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Abstract. Vegetation controls on soil moisture dynamics are generally not measured directly and not easy to translate into scale 

and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability 

density functions (pdfs) of relative soil moisture or soil saturation encodes sufficient information to determine these ecohydrological 10 

parameters, and that these parameters can be estimated through inverse modelling of the commonly used stochastic soil water 

balance. We developed a generalizable Bayesian inference approach to estimate soil saturation thresholds at which plants control 

soil water losses, based only on soil texture, rainfall and soil moisture data at point, footprint, and satellite scales. The Nash-Sutcliffe 

efficiencies between empirical pdfs derived from a year of observations and the optimal analytical soil saturation pdfs assuming a 

steady state or wet and dry seasonal dynamics ranged from 0.89 to 0.99. The coefficient of variation of posteriori parameter 15 

distributions ranged from <1 to 15 %.  The parameter identifiability was not significantly improved in the more complex seasonal 

model, however small differences in parameter values indicates that the steady state model may have absorbed dry season dynamics. 

Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted 

ecohydrological parameters of interest. In these cases, convergence of the model inversion was attained less rapidly but ultimately 

provided better goodness of fit and lower uncertainty. Results were robust using as little as 100 daily observations randomly 20 

sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate 

ecohydrological parameters from sparse records.  This work combined modelling and empirical approaches in ecohydrology and 

provided a simple framework to obtain analytical descriptions of soil moisture dynamics at a range of spatial scales that are 

consistent with soil moisture observations. 

1 Introduction 25 

The movement of water from soils, through plants, and back to the atmosphere via transpiration, is a critical component of local 

and global hydrologic cycles and is the largest surface-to-atmosphere water pathway (Good et al., 2015). A realistic analytical 

description of soil moisture dynamics is key to understanding ecohydrological processes that regulate the productivity of natural 

and managed ecosystems. Rodriguez-Iturbe et al. (1999) introduced a conceptually simple framework using a bucket model of soil-

column hydrology forced with stochastic precipitation inputs, where soil water losses are only a function of soil saturation. Given 30 

this ecohydrological framework, the probability density function (pdf) of soil moisture and the mean components of the soil water 

balance (rainfall, runoff, evapotranspiration, and leakage losses) are analytically derived and depend on simple abiotic 

characteristics such as average climate and soil texture, and biotic characteristics including soil saturation thresholds at which 

vegetation can influence soil water losses.  However, the shapes of analytical soil moisture pdfs are generally not consistent with 

observations when literature values for model parameters are used (Miller et al., 2007). Also, because of simplifications made to 35 

describe soil water loss processes in the model, some parameters such as field capacity and the wilting point do not correspond to 

conventional definitions and need to be calibrated (Dralle and Thomspon, 2016). Analytical soil moisture pdfs have never been 
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directly compared to empirical pdfs derived from measurements beyond the point scale. Observation networks provide freely 

available point scale, spatially integrated soil moisture observations, while remotely sensed soil moisture observations are available 

through satellite products. These data sources create an opportunity to: 1) evaluate whether analytical soil saturation pdfs are 

consistent with observations across a range of scales; and 2) determine average ecohydrological parameters relevant to each scale. 

 5 

Estimates of ecohydrological parameters are relevant to a large range of applications for which the stochastic soil water balance 

framework has been used and adapted, including: the effects of climate, soil and vegetation on soil moisture dynamics (Laio et al, 

2001a; Rodriguez-Iturbe et al., 2001; Porporato et al., 2004), ecohydrological factors driving spatial and structural characteristics 

of vegetation (Caylor et al., 2005; Manfreda et al., 2017), soil salinization dynamics (Suweis et al., 2010), biological soil crusts 

(Whitney et al., 2017), vegetation stress, optimum plant water use strategies and plant hydraulic failure (Laio et al., 2001b; Manzoni 10 

et al. 2014; Feng et al., 2017), vertical root distributions (Laio et al., 2006),  plant pathogen risk (Thomspon et al., 2013), streamflow 

persistence in seasonally dry landscapes (Dralle et al., 2016), and soil water balance partitioning (Good et al., 2014 ; Good et al., 

2017. A survey of close to 400 ecohydrology publications found that 40% relied heavily on simulation, rarely integrated empirical 

measurements, and were almost never coupled with experimental studies, suggesting a critical need to combine modelling and 

empirical approaches in ecohydrology (King and Caylor, 2011). A few studies have directly confronted the governing equations of 15 

the stochastic soil water balance model with observed soil moisture data and fewer have attempted to optimize model parameters 

to best fit soil moisture observations. Miller et al., (2007) calibrated soil moisture pdfs to project vegetation stress in a changing 

climate. Dralle and Thompson (2016) developed an analytical expression for annually integrated soil moisture pdfs under seasonal 

climates and calibrated soil moisture thresholds between which evapotranspiration is maximum and zero to compare the model to 

soil moisture observations at a savanna site. Chen et al., (2008) related evapotranspiration observations at the stand scale to soil 20 

moisture values using a Bayesian inversion approach, and Volo et al., (2014) calibrated the soil moisture loss curve to investigate 

effects of irrigation scheduling and precipitation on soil moisture dynamics and plant stress. The functional form of the soil moisture 

losses was approximated using conditionally averaged precipitation (Salvucci, 2001; Saleem and Salvucci, 2002) and remotely 

sensed data (Tuttle and Salvucci, 2014). The time scale of soil moisture dry downs, derived from the soil moisture loss equations, 

were parameterized using evapotranspiration measured at micro-meteorological stations (Teuling et al., 2006) and space-borne 25 

near-surface soil moisture observations (McColl et al., 2017). These studies indicate that the ecohydrological soil water balance 

framework is consistent with ground and larger scale remotely sensed measurements.  

