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Abstract: Understanding the response of land use/land cover (LULC) change and climate change to the streamflow of the 

Nile River has  become a priority issue for water management and water resource utilization inof the Nile basin. This study 

assesses the long-term trends of rainfall and streamflow to analyse analyze the response effect of LULC and climate changes 15 

on the hydrology of the study area Upper Blue Nile River basin. The Mann-Kendal (MK)-) test showed   statistically 

insignificant, increasing trends for annual, monthly, and long rainy- season rainfall series whereasile no trend for daily, short 

rainy, and dry season rainfall series appeared. However, the Pettitt test failed tocould not detect any jump point in basin- 

wide rainfall series except for daily rainfall time series. In contrast, the result of the MK -test’     ul  for daily, monthly, 

annual, and seasonal (long and short rainy season and dry season) time- series streamflow showed a statistically significant, 20 

positive trend and the trend  magnitude is statistically significant. Landsat satellite images for 1973, 1985, 1995, and 2010 

were used for LULC change - detection analysis. The LULC change -detection findings indicate significantthat  expansion of 

cultivated land area and the reduction of forest coverage were significant before the period 1995 period. After 1995, the 

forest coverage began to increased while the amount of cultivated land diminish getting reduced. Statistically, forest 

coverage changed from 17.4 % to 14.4 %, 12.2 %, and 15.6 % while cultivated land changed from 62.9 %   to 65.6 %, 67.5 25 

%, and 63.9 %   from 1973 to 1985, in 1995, and in 2010 respectively. The hydrological - model result showed that mean 

annual streamflow increased by 16.9 % between the 1970s and the 2000s due to the combined effect of LULC and climate 

change. The singleisolated effect of LULC change on streamflow analysis suggested that LULC change affects surface run-

offrunoff and base flow. This could be attributed to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated 

land area. Effects of climate change revealed that the increased rainfall intensity and number of extreme rainfall events from 30 

1971 to 2010 have significantly affected the surface run-offrunoff and base flow. The singleisolated impacts of climate 

change are is more significant as compared to the impacts of LULC change for the hydrology of UBNRB the study area. 
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1. Introduction 

 The Abay (Upper Blue Nile) River in Ethiopia contributes more than 60 % of the water resources inof the Nile rRiver 

(McCartney et al., 2012). Hence, the Ethiopian government has conductedarried out a series of studies to tap this huge 

potential water resource with intentaiming to significantly increase the number of large water -storage reservoirs for water 

storage in the Upper Blue Nile River Basin (UBNRB), both for irrigation and hydropower development, in order to support 5 

national development and to reduce poverty (BCEOM, 1998). As a result, large- scale irrigation and hydropower projects 

such as the Grand Ethiopian Renaissance Dam (GERD), which will be the largest dam in Africa after it is completed, has 

have been planned and realized   along the main stem of  the Blue Nile River such as the Grand Ethiopian Renaissance Dam 

(GERD), the largest dam in Africa when it is completed. However, its hydrology exhibiting high seasonal flows,is 

influenced by largehigh variations in climate, and altitude/topography, and  by land use/cover (LULC) change exhibiting 10 

highly seasonal flows . ETherefore, effective planning, management, and regulation of water resource developments isare 

therefore required to avertprevent the conflicts between the competing water users — particularly with the downstream 

countries such as of Sudan and Egypt. Establishing careful water resource management can mitigate pPotential conflicts can 

be mitigatreduced and maximize benefits maximized if careful management of water resource is established.   

 15 

 

 OThis can be achieved only by understanding the hydrological processes and sources impacting water quantity, such as   

LULC change and climate change, can achieve this as they are the key driving forces that can modify the wa      d’  

hydrology and water availabilityity of the watershed (Oki and Kanae, 2006; Woldesenbet et al., 2017b; Yin et al., 2017a). 

LULC change can modify the rainfall path into run-offrunoff by altering critical water balance components, such as surface 20 

run-offrunoff, groundwater recharge, infiltration, interception, and evaporation (Marhaento et al., 2017; Woldesenbet et al., 

2017b). The UBNRB experiences significant spatial and temporal climate variability (McCartney et al. 2012)., Lless than 

500 mm yr
−1

 of precipitation falls annually near the Sudanese border whereasto more than 2,000 mm falls annuallyyr
−1

 in 

some arplaceas ofin the southern basin (Awulachew et al., 2009). Potential evapotranspiration (ET) also varies considerably 

and is stronghighly correlated with altitude., Iit exceeds varies from more than 2,200 mm yr
-1

annually near the Sudanese 25 

border tofrom between aboutpproximately 1,300 mm andto 1,700 mm annuallyyr
-1

 in the Ethiopian highlands (McCartney et 

al., 2012). TAs a result of the precipitation and ET cycles cause extreme seasonal and inter-annual variability, to strongly 

characterize stream flow is highly characterized by extreme seasonal and inter-annual variability.   

 

A literature review shows that there are few sub--basin- orand basin - level studies are conductedarried out in the UBNRB., 30 

Mwith most of the studies were focuseding on trend analysis of precipitation and streamflow. Considering precipitation, 

most  studies, for examplee.g. those by , (Bewket and Sterk, 2005; Cheung et al., 2008; Conway, 2000; Gebremicael et al., 

2013; Melesse et al., 2009; Rientjes et al., 2011; Seleshi and Zanke, 2004; Teferi et al., 2013; Tekleab et al., 2014; Tesemma 

et al., 2010), reported no significant trend in annual and seasonal precipitation totals within the Lake Tana sub-basinsub-
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basin, wWhereasile Mengistu et al. (2014) reported statistically non -significant increasing trends inat annual and seasonal 

rainfall series, except for a short rainy season (Belg ) from February to May.  

 

For the streamflow of the UBNRB,   Gebremicael et al. (2013) reported statistically significant increasing long-term mean 

annual streamflow at the El Diem gauging station fo       BNRB’      amflow. However, (Tesemma et al., 2010) reported 5 

no statistically significant trend for the long- term annual streamflow at the ElDiem gauging station, but did report a 

significantly increasing trend at the Bahirdar and Kessie stations. At the sub-basinsub-basin scale, Rientjes et al. (2011) 

reported   a decreasing trend   for the low streamflows of Gilgel Abay sub-basinsub-basin (Lake Tana catchment, the Blue 

Nile headwaters) during the period (1973–2005 period), specifically by 18.1 % and 66.6 % in the periods 1982–2000 and 

2001–2005, respectively. However, for the same periods, the high streamflows for the same periods show an increase by 7.6 10 

%  and 46.6 % due to LULC change and seasonal rainfall variability   of rainfall.  

 

Although, substantial progress has been made in assessing the impacts of LULC and climate changes on the UBNRB’  

hydrology of the UBNRB, only a few studies have endeavorattempted to assess the attribution of changes in the water 

balance to LULC change and climate change. Woldesenbet et al. (2017b), used an integrated approach comprising SWAT 15 

hydrological modeling and partial least squares regression (PLSR) to quantify the contributions of changes in individual 

LULC classes to changes in hydrological components in thewo watersheds namely: Lake Tana and Beles sub-

basinsubbasins’ watersheds. Woldesenbet et al. (2017b) reported that expansion of cultivation land area and decline in 

woody shrub/woodland appear to be major environmental stressors affecting local water resources such as increasing surface 

run-offrunoff and decreasing of ground water contribution in both watersheds; however,but the impacts of climate change is 20 

missing were not considered. NonethelessHowever, proper water - resource management requires an in-depth understanding 

ofn the aggregated and disaggregated effects of LULC and climate changes on streamflow and water balance components as 

the interaction between LULC, the climate characteristics, and the underlying hydrological processes are complex and 

dynaanmic (Yin et al., 2017a). .  

 25 

Therefore, the objectives of this study’  obj        are as followstherefore to (i) assess the long-term trend of rainfall and 

streamflow (ii) analyzse the LULC change, and (iii) examining the streamflow responses to the combined and isolated 

effects of LULC and climate changes in the UBNRB. This iscan be doablene byusing a combininged analysis of statistical 

trend test, change detection of LULC derived from satellite remote sensing,   and hydrological modelling during the period 

1971–-2010 period.   30 
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2. Study area   

The UBNRB is located in the northwestern  of Ethiopia. with Itsan approximate catchment area is of about 172, 760 km
2
. 

Topography of the basin is typically characterized by hHighlands, hills, valleys, and occasional rock peaks with elevations 

that ranginge from 500 m.a.s.l to above 4000 m.a.s.l (Figure 1)  yp  ally   a a     z      ba   ’   opog ap y (Figure 1). 

According to BCEOM (1998), two thirdshe larger portion of the basin (2/3) lies in the E   op a’  highlands of Ethiopia with 5 

annual rainfall ranging from 800 mm to 2,200 mm. A central and south-eastern area is characterised characterized by 

relatively high rainfall (1400- mm to 2200 mm) althoughnd   less than 1200 mm rainfall felloccurred in most of the eastern 

and north-western parts of the basin. Mekonnen and Disse (2018) showed that the UBNRB has a mean areal annual rainfall 

of 1452 mm, and a mean annual minimum and maximum temperatures of 11.4 
o
C and 24.7 

o
C respectively.  

