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Point to point response to the comments on manuscript hess-2017-679 
(Predicting groundwater recharge for varying landcover and climate 
conditions: – a global meta-study) 
 
In this document, the reviewers’ comments (bold font) are followed by the changes made in 
the final manuscript (normal font). The line numbers given in the responses are according to 
marked-up manuscript version. 
 
Line 78: The fact that the FAO estimates are limited/unreliable is mentioned twice in the 
paper. How so? It would useful to delve deeper into the limitations of the FAO 
methodology to help the readers. 
We have added the following to Lines 78-84 to clarify this.  
FAO statistics were based on estimates compiled from national institutions. The data 
estimation and reporting capacities of national agencies vary significantly and raise  concerns 
about the accuracy of the data (Kohli and Frenken, 2015). In addition, according to FAO 
AQUASTAT reports, most national institutions in developing countries prioritise subnational 
level statistics over national level statistics, and in most cases data is not available for all sub 
national entities. This decreases the accuracy of country wide averages and raises concerns 
about the reliability of using them as standard comparison measures.  
 
Line 79: States no study has previously validated modelled estimates against small scale 
recharge estimates. However, Doll and Fiedler (2008) used local recharge estimates to test 
the performance and modify the algorithm used to determine recharge for arid and semi-
arid cells. 
 
The following lines are added to the manuscript (Line 84-88) 
 
Only a few studies have validated modelled estimates against small scale recharge 
measurements. Döll and Fiedler (2007) used 51 recharge observations from arid and semi-arid 
regions to correct model outputs. This study develops a recharge model and undertakes a more 
extensive validation of it using 715 local recharge measurements. 
 
Line 109: Would be interesting to know how the use of different recharge estimation 
methods found in the literature varied spatially and why. Could be shown graphically. 
 
Figure 1 is modified as below in order to spatially represent different recharge estimation 
methods 
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Figure 1. Locations of the 715 selected recharge estimation sites and the corresponding 
recharge estimation methods, used for model building. 
 
Line 118: Were certain climates or land uses over or under represented by the 715 
recharge estimation sites? Is there an inherent bias in the dataset collected? A histogram 
could be useful. 
 
We have modified Figure 2 and expanded the discussion accordingly. 
 

 
Figure 2. Histograms showing frequency of (a) study year (b) Land Use and (c) Köppen–Geiger 
Climate zones for the recharge estimates used. 
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Line 124-126: Moreover, the compiled dataset does not represent all climate zones well (Figure 
2 (c)), as most of the studies used were done either in arid, semi-arid or temperate zones. Pasture 
and cropland were the dominant land uses in the dataset (Figure 2(b)). 
Lines 123-130: highlights the rationale for selecting the explanatory factors in this study. 
Were any relevant factors excluded due to data/other constraints? 
Lines 127-128: Were there any predictors which you would have liked to use, but were 
not available from the global datasets? 
 
Line 140 – 156: The choice of predictors was made based on the availability of global gridded 
datasets and their relative importance in a physical sense, as informed by the literature. 
According to the literature, the water availability on the surface for infiltration and the potential 
of the subsurface system to intake water are the two major controls on recharge. Different 
variables that can potentially represent these two factors were chosen as predictors in this study. 
The water availability is represented mainly by using meteorological predictors including 
precipitation, potential evapotranspiration, aridity index, number of days with rainfall and 
vegetation characteristics (land use land cover). Whereas, the intake potential is represented 
using various quantifiable characteristics of the vadose zone. We employed 12 predictors 
comprising meteorological factors, soil/vadose zone factors, vegetation factors and 
topographic factors.  However, other factors which could have a sizable influence on recharge 
were not included in this study because of insufficient data. Given this, we did not consider the 
effects of irrigation on recharge, limiting the scope of the study to rainfall induced recharge. 
Subsurface lithology which could be another important recharge factor, was also eliminated 
from the study, due to a lack of suitable lithological and geological datasets at a larger scale. 
Better quality information about various predictors would have been desirable to enhance the 
accuracy of prediction. 
Line 341-343: What was the Vopt for the top 10 models? Are the predictors shown in 
Table 3 equivalent to Vopt? Vopt could also be labelled on Figure 5 to make it clear. 
We have made some changes in terminology improve the clarity of this aspect of the paper. 
Figure 5 is changed as a result and the discussion is modified as follows.  
Line 369-378: The choice of better models was made by considering the PoE of individual 
predictors (refer section 3.2.1) and the number of predictors in the model (V). Figure 5 shows 
the performance criteria for the top three models for different V values. The model performance 
increased with V up to 6 to 7 depending on the different criteria.  After that, AICc, CAIC, 
RMSE and R2adj values remained almost constant, indicating that further addition of predictors 
did not improve the model performance. In particular CAIC reaches a minimum at V=7 and it 
penalises model complexity more rigorously. Table 3 illustrates the predictors in the top 10 
models selected based on CAIC. All the top 10 models had V <=7. P, PET and LU repeatedly 
appeared in the predictor list of the top ten models substantiating their high predictive capacity, 
and the top ranked model includes these three predictors only. 



4 
 

     
 
Figure 5. (a) R2adj (b) CAIC and (c) RMSE for the top 3 models with different number of 
predictors up to 12 and the green dotted lines representing the number of predictors for the best 
performance criteria value. 
The procedure to calculate the recharge values shown in Figures 8-11 is not very clear. 
Was one of the ‘better’ models used to calculate the map? Or, were all the ‘better’ models 
used and then averaged? Please clarify. It would also be useful to have a table that has 
the regression coefficients for selected models that includes the R2 values. 
 
We have tried to clarify the method and the relevant text (lines 417-420) now reads as follows: 
In this study, the best model as defined by CAIC (model 1 in Table 3) was used to generate the 
recharge map. However, due to the similarity in structure of the top 10 models (Table 3), all 
models were equally good at predicting groundwater recharge and gave similar results (not 
shown).  
We have revised Table 3 by adding model parameter coefficients and Adj R2 values as shown 
below:   
Table 3. Coefficient of predictors used in the top 10 models, ranked based on CAIC. 
P T PET Rd S ksat SWSC AI EW ρb Clay LU Constant R2adj 
0.0081   -0.0043                 0.9567 5.3539 0.35 
0.0086   -0.0044               -0.0606 1.0335 6.3781 0.25 
0.0078   -0.0041             -1.9083   0.9667 7.8822 0.25 
0.0076   -0.0055 -0.0247   0.0089     0.0040 -2.5857   1.0131 11.8652 0.34 
0.0084   -0.0053 -0.0195         0.0036   -0.0758 1.0189 9.4112 0.33 
0.0092   -0.0052 -0.0128             -0.0631 1.0409 8.2317 0.33 
0.0075   -0.0050 -0.0194         0.0034 -2.3410   0.9370 11.2147 0.35 
0.0084   -0.0049 -0.0130           -2.0104   0.9716 9.8549 0.35 
0.0086   -0.0050 -0.0122               0.9607 7.0692 0.33 
0.0086   -0.0053 -0.0166   0.0075       -2.1688   1.0402 10.2082 0.33 
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Figure 11 compares the model estimated mean annual groundwater recharge for 
different countries with the FAO estimates. It would be pertinent to see if the countries 
that are most deviant from the 1:1 line are ones that didn’t have study sites (out of the 
715) used in the analysis. 
We have added a new figure (Figure 12) and expanded the discussion accordingly.   
Line 450-454: Figure 12 shows the country wide distribution of errors in model prediction in 
comparison with FAO statistics. Very high errors were found in countries with fewer model 
building data points. The model considerably overestimated recharge for Russia, Canada, 
Brazil, Indonesian Malaysia and Madagascar 