 

This study expands upon previous work and presents a general method for the inference of ecohydrological parameters and 

associated uncertainty, from observed soil moisture pdfs at a range of scales. The inference approach was applied to co-located and 30 

concurrent soil moisture observations from a range of biomes at the point, footprint, and satellite scales. Parameters that are 

representative of larger scale observations are necessary to characterize ecohydrological processes at ecosystem scales and are more 

relevant to ecohydrological modelling. These larger scale parameters integrate a range of ecohydrological interactions that are 

poorly understood and difficult to measure directly. The presented inference framework provides a means to quantify and compare 

the sensitivity of soil moisture dynamics at varying scales through estimates of these simple ecohydrological parameters. Non-35 

biological controlling factors on the soil water balance including rainfall and soil texture can generally be assessed from readily 

available data, including site measurements, regionalized maps, and satellite observations. Vegetation controls on soil water 

dynamics are largely unknown and difficult to measure at hydrologically meaningful scales (Li et. al., 2017). Vegetation water-use 

traits are generally observed at the species level and are not easily translated to the simple parameters necessary in soil-water 

balance models. The rate of soil water losses from the near-surface soil layer, in which soil moisture measurements are generally 40 
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made, do not precisely correspond to evapotranspiration observed or calculated from meteorological stations. We thus focused on 

estimating parameters that are not directly observable, in particular the soil saturation thresholds at which vegetation controls soil 

water losses and the maximum rate of evapotranspiration from a near-surface soil layer. We use an inverse modelling approach and 

data that are commonly collected at environmental monitoring sites or measured from satellites.  

 5 

We assume that if a sufficient range of soil moisture values are observed at a site, then the shape of the empirical soil saturation 

pdf is constrained by the ecohydrological factors driving soil moisture dynamics. We hypothesize that key information required to 

determine these ecohydrological factors is encoded in empirical soil saturation pdfs, and that this information can be extracted by 

calculating the inverse of the commonly used stochastic soil water balance. The analysis of soil saturation pdfs is a more robust 

and integrated approach to investigate ecohydrological factors of soil water dynamics than time series analysis. Soil saturation pdfs 10 

are less sensitive to the many sources of uncertainty, sensor noise, and common gaps in soil moisture observations and do not 

require high quality co-located and concurrent hydrologic measurements that are often lacking. Two key assumptions which are 

imbedded in the proposed method are tested: (1) The analytical pdf models properly describe empirical soil moisture pdfs observed 

from annual data at each scale and location. Annual soil moisture records can be affected by transitional dynamics between wet 

and dry seasons and the appropriate level of model complexity must be used. We will compare parameter identifiability using a 15 

steady-state and a seasonal formulation of the analytical model for soil saturation pdfs (2) The whole range of realizable soil 

moistures values is captured by the selected time series and the soil moisture pdf determined from these observations is not 

truncated. We will determine whether the inference method based on soil saturation pdfs is robust against reduced data availability 

by repeating the model inversions on subsets of the soil moisture time series and show that the method can be applied to sparse 

datasets. 20 

 

A number of studies have combined inverse modelling approaches with ground and remotely sensed soil moisture data to 

successfully extract meaningful hydrologic information (Xu et al., 2006; Miller et al, 2007; Chen et al., 2008; Volo et al., 2014; 

Wang et al., 2016; Baldwin et al., 2017). In particular, Bayesian inference methods are effective in relating prior pdfs of observations 

to posterior estimates of model parameters (Xu et al., 2006; Chen et al., 2008; Baldwin et al., 2017).  The soil water balance model 25 

provides a direct analytical equation for soil moisture pdfs that is convenient to use with the Bayesian paradigm because it is a low 

parameter model with few data inputs. In this study, we developed a Bayesian inversion approach to directly estimate soil water 

balance model parameters that best fit soil moisture pdfs derived from observations at point, footprint, and satellite scales. We 

selected a Bayesian inversion approach instead of a least-squares or maximum likelihood approach because it quantifies the 

inference uncertainty directly and improves upon the work of Miller et al. (2007), which used a least-squares approach to calibrate 30 

soil saturation pdfs. In addition, measures of inference uncertainty and parameter convergence diagnostics provided by the Bayesian 

approach can be used to evaluate the validity of model inversion and develop criteria to generalize the presented framework.  

 

The goal of this study was to match empirical soil moisture pdfs derived from point-, footprint-, and satellite-scale observations to 

a commonly used analytical model. We demonstrate the use of a Bayesian inversion framework to calibrate the ecohydrological 35 

parameters of a simple stochastic soil water balance model that best fit empirical soil moisture pdfs. We first present data sources, 

define the analytical model for soil moisture pdfs including parameter assumptions, and detail the algorithm used in the Bayesian 

inversion. Then, we present a summary of the goodness of fit of optimal analytical soil moisture pdfs and estimated parameter 

uncertainty. Results were evaluated to test key method assumptions including model complexity and data availability. Finally, we 

discuss the potential of the approach to provide a simple means to investigate variability in ecohydrological controlling factors at 40 
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varying spatial scales. This work combines modelling and empirical approaches in ecohydrology to provide more realistic analytical 

descriptions of soil moisture dynamics. Estimates of ecohydrological parameters that are consistent with observed soil moisture 

pdfs, from point to ecosystem scales, are needed to better characterize site-specific ecohydrological processes. 

2. Data and Methods 

2.1 Data analysed 5 

Daily soil moisture observations from three data products at three different spatial scales were used in this study. Point-scale soil 

moisture at 10 cm depth was taken from the FLUXNET2015 data product (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). 

Footprint-scale soil moisture was taken from the Cosmic-ray Soil Moisture Observing System (COSMOS) 

(http://cosmos.hwr.arizona.edu/Probes/probelist.html). The COSMOS soil moisture footprint measures soil moisture at an average 

depth of 20 cm with a radius ranging from 130 to 240 m, depending on site characteristics (Köhli et al., 2015). Near-surface soil 10 

moisture observations at a spatial resolution of 0.25˚ were taken from the European Space Agency’s (ESA) Climate change 

Initiative (CCI) project. The combined soil moisture product (ECV-SM, version 0.2.2) that merges soil moisture retrievals from 

four passive (SMMR, SMM/I, TMI, and ASMR-E) and two active (AMI and ASCAT) coarse resolution microwave sensors was 

used (Liu et al., 2011; Liu et al., 2012; Wagner, 2012). Although the ECV-SM sensing depth is less than 5 centimetres, it has been 

shown to have a close relation to ground-based observations of soil moisture in the upper 10 centimetres (Dorigo et al., 2015). 15 

Daily rainfall time series were compiled from the FLUXNET2015 dataset for the point-and footprint-scale analysis, and the 

National Aeronautics and Space Administration’s (NASA) Tropical Rainfall Measuring Mission (TRMM) dataset (Huffman et al., 

2007) for the satellite-scale analysis.  