 10 

The climate of the study area is characterized by tropical climate characterizes the study area, which is and dominated by its 

high altitude. MThe climate is also governed by the movement of the Inter-Tropical Convergent Zone (ITCZ) also governs 

the climate (Conway, 2000; Mohamed et al., 2005). NMA (2013) classified the climate into three seasons in Ethiopia. The 

main rainy season (Kiremt) lasts generally lasts from June to September during which south-west winds bring rains from the 

Atlantic Ocean. About Some 70–-90 % of the total rainfall occurs during this season.   A dry season (Bega) lasts from 15 

October to January and the short rainy season (Belg) lasts from February to May. According to BCEOM (1998), the average 

annual discharge is estimated about 49.4 Billion Cubic Meter (BCM), with the low- flow month (April) equivalent to less 

than 2.5 % of that of the high- flow month (August), at the Ethio-Sudan border (El Diem). The analysis of this study 

revealed that the long-term (1971–-2010) mean annual volume of flow at El Diem is 50.7 BCM, with the low flow (dry 

season) contributing 21.1 % and the short rainy season accounting for about 6.2 %., while Mwhereas most flow occurred 20 

during the rainy season, contributing about 73 % (Table 1Table 1Table 1Table 1Table 1Table 1Table 1Table 1Table 1Table 

1). The land cover of the basin’  la d  o    essentially follows the divide between highland and lowland. The highlands are 

predominantly covered byPredominantly farmlands (about 90 %), bush, and shrubs cover the highlands. The lowlands, in 

contrast, are still largely untouched by development., Aas a result, woodlands, bush, and shrub lands are the dominant forms 

of land cover (BCEOM, 1998).  25 

3. Input data sources 

In this study, non-parametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistics and the Soil and Water Assessment 

Tool (SWAT), developed by the Agricultural Research Service of the United States Department of Agriculture (USDA-

ARS) (Arnold et al., 1998) , are used for statistical trend analysis and water-  balance modelling respectively. TDetails about 

the methods’ d  a l  are described under section 4. The input datasets used for the SWAT model can be categorised 30 

categorized into those containing weather-  and-  streamflow   data, and spatially distributed datasets. 
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3.1 Weather and streamflow data 

The daily weather variables used in this study for trend analysis and for driving the water  balance model are precipitation, 

minimum air temperature (Tmin), maximum air temperature (Tmax), relative humidity (RH), hours of sunshine (SH), and 

wind speed (WS). Thiese weather data waerse obtained from the Ethiopian National Meteorological Service Agency 

(ENMSA) for the period 1971–-2010 period. The daily streamflow data for over 25 gauging stations was collected from the 5 

Federal Ministry of Water, Irrigation and Electricity of Ethiopia for the period 1971–-2010 period. After intensive and 

rigorous analyses of the weather data, a considerable amount of time - series data waerse found to be missed in most of the 

stations (see Table s01S01). due to The occurrences of civil war, and defectiveed and outdated devices were the main causes 

for the missing data records. As a result, the available data constrained us to focous on only the for 15 stations (Figure 1) in 

which rainfall data are is relatively more complete. All 15 stations were used for trend analysis while whereas the 10 stations 10 

which havinge complete climate variables, such as Tmax, Tmin, RH, WS, and SH, were used as input for the SWAT model 

Figure 1. 

 

We  have used spatial interpolation techniques, such as the inverse distance weighting method (IDWM), and linear 

regression techniques (LR) to fill the gaps. Similar approaches or methods were applied by Uhlenbrook et al. (2010) applied 15 

similar approaches or methods tofor the Gilgel Abbay sub-basinsub-basin, which is the UBNRB’  headwater of UBNRB. 

The selection and number of adjacent stations are critically important for the accuracy of the estimated results. As mentioned 

by Woldesenbet et al. (2017a), different authors used different criteria to select neighboring stations.   Because of   study 

a  a’  low station density of the study area, for most stations, a geographic distance of 100 km waerse considered for most 

stations whento selecting neighbouring stations. If no station is located within 100 km of the target station, then the search 20 

distance is increased until at leastthe minimum of one suitable station is reached. After the neighbouring stations were 

selected, the two methods (IDWM and LR) were tested to fill in missing datasets. The performance of the candidate 

methods’ p  fo ma     wereas evaluated using the statistical metrics such as root mean square error (RMSE), mean absolute 

error (MAE), correlation coefficient (R
2
), and percent bias (% bias) between observed and estimated values for the target 

stations. Equally weighted statistical metrics is are applied to compare the performances of selected methods at target 25 

stations andto establish ranking. A score was assigned to each candidate method according to the individual metrics.; For 

example,e.g. the candidateone achieving the smallest RMSE and MAE, or % bias has got score 1, and so on. The final score 

is obtained by summing up the score pertaininged to each candidate approaches at each stations. The method  which with 

thehas smallest score is the best. The best method is the one having the smallest score. The monthly, seasonal, and annual 

weather data wasere aggregated from the daily time- series data after filling the gaps. While filling in the missing data, 30 

uncertainty is expected due to the low station density, poor coorelations correlations, and the considerable number of missing 

records. Similar techniques and approaches were used for the analysis and filling in of the missing ed records of streamflow 

data records. 
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3.2 Spatial dData:  

SRequired spatially distributed data for required for the SWAT model includes tabular and spatial soil data, tabular and 

spatial land use /cover information, and elevation data.   A Shuttle Radar Topographic Mission Digital Elevation Model 

(SRTM DEM) of 90 metres meters’ resolution from the Consultative Group on International Agricultural Research-

Consortium for Spatial Information (CGIAR-CSI; http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) was used to 5 

delineate the watershed and to analyse analyze the drainage patterns of the land  surface terrain’  drainage patterns. Sub-

basin parameters such as slope gradient, slope length of the terrain, and the stream network characteristics such as channel 

slope, length, and width were derived from the DEM. 

 

The soil map developed by the Food and Agriculture Organization of the United Nations (FAO-UNESCO) at a scale of 1:5, 10 

000, 000 and downloaded from (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-

ofthe-world/en/) / was used for the SWAT model. SThe soil information such as soil textural and physiochemical properties 

needed for the SWAT model was extracted from Harmonized World Soil Database v1.2, a database that combines existing 

regional and national soil information (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-

world-soil-databasev12/en/) in combination with information provided by the FAO-UNESCO soil map (Polanco et al., 15 

2017).  

 

The LULC maps, representing one of the most important driving factors to affecting surface run-offrunoff and evapo-

transpiration in a basin, were produced from satellite- remote- sensing Landsat images for 1973, 1985, 1995, and 2010 at a 

scale of 30 m x 30 m resolution.   Detailed image processing and classification approaches areis described under section 4.2.  20 

4. Methodology 

4.1 Trend aAnalysis 

The non-parametric Mann-Kendal (MK) (Kendall, 1975; Mann, 1945) statistics is chosen to detect trends for precipitation 

and streamflow time- series data as it is widely used for effective water resource planning, design, and management (Yue 

and Wang, 2004). Its advantage over the parametric tests, such as t-test, is that the MK test is   more suitable for non-25 

normally distributed, and missing data, which isareare frequently encountered in hydrological time- series (Yue et al., 2004). 

However, the existence of   positive serial correlation in a time- series data affects the result of MK- test result. If serial 

correlation exists in a time--  series data, the MK test rejects the null hypothesis of no trend detection more often than 

specified by the significance level (von Storch, 1995).  

 30 
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In order to limit the influence of serial correlation on the MK test, pre-whitening was proposed by von Storch (1995) 

proposed prewhitening to limit the influence of serial correlation on the MK test. TAnd also, the Effective or Equivalent 

Sample Size (ESS) method developed by Hamed and Rao (1998) has also been proposed to modify the variance. However, 

the study by (Yue et al., 2002) reported that von Stroch's pre-whitening is effective only when no trend exists and the 

rejection rate of the ESS approach’    j    o   a   after modifying the variance is much higher than the actual (Yue et al., 5 

2004). Then, Yue et al. (2002) then proposed trend-free pre-whitening (TFPW) prior to applying the MK trend test in order 

to minimize it's limitation. This study therefore employed TFPW to remove the serial correlation and to detect a trend in a 

time  data series with significant serial correlation. Further details can be found in (Yue et al., 2002). All the trend results in 

this paper have been evaluated at the 5 % level of significance to ensure an effective exploration of the trend characteristics 

within the study area. 10 

 

Change point test 

The Pettitt test is used to identify whether or notif there is a point change or jump in the data series (Pettitt, 1979). This 

method detects one unknown change point by considering a sequence of random variables, X 1, X 2, …, X , that may have 

a   a g  po    a  N  f X  fo    = 1, 2, …, N  a  a  ommo  d     bu  o  fu    o , F1(x) ,and a nd X  fo    = N + 1, …,    a  a 15 

common distribution function, F2(x), a d F1(x) ≠ F 2(x).   

