Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks Seyed Hamed Alemohammad^{1,2}, Jana Kolassa^{3,4}, Catherine Prigent^{1,2,5}, Filipe Aires^{1,2,5}, Pierre Gentine^{1,2,6} - ¹Department of Earth and Environmental Engineering, Columbia University - ²Columbia Water Center, Columbia University - ³Universities Space Research Association, Columbia, MD - ⁴Global Modelling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD - ⁵Observatoire de Paris - ⁶Earth Institute, Columbia University - 10 Correspondence to: Pierre Gentine (pg2328@columbia.edu) ## **Supplementary Materials** Figure S1- Percentage bias between the SMAP 9km soil mositure estimates and NN 9km estimates. White regions indicate no data. Figure S2- Correlation coefficient (R^2) between SMAP observed soil moisture at 9km and Interpolated soil moisture at 9km. White regions indicate no data. Figure S3- Percentage bias between the SMAP 9km soil mositure estimates and Interpolated 9km estimates. White regions indicate no Figure S4- Correlation coefficient (R^2) between SMAP observed soil moisture at 9km and No Heterogeneity soil moisture estimates at 9km. White regions indicate no data. Figure S5- Percentage bias between the SMAP 9km soil mositure estimates and No Heterogeneity 9km estimates. White regions indicate no data Figure S6- Location of each ISMN station used for comparison against downscaled soil moisture estimates