 

A total of 4 sites with data available during the 2012 calendar year for each soil moisture and rainfall product were selected for this 20 

analysis (Table 1). Selected sites span a range of land cover types including crop and grasslands, oak savanna, deciduous forest and 

pine forest. For each site, the dominant soil texture of the upper soil layer was determined from the Harmonized World Soil Database 

(HWSD) (version 1.2) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). Soil porosity values, derived from the HWSD available as 

ancillary data through the ESA-CCI data product were used for the satellite-scale analysis. For point- and footprint-scale data 

products, the maximum soil moisture observation during the year 2012 was used as a site-specific soil porosity estimate. Soil 25 

porosity for each site was applied to compute the relative soil moisture content or soil saturation (0 ≤ 𝑠 ≤ 1) from each observed 

soil moisture value. Soil saturation and rainfall data at each scale and for each site during the selected analysis period are presented 

in Fig. 1 and summary statistics are reported in Table 1. The difference in data quality between data sources and sites is not expected 

to significantly affect empirical soil saturation pdfs and resulting parameter estimates in this study. All sites had full records of 

daily point-, and footprint-scale observations except for US-Me2, which had 55 missing footprint-scale observations during the 30 

winter months when the ground is was saturated and frozen. The number of daily satellite-scale observations in the 2012 records 

ranged from 202 and 283.  

 

2.2 Analytical model for soil saturation probability density functions (pdfs) 

2.2.1 Model definition  35 

The framework used in this study is based on a standard bucket model of soil column hydrology at a point forced with stochastic 

precipitation inputs and in which soil water losses are a function of soil saturation. We follow the simple formulation of soil water 
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losses in Laio et al. (2001a). We apply two associated analytical formulation for the pdf detailed below. The first is a steady state 

solution and the second takes into account wet and dry season dynamics. However, the methodology described in Sect. 2.3 can be 

customized to characterize site-specific parameters and test consistency between observed and analytical soil saturation pdfs for 

any application or adaptation of the stochastic ecohydrological framework. 

 5 

The soil water balance model is defined at a point scale and a daily time scale, for a soil with porosity 𝑛, and assumes soil saturation 

is uniform in the considered soil column depth 𝑍. Rainfall, the only input to the soil water balance, is treated as a Poisson process 

characterized by an average event frequency, λ, and average event intensity, α. For simplification, we assume that the rainfall 

applied is equal to the amount reaching the ground surface and do not account for rainfall intercepted by vegetation. Interception 

may be a significant component of the soil water balance at forested sites and may need to be accounted for in other studies. The 10 

daily soil water balance is written as the difference between 𝜑, the rate of infiltration from rainfall and 𝜒, the rate of soil moisture 

losses: 

𝑛𝑍 *+(,)
*,

= 𝜑[𝑠(𝑡); 𝑡] − 𝜒[𝑠(𝑡)]          (1) 

𝜑[𝑠(𝑡); 𝑡]	is a stochastic process controlled by rainfall and is also a state-dependent process, because excess rainfall relative to 

available soil storage is converted to surface runoff.  χ[𝑠(𝑡)], the soil moisture loss curve, is summarized in Fig. 2a and includes 15 

leakage losses due to gravity and evapotranspiration and is described in stages determined by five soil saturation thresholds (Laio 

et al., 2001a). These stages are: (1) the saturation point (𝑠 = 1), at which all pores are filled with water; (2) the field capacity (𝑠67), 

at which soil-gravity drainage becomes negligible compared to evaporation; (3) the point of incipient stomata closure (𝑠∗), at which 

plants begin to reduce transpiration from water stress; (4) the wilting point (𝑠9), at which plants cease to transpire; and (5) the 

hydroscopic point (𝑠:), at which water is bound to the soil matrix. Soil water losses are controlled by physical soil properties for 20 

saturation states above 𝑠67 . The rate of leakage due to gravity is assumed maximum when the soil is saturated (𝐾+) and decays 

exponentially to a value of 0 at 𝑠67  (Brooks and Corey, 1964). Soil water losses are controlled by micro-meteorological conditions 

for saturation states between 𝑠67  and 𝑠∗. The rate of evapotranspiration is assumed to occur at a maximum rate (𝐸=>?), which is 

independent of the saturation state. Soil water losses are controlled primarily by vegetation for saturation states between 𝑠∗  and 

𝑠9 . Plants close their stomata in response to soil water deficits that drive leaf water potential gradients, as well as to atmospheric 25 

vapor pressure deficits, and evapotranspiration decreases linearly from 𝐸=>? to 𝐸9 at 𝑠9 . Soil water losses are controlled by soil 

diffusivity for soil saturation states below 𝑠9 , and soil evaporation decreases linearly from  𝐸9 to 0 at 𝑠:. Soil water losses are 

negligible for soil saturation states below 𝑠:. The piece-wise linear relation between soil saturation and evapotranspiration is a 

simplifying assumption commonly used in soil water balance models.  

 30 

For this simplified theoretical description of the soil water loss curve and stochastic rainfall forcing, the analytical solution of the 

steady-state probability distributions of soil saturation, 𝑝(𝑠) given by Laio et al. (2001a) is:  
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bc(]^JjPOZ[MKR)
, 

𝛽 = 2𝑏– 4. 

where b, is an experimentally determined parameter used in the Clapp and Hornberger, (1978) soil water retention curve and the 

constant 𝐶 can be obtained numerically to ensure the integral of 𝑝(𝑠) is equal to 1. This framework was derived under the 

assumption of steady state, wherein parameters are constant for a given period of time. We used a simplifying relation 10 

𝐸9 = 0.05𝐸=>? to reduce the number of parameters.  

 

To account for transient dynamics between wet and dry seasons we adopt the framework in Dralle and Thompson (2016). The dry 

season is defined as a period of duration 𝑡*, in which precipitation is negligible and does not contribute to soil moisture. During the 

dry season, soil saturation decays from an initial value 𝑠s to 𝑠(𝑡*, 𝑠s). For simplification in this study, 𝑡* is identified using rainfall 15 

records at a monthly step (see Sec 2.2.2) and 𝑠s is the soil saturation value on the last day of the wet season and does not imply that 

𝑠s is the soil saturation following the last significant storm of the wet season. The annual soil saturation pdf, (𝑝9*(s)) is then 

calculated as the weighted sum of the wet and dry season pdfs. 