 

Sen’s slope estimator 

The trend magnitude is estimated using a non-parametric median- based slope estimator proposed by (Sen, 1968) as it is not 

greatly affected by gross data errors or outliers, and it can be computed when data isare missing. The slope estimation is 20 

given by: 

 

         
     

   
    for all k < j,   ............                                                                       (     1)                                         

wW     1 < k < j <  , a d β     o   d   d a  the median of all possible combinations of pairs for the whole data set. A 

po        alu  of β   d  a    a  upwa d (     a   g)     d a d a   ga      alu    d  a    a dow wa d (d    a   g)     d    25 

the time series. All MK trend tests, Pettitt change- point detections, and Ssen's slope analyses were conducted using the 

XLSTAT add-ins tool from excel (www.xlstat.com). 

4.2   Remote sensing land use/cover map  

4.2.1. Landsat image acquisition 

Landsat images fromof the years 1973, 1985, 1995, and 2010 were accessed free -of -charge from the US Geological Survey 30 

(USGS) Center for Earth Resources Observation and Science (EROS) via http://glovis.usgs.gov. The Landsat image scenes 
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were selected based on the criteria of acquisition period, availability, and   percentage of cloud cover. According to the 

recommendation of (Hayes and Sader, 2001), recommend acquiring images needed to be acquired fromor the same 

acquisition period, in order to reduce scene-to-scene variation caused bydue to sun angle, soil moisture, atmospheric 

condition, and vegetation- phenology differences. CHence, cloud free- images were hence collected for the dry months of 

January to May. However, as the basin covers a large area, each period of the LULC map’  p   od  comprised  of 16 Landsat 5 

scenes., Atherefore, it was difficult to accessing all the scenes duringin a dry season inof a single year was therefore difficult. 

Hence, images were acquired ±1 year for each time period and also some images were also acquired in the months of 

November and December. For 1973, for example, 16   Landsat MSS image scenes were acquired in 1973 (10 images in the 

month of January, 4 images in the month of Decemberecember and 2 images in the month of November; ) in1973  (±1 years) 

and merged to arrive at one LULC representation for selected years. Please see supplement Table s02 for the details onf 10 

Llandsat images. 

4.2.2 Pre-processing and processing images  

Several standard pre-processing methods including geometric and radiometric correction were implemented to prepare the 

LULC maps from Landsat images. AlEven though there are many different classification methods exist, supervised and 

unsupervised classifications are the two most widely used methods for landcover classification from remote- sensing images. 15 

Hence, in this study, a hybrid supervised/unsupervised classification approach was adoptedcarried out to classify the images 

fromof 2010 (LandsatTM). Firstly, Iterative Self-Organizing Data Analysis (ISODATA) clustering was first performed to 

determine the  mag ’  spectral classes or land cover classes of the image. Secondly, Ppolygons for all of the training samples 

based on the identified LULC classes were then digitized using ground truth data. Tand then the samples for each land cover 

type were then aggregated. Finally, a supervised classification was performed using a maximum likelihood algorithm in 20 

order to extract four LULC classes. 

 

A total of 488 Ground Control Points (GCPs) regarding landcover types and their spatial locations were collected from field 

observation in March and April, 2017 using a Global Positioning System (GPS).   Reference data (GCPs) wasere collected 

and taken from areas where there had not been any significant landcover change between 2017 and 2010. These areas were 25 

identified by interviewing local elderly people, and supplemented by using high resolution Google Earth Images and the first 

au  o ’  priori -knowledge of the first author. As many as 288 points were used for accuracy assessment and 200 points were 

used for developing training sites to generate a signature for each land- cover type. The accuracy of the classifications’ 

accuracy was assessed by computing the error matrix (also known as the confusion matrix), whichthat compares the 

classification result with ground truth information as suggested by DeFries and Chan (2000). A confusion matrix lists the 30 

values for the reference data’  known cover types of the reference data in the columns and for the classified data in the rows 

(Banko, 1998) as shown in Table 5. From the confusion matrix, a statistical metrics of overall accuracy, producers' accuracy 
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and users' accuracy are used. Another discrete multivariate technique of useful   in accuracy assessment is called KAPPA 

(Congalton, 1991). The statistical metrics for KAPPA analysis is thea Kappa coefficient, which is another measure of the 

proportion of agreement or accuracy. The Kappa coefficient is computed as 

  
               

 
   

   
   

             
 
   

                                                            ........................................................ (2) 

 5 

where r is the number of rows in the matrix, xii is the number of observations in row i and column i, x i+ and x +i are the 

marginal totals of row i and column i, respectively., and N is the total number of observations.  

 

Once the landcover classification of the year 2010 Landsat image had beenis completed and its accuracy is checked, the 

NDVI differencing technique (Mancino et al., 2014) was applied to classify the images fromof 1973, 1985, and 1995. This 10 

technique was chosen to increase the accuracy of classification as it is hard to find an accurately classified digital or 

analogue LULC map of the study area during the period of 1973, 1985, and 1995. TAnd also, the information obtained from 

the elders isare also more subjective and its reliability is questionable when there is considerable time gap. We first 

calculated the NDVI from the Landsat MSS (1973) and three pre-processed Landsat TM images (1985, 1995, and 2010) 

following the general normalized difference between band TM4 and band TM3 images   (eeqn. 3). The resulting successive 15 

NDVI  mag   w     ub  a   d  a   o      o a          ΔNDVI  mag  w    po       (  g  a  o       a  ),   ga     

(vegetation cleared) and no change aton a 30  m x 30 m pixel resolution (eqsn.4–-6). The Landsat MSS 60 m x 60 m pixel- 

size data sets were resampled to a 30 m x 30 m pixel size using the “‘nearest neighbour”’ technique in order to have similar 

pixel sizes for the different images without altering the  mag  da a’  original pixel values of the image data. 

 20 

     
         

         
    

           

           
                            (3) 

                                     (4) 

                                     (5) 

                                     (6) 

    ΔNDVI  mag  wa          la   f  d u   g a       old  alu   al ula  d a  μ ±  *σ; w     μ   p            ΔNDVI p x l  25 

 alu  m a , a d σ       a da d d   a  o .           old  d    f           a g           o mal d     bu  o : (a)     l f   a l 

(ΔNDVI < μ −-  *σ),; (b)       g    a l (ΔNDVI > μ +  *σ),; a d ( )          al   g o  of      o mal d     bu  o  (μ −-  *σ < 

ΔNDVI < μ +  *σ). P x l  w           wo  a l  of     d     bu  o  a     a a     z d by   g  f  a   la d o      a g  , while 

whereas pixels in the central region represent no change. To be more conservative, n = 1 was selected for this study to 
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narrow the threshold ranges of the threshold fo    l abl   la   f  a  o .       a da d d   a  o  (σ)    o   of     mo   w d ly 

applied threshold identification approaches for different natural environments based on different remotely sensed imagery 

(Hu et al., 2004; Jensen, 1996; Lu et al., 2004; Mancino et al., 2014; Singh, 1989) as cited by Mancino et al. (2014).  

 

ΔNDVI p x l  alu   (2010–-1995)             al   g o  of      o mal d     bu  o  (μ −-  ·σ < ΔNDVI < μ +  ·σ)   p       5 

an absence of landcover change between two different periods (i.e., 1995 and 2010);, therefore, pixels fromof 1995 

corresponding to no landcover change can be classified as similar to the 2010 landcover classes. Pixels with significant 

NDVI change are again classified using supervised classification, taking signatures from the already classified, no- change 

pixels. Likewise, landcover classification of 1985 and 1973 landcover images wereas performed classified based on the 

classified images of 1995 and 1985 respectively.   Finally, after classifying the raw images of Landsat images into different 10 

landcover classes, change detection, which requires the comparison of independently produced classified images (Singb, 

1989), was performed by the post-classification method. The post-classification change- detection comparison was 

conducted to determine changes in LULC between two independently classified maps from images of two different dates. 

Although this technique has some limitations, it is the most common approach becauseas it does not require data 

normalization between two dates (Singh, 1989). This is because data from two dates are separately classified, thereby 15 

minimizing the problem of normalizing for atmospheric and sensor differences between two dates.  

 

4.3 SWAT hydrological model 

The Soil and Water Assessment Tool (SWAT) is an an open-source--code, semi-distributed model with a large and growing 

number of model applications in a variety of studies ranging from catchment to continental scales (Allen et al., 1998; Arnold 20 

et al., 2012; Neitsch et al., 2002). It enables to evaluates the impact of LULC change and climate change on water resources 

to be evaluated in a basin with varying soil, land use, and management practices over a set period of time (Arnold et al., 

2012).  

 

In SWAT, the watershed is divided into multiple sub--basins, which are further subdivided into hydrological response units 25 

(HRUs) consisting of homogeneous land-use management, slope, and soil characteristics (Arnold et al., 2012; Arnold et al., 

1998). HRUs are the smallest units of the watershed in which relevant hydrologic components such as evapo-transpiration, 

surface run-offrunoff and peak rate of run-offrunoff, groundwater flow, and sediment yield can be estimated. Water balance 

is the driving force behind all of the processes in the SWAT calculated using eqn. 7,.  