 
Figure 12. Spatial distribution of groundwater recharge residual (FAO estimates – Model 
estimates) along with recharge sites selected for model building. 
Line 412 and Line 480: Given that the FAO method is unreliable, how does the country-
wide model results compare with estimates from complex hydrological models like PCR-
GlobWB and WaterGAP? This is fairly important as it would help solidify the results 
obtained in the study 
We have added a new figure (Figure 11 (b)) comparing country level recharge estimates from 
the current model with WaterGAP, and revised the discussion accordingly. We were not able 
to compare our results with PCR-GlobWB, as its country-wide recharge results are not 
publically available. 
We added the following to Line 447-450: Recharge estimates from the best models in the 
present study were compared to recharge estimates from the complex hydrological model 
(WaterGAP) (Figure 11(b)). Even though the model in this study overestimates recharge for 
countries with fewer data points, the scatter shows a smaller spread compared to the FAO 
estimates 
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Figure 11. Comparison of predicted recharge against country level estimates from (a) FAO and 
(b) WaterGAP model. 

Line 455-467: While this paragraph discusses the influence of vegetation on recharge, the 
results fail to illustrate this influence. Please clarify how this influence was observed in 
the results. 
We have modified the discussion by highlighting the importance of vegetation as shown in our 
results.  
Line 513-517: In this study Land Use (LU) was used as a proxy for vegetation. According to 
the results, LU was found to be one of the predictors having the highest Proportion of Evidence 
(PoE) (Figure 4). In addition, all the better performing models included LU as one of the 
predictors which clearly indicates that vegetation is one of the most influential factors for 
groundwater recharge. 
 Line 486: Is this work able to say whether there are regions in the world which have 
declining or augmenting rates of recharge in the 1981-2014 time period? 
 
For addressing this comment, the following figures showing inter decadal percentage change 
in groundwater recharge are added in the supplementary material. 
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It is possible to say using the model whether the regions have declining or augmenting recharge 
rates. Hence the model is highly influenced by the changes in precipitation, the inter annual 
changes in the recharge will be highly correlated to that in precipitation.  
    

 
Figure S1. Map showing change in mean percent decadal recharge (a) from 1981 to 2001 and 
(b) from 1991 to 2014. (Decadal change = mean decadal recharge of later decade – mean 
decadal recharge of former decade). 
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Marked up version of manuscript 
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Abstract 10 

Groundwater recharge is one of the important factors determining the groundwater 11 
development potential of an area. Even though recharge plays a key role in controlling 12 
groundwater system dynamics, much uncertainty remains regarding the relationships between 13 
groundwater recharge and its governing factors at a large scale. Therefore, this study aims to 14 
identify the most influential factors on groundwater recharge, and to develop an empirical 15 
model to estimate diffuse rainfall recharge at a global-scale. Recharge estimates reported in the 16 
literature from various parts of the world (715 sites) were compiled and used in model building 17 
and testing exercises. Unlike conventional recharge estimates from water balance, this study 18 
used a multimodel inference approach and information theory to explain the relation between 19 
groundwater recharge and influential factors, and to predict groundwater recharge at 0.50 20 
resolution. The results show that meteorological factors (precipitation and potential 21 
evapotranspiration) and vegetation factors (land use and land cover) had the most predictive 22 
power for recharge. According to the model, long term global average annual recharge (1981-23 
2014) was 134 mm/yr with a prediction error ranging from -8 mm/yr to 10 mm/yr for 97.2% 24 
of cases. The recharge estimates presented in this study are unique and more reliable than the 25 
existing global groundwater recharge estimates because of the extensive validation carried out 26 
using both independent local estimates collated from the literature and national statistics from 27 
Food and Agriculture Organisation (FAO). In a water scarce future driven by increased 28 
anthropogenic development, the results from this study will aid in making informed decision 29 
about groundwater potential at a large scale.  30 
 31 
Keywords: Global groundwater recharge, multimodel inference approach, meta study  32 