𝑝9*(s) = J1 − ,u
vwx
	M 𝑝9(𝑠) +	

,u
vwx

𝑝*(𝑠)                   (3) 

The wet season pdf,  𝑝9(𝑠) is the steady-state solution in Eq. 2. The dry season pdf, 𝑝*(𝑠) is numerically determined by 20 

𝑝*(𝑠) = 	∫ 𝑝zu|z|(𝑠, 𝑠s)𝑝s(𝑠s)𝑑𝑠s+|
                   (4)_ 

where 𝑝s(𝑠s) is the pdf the initial dry season soil saturation, equal to 𝑝9(𝑠) and 𝑝zu|z|(𝑠, 𝑠s) is the pdf of dry season soil saturation 

given an initial condition 𝑠s.  
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where 𝜂* and 𝜂9* are equivalent to 𝜂 and 𝜂9 relative to 𝐸=>?* the maximum evapotranspiration rate in the dry season climate and 

𝐶* is a normalization constant. The expression for 𝑝zu|z|(𝑠, 𝑠s) used in this study was derived following the framework in Dralle 

and Thompson (2016) but using the analytical expression for soil saturation decay, 𝑠(𝑡, 𝑠s) in absence of rainfall given by Laio et 

al., 2001. In this study we will evaluate whether annual soil saturation data from point, footprint, and satellite scales are consistent 5 

with the assumptions in the steady state solution in Eq (2) and the second seasonal solution in Eq (3). This comparison will 

determine how the level of model complexity affects the identifiability of the ecohydrological parameters of interest. 

2.2.2 Climate, soil and vegetation parameter characterization 

The rainfall characteristics (𝜆 and 𝛼), the length of the dry period 𝑡*,  and physical soil parameters (𝑠67 , 𝑠:, 𝐾+, and b) used in Eq. 

(2) and (3) are based on readily available data. We chose values based on our best estimates of the driving climate and physical soil 10 

controls on the soil water balance. We thus focused on estimating the ecohydrological parameters 𝑠∗, 𝑠9 , and 𝐸=>? which describe 

vegetation controls on soil water losses and are not easily observable. We acknowledge that the pre-defined rainfall characteristics 

and physical soil parameters based on observations or literature values may not be perfectly representative of the processes at each 

location or scale and could create biases and uncertainties in our fitted parameters of interest.  

 15 

Rainfall characteristics 𝜆 and 𝛼 associated with the annual record and the wet season months for at each sites were calculated for 

each site from the FLUXNET2015 and TRMM rainfall records following Rodriguez-Iturbe et al. (1984) and listed in Table 1. The 

FLUXNET2015 rainfall characteristics were used for the point- and footprint-scale analysis, while the TRMM rainfall 

characteristics were used for the satellite-scale analysis. For each location, the FLUXNET2015 rainfall depth for each month of the 

year was evaluated and consecutive months contributing to less than 5 percent of the site’s annual rainfall were categorized as dry 20 

season months. The TRMM rainfall records were generally consistent with the ground-based measurements. The length of the dry 

period, 𝑡* was then calculated as the number of days in these months and the same dry season months and value for 𝑡* were used 

for the point, footprint, and satellites scales. The dry season period for each site is shaded in grey in Fig 1. Physical soil 

characteristics for soil textures associated with each site, 𝑠:, 𝐾+, and b were taken from Rawls et al. (1982) and are listed for each 

site in Table 1. To be most consistent with the assumption that drainage losses are generally insignificant compared to 25 

evapotranspiration losses the day following a rain event, 𝑠67  was estimated from each soil saturation record and listed in Table 1. 

All days in the 2012 record following an observed decrease in soil saturation were identified and 𝑠67  was estimated as the 95th 

percentile of the soil saturation value of these selected days. Daily soil moisture states below 𝑠9  and above 𝑠67  are rare (Laio et al., 

2001) therefore we do not expect the average soil texture values for 𝑠:	and 𝐾+ to significantly affect results. The soil depth 

considered corresponded to the measurement sensing depths of 10, 20, and 5 cm for the point, footprint, and satellite scales, 30 

respectively. Because the soil depth 𝑍 is shallower than the rooting depth, 𝐸=>? is only a fraction of the atmospheric moisture 

demand (or potential evapotranspiration) contributed by that soil depth and therefore unknown. The framework we present thus 

considers 4 (or 3 if seasonality is ignored) unknown soil water balance parameters, 𝑠∗, 𝑠9 , 𝐸=>?, and 𝐸=>?*. Our goal is estimate 

these parameters, as defined over the following intervals: 

⎩
⎨

⎧
𝑠: ≤ 𝑠∗ ≤ 𝑠67,												
𝑠: ≤ 	 𝑠9 ≤ 𝑠67,												
0 ≤ 𝐸=>? ≤ 10,									
0 ≤ 𝐸=>?* 	≤ 10									

		                   (6) 35 
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where 10 mm day-1 is the pre-defined upper possible bounds for potential evapotranspiration. Estimates of 𝑠∗ and 𝑠9  can be 

converted to soil matrix potential if soil water retention parameters are well known.  The Clapp and Hornberger, (1978) soil water 

retention curve is highly non-linear and estimates of soil water potential at which stomata fully are open or closed were not evaluated 

in this study.  

 5 

A key assumption in this analysis is that the whole range of realizable soil moistures values is captured by the selected time series 

and the soil moisture pdf determined from these observations is not truncated. In these conditions, the shape of the soil saturation 

pdf is controlled by the actual physical constraints that parameterizes the analytical solution and these parameters can be determined 

with certainty. We expect that estimated soil saturation thresholds will have greater certainty if the empirical soil saturation pdf is 

most defined around those values and greater uncertainty if there are relatively fewer soil saturations values observed around the 10 

thresholds. If the range of observed values is not representative of the soil moisture pdf because it is truncated or affected by noise 

in the data, parameter estimates may be biased. The minimum and maximum observed soil saturation values during 2012 are 

reported in Table 1 to indicate the range of observed soil saturation values used to estimate ecohydrological parameters in this 

study. We will determine whether the inference method based on soil saturation pdfs is robust against reduced data availability by 

repeating the model inversions on subsets of the soil moisture time series and will show that the method can be applied to sparse 15 

datasets. 