 30 

                                   
        (7) 
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, where SWt is the final soil- water content (mm H2O), SWo is the initial soil- water content on day i (mm H2O), t is the time 

(days), Rday is the amount of precipitation on day i (mm H2O), Qsurf is the amount of surface run-offrunoff on day i (mm 

H2O), Ea is the amount of evapo-transpiration on day i (mm H2O), Wseep is the amount of water entering the vadose zone 

from the soil profile on day i (mm H2O), and Qgw is the amount of return flow on day i (mm H2O).  

 5 

 Run-offRunoff is calculated separately for each HRU and routed to obtain the total streamflow for the watershed using 

either the soil conservation service (SCS) curve number (CN) method (Mockus, 1964) or  Green & Ampt infiltration method 

(GAIM) (Green and Ampt, 1911) Figure 2. However, spatial connectivity and interactions among HRUs are ignored., 

Iinstead, the cumulative output of each spatially discontinuous HRUs at the subwatershed outlet is directly routed to the 

channel (Pignotti et al., 2017). This lack of spatial connectivity among HRUs makes implementation and impact analysis of 10 

spatially -targeted management such as soil and water conservation structure difficult to incorporate into the model. DTo 

overcome this problem, efforts were made by different authors have made efforts to overcome this problem— f. For 

instance, a grid-based version of the SWAT model (Rathjens et al., 2015), or landscape simulation on a regularized grid 

(Rathjens and Oppelt, 2012). Moreover, (Arnold et al., 2010) and (Bosch et al., 2010) further modifiedy SWAT so that it 

allows landscapes to be subdivided into catenas comprisingsed of upland, hillslope, and floodplain units, and flow to be 15 

routed through these catenas. However, SWATgrid, developed to overcome this limitation, remains largely untested and   

computationally demanding   (Rathjens et al., 2015).  

 
Hence, the standard SWAT   CN method was chosen forin this study because it is tested in many Ethiopian watersheds of 

Ethiopia such as (Gashaw et al., 2018; Gebremicael et al., 2013; Setegn et al., 2008; Woldesenbet et al., 2017b). 20 

Furthermore, and because of  its ability to use daily input data (Arnold et al., 1998; Neitsch et al., 2011; Setegn et al., 2008) 

as compared to GAIM, which requires sub daily precipitation as a model input, and that can be difficult to obtain in data- 

scare regions like the UBNRB. This study focused on the effects of LULC change and climate change on the ba   ’  water 

balance components of the basin, which includes the components of inflows, outflows, and the change in storage. 

Precipitation is the main inflow, whereasile evapo-transpiration (Et), surface run-offrunoff (Qs), lateral flow (Ql), and base 25 

flow (Qb) are the outflows. SWAT has three storages:, namely, soil moisture (SM), shallow aquifer (SA) and deep aquifer 

(DA). Water movement from the soil- moisture storage to the shallow aquifer is due to percolation, whereas, water 

movement from the shallow aquifer reverse upward to the soil- moisture storage is Revap. For a more detailed description of 

the SWAT model, reference is made to Neitsch et al. (2011). 

 30 
The SWAT model setup and data preparation can be done using arcSWAT tools in the arcGIS environment, while whereas 

parameter sensitivity analysis, and model calibration and validation was performed using the SWAT-CUP (Calibration and 

Uncertainty Procedures) interface Sequential Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2008). During model set 

up, the observed daily weather and streamflow data ofrom f the given period was divided in to three   different periods:, the 
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first to warm up the model, the second to calibrate it, the model and the third to validate itthe model. The first step in SWAT 

is tohe determineation of the most sensitive parameters for a given watershed using the global sensitivity analysis option 

(Arnold et al., 2012). The second step is to complete the calibration process making necessary adjusting adjustments for the 

model’  input parameters necessary to match model output with observed data, thereby reducing the prediction uncertainty. 

Initial parameter estimates were taken from the default lower and upper bound values of the SWAT model database and 5 

from earlier studies in the basin such as e.g.(Gebremicael et al., 2013). The final step, model validation, involves running a 

model using parameters that were determined during the calibration process, and comparing the predictions to independently 

observed data not used in the calibration.   

 

In this study, both manual and automatic calibration strategies were applied to attain the minimum differences between 10 

observed and simulated streamflows in terms of surface flow, and peak and total flow following the steps recommended by 

Arnold et al. (2012). For the purpose of impact analysis, we divided the simulation periods in of (1971–-2010) into four 

decadal periods , hereafter referred as the 1970s (1971–-1980), 1980s (1981–-1990), 1990s (1991–-2000) and 2000s (2001–-

2010) , as shown in Table 2. The model’s performance for the streamflow was then evaluated using statistical methods 

(Moriasi et al., 2007) such as the Nash-–Sutcliffe coefficient of efficiency (NSE), the coefficient of determination (R
2
), and 15 

the relative volume error (RVE %), which are shown by eqn.8-10. Furthermore, graphical comparisons of the simulated and 

observed data, as well as water balance checks, were used to evaluate the mod l’  p  fo ma   .  
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      (10) 20 

where Qm,i is the measured streamflow in m
3
s

-1
,    Qm areis the mean values of the measured streamflow (m

3
s

-1
), Qs,i is the 

simulated streamflow   in m
3
s

-1 
, and    Qs areis the mean values of simulated data in m

3
s

-1
.  

 

4.4 SWAT simulations 

Three different approaches were takenapplied In order to for assessing the individual and combined effects of LULC change 25 

and climate change on streamflow and water balance components, three different approaches were applied . The first 

approach is to assess the response of streamflow to combined LULC change and climate change. We divided the analysis 

period, (1971–2010,) into four equal periods (four decades). These are, periods when land use changes are expected to 

change the hydrological regime within a catchment is expected to be changed due to land use changes (Marhaento et al., 
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2017; Yin et al., 2017b). The first period, the 1970s, was regarded as the baseline period. Tand the other periods, the 1980s, 

1990s, and 2000s, were regarded as altered periods. LULC maps of 1973, 1985, 1995, and 2010 were used to represent the 

LULC patterns of during the period 1970s , 1980s, 1990s, and 2000s respectively. To analyze the response of streamflow 

and water balance components caused by the combined effects of LULC and climate change duringat decadal time periods, 

the SWAT model was separately calibrated and validated for each decades using the respective LULC map and weather data   5 

(Table 2). The DEM and soil data sets remained unchanged. The differences between the simulation result of the baseline 

and altered periods represent the combined effects of LULC and climate changes on streamflow and water balance 

components.  

 

The second approach included simulations to attribute only effects fromfor LULC changes alone., It aimed to investigate 10 

whether LULC change is the main driver for changes in water balance components. To identify the hydrological impacts 

caused solely by LULC only, "A fixing -changing" method was used (Marhaento et al., 2017; Woldesenbet et al., 2017b; 

Yan et al., 2013; Yin et al., 2017a). The calibrated and validated SWAT model and its parameter settings in the baseline 

period wereas forced by weather data from the baseline period, 1973–-1980, while changing only the LULC maps fromof 

1985, 1995, and 2010, keeping the DEM and soil data constant as suggested by (Hassaballah et al.; Marhaento et al., 2017; 15 

Woldesenbet et al., 2017b; Yin et al., 2017a). We ran the calibrated SWAT model for the baseline period (1970s) four times 

changing only the LULC map ofrom f the years 1973, 1985, 1995, and 2010   and retmaininged the constant weather data set 

fromof the 1970s (Table 2). The third approach is similar to the second, approach but the simulations are attributed only for 

climate changes. A model was run again four times, corresponding to the LULC periods using a unique LULC map of the 

year 1973 but altering the four different periods of weather data sets (1970s, 1980s, 1990s, and 2000s).  20 

5. Results and discussions 

5.1 Trend test 

5.1.1 Rainfall  

The summary of the MK trend-  tests result for the rainfall recorded atof the 15 selected stations located inside and around 

the UBNRB revealed a mixed trend (increasing, decreasing, and no change). For daily time series, the computed probability 25 

values (p-values) for seven stations was greater, althoughwhile for eight stations it was less, than the given significance level 

(α = 5 %). This means that no statistically significant trends existed in seven stations, but a monotonic trend was occurred in 

the remaining eight8 stations. Positive trends developoccurred only at six6 stations, four ofof which 4 stations were 

concentrated in the northern and central highlands (Bahirdar, Dangila, Debre Markos, and G/bet)., Tthe other two stations,  

(Assosa and Angergutten,) are located in the south-western and southern lowlands (see Figure 1). The other two stations, 30 
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Alemketema and Nedjo respectively, which are located in the EEast and SSouthw-West of the UBNRB, respectively showed 

. They show a decreasing trend. On monthly basis, the MK trend test result showed that no statistically significant trend 

existed in all 15 stations. On an annual time scale, MK trend test could not find any trend in 11 stations, while although four 

stationsthe  (Alemketema, Debiremarkos, Gimijabet, and Shambu stations ) did exhibited a trend. The trend analysis result 

forof the annual rainfall time series has a good agrees wellment with a previous study by Gebremicael et al. (2013), who 5 

reported no significant change of annual rainfall change at eightin 8 out of nine9 stations during the period 1973–-2005 

period. Hence, it is interesting to note that the time scale of analysis is critical factor to in determining the given trends. 

