## Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks

Seyed Hamed Alemohammad<sup>1,2</sup>, Jana Kolassa<sup>3,4</sup>, Catherine Prigent<sup>1,2,5</sup>, Filipe Aires<sup>1,2,5</sup>, Pierre Gentine<sup>1,2,6</sup>

- <sup>1</sup>Department of Earth and Environmental Engineering, Columbia University
- <sup>2</sup>Columbia Water Center, Columbia University
  - <sup>3</sup>Universities Space Research Association, Columbia, MD
  - <sup>4</sup>Global Modelling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD
  - <sup>5</sup>Observatoire de Paris
  - <sup>6</sup>Earth Institute, Columbia University
- 10 Correspondence to: Pierre Gentine (pg2328@columbia.edu)

## **Supplementary Materials**



Figure S1- Percentage bias between the SMAP 9km soil mositure estimates and NN 9km estimates. White regions indicate no data.



Figure S2- Correlation coefficient  $(R^2)$  between SMAP observed soil moisture at 9km and Interpolated soil moisture at 9km. White regions indicate no data.



Figure S3- Percentage bias between the SMAP 9km soil mositure estimates and Interpolated 9km estimates. White regions indicate no



Figure S4- Correlation coefficient  $(R^2)$  between SMAP observed soil moisture at 9km and No Heterogeneity soil moisture estimates at 9km. White regions indicate no data.



Figure S5- Percentage bias between the SMAP 9km soil mositure estimates and No Heterogeneity 9km estimates. White regions indicate no data



Figure S6- Location of each ISMN station used for comparison against downscaled soil moisture estimates