 

2.3 Bayesian inversion approach 

2.3.1 Application of the Bayes theorem  

Bayes' theorem, Eq. (7) is used to relate 𝑝(𝑆), the empirical soil saturation pdf of 𝑗 = [1, … ,𝑚] soil saturation observations (𝑠�) 20 

and the analytical soil saturation pdfs in Eq. (3), derived from the simple soil water balance model in Eq. (1), with 4 unknown soil 

water balance parameters 𝜃 = [𝑠∗, 𝑠9 , 𝐸=>?, 𝐸=>?*].  

𝑝(𝜃|𝑆) 	= �~𝑆�𝜃�	�(�)
�(z)

                   (7) 

The posterior distribution, 𝑝(𝜃|𝑆), is the solution of the inverse problem and describes the probability of model parameters 𝜃 given 

the set 𝑆 = [𝑠R, 𝑠�,… 𝑠=] of soil saturation observations. Assuming uninformed prior knowledge, the prior distribution of model 25 

parameters 𝜃, 𝑝(𝜃), are defined by uniform distributions over the intervals in Eq. (6). The conditional probability of observations 

𝑆 given model parameters 𝜃, 𝑝(S|𝜃), is the likelihood function of model parameters 𝜃.  

 

2.3.2 Parameter estimation  

The Metropolis-Hasting Markov chain Monte Carlo (MH-MCMC) technique is used to estimate the posterior distribution of 𝑝(𝜃|𝑆) 30 

by drawing random model samples 𝜃� from 𝑝(𝜃) and evaluating 𝑝(S|𝜃�) (Metropolis et al., 1953; Hastings, 1970; Xu et al., 2006). 

The likelihood function of a model i, 𝑝(𝑆|𝜃�) defined by 

	𝑝(𝑆|𝜃�) = ∏ 𝑝~𝑠��𝜃��=
��R                    (8) 

where 𝑝~𝑠��𝜃�� is the probability of observation 𝑠�  given the model in Eq. (2) or Eq (3) using parameters 𝜃�.  

The MH-MCMC technique converges to a stationary distribution according to the ergodicity theorem in Markov chain theory. The 35 

sampling algorithm consists of repeating two steps: (1) a proposing step, in which, the algorithm generates a new model 𝜃�
� using 
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a random function that is symmetric about the previously accepted model 𝜃�, and (2) a moving step, in which, 𝜃�
� is tested against 

the Metropolis criterion (𝑎) to estimate if it should be accepted or rejected. 

𝑎 =
�J𝑆�𝜃��M
�~𝑆�𝜃��

                    (9) 

If 𝑎 > 1, then 𝜃� is accepted and  𝜃�XR = 𝜃�
� is used for the next sample. If 𝑎 < 1, a random number 𝑝∗ ∈ [0,1] is drawn from a 

uniform distribution and compared to 𝑎. If 𝑝∗ < 𝑎, then 𝜃�′ is accepted and 𝜃�XR = 𝜃�
� is used for the next sample. If  𝑝∗ > 𝑎, 𝜃�′ is 5 

rejected and 𝜃�XR = 𝜃� is used for the next sample. If 𝜃�′ is an inconsistent model in which the soil saturation thresholds (𝑠9 , 𝑠∗) are 

ranked incorrectly or any of the soil water balance parameters (𝑠∗, 𝑠9 , 𝐸=>?, 𝐸=>?*) are outside of their defined physical bounds, 

the model likelihood is 0 and 𝜃�′ is never accepted. In this study, the log-likelihood was more convenient to compute than the 

likelihood. The symmetric function used in the proposing step was a Gaussian distribution with a mean value equal to the accepted 

model 𝜃� and a standard deviation of 1 percent of interval range for which each parameter is defined in Eq. (6).  10 

 

The value of the standard deviation of each model parameter was set after a number of test runs to generally ensure an acceptance 

rate between 20 and 50% (Robert and Rosenthal, 1998). Statistics of the estimated parameters in 𝜃 are obtained from the union of 

3 run samples of 20 thousand simulations each. The burn-in period is the number of simulations after which the running mean and 

standard deviation are stabilized. We considered a burn-in period of 10 thousand simulations, which were discarded for each run 15 

sample.  If the acceptance rate of a run sample is below 1% or greater than 90% after the burn-in period, the run was discarded and 

we concluded that the algorithm got stuck in a local minimum that may be physically impossible. Convergence was evaluated by 

the Gelman-Rubin (GR) diagnostic (Gelman and Rubin, 1992) on the run samples.  The GR diagnostic determines that the algorithm 

reaches convergence when the within-run variability (𝜎9) is roughly equal to the between-run variability (𝜎�), i.e. 𝜎9/𝜎� 

approaches 1. We verified that the GR diagnostic for each estimated parameter was lower than 1.1. If the GR diagnostic did not 20 

indicate that the 3 run samples converged, the run with the lowest likelihood was discarded and a new run sample was re-initiated 

until convergence was attained. The number of attempts was counted and quantifies how rapidly converging results are obtained. 

The mean and standard deviation of each parameter were computed from the total of 30 thousand simulations of 𝜃 resulting from 

the 3 converging run samples. A mean analytical model of soil saturation pdf was determined by applying Eq. (6) with the mean 

values of the 30 thousand posteriori parameter estimates 25 

 

2.4 Evaluation of model inversion 

Parameters estimated through the Bayesian inversion methods do not have direct measurement against which they can be validated. 

We therefore analyse the goodness of fit between the empirical and analytical soil saturation pdfs and uncertainty metrics of the 

model inversion to evaluate the identifiability of the ecohydrological parameters. The model inversion was evaluated by the 30 

following criteria.  

(1) Convergence of the Bayesian inversion:  a GR diagnostic below 1.1 for all unknown parameters is obtained from the union 

of 3 run samples and within a maximum of 10 run samples. 

(2) Goodness of fit: a quantile-level Nash-Sutcliffe efficiency (NSE) (Müller et al., 2016) between the optimum analytical pdf 

derived from the mean parameter estimates and the empirical pdfs derived from observations greater than 0.85 and a 35 

Kolmogorov-Smirnov statistic below 0.2. 