1 Introduction 33 

Human intervention has dramatically transformed the planet’s surface by altering land use and 34 
land cover and consequently the hydrology associated with it. In the last 100 years the world 35 
population has quadrupled, from 1.7 billion (in 1900) to more than 7.3 billion (in 2014), and is 36 
expected to continue to grow significantly in the future (Gerland et al., 2014). During the last 37 
century, rapid population growth and the associated shift to a greater proportion of irrigated 38 
food production, led to an increase in water extraction by a factor of ~6. This eventually 39 
resulted in the over exploitation of both surface and groundwater resources, including the 40 
depletion of 21 of the world’s 37 major aquifers (Richey et al., 2015). This depletion threatened 41 
human lives in many ways, ranging from critical reductions in water availability to natural 42 
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disasters such as land subsidence (Chaussard et al., 2014;Ortiz‐Zamora and Ortega‐43 
Guerrero, 2010;Phien-Wej et al., 2006;Sreng et al., 2009). Therefore, there is a need to closely 44 
examine approaches for sustainably managing this resource by controlling withdrawal from 45 
the system.  46 
 47 
Groundwater recharge is one of the most important limiting factors for groundwater withdrawal 48 
and determines the groundwater development potential of an area (Döll and Flörke, 2005) 49 
Groundwater recharge connects atmospheric, surface and subsurface components of the water 50 
balance and is sensitive to both climatic and anthropogenic factors (Gurdak, 2008;Herrera‐51 
Pantoja and Hiscock, 2008;Holman et al., 2009;Jyrkama and Sykes, 2007). Various studies 52 
have employed different methods to estimate groundwater recharge including tracer methods, 53 
water table fluctuation methods, lysimeter methods, and simple water balance techniques. 54 
Some of these studies input recharge to numerical groundwater models or dynamically link it 55 
to hydrological models to estimate variations under different climate and land cover conditions 56 
(Aguilera and Murillo, 2009;Ali et al., 2012;Herrera‐Pantoja and Hiscock, 2008;Sanford, 57 
2002).  58 
 59 
In the last few decades, interest in global-scale recharge analysis has increased for various 60 
scientific and political reasons (Tögl, 2010). Lʹvovich (1979) made the first attempt at a global-61 
scale by creating a global recharge map using baseflow derived from river discharge 62 
hydrographs. The next large scale groundwater recharge estimate was done by Döll (2002) who 63 
modelled global groundwater recharge at a spatial resolution of 0.50 using the WaterGAP 64 
Global Hydrological model (WGHM) (Alcamo et al., 2003;Döll, 2002). In this study, the 65 
runoff was divided into fast surface runoff, slow subsurface runoff and recharge using a 66 
heuristic approach. This approach considered relief, soil texture, hydrogeology and occurrence 67 
of permafrost and glaciers for the runoff partitioning. However, WGHM failed to reliably 68 
estimate recharge in semi-arid regions (Döll, 2002). Importantly, in that study, there was no 69 
consideration of the influence of vegetation which has been reported to be the second most 70 
important determinant of recharge by many researchers (Jackson et al., 2001;Kim and Jackson, 71 
2012;Scanlon et al., 2005). In subsequent years, several researchers have attempted to model 72 
global groundwater recharge using different global hydrological models and global-scale land 73 
surface models (Koirala et al., 2012;Scanlon et al., 2006;Wada et al., 2010).  74 
 75 
Although a fair amount of research has been carried out to model groundwater recharge at a 76 
global-scale, most studies compared results to country level groundwater information from the 77 
FAO (FAO, 2005). FAO statistics were based on estimates compiled from national institutions. 78 
The data estimation and reporting capacities of national agencies vary significantly and raise  79 
concerns about the accuracy of the data (Kohli and Frenken, 2015). In addition, according to 80 
FAO AQUASTAT reports, most national institutions in developing countries prioritise 81 
subnational level statistics over national level statistics, and in most cases data is not available 82 
for all sub national entities. This decreases the accuracy of country wide averages and raises 83 
concerns about the reliability of using them as standard comparison measures. Only a few 84 
studies have validated modelled estimates against small scale recharge measurements. Döll and 85 
Fiedler (2007) used 51 recharge observations from arid and semi-arid regions to correct model 86 
outputs. This study develops a recharge model and undertakes a more extensive validation of 87 
it using 715 local recharge measurements. Moreover, previous research has mostly been 88 
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restricted to studying meteorological influences on recharge, few studies have systematically 89 
explored global-scale factors governing recharge. Much uncertainty still exists about the 90 
relationship between groundwater recharge and topographical, lithological and vegetation 91 
factors. Without adequate knowledge of these controlling factors, our capacity to sustainably 92 
manage groundwater globally will be seriously compromised.  93 
 94 
The major objectives of this study are to identify the most influential factors on groundwater 95 
recharge and to develop an empirical model to estimate diffuse rainfall recharge. Specifically, 96 
to quantify regional effects of meteorological, topographical, lithological and vegetation 97 
factors on groundwater recharge using data from 715 globally distributed sites. These 98 
relationships are used to build an empirical groundwater recharge model and then the global 99 
groundwater recharge is modelled at a spatial resolution of 0.50 x 0.50 for the time period 1981 100 
– 2014.  101 

2 Methods 102 

2.1 Dataset 103 

This study is based on a compilation of recharge estimates reported in the literature from 104 
various parts of the world. This dataset is an expansion of previously collated sets of recharge 105 
studies along with the addition of new recharge estimates (Döll and Flörke, 2005;Edmunds et 106 
al., 1991;Scanlon et al., 2006;Tögl, 2010;Wang et al., 2010). The literature search was carried 107 
out using Google scholar, Scopus and Web of science with related keywords ‘groundwater 108 
recharge’, ‘deep percolation’, ‘diffuse recharge’ and ‘vertical groundwater flux’. Several 109 
criteria were considered in including each study.  To ensure that the data reflects all seasons, 110 
recharge estimates for time periods less than one year were excluded. The sites with significant 111 
contribution to groundwater from streams or by any artificial means were also eliminated as 112 
the scope of this research was to model naturally occurring recharge. In order to maximize the 113 
realistic nature of the dataset, all studies using some kind of recharge modelling were removed 114 
from the dataset. After all exclusions, 715 data points spread across the globe remained (Figure 115 
1) and were used for further analysis. Of these studies, 345 were estimated using the tracer 116 
method, 123 using the water balance method, and the remaining studies used baseflow method, 117 
lysimeter, or water table fluctuation method. This diversity in recharge estimation has enabled 118 
us to evaluate systematic differences in various measurement techniques. The year of 119 
measurement or estimation of recharge estimates in the final dataset differed (provided as 120 
supplementary material), and ranged from 1981 to 2014 (Figure 2(a)).  This inconsistency in 121 
the data raised a challenge when choosing the timeframe for factors in the modelling exercise, 122 
particularly those showing inter annual variation. Moreover, the compiled dataset does not 123 
represent all climate zones well (Figure 2 (c)), as most of the studies used were done either in 124 
arid, semi-arid or temperate zones. Pasture and cropland were the dominant land uses in the 125 
dataset (Figure 2(b)). 126 
 127 
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 128 

Figure. 1. Locations of the 715 selected recharge estimation sites (and the corresponding 129 
recharge estimation methods) used for model building. 130 

 131 

Figure 2. Histograms showing frequency of (a) study year (b) Land Use and (c) Köppen–132 
Geiger Climate zones for the recharge estimates used. 133 

