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Figure 3: The Pettitt homogeneity test a) annual rainfall, b) annual flow of the UBNRB, c) linear trend of mean annual 

rainfall and d) linear trend of mean annual streamflow.  
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Figure 4: Landcover map of UBNRB derived from Landsat images a) 1973, b) 1985, c) 1995, and d) 2010 

 

 5 

 

 

 

 

a)                                                    b) 10 

 

   

17.4 14.4 12.2 15.6

18.0 18.3 18.5 18.8

62.9 65.6 67.5 63.9

0

20

40

60

80

100

120

1973 1985 1995 2010

A
re

a
 c

o
v
e
ra

g
e
 (

%
)

WATER FOREST BUSHES & SHRUB CULTIVATED

-17.3 -14.9

27.7

1.8 1.4

1.2

4.3 2.9

-5.3

-20

-10

0

10

20

30

40

1973-1985 1985-1995 1995-2010

L
an

d
 c

o
v
er

 c
h
an

g
e 

(%
)

WATER FOREST BUSHES & SHRUB CULTIVATED



34 

 

 

Figure 5: a) LULC composition, b) LULC change in the UBNRB during the period from 1973 to 2010  
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  d) 

  

  

  10 

Figure 6: Calibration and validation of the SWAT hydrological model (left and right) respectively at monthly time scale; 

a) 1970s, b) 1980s, c) 1990s, and d) 2000s monthly time scale  
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Figure 7: Ratio of water balance component analysis at the El Diem station using an isolated effect (LULC/climate change) 5 
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