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Abstract. A multi-resolution (MR) approach was successfully implemented in the context of a data assimilation (DA) frame-

work to efficiently estimate snow water equivalent (SWE) over a large head water catchment in the Colorado River Basin

(CRB), while decreasing computational constraints by 60%. Thirty-one years of fractional snow cover area (fSCA) images

derived from Landsat TM, ETM+ and OLI sensors measurements were assimilated to generate two SWE reanalysis datasets,

a baseline case at a uniform 90 m spatial resolution and another using the MR approach. A comparison of the two showed5

negligible differences in terms of snow accumulation, melt and timing for the posterior estimates (in terms of both ensemble

median and standard deviation). The MR approach underestimated the baseline peak SWE by less than 2%, and day of peak

and duration of the accumulation season by a day on average. The largest differences were, by construct, limited primarily to

areas of low complexity, where shallow snowpacks tend to exist. The MR approach should allow for more computationally

efficient implementations of snow data assimilation applications over large-scale mountain ranges with accuracies similar to10

those that would be obtained using ∼100 m simulations. Such uniform resolution applications are generally infeasible due to

the computationally expensive nature of ensemble-based DA frameworks.

1 Introduction

Spatial resolutions of 100 m or less are more commonly being recommended when using land surface models (Wood et al.

(2011), Bierkens et al. (2015), Beven et al. (2015)), especially when trying to capture the heterogeneity of snowpack states in15

montane regions (Clark et al. (2011), Winstral et al. (2014)). Previous work using hydrologic response units (HRUs; Beven

and Kirby (1979), U. S. Geological Survey et al. (1983), Sivapalan et al. (1987), Chaney et al. (2016)), or triangulated irregular

networks (TINs; Tucker et al. (2001), Vivoni et al. (2004), Mascaro et al. (2015)), showed that simulating in a “one size fits all”

(uniform grid) approach is not only computationally expensive, but also sub-optimal since only small subsets of watersheds

actually require being resolved at fine spatial resolutions. Along these lines, Baldo and Margulis (2017) developed a multi-20

resolution (MR) scheme for raster-based models and tested it in the context of deterministic snow modeling. By adapting

the grid size to the physiographic complexity of the terrain, runtime and storage needs were cut in half while preserving the

accuracy of a 90 m baseline simulation.

Deterministic forward modeling itself, even at high-resolution, is often insufficient due to errors in model inputs (most
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notably precipitation) that are poorly characterized in montane regions. In lieu of deterministic modeling techniques, ensemble-

based data assimilation (DA) methods are now frequently used to estimate snow states (Clark et al. (2006), Andreadis and

Lettenmaier (2006), Su et al. (2008), De Lannoy et al. (2010), Liu et al. (2013), Arsenault et al. (2013), Girotto et al. (2014b),

Margulis et al. (2015), Kumar et al. (2015)). The advantage of such approaches is to offer spatially and temporally continuous

estimates, while also providing a measure of their uncertainty. However, due to their ensemble nature, such methods can be5

extremely expensive to run at high spatial resolutions, which at least partly explains why many of the large-scale studies

cited above simulate snow processes at resolutions on the order of 1 km or greater. Simulating at these scales can solve the

computational issue, but inherently sacrifices valuable information related to sub-grid heterogeneities in montane regions. This

is undesirable since relevant remote sensing data streams that can act as model constraints (e.g. Lidar, Landsat, MODIS, etc.)

are available at higher resolution (from meter- to hundreds of meter scale).10

The recently developed 30+ year Sierra Nevada and Andes snow reanalysis datasets by Margulis et al. (2016) and Cortés and

Margulis (2017) successfully leveraged high-resolution Landsat data using a data assimilation framework applied at uniform

resolutions of 90 and 180 m respectively. For these regional-scale domains, this resulted in 6 million and 5.5 million simulation

pixels respectively, which were run in the context of a 100-member ensemble. For reference, given that Northern Hemisphere

snow covered area is on the order of 8 million km2 (Derksen and Brown (2012)), using a 100 m resolution would require the15

simulation of 8 billion pixels, a nearly four order of magnitude increase relative to the combined effort for the Sierra Nevada

and Andes. Hence, extending these ensemble-based reanalysis methods to much larger scales using a uniform resolution on

the order of 100 m is computationally prohibitive. Taking advantage of a MR approach to significantly reduce computational

constraints might therefore greatly benefit ensemble-based DA frameworks and allow for applications at much larger scales.