 134 
 135 
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The next step was to identify potential explanatory factors that could influence recharge 136 
(referred to as predictors from here on). Potential predictors that were reported in the literature 137 
as having some influence on recharge were identified (Athavale et al., 1980;Bredenkamp, 138 
1988;Edmunds et al., 1991;Kurylyk et al., 2014;Nulsen and Baxter, 1987;O'Connell et al., 139 
1995;Pangle et al., 2014). The choice of predictors was made based on the availability of global 140 
gridded datasets and their relative importance in a physical sense, as informed by the literature. 141 
According to the literature, the water availability on the surface for infiltration and the potential 142 
of the subsurface system to intake water are the two major controls on recharge. Different 143 
variables that can potentially represent these two factors were chosen as predictors in this study. 144 
The water availability is represented mainly by using meteorological predictors including 145 
precipitation, potential evapotranspiration, aridity index, number of days with rainfall and 146 
vegetation characteristics (land use land cover). Whereas, the intake potential is represented 147 
using various quantifiable characteristics of the vadose zone. We employed 12 predictors 148 
comprising meteorological factors, soil/vadose zone factors, vegetation factors and 149 
topographic factors.  However, other factors which could have a sizable influence on recharge 150 
were not included in this study because of insufficient data. Given this, we did not consider the 151 
effects of irrigation on recharge, limiting the scope of the study to rainfall induced recharge. 152 
Subsurface lithology which could be another important recharge factor, was also eliminated 153 
from the study, due to a lack of suitable lithological and geological datasets at a larger scale. 154 
Better quality information about various predictors would have been desirable to enhance the 155 
accuracy of prediction. Details of predictors are given in Table 1.  156 
 157 
Data for the chosen predictors corresponding to 715 recharge study sites were extracted from 158 
global datasets. Meteorological datasets (P, T and PET) were obtained from the Climatic 159 
Research Unit, University of East Anglia, England. Even though daily data was available from 160 
1901 to 2014 at a resolution of 0.50 x 0.50, in this study mean annual average of the latest 34 161 
years (1981 to 2014) was used to reduce the inconsistency in year of recharge measurements 162 
in the final dataset. Topographic and soil data were acquired from the NASA Earth observation 163 
dataset. Both datasets were of 0.50 x 0.50 spatial resolution. A few of the predictors, including 164 
number of rainfall days (Rd) and land use/land cover (LU) data were obtained from AquaMaps 165 
(by FAO) and USGS (United States Geological Survey) at a spatial resolution of 0.50 x 0.50 166 
and 15 arc minutes respectively. Thus obtained LU data was compared with land cover reported 167 
in literature and corrected for any discrepancies. The spatial resolution of the different data 168 
used was diverse. This was dealt with, by extracting the values for each recharge site from the 169 
original grids using the nearest neighbour interpolation method. As a result, predictor data 170 
extracted for each recharge site will differ from the actual value due to scaling and interpolation 171 
errors. Out of the 12 predictors LU was not a quantitative predictor and was transformed into 172 
a categorical variable in the modelling exercise.  173 

Table 1. Description of predictors used for recharge model building 174 
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Precipitation P mm/yr 0.50 x 
0.50 

1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Mean annual 
precipitation 

(Harris et 
al., 2014) 

Mean 
temperature T 0C 0.50 x 

0.50 
1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Mean annual 
temperature 

(Harris et 
al., 2014) 

Potential 
evapo-

transpiration 
PET mm/yr 0.50 x 

0.50 
1981 - 
2014 

Climatic 
Research 

Unit, 
University 

of East 
Anglia, 
England 

Penman-
Monteith 
Reference 

Crop 
Evapotranspi

ration 

(Harris et 
al., 2014) 

No. of rainy 
days Rd  5 arc 

minute 
1981 - 
2014 

AQUAM
APS, FAO 

Average 
number of 

wet days per 
year defined 
as having ≥ 
0.1 mm of 

precipitation 

(New et al., 
2002) 

Slope S fraction 0.50 x 
0.50 - Earth data, 

NASA 
Mean Surface 

slope 
(Verdin, 

2011) 

Saturated 
hydraulic 

conductivity 
ksat cm/d 10 x 10 - Earth data, 

NASA 

Saturated 
hydraulic 

conductivity 
at 0 - 150 cm 

depth 

(Webb et 
al., 2000) 

Soil Water 
Storage 

Capacity 

SWS
C mm 10 x 10 - Earth data, 

NASA 

Texture 
derived soil 

water storage 
capacity in 
soil profile 
(upto 15 m 

depth) 

(Webb et 
al., 2000) 

Excess water 
(without 

irrigation) 
EW mm - 1981 - 

2014 - 
∑ (𝑃𝑃𝑖𝑖 −12
𝑖𝑖=1

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) where 
Pi > PETi 

 

Aridity index AI - - 1981 - 
2014 - AI = P/PET  

Clay Content Clay % 10 x 10 - Earth data, 
NASA 

0-150cm 
profile 

(DAAC, 
2016) 
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Bulk Density ρb gm/cm3 10 x 10 - Earth data, 
NASA 

0-150cm 
profile 

(DAAC, 
2016) 

Land use 
land cover LU - 15 arc 

second - USGS/Lit
erature 

Forest, 
Pasture, 

Cropland, 
Urban/built 
up, Barren 

(Kim and 
Jackson, 

2012;Broxt
on et al., 

2014) 

2.2 Recharge model development 175 

With empirical studies, the science world is always sceptical about whether to use a single best-176 
fit model or to infer results from several better predicting and plausible models. The former 177 
option is feasible only if there exists a model which clearly surpasses other models, which is 178 
rare in the case of complex systems like groundwater. Usually cross correlation and multiple 179 
controlling influences on the system lead to more than one model having similarly good fits to 180 
the observations. Thus choosing explanatory variables and model structure is a significant 181 
challenge. In the past this challenge was often addressed using various step-wise model 182 
construction methods, with the final model being selected based on some model fit criteria that 183 
penalises model complexity (Fenicia et al., 2008;Gaganis and Smith, 2001;Jothityangkoon et 184 
al., 2001;Sivapalan et al., 2003). These approaches were pragmatic responses to the large 185 
computational load involved in trying all possible models. The disadvantage of this method is 186 
that the final model will be dependent on the step-wise selection process used (Sivapalan et al., 187 
2003). An alternative approach for addressing this high level of uncertainty in model structure 188 
is to adopt a multi-model inference approach that compares many models (Duan et al., 189 
2007;Poeter and Anderson, 2005). It typically results in multiple final models and an 190 
assessment of the importance of each explanatory variable. Therefore, this approach was used 191 
to develop an understanding of the role of different controlling factors on recharge in a data 192 
limited condition.  193 
 194 
Choosing predictors that are capable of representing the system and selecting the right models 195 
for prediction are the key steps in the multi-model inference approach. Here, models were 196 
chosen by ranking the fitted models based on performance, and comparing this to the best 197 
performing model in the set (Anderson and Burnham, 2004).  This model ranking also provided 198 
a basis for selecting individual predictors.  The analysis progressed through three key stages: 199 
exploratory analysis; model building and model testing.   200 

2.2.1 Multi-model analysis 201 

A multi-model selection process aims to explore a wide range of model structures and to assess 202 
the predictive power of different models in comparison with others. Essentially, models with 203 
all possible combinations of selected predictors are developed and assessed via traditional 204 
model performance metrics (discussed later). By conducting such an exhaustive search, multi-205 
model analysis avoids the problems associated with selection methods in step-wise regression 206 
approaches (Burnham and Anderson, 2003). Importantly, it reduces the chance of missing 207 
combinations of predictors with good predictive performance. However, a disadvantage of this 208 
approach is that the number of predictor combinations grows rapidly with the number of factors 209 
considered. To make the analysis computationally efficient, we set an upper limit for the 210 
number of predictors used. Another problem with this approach is that it can result in over 211 
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fitting. To address this issue we evaluated model performance with metrics that penalise 212 
complexity and tested the model robustness with a cross-validation analysis.  The model 213 
development procedure using multi-model analysis is described in detail below.  214 