 

The basin- wide rainfall trend and change point analysis was again carried out onat daily, monthly, seasonal, and annual time 

scales using the MK test and Pettitt tests respectively, as respectively as summarized in Table 3 and Figure 3. The MK- test 10 

showed increasing trends for annual, monthly, and long- rainy- season rainfall series whereasile no trend for daily, short 

rainy, and dry- season rainfall series appeared. The magnitude of trends for annual, monthly, and long- rainy- season rainfall 

series are not significant, as explained by the values of Sen's slope. However, the Pettitt test could not detect any jump point 

in basin- wide rainfall series except for daily time- series rainfall (see Figure S01). .  

 15 

Previous studies’ au  o  , such as   (Conway, 2000; Gebremicael et al., 2013; Tesemma et al., 2010), conductedarried out 

the trend analysis of the basin-wide rainfall and such as (Conway, 2000; Gebremicael et al., 2013; Tesemma et al., 2010), 

reported that no significant change of in annual and seasonal rainfall series acrossover the UBNRB which contradicts with 

the result of this study. This disagreement could be due to the number of stations and their spatial distribution acrossover the 

basin, time period of the analysis, approach used to calculate basin- wide rainfall from gauging stations, and data sources of 20 

data. Tesemma et al. (2010) was used monthly rainfall data downloaded from Global Historical Climatology Network 

(NOAA, 2009) (GHCN) data base and the 10-day rainfall data for the 10 selected stations obtained from the National 

Meteorological Service Agency of Ethiopia from 1963–-2003. Conway (2000) was also constructed basin-wide annual 

rainfall in theof UBNRB for the period 1900–-1998 period from the mean of 11 gauges. Furthermore, (Conway, 2000) 

employed simple linear regressions over time to detect trends in annual rainfall series without removing the serial 25 

autocorrelation effects. Gebremicael et al. (2013), also used only 9 nine stations from the period 1970–-2005 period. 

However, in this study, we used daily observed rainfall data from 15 stations collected from Ethiopian Meteorological 

Agency from 1971–-2010. The stations are more or less evenly spatially distributed over the UBNRB. We applied a widely 

used spatial interpolation technique, the (Thiessen polygon method,) to calculate basin-wide rainfall series from station data.  

5.1.2 Streamflow 30 

The result of MK- test’     ul  for daily, monthly, annual, and seasonal (long and short rainy season and dry season) time- 

series streamflow showed a positive trend, and the trend magnitude of which is statistically significant, as summarised 
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summarized in Table 3. Meanwhile, although the Pettitt test detects change point for daily, annual, and short- rainy- season 

streamflows, itbut cannot detect change point for monthly, long, and dry season streamflows (see Figure 3 and Figure S02). 

The change point detected by the Pettitt test for annual rainfall series is occurred in 1995 while whereas for daily and dry 

seasons it isare respectively in 1985 and 1987. The result obtained from the MK test has a good agrees wellment with the 

previous study conductedarried out by Gebremicael et al. (2013), which reported an increasing trend in the observed annual, 5 

short, and long rain seasons’ streamflow at the El Diem gauging station, but disagrees with the result forof dry- season 

streamflow. Furthermore, the increasing trend of long- rainy- season streamflow well agrees well with   the result of 

Tesemma et al. (2010), but disagrees with the results of short rainy season and annual flows. (Tesemma et al., 2010), 

reported that the short rainy season and the annual flows are constant for the  analysed period of 1964–2003 period analyzed. 

This   disagreement is likely attributableed to the difference inof analysis period, as can be seen from Figure 3., Tthe last 10 

seven years,  (2004–2010,) had relatively higher streamflow records.   

 

Although, the results of MK test for the annual and long- rainy- season rainfall and streamflow show an increasing trend for 

the last 40 years in the UBNRB, the magnitude of Sen's slope for streamflow is much greatlarger than it is for the Sen's slope 

of rainfall (Table 3). Moreover, for the short- rainy- season streamflow shows a statistically significant positive increaseing 15 

whereasile the rainfall shows no change. The mismatch of trend magnitude between rainfall and streamflow trend magnitude 

could be associated with evapotranspiration and attributableed to the combined effect of LULC change and climate change, 

associated with   evapotranspiration, infiltration rate due toby changing soil properties,   rainfall intensity, and extreme 

events.   

5.2 LULC change analysis 20 

According to the confusion- ma   x   po  , o   all a  u a y of 80 %, p odu   ’  a  u a y  alu   fo  all  la      a g d f om 

75.4 % to 100 %, u., Uuser's accuracy values ranginged from 83.7 % to 91.7 % and athe kappa coefficient (k) of 0.77 were 

attained for the 2010 classified image, as shown in Table 5. Monserud (1990) suggested a kappa value of   <40 % as poor, 

40–55 % fair, 55–70 % good, 70–85 % very good, and >85 % as excellent. According to these ranges, the classification in 

this study has very good agreement with the validation data set and met the minimum accuracy requirements to be used for 25 

further   change detection and impact analysis.    

 

The classified images of the basin (Figure 4) have shown different LULC proportions at four distinctfferent time periods, as 

shown in Figure 5. In 1973,C the UBNRB was dominated by cultivated land dominantly covers (62.9 %) of UBNRB, 

followed by bushes & and shrubs (18 %), forest (17.4 %), and water (1.74 %) dominated the UBNRB in 1973. In 1985, the 30 

cultivated land area increased to (65.6 %), followed by bushes & and shrubs (18.3 %), while forest decreased to (14.4 %), 

and water remained unchanged at (1.7 %). In 1995, cultivated land area further increased to (67.5 %), followed by bushes & 

and shrubs (18.5 %)., forest Forest further decreased (to 12.2 %), and water remained unchanged (at 1.7 %). In 2010, 
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cultivated land decreased to (63.9 %), bushes and shrubs increased to (18.8 %), forest increased to (15.6 %), and water 

remained unchanged at (1.7 %). During the entire 1973–2010 period, cultivated land, along with bushes & and shrubs 

remained the major proportions as compared to the other LULC classes. The highest gain (2.7 %) and the largest loss (−-3.6 

%) in cultivated land occurred during the 1973–1985 and 1995–-2010 periods respectively. The larghighest gain in bushes 

and shrubs was (0.3 %) from 1973 to 1985, whereasile the larghighest gain in forest coverage (3.4 %) was recorded during 5 

the period 1995–2010 period. Water coverage remained unchanged from 1973 to 2010.  

 

Although, the image classification has enjoys very good accuracy, uncertainties could be expected for the following reasons. 

Firstly, as elsewhere in Ethiopia, LULCs change rapidly over  the land surface of the basin spaces, and image reflectance 

may be confusing due to the topography and variation in the image acquisition date. Landsat images were not all available 10 

for one particular year or one season; thus images thus came from a mix of years, and from a variety of seasons, and might 

harborve errors. Secondly, the workflow associated with LULC classification, which involves many steps and can be a 

source of uncertainty. The errors are observed in the classified LULC map as shown in Figure 4. On the western side of the 

map Iin Figure 4 (a) on the western side of the map is a rectangular section with forest appears, whichthat completely 

disappears in 4(b). RIn 4(b) there is a rectangular forest cover appears in the northern part of the country in 4(b), which again 15 

disappears completely in 4(c). In 4(d), a forest cover with linear edges (North-South) appears on the map’  eastern side of 

the map. That being recognisedrecognized, overall the land- cover mapping is reasonably accurate overall, providing a good 

base for land- cover estimation and for providing basic information for the objective of hydrological impact analysis.    

 

The rate of expansion of cultivated land before 1995 was higher than that as compared to after 1995. Conversely, the area 20 

devoted to forest land decreased in the 1985 and 1995 from the 1973 baseline 1973. However, after 1995, the forest’    z  

began to increase while the amount of cultivated land decreased. The increased forest coverage and the reduction in 

cultivated land over the period 1995 to 2010 showed that the environment was recovering from the devastating drought, and 

forest clearing for firewood and cultivation due to population growth has been minimized. This could be due to the 

afforestation program, whichme initiated by the Ethiopian government initiated, and due to the extensive soil and water 25 

conservation measures carried out by the community. Since 1995, eucalyptus tree plantation expanded significantly across 

the country at homestead level for fire wood, construction material, for producing charcoal production, and for generating 

income generation (Woldesenbet et al., 2017b). InTo summaryize, in the period 2010, forest coverage declined by 1.8 %, 

whileith increasing of both bushes and shrubs, as well as cultivated land increased by 0.8 % and 1 % respectively during the 

2010 period from the original 1973 level. This result agrees well with other studies (Gebremicael et al., 2013; Rientjes et al., 30 

2011; Teferi et al., 2013; Woldesenbet et al., 2017b), who reported the a significant conversion of   natural vegetation cover 

into agricultural land.  
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5.3 SWAT model calibration and validation    

The SWA  mod l’  most sensitive parameters forof the SWAT model to simulatinge streamflow were identified using 

global sensitivity analysis of SWAT-CUP. and Ttheir optimized values were determined by the calibration process that 

recommended by Arnold et al. (2012) recommended. Parameters such as SCS curve number (CN2), base flow alpha factor 

(ALPHA_BF), soil evaporation compensation factor (ESCO), threshold water depth in the shallow aquifer required for 5 

return flow to o  u  (GWQ N), g ou dwa    “   ap”  o ff       (GW_REVAP), and the available water capacity 

(SOL_AWC) were found to be the most sensitive parameters for the flow predictions.  