(3) Low uncertainty in parameter estimates: the posterior distributions of parameter estimates are physically plausible and 

have coefficients of variations below 20%. 
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This study investigates questions of model complexity, uncertainty in parameter estimation, data availability, and scales of 

applicability through the following analysis.  

(1) We applied the inversion framework to variations of the analytical model for soil saturation pdfs of increasing complexity. 

The first is the steady-state model in Eq. 3 and the second is the seasonality model in Eq. 6. The annual soil moisture 5 

records are affected by transitional dynamics between wet and dry seasons. We determined whether the added complexity 

of the dry season pdf increases the identifiability of ecohydrological parameters or if the simpler steady state solution is 

sufficiently consistent with annual empirical soil saturation pdfs.    

(2) We performed the model inversion using subsets of each soil saturation record by randomly resampling fractions of the 

data down to 10 % of the annual timeseries and goodness of fit statistics were computed between the resulting analytical 10 

models and the empirical models based on the full annual record. We determined the number of data points necessary to 

infer converging model parameters that best match observations and whether the proposed inference method based on soil 

saturation pdf  can be reliably used to identify ecohydrological parameters from sparse datasets. 

(3) We compared co-located parameter estimates and their uncertainty at a range of scales for each site. We determine whether 

the soil saturation pdf model inversion framework is applicable to point, footprint, and satellite-scale observations and 15 

whether inferred parameters can be appropriate for ecohydrological modelling at all scales and locations. 

3. Results and discussion 

 

3.1 Level of model complexity 

For each of the 4 selected locations, optimal analytical soil saturation pdfs consistent with empirical pdfs derived from soil 20 

saturation observations were obtained through the Bayesian inversion framework and using a MH-MCMC algorithm. The model 

inversions for each site, scale, and for both the steady state and seasonal models met the evaluation criteria listed in Section 2.4. 

Posteriori probability distributions of soil water balance parameters (𝑠9, 𝑠∗, 𝐸=>?) were overall well constrained. The parameter 

estimates and their coefficient of variation as well as the model goodness of fit statistics are summarized in Table 2. Figures 2 

through 5 present a comparison between empirical and analytical pdfs with associated quantile-quantile plots for point, footprint, 25 

and satellite scales at the 4 study sites and for both the steady state and seasonal models.  The goodness of fit between the empirical 

pdfs and the analytical models was only slightly better for the seasonal model compared to the steady state model. However, the 

coefficient of variation of the posteriori parameter distributions was smaller for the steady state model and convergence was attained 

more rapidly. The Bayesian inversion of the steady state model is therefore more computationally efficient. The parameter 

identifiability was not greatly improved by the more complex seasonal model. The estimated soil moisture thresholds 𝑠9was 30 

consistently smaller for the steady state model than for the seasonal model and the 𝑠∗ was often higher. This may indicate that the 

𝑠9  and 𝑠∗parameters in the steady state model could be biased and have absorbed dry season dynamics. Previous studies have 

calibrated soil saturation pdf models and found ecohydrological parameters values that can be compared to those in Table 2. For 

example, using point-scale observations at US-Ton, best fit values of 𝑠9  and 𝑠67  were 0.26 and 0.82 (Dralle and Thompson, 2016) 

and best-fit values of 𝑠∗ and 𝐸=>? were 0.3 and 1.9 mm d-1(Miller et. al. 2007). We conclude that although the seasonal model is 35 

conceptually more appropriate and consistent with our physical understanding of annual soil water dynamics, the steady state model 

provides satisfactory results and is generally matches annual empirical pdf at each site considered in this study.  
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3.2 Data availability 

For each spatial scale and site, the steady state model was inversed, using random subsamples of 100 to 10 percent of the 2012 time 

series and results were summarized in Fig 6. For all sites and scales the number of observations did not significantly impact model 

inference. The NSE, Kolmogorov-Smirnov statistic and parameter estimates were relatively stable down to about 100 observations. 5 

Model parameter values and the variability of parameter estimates between the 10 repeats in each subsample fraction were not 

sensitive to the number of observations used. Results indicate the identifiability of ecohydrological parameters through the inversion 

of the analytical model of soil moisture pdfs was robust because the mean and standard deviation of the randomly selected subsets 

of annual data were generally representative of the full record. There was no correlation between the small differences in the mean 

and standard deviations of the subsamples and the model goodness of fit.  We conclude that the proposed inference method based 10 

on soil saturation pdf can be reliably used to identify ecohydrological parameters from sparse datasets. This is particularly relevant 

to large scale soil moisture measurement such as satellite products that are not continuous. 

3.3 Site and scale considerations  

Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted 

ecohydrological parameters of interest. In these cases, convergence of the model inversion was generally attained less rapidly but 15 

ultimately provided better goodness of fit. Soil saturation states at drier sites may be more controlled by soil water loss parameters, 

while soil saturation states at wetter sites may be more controlled by rainfall characteristics.  The estimated soil saturation thresholds 

had greater certainty if the empirical soil saturation pdf were most defined around those values and greater uncertainty if there are 

relatively fewer soil saturations values observed around the thresholds. For example, the uncertainty of 𝑠9  was greater for the humid 

subtropical deciduous forest site (US-MMS) than for the Mediterranean savanna sites (US-Ton) and the uncertainty of 𝑠∗ was 20 

greater for US-Ton than US-MMS. Similarly, soil saturation states representing larger spatial scales are less sensitive to specific 

site characteristics. In this study parameter uncertainty for satellite and footprint scales was greater than for the point scale. 

Estimates of larger scale soil water balance parameters are more relevant to regional ecohydrological dynamics. Differences in 

parameter estimates between scales within a site may be associated with differences in soil texture properties, such as porosity and 

field capacity, that were determined separately for each record. Figure 2 through 5 also show that co-located and concurrent soil 25 

saturation pdfs are different at each scale and suggest variability in observed soil water dynamics at each scale. Differences in 

controlling processes between scales were specifically determined from the model inversion for each scale and provided robust 

scale-specific parameters for ecohydrological modelling.  