(a) Exploratory Analysis 215 

Firstly, all the chosen predictors were individually regressed against the compiled recharge 216 
dataset. This was carried out with the main objective to find the predictors having significant 217 
control on recharge and to gain an initial appreciation of how influential each predictor is 218 
compared to others. This understanding will aid in eliminating the least influential predictors 219 
from further analysis. Then assumptions involved in regression analysis, such as linearity, low 220 
multicollinearity (important for later multivariate fitting), and independent identically 221 
distributed residuals were analysed using residual analysis. Following the residual analysis, 222 
various data transformations (square root, logarithmic and reciprocal) were carried out to 223 
reduce heteroscedasticity and improve linearity of the variables. The square root transformed 224 
recharge along with non-transformed predictors gave the most homoscedastic relations (results 225 
not shown). Therefore, these transformed values were used in further model building exercises. 226 
Predictors were selected and eliminated based on statistical indicators such as adjusted 227 
coefficient of determination (R2adj) value and Root mean square error (RMSE).  228 

(b) Model building 229 

Multiple linear regression was employed for building the models as the transformed dataset did 230 
not exhibit any nonlinearity. Furthermore, the presence of both negative and positive values in 231 
the dataset restricted the applicability of other forms of regression like log-linear and 232 
exponential (Saft et al., 2016). Linear regression is known for its simple and robust nature in 233 
comparison to higher order analysis. The robustness of linear regression helped to maintain 234 
parsimony together with reasonable prediction accuracy. A rigorous model building approach 235 
was adopted in order to capture the interplay between predictors with combined/interactive 236 
effects on groundwater recharge. This is an exhaustive search in which all candidate models 237 
are fitted and inter-compared using performance criteria. In a way, this modelling exercise used 238 
a top-down approach, starting with a simple model which is expanded as shortcomings are 239 
identified (Fenicia et al., 2008).   240 

(c) Model testing 241 

The analysis above provided insight into the relative performance of the models. However, it 242 
is also important to assess the dependence of the results on the particular sample. Therefore, 243 
we conducted a subsample analysis in which the same method was re-applied to subsamples 244 
of the data. Finally, predictive uncertainty was estimated through leave-one-out cross 245 
validation. In the first case, the whole model development process was redone multiple times 246 
using subsamples of the data. To achieve this, the entire dataset was randomly divided into 247 
80% and 20% subsets and 80% of the data were used for building the model. The predictive 248 
performance of the developed model was tested against the omitted 20% of data. This was 249 
repeated 200 times, in order to eliminate random sampling error. The leave-one-out cross 250 
validation was applied to the best few individual model structures and provided an estimate of 251 
predictive performance for those particular models. It also gave an indication of data quality at 252 
each point. 253 
 254 
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In summary the key steps in the multi-model analysis were: 255 

1. Selecting predictors 256 
2. Fitting all possible models consisting different combinations of predictors 257 
3. Calculating model performance metrics for each model  258 
4. Calculating the “weight of evidence” for each predictor based on the performance 259 

metric of all models containing that predictor 260 
5. Testing the predictive performance of the models. 261 

2.2.2 Ranking models and predictors 262 

This part of the analysis has closely followed the approach developed in Saft et al. (2016). 263 
Model performance was evaluated using several information criteria.  These information 264 
criteria include a goodness of fit term and an overfitting penalty based on the number of 265 
predictors in the model.  In this study we used R2adj, the Consistent Akaike Information 266 
Criterion (AICc), and the Complete Akaike Information Criterion (CAIC) as the performance 267 
evaluation criteria. These criteria differ in terms of penalising overfitting. R2adj penalises over-268 
fitting the least, AICc moderately, and CAIC heavily. However, when we are unsure of the true 269 
model and whether it over fits or not, there is some advantage in employing several criteria as 270 
it gives insight into how the results depend on the criteria used.  Suitability of the information 271 
criteria also varies with the sample size. CAIC acts as an unbiased estimator for large sample 272 
size with relatively small candidate models, but produces large negative bias in other cases., 273 
Conversely, AICc is well suited for small-sample applications (Cavanaugh and Shumway, 274 
1997;Hurvich and Tsai, 1989). The formulas for the above criteria are as follows: 275 
 276 
𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙 + 2 × 𝑘𝑘  (Akaike, 1974) [1] 277 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 + (2 × (𝑘𝑘 − 1) × 𝑘𝑘+2
𝑛𝑛−𝑘𝑘−2

)  (Hurvich and Tsai, 1989) [2] 278 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑘𝑘 × (𝑙𝑙𝑙𝑙(𝑛𝑛) + 1) (Bozdogan, 1987) [3] 279 

𝑅𝑅2 = 1 − � 𝑛𝑛−1
𝑛𝑛−𝑘𝑘−1

� × [1 − 𝑅𝑅2] (Ezekiel, 1929;Wang and Thompson, 2007) [4] 280 

where 𝑙𝑙𝑙𝑙𝑙𝑙 is the log-likelihood function, k is the dimension of the model, and n is the number 281 
of observations. 282 
 283 
When assessing candidate models there are two aspects which are of particular interest: (1) 284 
which models are better? and (2) how much evidence exists for each predictor in predicting 285 
recharge?  Analysis of the AICc and CAIC was used to answer both these questions. Models 286 
were ranked using information criteria, with smaller values indicating better performance. 287 
Information criteria are more meaningful when they are used to evaluate the relative 288 
performance of the models (Poeter and Anderson, 2005). Models were ranked from best to 289 
worst by calculating model delta values (∆) and model weights (W) as follows: 290 
 291 
∆𝑖𝑖= 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 [5] 292 

𝑊𝑊𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(−0.5 × ∆𝑖𝑖)/𝛴𝛴 𝑒𝑒𝑒𝑒𝑒𝑒(−0.5 × ∆𝑚𝑚) [6] 293 

 294 
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where, AICmin is the information criteria value of the best model. ∆𝑖𝑖  and 𝑊𝑊𝑖𝑖  represent the 295 
performance of ith model in comparison with the best performing model in the set of M models. 296 
Given that these are relative measures, they are independent of the size of the sample or number 297 
of candidate models.  298 
 299 
Evidence ratios were then calculated as the ratio of the ith model weight to the best model 300 
weight. They can be used as a measure of the evidence for the ith model compared to the other 301 
models. They also provide means to estimate the importance of each predictor. This involves 302 
transformation of evidence ratios into a Proportion of evidence (PoE) for each predictor. PoE 303 
for a predictor is defined as the sum of weights of all the models containing that particular 304 
predictor. PoE ranges from 0 to 1. The closer the PoE of a predictor is to 1, the more influential 305 
that predictor is.    306 