 

Figure 6 shows the calibration and the validation results forof monthly streamflow hydrographs. These rand this results 

revealed that the model  well captured the monthly hydrographs well. This was again verified by Tthe statistical performance 10 

measures of R
2
, NSE, and RVE (%) statistical performance measures, as presented in Table 6, reverified this. For the 

calibration period, the values of R
2
,
 
NSE, and RVE (%) from the four model ris ranged from 0.79 to 0.91, 0.74 to 0.91,   and 

−-3.4 % to   4 %. Fand for the validation period they it  ranged from 0.84 to 0.94, 0.82 to 0.92   and −-7.5 % to 7.4 2 %   

respectively. According to the rating of Moriasi et al. (2007), the performance of the SWAT model’  p  fo ma    over the 

UBNRB can be categorized as very good, although underestimation was observed in the base flow simulation. The optimal 15 

parameter values of the four calibrated- four model runs are shown in Table 7. A change was obtained for CN2 parameter 

values, which can be attributed to the catchment’  response behaviour. For instance, an increase in the CN2 value in the 

1980s and 1990s from 0.89 88 to 0.91 and 0.92 as compared to the 1970s respectively, indicate a reduction in forest 

coverage and expansion of cultivated land. In contrary, a decrease in CN2 value was attained during the period 1990s to 

2000s from 0.92 to 0.9, attributed to the increase in forest coverage and reduction in cultivated land.    20 

5.4 Combined Eeffects of combined LULC change and climate change on streamflow and water balance components 

The simulation results of the four independent, decadal- time- scale- calibrated and validated SWAT model runs 

reflectindicate the combined effect of both LULC and climate change during the pastlast 40 years’   m  (Table 8). From the 

simulation result, mean annual streamflow increased by 16.9 % between the period 1970s and the 2000s. However, the rate 

of change is different in different decades. For example, it increased by 3.4 % and   9.9 % during the period 1980s and 1990s 25 

respectively from the baseline period 1970s period.  

 

The ration of mean annual streamflow to mean annual precipitation (Qt/P) increased from 19.4 % to 22.1 %, and actual 

evaporation to precipitation (Ea/P) decreased from 61.1 % to 60.5 % from the 1970s to 2000s. Moreover, the ration of 

surface run-offrunoff to streamflow (Qs/Qt) has significantly increased significantly from 40.7 % in the 1970s to 50.1 % and 30 

55.4 % in the 1980s and 1990s respectively, and decreased to 43.7 % in the 2000s. In contrast, the base flow to streamflow 

ration (Qb/Qt) has significantly decreased from 17.1 % in the 1970s to 10.3 % and 3.2 % respectively during the period 
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1980s and 1990s, but has increased to 20 % in the period 2000s. The result for surface runoff agrees with the previous study 

done by (Gebremicael et al., 2013), but disagrees for baseflow. Theyy reported surface runoff (Qs) contribution to the total 

river discharge has increased by 75%, while the baseflow (Qb) flow has decreased by 50% from the period 1970s to 2000s.  

 

This indicates thatIn general, 1.8 % forest cover loss and 1 % increased cultivated land combined with 2.2 % increased 5 

rainfall from the 1970s to the 2000s led to a 16.9 % increase in simulated streamflow. The 1990s was the period when during 

which the greathighest deforestation and expansion of cultivated land was reported; meanwhile, it is the time when the 

rainfall intensity and the number of rainfall events haves significantly increased compared to the 1970s and 1980s, as shown 

in Table 4. Hence, the increased mean annual streamflow could be ascribed to the combined effects of LULC and climate 

change. In the case of (Qs/Qt), the increasing pattern could be ascribed to the increasing  of rainfall intensities and the 10 

expansion of cultivated land and decreasing diminution of forest coverage, which might adversely affect soil/ water storage, 

and decrease rainfall infiltration, thereby increasinge water yield or streamflow. In contrastary, the decreasing of (Qb/Qt) is 

has positively relatedion towith the increasing of evapotranspiration linked to both LULC and climate factors (Table 8). This 

hypothesis can be explained with the change in CN2 parameter values obtained during the calibration of the four SWAT 

model runs.       15 

 

The CN2 parameter value — which is a function of evapotranspiration derived from LULC, soil type, and slope —, 

increased in the 1980s and 1990s relative to thefrom 1970s, and could be associated with the expansion of cultivated land 

and shrinkage of forest land. The increasing of CN2 results to reflectgenerate more surface runoff and less baseflow being 

generated.  20 

 

Another important contributing factor for contributing to the decreasing of surface run-offrunoff and increasing of base flow 

ration from 1990s toin the 2000s from 1990s could be the establishplacement of soil and water conservation (SWC) 

measures. According to Haregeweyn et al. (2015), various nationwide SWC initiatives have been undertaken since the 1980s 

such as Food -for -Work (FFW) (1973–2002), Managing Environmental Resources to Enable Transition (MERET) to more 25 

sustainable livelihoods (MERET, 2003–2015), Productive Safety Net Programs (PSNP) (PSNP, 2005–present), Community 

Mobilization through free-labor days (1998–present), and the National Sustainable Land Management Project (SLMP), 

2008–2018) have been undertaken since the 1980s. The effectiveness of the initiatives were evaluated by (Haregeweyn et al., 

2015) evaluated these initiatives’  ff           and come up with the conclusion concluded that community labour 

mobilization seems to be the best approach. ThisIt can reduce a mean seasonal surface run-offrunoff by 40 %, with 30 

broadlarge spatial variability, ranging from 4 % in Andit Tid (northwest Ethiopia) to 62 % in Gununo (south Ethiopia).  
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5.5   Effects of an singleisolated change in LULC change on streamflow and water balance components 

To identify the hydrological impacts caused by LULC only, "A fixing -changing" method was used (Yan et al., 2013) used 

"A fixing -changing" method to identify the hydrological impacts of LULC alone. The calibrated and validated SWAT 

model and its parameter settings in the baseline period was forced by weather data from the baseline period 1973–-1980 

period while changing only the LULC maps from 1985, 1995, and 2010, keeping the DEM and soil data constant as 5 

suggested by (Hassaballah et al.). The result   from   Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 

7Figure 7Figure 7 indicated that Qs/Qt ratio changed from 40.7 % to 41.2 %, 41.1 %, and 40.9 % respectively by using the 

LULC maps from 1973, 1985, 1995 and 2010 whereas the Qb/Qt ratio changed from 17.1 % to 16.8 %, 16.5 %, and 16.9 % 

respectively. The larghighest Qs/Qt ratio (41.9 %) and the smalllowest Qb/Qt ratioo (16.5 %) wereas recorded with the 1995 

LULC map of 1995. This could be attributed to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated land 10 

with the 1995 LULC map relativeas compared to the 1973 LULC map.  

 

On a basin scale, over a decadal time period, water gains mainly from precipitation., Tand the losses are mainly due to run-

offrunoff and evapotranspiration (Oki et al., 2006). WithIn the fixing-changing approach, the change in streamflow 

attribiutabledue to LULC change was essentially the change in the evapotranspiration between the two periods, as the 15 

amount of precipitation was constant (1970s) and the change in the water storage during the two periods was similar (Yan et 

al., 2013). AThe annual Ea losses from seasonal crops are smaller than thoseEa losses from forests, becauseas seasonal crops 

only transpire during a relatively shorter time intervalperiod than perennial trees dotranspire (Yan et al., 2013). As a result, 

the actual mean annual evapotranspiration (Ea) simulated   by the SWAT model was 871.6 mm at the baseline. It   decreased 

to 871.4 mm   and 871 mm in  the 1985 and 1995 respectively and increased to 872.1 mm in the 2010. This could be due to 20 

simultaneous expansion of cultivated land and shrinkage in forest coverage in the 1985 and 1995  LULC maps ap of 1985 

and 1995 fromrelative to the 1973 base line 1973. Furthermore, this deforestation may cause a reducetion in canopy 

interception of the rainfall, decreases the soil infiltration by increasing raindrop impacts, and reduce reducing plant 

transpiration, which can significantly increase surface run-offrunoff and reducing base flow (Huang et al., 2013). Here, the 

change of evapotranspiration change caused by the LULC change is minimal. A as a result, the change for surface runoff and 25 

baseflow is not significant.    