4. Conclusions 

Empirical pdfs derived from soil saturation observations provided key information to determine unknown ecohydrological 30 

parameters 𝑠∗, 𝑠9 , and 𝐸=>?. This study documented a generalizable Bayesian inversion framework to infer parameters of the 

stochastic soil water balance model and their associated uncertainty using freely available rainfall and soil moisture observations 

at point, footprint and satellite scales. Model assumptions were appropriately met and optimal analytical soil saturation pdfs were 

consistent with empirical pdfs. Uncertainty in parameter estimates were small. Stable results were obtained using sparse subsets of 

the datasets, demonstrating the advantage of analyzing soil saturation pdfs instead of time series and the robustness of the proposed 35 

framework when only sparse datasets are available. The model inversion results were also used to evaluate the sensitivity of the 
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soil water balance model to ecohydrological parameters at varying scales and locations. We demonstrated that the form of the 

simple ecohydrological model for soil saturation pdfs was in agreement with observations from point, footprint, and satellite scales; 

however optimal parameters were different at each scale because co-located and concurrent soil saturation pdfs are different at each 

scale and may result from spatial heterogeneity in soil water dynamics. Methods developed in this study can be applied in future 

studies to better understand differences in soil water dynamics at different scales and improve the scaling of ecohydrological 5 

processes. Results demonstrated the value of large scale near-surface soil moisture observations to improve the characterization of 

soil water dynamics at ecosystem scales. The relation between the soil moisture threshold values inferred from the near surface soil 

moisture data with dynamics in the full active rooting zone are unknown. This study provided a method to estimate ecohydrological 

characteristics that are not directly observable, and for which established estimation methods are not available. The datasets used 

in this study are freely available from sensor networks and global satellite products and methods can therefore be applied to a large 10 

range of sites or to full global datasets to improve understanding of spatial patterns in ecohydrological parameters relevant for local 

and global water cycle analyses. 

Data and code availability 

All datasets used in this study were downloaded from publicly available sources: point-scale soil moisture and rainfall data are 

available through FLUXNET2015 (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/);  footprint-scale soil moisture data are 15 

available through COSMOS (http://cosmos.hwr.arizona.edu/Probes/probelist.html); remotely-sensed soil moisture data are 

available through ESA CCI (http://www.esa-soilmoisture-cci.org/node/145); remotely sensed rainfall data are available through 

NASA TRMM (https://pmm.nasa.gov/data-access/downloads/trmm); global soil texture data are available through FAO HWSD 

(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). Custom scripts in 

the Python computing language associated with this analysis are available upon request through a private gitHub repository and 20 

will be made publicly available after revisions of this manuscript. (Citation and doi TBD). 
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Figure 1: Soil saturation and rainfall time series from (a) US-ARM, (b) US-MMS, (c) US-Ton, and (d) US-Me2. 
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Figure 2:  Empirical versus modelled cumulative density functions (CDF) and soil saturation probability distribution (p(s)) 
for US-ARM. The mean values of the posteriori parameter distributions were used with the analytical model in Eq (3) in the 
steady state model and Eq (6) in the seasonal model. The grey shaded areas correspond to the soil saturation thresholds (sh, 
sw, s*, sfc) in the water balance model. 5 
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Figure 3:  Empirical versus modelled cumulative density functions (CDF) and soil saturation probability distribution (p(s)) 
for US-MMS. The mean values of the posteriori parameter distributions were used with the analytical model in Eq (3) in 
the steady state model and Eq (6) in the seasonal model. The grey shaded areas correspond to the soil saturation thresholds 
(sh, sw, s*, sfc) in the water balance model. 5 
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Figure 4:  Empirical versus modelled cumulative density functions (CDF) and soil saturation probability distribution (p(s)) 
for US-Ton. The mean values of the posteriori parameter distributions were used with the analytical model in Eq (3) in the 
steady state model and Eq (6) in the seasonal model. The grey shaded areas correspond to the soil saturation thresholds (sh, 
sw, s*, sfc) in the water balance model. 5 
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Figure 5:  Empirical versus modelled cumulative density functions (CDF) and soil saturation probability distribution (p(s)) 
for US-Me2. The mean values of the posteriori parameter distributions were used with the analytical model in Eq (3) in the 
steady state model and Eq (6) in the seasonal model. The grey shaded areas correspond to the soil saturation thresholds (sh, 
sw, s*, sfc) in the water balance model. 5 
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Figure 6 - Goodness of fit and ecohydrological parameters inferred with decreasing number of soil saturation observations 
(steady state model). For each subsample category, the median results of 10 repeats are plotted and results between the 90th 
and 10th percentiles are shaded. Colors  correspond to the four sites in the legend. KS, Kolmogorov Smirnov statistic; NSE, 
quantile-level Nash Sutcliffe efficiency;  𝑬𝒎𝒂𝒙, maximum evapotranspiration in mm d-1; s*, point of incipient stomatal 5 
closure; sw, wilting point. 
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Table 1 – Selected study sites 

Site Name ARM Southern  
Great Plains 

Morgan Monroe  
State Forest Tonzi Ranch Metolius Mature 

Ponderosa Pine 

FLUXNET2015 ID US-ARM US-MMS US-Ton US-ME2 

COSMOS ID 15 27 32 38 

Latitude 36.6058 (36.625) 39.3232 (39.375) 38.4316 (38.375) 44.4523 (44.375) 

Longitude -97.4888 (-97.375) -86.4131 (-86.375) -120.966 (-120.87) -97.4888 (-97.375) 

Elevation [m] 314 275 177 1253 

Vegetation Crops and grassland Deciduous forest Oak savanna Ponderosa pine forest 

Soil Texture Loam Loam Loam Sandy Loam 

MAT [°C] 14.8 10.9 15.8 6.3 

MAP [mm] 843 1032 559 523 

α [mm day-1] 21.0(p, f), 24.4(s) 9.04(p, f), 11.8(s) 9.3(p, f), 16.9(s) 8.1(p, f), 11.6s) 

αw [mm day-1] 21.4(p, f), 26.8(s) 9.1(p, f), 11.9(s) 8.7(p, f), 16.7(s) 7.9(p, f), 11.6(s) 

λ [day-1] 0.05(p, f), 0.08(s) 0.24(p, f), 0.20(s) 0.22(p, f), 0.10(s) 0.24 (p, f), 0.21(s) 