2.3 Global groundwater recharge estimation 307 

The best model (model 1 Table 3) from the above analysis was used to build a global recharge 308 
map at a spatial resolution of 0.50 x 0.50. Recharge estimation was done annually for a study 309 
period of 34 years (1981–2014), and the estimated groundwater recharge was then averaged 310 
over the 34 year period to produce a global map. In addition to this, maps showing percentage 311 
of rainfall becoming recharge, and standard deviation of annual recharge over the 34 years 312 
were also generated. As recharge data from regions with frozen soil were scarce in the model 313 
building dataset, the model predictions in those regions particularly for regions with Köppen-314 
Geiger classification Dfc, Dfd, ET and EF are not highly reliable. EF regions of Greenland and 315 
Antarctica were excluded from the final recharge map due to lack of both recharge and 316 
predictor data.  However, the modelled recharge for Dfc, Dfd and ET regions were included 317 
because of the availability of predictor data. In addition, the modelled recharge values were 318 
compared against country level statistics from FAO (2005) for 153 countries. 319 

3 Results 320 

The results address three important questions. 1. Which are the most influential predictors of 321 
groundwater recharge? 2. What are the better models for predicting recharge? 3. How does 322 
groundwater recharge vary over space and time? The first question was answered by carrying 323 
out an exploratory data analysis and also by estimating the PoE for each predictor, the second 324 
using information criteria and the third by mapping recharge at 0.50 x 0.50 using the best model.  325 

3.1 Exploratory data analysis 326 

Table 2 gives the statistical summary of predictors and groundwater recharge at 715 data sites. 327 
It is apparent from the table that predictors varied considerably between sites, consistent with 328 
inter-site variability in regional physical characteristics. This variability provided an 329 
opportunity to explore recharge mechanisms in a range of different physical environments. As 330 
we used linear regression to study the one to one relationship of recharge with each of the 331 
predictors, RMSE and bias of fitting were used to identify the predictors with the most 332 
explanatory power. In this case, RMSE values ranged between 23.2 mm/yr for P and 30.21 333 
mm/yr for S. Predictive potential of meteorological predictors was greater than for other classes 334 
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of predictor. (Figure 3). P, AI, EW and ρb had a negative bias whereas, all other predictors had 335 
a positive bias. 336 

Table 2. Summary statistics of potential predictors from the dataset used in this study. 337 

Parameters Minimum Maximum Range Mean Standard deviation 
P (mm/yr) 1.30 2627.00 2625.70 572.82 305.65 

T (0C) 1.60 30.62 29.02 17.73 6.04 
PET (mm/yr) 6.60 2600.00 2593.40 1356.17 401.77 

Rd (d/y) 2.00 270.00 268.00 85.89 42.78 
S 0.00 10.16 10.15 0.84 1.17 

ksat (cm/d) 0.00 265.75 265.75 60.61 59.50 
SWSC (mm) 2.00 1121.00 1119.00 517.38 240.81 

AI 0.00 68.18 68.18 0.70 3.74 
EW (mm/yr) 0.01 1467.87 1467.86 125.41 188.07 
ρb (gm/cm3) 0.15 1.67 1.51 1.44 0.20 

Clay (%) 1.87 52.51 50.64 23.77 7.66 
LU 1.00 5.00 4.00 2.58 0.81 

Recharge (mm/yr) 0.00 1375.00 1375.00 73.22 125.94 
 338 

   339 
Figure 3. Model fit performance criteria for single predictor regressions. 340 

3.2 Multi-model analysis 341 

3.2.1 Proportion of evidence (PoE) for individual predictors 342 

Figure 4 shows the PoE of the 12 predictors used in this study. According to this analysis, 3 of 343 
the 12 predictors stood out as having the greatest explanatory power (Figure 4). Precipitation 344 
(P), Potential evapotranspiration (PET) and Land use land cover (LU) had the highest 345 
proportions of evidence (~1). Subsurface percentage of clay (Clay) and Saturated hydraulic 346 
conductivity (ksat) also had an important influence on recharge with PoE ~0.4. Aridity index 347 
(AI), Rainfall days (Rd), Mean temperature (T), Bulk density (ρd), Slope (S ), Excess water 348 
(EW) and Soil water storage capacity at root zone (SWSC) were in the lower PoE range (<0.1 349 
according to both the criteria).  There was some variation in the PoE value of the predictors 350 
with performance metric, due to the diversity in over-fitting penalty. However, ranking of the 351 
variables was identical irrespective of the performance metric used. The ‘best’ and ‘worst’ 352 
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predictors ranked according to R2adj were also in agreement with the PoE analysis (not shown). 353 
In addition, results of the subsample analysis gave similar results (not shown). 354 
 355 

 356 

 357 
 358 

Figure 4. Proportion of evidence according to AICc and CAIC for 12 predictors (sorted in 359 
descending order of PoE). 360 

3.2.2 Better performing models  361 

According to information criteria, the performance of models can only be evaluated relative to 362 
the best performing model in the set. In this study, as per the model weights, no model exhibited 363 
apparent dominance. The evidence ratio (ratio between the weights of the best model and nth 364 
model) suggested that the best model according to CAIC was only 1.04 times better than the 365 
2nd best model. However, the evidence ratio increased exponentially with increase in model 366 
rank and there was a clear distinction between better models and worse models. Similar results 367 
were reported by Saft et al. (2016) in her work for modelling rainfall-runoff relationship shift. 368 
The choice of better models was made by considering the PoE of individual predictors (refer 369 
section 3.2.1) and the number of predictors in the model (V). Figure 5 shows the performance 370 
criteria for the top three models for different V values. The model performance increased with 371 
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V up to 6 to 7 depending on the different criteria.  After that, AICc, CAIC, RMSE and R2adj 372 
values remained almost constant, indicating that further addition of predictors did not improve 373 
the model performance. In particular CAIC reaches a minimum at V=7 and it penalises model 374 
complexity more rigorously. Table 3 illustrates the predictors in the top 10 models selected 375 
based on CAIC. All the top 10 models had V <=7. P, PET and LU repeatedly appeared in the 376 
predictor list of the top ten models substantiating their high predictive capacity, and the top 377 
ranked model includes these three predictors only. In this particular case, top performing 378 
models according to both information criteria were the same, therefore results from only one 379 
criteria (CAIC) will be discussed. 380 
 381 

Table 3. Coefficient of predictors used in the top 10 models, ranked based on CAIC. 382 

P T PET Rd S ksat SWSC AI EW ρb Clay LU Constant R2adj 
0.0081   -0.0043                 0.9567 5.3539 0.35 
0.0086   -0.0044               -0.0606 1.0335 6.3781 0.25 
0.0078   -0.0041             -1.9083   0.9667 7.8822 0.25 
0.0076   -0.0055 -0.0247   0.0089     0.0040 -2.5857   1.0131 11.8652 0.34 
0.0084   -0.0053 -0.0195         0.0036   -0.0758 1.0189 9.4112 0.33 
0.0092   -0.0052 -0.0128             -0.0631 1.0409 8.2317 0.33 
0.0075   -0.0050 -0.0194         0.0034 -2.3410   0.9370 11.2147 0.35 
0.0084   -0.0049 -0.0130           -2.0104   0.9716 9.8549 0.35 
0.0086   -0.0050 -0.0122               0.9607 7.0692 0.33 
0.0086   -0.0053 -0.0166   0.0075       -2.1688   1.0402 10.2082 0.33 