5.6 Effects of singleisolated climate change on streamflow and water balance components 

The impacts of climate change are analysed analyzed by running the four models using a unique LULC map fromof 1973 

with its model parameters while changing only the weather data sets from 1970s, 1980s, 1990s, and 2000s. The simulated 

water balance components shown in Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7Figure 7, 30 

indicate that the Qs/Qt ratio increased from 40.7 % to 45.2 %, 45.6 %, and 46.2 % during the period 1970s, 1980s, 1990s and 

2000s respectively, while, the Qb/Qt ratio changed from 17.1 % to 13.5 %, 14.9 %, and 12.7 % for the same simulation 
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periods. The decreasing of the ratio of (Qb/Qt) ratio for the altered periods as compared to the baseline period could be 

attributed to the increasing of   evapotranspiration increasing from 872 mm to 854 mm, 906 mm, and 884 mm respectively in 

1970s, 1980s, 1990s, and 2000s, which can be linked to temperature and amount of rainfall. However, it is important to 

know the dominant rainfall-runoff process inof the study area to fully understand the effect of climate change on the water 

balance components.  5 

 

Although,, there is no any detailed research has been conductedarried out on the Blue Nile basin to investigate about the 

runoff- generation processes, Liu et al. (2008) investigated the rainfall-runoff   processes at three small watersheds located 

inside and around Upper Blue Nile basin, namely,: Mayber, AnditTid, and Anjeni. Their analysis showed that, unlike in 

temperate watersheds, in monsoonal climates, a given rainfall volume at the onset of the monsoon produces a different run-10 

offrunoff volume than the same rainfall at the end of the monsoon. Liu et al. (2008) and Steenhuis et al. (2009) showed that 

the ratio of discharge to precipitation minus evapotranspiration, (Q/(P −- ET),) increases with cumulative precipitation from 

the onset of monsoon. This suggestsing that saturation excess processes play an important role in watershed response.  

 

Furthermore, the infiltration rates measured in 2008 by that Engda (2009) measured in 2008 were compared with rainfall 15 

intensities in the Maybar   and Andit Tid   watersheds located inside and around the UBNRB. In the Andit Tid watershed, 

which has an area of less than 500 ha,   the measured infiltration rates at 10 locations were compared with rainfall intensities 

considered from the period 1986 –-2004 period. The analysis showed that only 7.8 % of rainfall intensities were found to be 

higher than the lowest soil infiltration rate of 2.5 cm hr
-1

. A similar analysis was performed by Derib (2005) performed a 

similar analysis in the Maybar watershed (with a catchment area of 113 ha). The infiltration rates measured from 16 20 

measurements were ranged from 19 mm h
-1

 to 600 mm hr
-1

 with a n average value of   24 cm hr
-1

 average and the  median 

was 18 cm hr
-1

 median whereasile the average daily rainfall intensity from 1996 to 2004 was 8.5 mm hr
-1

. Hence, from these 

infiltration measurements, he suggested from these infiltration measurements that infiltration excess run-offrunoff is not a 

common feature in these watersheds.  

 25 

From the above discussion points, it is to be noted that surface runoff could increase with the increasing of total rainfall 

amount regardless of   rainfall intensity. However, in this study, the mean annual rainfall amount in this study was 

decreasing from the 1970s to the 1980s (1428 mm and 1397 mm respectively) while the (Qs/Qt) ratio increased from 40.7 % 

to 45.2 %. Similarly, the mean annual rainfall amount in the 1990s (1522 mm) was greathigher than the mean annual rainfall 

amount in the 2000s (1462 mm) while the (Qs/Qt) increased from 45.6 % to 46.2 %. In contrarycontrast, climate indexes 30 

such as 99-percentile rainfall, SDII (ratio of total precipitation amount to R1mm), and R20mm are increaseing consistently 

from the period 1970 to the 2000s, as shown in Table 4. This indicates that the increasing of surface run-offrunoff might be 

due to an increasing of number of extreme rainfall extreme events and rainfall intensity. In other words, this study revealed 

that   infiltration excess of overland flow dominates the rainfall-runoff processes in the UBNRB, not for saturation excess of 
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overland flow. The contradiction from the previous studies might be either due either to the limitation of the SWAT- CN 

method when applied in monsoonal climates or due tothe the overlooked of tillage activities, which has significantly impact 

on the soil infiltration rate by the previous studies. At the beginning of the rainy season, eExtensive tillage activities are 

carried out across the basin at the beginning of the rainy season., Sas a result soils get disturbed as a result, which can 

increase the infiltration rate   and ultimatefinally decrease the amount of rainfall converted to runoff.  5 

 

Although, the CN method is easy to use and, provides acceptable results in many cases for discharge at the watershed outlet 

in many cases, researchers have concerns aboutover its use in watershed models (Steenhuis et al., 1995; White et al., 2011). 

The SWAT-CN model relies with a statistical relationship between soil moisture condition and CN value obtained from plot 

data in the United States with a temperate climate that was never tested in a monsoonal climate where exhibiting two 10 

extreme soil moisture conditions exhibited. In monsoonal climates, long periods of rain can lead to prolonged soil saturation 

whereasile during the dry period, the soil dries out completely, which may not happen in temperate climates (Steenhuis et 

al., 2009). Hence, further research is necessary that considers bio-physical activities such as tillage and seasonal effects to on 

soil moisture at representative watersheds of the basin is necessary tfor properly assessing the the rainfall-runoff processes 

properly.  15 

 

6. Conclusions 

The objectives of this study’  obj        were to understand the long-term variations of rainfall and streamflow inof the 

UBNRB using statistical techniques (MK and Pettitt tests),, and to assess the combined and isolatedsingle effects of climate 

and LULC change using a semi-distributed hydrological model (SWAT). Although, the results of the MK test for the annual 20 

and long- rainy- season rainfall and streamflow show an increasing trend in the UBNRB for the last 40 years in the UBNRB, 

the magnitude of Sen's slope for streamflow is much larger than the Sen's slope of areal rainfall. Moreover, for the short- 

rainy- season streamflow shows a statistically significant positive increaseing while the rainfall shows no change. The 

mismatch of trend magnitude between rainfall and streamflow could be attributed to the combined effect of LULC and 

climate change, associated with decreasing actual evapotranspiration (Ea) and increasing rainfall intensity and extreme 25 

events.    

 

The LULC change detection was assessed by comparing the classified images. Tand the result showed that the dominant 

process is largely the expansion of cultivated land and decrease in forest coverage. The rate of deforestation is high during 

the period 1973 – -1995 period., Tthis is probably due to the severe drought that occurred in the mid- 1980s and  due to   a 30 

large population increase as a resulting from the expansion of agricultural land. On the other hand, forest coverage increased 

by 3.4 % during the period 1995 to 2010. This indicates that the environment was recovering from the devastating drought of 
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in the 1980s, and regenerating of forests as the result of afforestation programme initiated by the Ethiopian government, and 

due to soil and water conservation activities accomplisheddone by the communities.    

 

The SWAT model was used to analyseanalyze the combined and isolatedsingle effects of LULC and climate changes on the 

monthly streamflow at the basin outlet (El Diem station, located on the Ethiopia-Sudan border). The result showed that the 5 

combined effects of the LULC and climate changes increased the mean annual streamflow by 16.9 % from the 1970s to the 

2000s. The increased mean annual streamflow could be ascribed to the combined effects of LULC and climate change. The 

LULC change alters the catchment responses. A as a result, SWAT model parameter values could be changed. For instance, 

the expansion of cultivation land and the shrinkage of forest coverage from 1973 to 1995 has changed the CN2 parameter’  

values from 0.89 in 1973 to 0.91 and 0.92 in the 1985 and 1995 respectively. IThe increasing of CN2 value might increase 10 

surface run-offrunoff and decrease base flow. Similarly, the increase in rainfall intensity and extreme precipitation events led 

to a substantial increase in Qs/Qt, and a substantial decrease in Qb/Qt, and ultimately to increases in the streamflow during 

the 1971–-2010 simulation period.  

 

The "fixing-changing" approach result using the SWAT model revealed that the single isolated effect of LULC change could 15 

potentially altered the streamflow generation processes. Expansion of cultivated land might reduce evapotranspiration 

because transpiration for seasonal crops transpireis less than the transpiration of perennial trees do (Yan et al., 2013) as a 

resulting in increased surface run-offrunoff increased. Alternatively, reduction of forest coverage may reduce cause a 

reduction in canopy interception of the rainfall, decrease the soil infiltration by increasing raindrop impacts, and reduce plant 

transpiration, which can significantly increase surface run-offrunoff and reduceing base flow (Huang et al., 2013). In general, 20 

a 5.1 % reduction in forest coverage and a 4.6 % increase in cultivated land led to a 9.9 % increase inof mean annual 

streamflow from 1973 to 1995. This study provides a better understanding and substantial information about how climate 

and LULC change affects streamflow and water balance components separately and jointly, which is useful for basin-wide 

water resources management. The SWAT simulation indicated that the impacts of climate change areis more substantial as 

thancompared to the impacts of LULC change, as it is shown in Figure 7. Surface water is no longert any more used for 25 

agriculture and plant consumption in areas such as the UBNRB, where there is limited water- storage facilities are scarce. 

like UBNRB where asOn the other hand, base flow providesis the most reliable sources for the irrigation needed to increase 

agricultural production. Hence, the the increasing amount of of surface water and diminishedreduction of base flow caused   

by both LULC and climate changes negatively affects the socio-economic developments inof the basin.  