λw [day-1] 0.07(p, f), 0.08(s) 0.27(p, f), 0.23(s) 0.39(p, f), 0.17(s) 0.31(p, f), 0.27(s) 

td [days] 92 61 153 92 

n [-] 0.35(p), 0.34(f), 0.46(s) 0.46(p), 0.66(f), 0.43(s) 0.53(p), 0.39(f), 0.43(s) 0.36(p), 0.59(f), 0.41(s) 

Ks [mm day-1] 317 317 317 622 

b [-] 4.55 4.55 4.55 3.11 

sh [-] 0.06 0.06 0.06 0.09 

sfc [-] 0.81(p), 0.75(f), 0.44(s) 0.93(p), 0.86(f), 0.69(s) 0.75(p), 0.83(f), 0.69(s) 0.94(p), 0.60(f), 0.72(s) 

smin [-] 0.15(p), 0.19(f), 0.19 (s) 0.28(p), 0.44(f), 0.30 (s) 0.11(p), 0.22(f), 0.17 (s) 0.27(p), 0.14(f), 0.23 (s) 

smax [-] 1.0(p), 1.0(f), 0.67 (s) 1.0 (p), 1.0 (f), 1.0 (s) 1.0(p), 1.0(f), 0.80 (s) 1.0(p), 1.0(f), 1.0(s) 

Mean s [-] 0.44(p), 0.42(f), 0.33 (s) 0.71(p), 0.68(f), 0.59 (s) 0.38(p), 0.49(f), 0.38 (s) 0.64(p), 0.35(f), 0.50 (s) 

Standard deviation s [-] 0.21(p), 0.19(f), 0.11 (s) 0.21(p), 0.11(f), 0.12 (s) 0.25(p), 0.23(f), 0.17 (s) 0.25 (p), 0.16(f), 0.18 (s) 

Latitude and longitude in parenthesis correspond the centroid of the satellite area associated with the site location; MAT, mean annual 
temperature from long-term FLUXNET2015 data; MAP, mean annual precipitation from long-term FLUXNET2015 data; soil texture taken 
from the HWSD; n, porosity; Ks, saturated soil hydraulic conductivity; b, pore size distribution index; sh, hydroscopic point; sfc, field capacity; 
α, observed average daily rainfall depth in 2012, the subscript w indicates that α was computed for only the wet season months; λ, observed 
average daily rainfall frequency in 2012, the subscript w indicates that λ was computed for only the wet season months;; td, number of days in 
the dry season; superscripts (p), (f), and (s) correspond to values used for the point-, footprint-, and satellite scale analysis. Citations for each 
FLUXNET2015 site: Sebastien Biraud (2002–) AmeriFlux US-ARM ARM Southern Great Plains site- Lamont, 10.17190/AMF/1246027; Kim 
Novick, Rich Phillips (1999–) AmeriFlux US-MMS Morgan Monroe State Forest, 10.17190/AMF/1246080; Bev Law (2002–) 
AmeriFlux US-Me2 Metolius mature ponderosa pine, 10.17190/AMF/1246076; Dennis Baldocchi (2001–) AmeriFlux US-Ton Tonzi Ranch, 
10.17190/AMF/1245971 
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Table 2 Estimated ecohydrological parameters and goodness of fit of analytical soil saturation pdfs 
Site 

name Scale 
 N  NSE  KS  𝑬𝒎𝒂𝒙  𝒔∗  𝒔𝒘 
 p pwd  p pwd  p pwd  p pwd  p pwd  p pwd 

US-
ARM 

point  4 4  0.96 0.96  0.07 0.07  1.1 (11) 1.3 (14)  0.7 (8) 0.74 (5)  0.19 (4) 0.27 (7) 

footprint  3 3  0.94 0.94  0.08 0.06  1.7 (11) 2 (12)  0.62 (7) 0.61 (9)  0.24 (3) 0.29 (2) 

satellite  3 3  0.96 0.97  0.08 0.09  0.7 (13) 0.5 (13)  0.42 (4) 0.42 (4)  0.24 (3) 0.25 (2) 

US-
Ton 

point  3 4  0.95 0.97  0.09 0.08  2.3 (4) 1.9 (10)  0.24 (6) 0.33 (7)  0.12 (1) 0.18 (6) 

footprint  3 3  0.94 0.98  0.13 0.08  2.2 (3) 1.8 (8)  0.29 (2) 0.4 (10)  0.25 (0) 0.26 (1) 

satellite  3 9  0.99 0.99  0.06 0.07  1.2 (15) 1 (13)  0.53 (12) 0.62 (6)  0.22 (3) 0.26 (3) 

US-
MMS 

point  3 4  0.96 0.98  0.12 0.08  1.3 (3) 1.1 (6)  0.34 (3) 0.5 (8)  0.29 (0) 0.31 (2) 

footprint  3 3  0.95 0.95  0.13 0.08  2.7 (6) 4.5 (10)  0.82 (2) 0.79 (3)  0.38 (5) 0.59 (1) 

satellite  3 6  0.95 0.88  0.1 0.14  0.7 (8) 0.9 (10)  0.65 (4) 0.66 (3)  0.28 (9) 0.43 (2) 

US-
Me2 

point  3 8  0.95 0.97  0.16 0.1  1.4 (3) 1.1 (7)  0.33 (3) 0.37 (8)  0.29 (0) 0.29 (1) 

footprint  3 6  0.94 0.94  0.09 0.1  2.1 (2) 2.9 (10)  0.23 (4) 0.45 (5)  0.15 (2) 0.2 (6) 

satellite  3 4  0.89 0.89  0.12 0.1  1.6 (12) 1.4 (15)  0.64 (8) 0.66 (8)  0.25 (3) 0.31 (4) 

Values in parenthesis correspond to the coefficient of variation of the posteriori parameter estimates in percentage. 
p, analytical model for the soil saturation pdf without seasons, pwd, analytical model for the soil saturation pdf including wet and dry seasons;   N, number of 20’000 simulation runs 
needed to obtain 3 converging results (see Sect. 2.3.2); NSE, quantile-level Nash Sutcliffe efficiency; KS, Kolmogorov Smirnov statistic;  𝐸=>?, maximum evapotranspiration in mm 
d-1 (the weighted average wet and dry season 𝐸=>? is reported for the pwd  model) ; s*, point of incipient stomatal closure; sw, wilting point.  

 

 