 383 
 384 

 385 
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     386 
 387 
Figure 5. (a) R2adj (b) CAIC (b) RMSE, and (c) R2adjRMSE for the top 3 models with different 388 
number of predictors up to 12 and the green dotted lines representing the number of predictors 389 
for the best performance criteria value. 390 

3.2.3 Model testing 391 

Models ranking from 1 to 10 according to CAIC (Table 3) were tested using both the model 392 
testing techniques discussed in section 2.2.1(c). Figure 6 depicts model fit and model prediction 393 
RMSE values of 200 subsample tests. It is clear from the boxplots that the difference between 394 
the RMSE of the 1st and the 10th model during both model fitting and prediction is less than 1 395 
mm/yr. In subsample tests, R2adj of the best model ranged from 0.42 to 0.56 implying 42 to 56% 396 
of the variance was explained (please reff. section 3.2.3 for details on sub sample testing). The 397 
model errors at each data point ranged from -8 to 28 mm/yr. However, 97.2% of the points had 398 
errors between -8 and 10 mm/yr. Figure 7 shows the relation between precipitation and model 399 
errors and it is evident from this scatter plot that model predictions were not greatly influenced 400 
by low or high precipitation. In other words, the model was unbiased by precipitation trends. 401 
Similar checking was done for all other predictors (not shown) which all showed a similar 402 
pattern to precipitation. The dataset was classified based on recharge estimation techniques and 403 
model performance was tested with results showing no systematic difference (not shown). 404 
 405 
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406 
Figure 6. RMSE of sub-sample (a) model fitting and (b) model prediction of top 10 models 407 

according to CAIC. 408 
 409 

 410 
  411 

Figure 7 (a) Error at each data point along with the corresponding rainfall obtained using the 412 
leave-one-out model testing procedure and (b) Scatter plot between error at each data point 413 

and corresponding precipitation. 414 
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3.3 Global Groundwater Recharge 415 

The global long term (1981 – 2014) mean annual groundwater recharge map at a spatial 416 
resolution of 0.50 was made by the model developed in section 3.2 (Figure 8). In this study, the 417 
best model as defined by CAIC (model 1 in Table 3) was used to generate the recharge map. 418 
However, due to the similarity in structure of the top 10 models (Table 3), all models were 419 
equally good at predicting groundwater recharge and gave similar results (not shown). Grid 420 
scale recharge ranged from 0.02 mm/yr to 996.55 mm/yr with an average of 133.76 mm/yr. 421 
The highest recharge was associated with very high rainfall (>4000 mm/yr). Humid regions 422 
such as Indonesia, Philippines, Malaysia, Papua New Guinea, Amazon, Western Africa, Chile, 423 
Japan and Norway had very high recharge (>450 mm/yr). Whereas, arid regions of Australia, 424 
the Middle East and Sahara had very low recharge (<0.1 mm/yr). In humid areas, percentage 425 
of rainfall becoming groundwater recharge (>40%) was found to be very high in comparison 426 
to other parts of the world. However, the mean percentage of rainfall becoming recharge is 427 
only 22.06% across the globe. Among all the continents, Australia had the lowest annual 428 
groundwater recharge rate. 429 
 430 
Over the 34 years, global annual mean recharge followed the same pattern as that of global 431 
annual mean precipitation (Figure 9). Least recharge was predicted in the year 1987 432 
(groundwater recharge=95 mm/yr), where the annual average rainfall was <180 mm/yr. 433 
Variation in recharge over the years was maximal in arid regions of Australia and North Africa 434 
(Figure 10(a)). However, the standard deviation of recharge was higher in humid areas than in 435 
arid regions (Figure 10(b)). This indicates that standard deviation did not clearly represent year 436 
to year variations in recharge. Potentially, the advantage of using coefficient of variation over 437 
standard deviation is that it can capture variations even when mean values are very small. In 438 
this case precipitation and potential evapotranspiration were the two major predictors of 439 
recharge. Globally, variability in evapotranspiration is much less than variability in rainfall 440 
(Peel et al., 2001; Trenberth and Guillemot, 1995). Therefore, variability of groundwater 441 
recharge both temporally and spatially is due to variability in precipitation, which implies that 442 
arid regions are more susceptible to inter-annual variation in groundwater recharge. A 443 
comparison of predicted recharge against country level recharge estimates from FAO (2005) 444 
shows that the model tends to over predict recharge, particularly for low recharge areas. 445 
However, due to inaccuracies in the FAO estimates this cannot be considered as a reliable 446 
comparison (Figure 11(a)). Recharge estimates from the best models in the present study were 447 
compared to recharge estimates from the complex hydrological model (WaterGAP) (Figure 448 
11(b)). Even though the model in this study overestimates recharge for countries with fewer 449 
data points, the scatter shows a smaller spread compared to the FAO estimates. Figure 12 shows 450 
the country wide distribution of errors in model prediction in comparison with FAO statistics. 451 
Very high errors were found in countries with fewer model building data points. The model 452 
considerably overestimated recharge for Russia, Canada, Brazil, Indonesian Malaysia and 453 
Madagascar.  454 
 455 
 456 
 457 
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 458 

 459 

 460 
Figure 8. Long-term (1981 -2014) average annual groundwater recharge estimated using the 461 

developed model. 462 

 463 

Formatted: Normal, Centered
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 464 
Figure 9. Temporal distribution of total global recharge along with total global precipitation 465 

of corresponding years for a period of 1981 to 2014. 466 
 467 

 468 

 469 
     470 

Figure 10. Map showing (a) coefficient of variability and (b) standard deviation of annual 471 
groundwater recharge from 1981 to 2014. 472 
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 473 
 474 

Figure 11. Comparison of predicted recharge against country level estimates from (a) FAO 475 
and (b) WaterGAP model . 476 