 30 

PTherefore, protecting and conserving the natural forests and expanding soil- and- water conservation activities is 

thereforeare highly recommended, not only tfor increasing the base flow available for irrigation but also to reduceing soil 

erosion. DBy doing so, the might increase productivity, might be increased, and livelihoods and as well as regional- water -

resource- use cooperation might be improved. However, this study might have limitations due to the uncertainties of Landsat 
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image classification and the SWAT-model simulation might limit this study of SWAT model. TIn order to improve the 

accuracy of LULC classification from Landsat images, further efforts such as  the integratingon of other images together 

with Landsat images through image- fusion techniques (Ghassemian, 2016) areis required. The SWAT model does not adjust 

CN2 for slopes greater than 5%., Thiswhich could be significant in areas where the majority of the area has a slope greater 

than 5%, such as in the UBNRB. WTherefore, we therefore suggest adjusting the CN2 values for slope > 5 % outside of the 5 

SWAT model might improve the results. Moreover, further research that involvinges rainfall intensity, infiltration rate, and 

event-based analysis of hydrographs and critical evaluation of rainfall-runoff processes in the study area might 

overcomeimprove this s udy’ e limitations of this study. Finally, the authors would like to point out that the impacts of 

current and future water resource developments should be investigated in order to establish comprehensive, and holistic 

water resource management in the Nile basin. 10 
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Table 1: The UBNRB’  Areal areal long term (1971–-2010) mean annual and seasonal rainfall and streamflow of UBNRB  15 

 

Amount Contribution (%)    

Station Kiremit Belg  Bega  Total  Kiremit Belg  Bega Mean Area (km
2
) 

Flow (m
3
s

-1
) 3506.3 300.4 1018.4 4825.1 72.7 6.2 21.1 1608 172 ,254 

Flow (BCM) 36.4 3.1 10.6 50.7 

     Rainfall (mm) 1070.1 140.8 238.9 1449.8 73.8 9.7 16.5 

  Kiremit: long rainy season, Belg: Short short rainy season, Bega: Dry dry season 

 

Table 2: Data sets offor the baseline and altered periods for the SWAT simulation used to analyzse the combined and 

isolatedsingle effect of LULC and climate changes on streamflow and water balance components 

Model run 

nNo. Combined effect 

Isolated LULC change 

effect 

Isolated climate change 

effect 

Remark   

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

Climate data 

set 

LULC 

map 

1 1970s 1973 1970s 1973 1970s 1973 Base period 

2 1980s 1985 1970s 1985 1980s 1973 

altered 

Pperiod1 

3 1990s 1995 1970s 1995 1990s 1973 

altered 

Pperiod2 

4 2000s 2010 1970s 2010 2000s 1973 

altered 

Pperiod3 

 20 
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Table 3: MK and Pettitt tests for the UBNRB’  rainfall and streamflow of UBNRB after TFPW at different time scales 

  Stream flow Rainfall 

  p-value        p-value        

Time 

scale After* Before* 

Sen's 

slope: 

Change 

point Pettit test After* Before* 

Sen's 

slope 

Change 

point Pettit test 

Daily < 0.0001 < 0.0001 0.013 1987 Increasing 0.387 0.953 0.000 1988 Increasing 

Monthly < 0.0001 0.031 0.378 

 

No change 0.010 0.640 0.009 

 

No change 

annually < 0.0001 0.009 9.619 1995 Increasing 0.006 0.260 1.886 

 

No change 

Kiremit < 0.0001 0.014 20.30 

 

No change 0.010 0.348 1.364 

 

No change 

Belg < 0.0001 0.004 3.593 1985 Increasing 0.822 0.935 0.068 

 

No change 

Bega 0.000 0.214 4.832 

 

No change 0.527 0.755 0.169 

 

No change 

* Bbefore and after TFPW;, p: probability at 5% significance level    

 

Table 4: Summary of the UBNRB’  precipitation indices of the UBNRB at decadal time series 

Indices 1970s 1980s 1990s 2000s 

Mean (mm) 4.17 4.05 4.42 4.16 

95 percentile (mm) 12.57 12.52 13.66 13.31 

99 percentile (mm) 17.34 17.77 19.44 19.65 

1-day max (mm) 27.15 25.67 32.24 32.38 

R20mm (days) 16 15 30 35 

SDII (mm/day) 7.22 7.38 7.66 7.77 

SDII is the ratio of total precipitation (mm) to R1mm (days). 5 

 

Table 5: Confusion (error) matrix for the 2010 land use/cover classification map 

LULC class Water Forest Cultivated  

Bushes 

and   

sShrubs Row total 

P odu    ’ 

accuracy 

Water 44 0 0 0 44 100 

Forest 1 46 6 8 61 75.4 

Cultivated land 2 3 77 15 97 79.4 

Bushes and shrubs 1 3 9 73 86 84.9 

Column total 48 52 92 86 288   

User's accuracy (%) 91.7 88.5 83.7 84.9     

Over all accuracy(%) 0.880           

Kappa 0.77           
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Table 6: The SWAT model’  sStatistical performance measure values of the SWAT model 

Period   R2 NSE RVE (%) 

1970s 

Calibration (1973–-1977) 0.79 0.74 −-3.41 

Validation (1978–-1980) 0.84 0.83 7.18 

1980s 

Calibration (1983–-1987) 0.80 0.74 −-0.72 

Validation (1988–-1990)9 0.86 0.82 0.73 

1990s 

Calibration (1993–-1997) 0.91 0.91 1.79 

Validation (1998–-2000) 0.87 0.84 −-3.56 

2000s 

Calibration (2003–-2007) 0.86 0.86 3.99 

Validation (2008–-2010) 0.94 0.92 −-7.51 
 

Table 7: SWAT sensitive model parameters and their (final) calibrated values for the four model runs. 

Parameter 

Optimum value 

 1970s 1980s 1990s 2000s 

R-CN2 0.88 0.91 0.92 0.9 

a-Alpha-BF 0.028 0.028 0.028 0.028 

V-GW_REVAPMN 0.7 0.45 0.7 0.34 

V-GWQMN 750 750 750 750 

V-REVAPMN 550 450 425 550 

a-ESCO −-0.85 −-0.85 −-0.85 −-0.85 

R-SOL_AWC 6.5 6.5 6.5 6.5 

R: value from the SWAT database is multiplied by a given value;, V: rReplace the initial parameter by the given value;,  

a: aAdding the given value to initial parameter value. 5 

 

Table 8: Water- balance- components analysis in the Upper Blue Nile River Basin (mm/year) by considering LULC and 

climate change over respective periods. All streamflow estimates are for   El Diem station. 

Water balance components 1970s 1980s 1990s 2000s 

Surface flow (Qs) 112.8 143.4 168.6 141.4 

Lateral flow (Ql) 116.8 113.35 125.9 117.6 

Base flow (Qb) 47.3 29.6 9.8 64.7 

PET (mm) 1615.1 1627.3 1614.7 1732.9 

Ea (mm) 871.6 852.6 904.3 885 

Precipitation (P) 1428.1 1397.1 1522.2 1462.5 

Total yield ( Qt) 276.9 286.3 304.3 323.7 

Qs/Qt (%) 40.7 50.1 55.4 43.7 

Qb/Qt (%) 17.1 10.3 3.2 20.0 

Ea/P (%) 61.0 61.0 59.4 60.5 
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Qt/P (%) 19.4 20.5 20.0 22.1 

 

 

Figure 1 : Locations of study area and meteorological and discharge stations, with the Digital Elevation Model (DEM) data 

as the background 

 5 

 

Figure 2: Schematic representation of the SWAT model structure from (Marhaento et al., 2017) 

1: Stations used for 

SWAT model 

2: Stations used for trend 

analysis 

3: Sstations removed from 

the analysis 
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Figure 3: The Pettitt homogeneity test a) annual rainfall, b) annual flow of the UBNRB, cC) linear trend of mean annual 

rainfall and d) linear trend of mean annual streamflow. 
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Figure 4: Landcover map of UBNRB derived from Landsat images   a) 1973, b) 1985, c) 1995, and d) 2010 

a)                                                                                                                                                     

  b) 

   5 

Figure 5: a) LULC composition, b) LULC change in the UBNRB during the period from 1973 to 2010  

 

a) 
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b)    

  

 c) 

  5 

 d) 

  
  

Figure 6: Calibration and validation of the SWAT hydrological model (left and right) respectively  

a) 1970s, b) 1980s, c) 1990s, and d) 2000s monthly time scale 10 
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Figure 7: Ratio of water balance component analysis at the El Diem station using a singlean isolated effect (LULC/climate 

change). 
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