 477 
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 478 
Figure 12. Spatial distribution of groundwater recharge residual (FAO estimates – Model 479 

estimates) along with recharge sites selected for model building.  480 

 481 

4 Discussion 482 

The aims of this study were to identify the factors having the most influence on groundwater 483 
recharge, and to develop a global model for predicting groundwater recharge under limited data 484 
conditions, without extensive water balancing. In this study, an empirical model building 485 
exercise employing linear regression analysis, multimodel inference techniques and 486 
information criteria was used to identify the most influential predictors of groundwater 487 
recharge and use them to build predictive models.  Finally, a global groundwater recharge map 488 
was created using the developed model. The key findings from this study and their implications 489 
for future research and practice with respect to global groundwater recharge are discussed 490 
below. 491 
 492 
One of the findings to emerge is that, out of numerous models developed in this study there 493 
was no single best model for groundwater recharge.  Instead, there were clear sets of better and 494 
worse models. However, there were predictors which stood out as having greater explanatory 495 
power.  Of the 12 predictors chosen for the analysis, meteorological (P, PET) and vegetation 496 
predictors (LU) had the most explanatory information followed by saturated hydraulic 497 
conductivity and clay content. Thus models using these predictors ranked higher according to 498 
information criteria. It is reasonable that meteorological factors had the most explanatory 499 
information. In most cases, especially dry regions, groundwater recharge is controlled by the 500 
availability of water at the surface, which is mainly controlled by precipitation, 501 
evapotranspiration and geomorphic features (Scanlon et al., 2002). Numerous studies agree 502 
with this finding. For example, in south western USA, 80% of recharge variation is explained 503 
by mean annual precipitation (Keese et al., 2005). However, the influence of meteorological 504 
factors on groundwater recharge is highly site-specific (Döll and Flörke, 2005). The effect of 505 
meteorological factors  can also depend on whether the season or year is wet or dry, type of 506 
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aquifer and irrigation intensity (Adegoke et al., 2003;Moore and Rojstaczer, 2002;Niu et al., 507 
2007). 508 
 509 
Many studies have reported vegetation related parameters as the second influential predictor of 510 
groundwater recharge. Vegetation has a high correlation with other physical variables such as 511 
soil moisture, runoff capacity and porosity, which adds to its recharge explanatory power (Kim 512 
and Jackson, 2012;Scanlon et al., 2005). In this study Land Use (LU) was used as a proxy for 513 
vegetation. According to the results, LU was found to be one of the predictors having the 514 
highest Proportion of Evidence (PoE) (Figure 4). In addition, all the better performing models 515 
included LU as one of the predictors which clearly indicates that vegetation is one of the most 516 
influential factors for groundwater recharge. Results indicates that recharge rate was high, 517 
where runoff water have more retention time on the surface. This was mainly observed for 518 
shallow rooted vegetation like grasslands. In deep rooted forest areas recharge was reduced 519 
because of increased evapotranspiration (Kim and Jackson, 2012). However, not all reported 520 
studies are in agreement with vegetation as an important predictor of recharge. For example, 521 
Tögl (2010)  failed to find a correlation between vegetation/land cover  and recharge. This may 522 
be the result of some peculiarity in the study dataset.  Apart from the predictors discussed 523 
above, depth to groundwater and surface drainage density were also identified as potential 524 
predictors of recharge from literature (Döll and Flörke, 2005;Jankiewicz et al., 2005). Despite 525 
this they were excluded from this study because of the lack of appropriate resolution global 526 
datasets.  527 
 528 
The total recharge estimated in this study is strongly consistent with results from complex 529 
global hydrological models.  Long term average annual recharge was found to be 134 mm/yr. 530 
The total recharge estimated in this study (13,600 km3/yr) was very close to existing estimates 531 
of complex hydrological models except those using MATSIRO, which overestimates recharge 532 
in humid regions (Koirala et al., 2012). The results shown in Table 4 indicate that, compared 533 
to existing techniques, the model developed in this study can make recharge assessments with 534 
the same reliability but with fewer computational requirements. Moreover, the error in recharge 535 
prediction in this study was low, ranging from only -8 mm/yr to 10 mm/yr for 97.2% of cases.  536 
 537 

Table 4. Global estimates of groundwater recharge  538 

Model Used Spatial 
Resolution 

Temporal 
Range 

Total Global 
Recharge ( km3/yr) Reference 

Empirical model 0.5deg 1981-2014 13,600 Current study 
WaterGAP 2 0.5deg 1961-1990 14,000 (Döll, 2002) 
WaterGAP 0.5deg 1961-1990 12,666 (Döll and Flörke, 2005) 

PCR GlobWB 0.5deg 1958-2001 15,200 (Wada et al., 2010) 
PCR GlobWB 0.5deg 1960-2010 17,000 (Wada et al., 2012) 

MATSIRO 1deg 1985-1999 29,900 (Koirala et al., 2012) 
FAO Statistics Country 1982-2014 10,613 (FAO, 2016) 

 539 
The global recharge map developed showed a similar pattern to recharge maps produced using 540 
complex global hydrological models. The results of this study indicate that recharge across the 541 
globe was varied considerably as a function of spatial region, and was analogous to global 542 
distribution of climate zones (Scanlon et al., 2002).  Humid regions had very high recharge 543 
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compared to arid (semi-arid) regions, which is obviously due to the higher availability of water 544 
for recharge. Recharge was also affected by climate variability and climate extremes at a 545 
regional level (Scanlon et al., 2006;Wada et al., 2012). However, an effect of climate variability 546 
on inter annual recharge at a global-scale was not pronounced in our results. The potential 547 
reason for this is that the El Nino Southern Oscillation (ENSO), the primary factor that 548 
determines climate variability globally, has converse effects in different parts of the world. The 549 
effects of increased precipitation in some parts of the world would have been counteracted by 550 
reductions in precipitation in other areas resulting in relatively small effect on inter annual 551 
variation in global recharge.  552 

5 Conclusion 553 

This study presents a new method for identifying the major factors influencing groundwater 554 
recharge and using them to model large scale groundwater recharge. The model was developed 555 
using a dataset compiled from the literature and containing groundwater recharge data from 556 
715 sites. In contrast to conventional water balance recharge estimation, a multimodel analysis 557 
technique was used to build the model. The model developed in this study is purely empirical 558 
and has fewer computational requirements than existing large scale recharge modelling 559 
methods. The 0.50 global recharge estimates presented here are unique and more reliable 560 
because of the extensive validation done at different scales. Moreover, inclusion of a range of 561 
meteorological, topographical, lithological and vegetation factors adds to the predictive power 562 
of the model. The results of this investigation show that meteorological and vegetation factors 563 
had the most predictive power for recharge. The high dependency of recharge on 564 
meteorological predictors make it more vulnerable to climate change. Apart from being a 565 
computationally efficient modelling method, the approach used in this study has some 566 
limitations. Firstly it does not include direct anthropogenic effects on the groundwater system 567 
and also excludes focused recharge by natural or artificial means, suggesting scope for further 568 
future development. Secondly, the recharge data set used in this study did not include data 569 
points from frozen regions. Therefore, Greenland and Antarctica were excluded from the final 570 
recharge map.  However, the model developed in this study and the recharge maps produced 571 
will aid policy makers in predicting future scenarios with respect to global groundwater 572 
availability.  573 
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