This paper aims to test the performance of the MR approach from Baldo and Margulis (2017) in the context of a probabilistic20

DA framework (Margulis et al. (2015)).

The MR approach as applied by Baldo and Margulis (2017) only impacted prior (model-based) snow estimates as a result

of aggregation of model inputs. In the context of the DA framework used by Margulis et al. (2016) and Cortés et al. (2016),

the MR approach will also coarsen the fSCA observations derived from raw Landsat images (Cortés et al. (2014)), which can

potentially additionally impact the accuracy of the posterior snow state estimates. We hypothesize that this additional source25

of aggregation error will have minimal impact on the posterior estimates because it is expected a priori that the heterogeneity

of fSCA in areas of low complexity will be minimal. Areas of high physiographic complexity typically correspond to areas

of spatially heterogeneous snow accumulation and melt patterns, which drive fSCA evolution. Applying the MR approach to

fSCA observations will therefore coarsen regions of the image where fSCA is most likely homogeneous and refine regions

where fSCA is most likely heterogeneous, and should therefore mitigate the impact of reducing the number of pixels on the30

reanalysis accuracy.

In this paper, a high-resolution (90 m) uniform grid baseline SWE reanalysis dataset was compared to one derived using the

MR scheme to address the following questions: 1) How does the MR approach impact the assimilated fSCA observations? 2)

How well does the MR approach perform in estimating the central tendency (i.e. ensemble median) of the posterior snow state

distribution in space and time? 3) How well does the MR approach perform in estimating the uncertainty of the posterior snow35
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state distribution in space and time?

The rest of the paper is organized as follows: Section 2 illustrates the study area and the methodology used in this work.

Section 3 compares the MR approach to the 90 m baseline case in order to answer the questions listed above. Finally, Section

4 summarizes the key points of this work.

2 Methodology5

2.1 Study area

In order to maintain consistency with the work of Baldo and Margulis (2017), this study also used the Upper Yampa River

Basin (UYRB, outlined in black in Figure 1) as a representative test domain of the Colorado River Basin (CRB). The CRB is

large (6770 km2) and snow-dominated, which makes it a critical source of fresh water for the 20 million people living down-

stream (Christensen et al. (2004)).10

Figure 1. Complexity metric (CM) map of the Colorado River Basin (CRB) with the Upper Yampa River Basin (UYRB) outlined in black

and displayed in more detail in the sub-panel.
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In this study, the physiographic complexity metric (CM) was calculated for each 90 m pixel i across the CRB (Figure 1)

following the approach described in Baldo and Margulis (2017):

CMi = σ̂Zi + ˆσNIi + ˆσfvegi
(1)

5

where the normalized standard deviations of elevation (σ̂Zi ), and northness index ( ˆσNIi , Molotch et al. (2004)) were derived

from the advanced spaceborne thermal emission and reflection (ASTER) global digital elevation model (DEM, JPL (2009)),

and the normalized standard deviation of forested fraction ( ˆσfvegi
) was derived from the National Land Cover Dataset (NLCD,

Homer et al. (2007)). Across the CRB, CM varies from 0 (bare and flat areas) to over 0.8 (steep and forested areas), with the10

UYRB sampling a similar range of complexity (Figure 1).

2.2 Multi-resolution approach

The MR algorithm begins with a pre-defined set of resolutions across which a raster-based model implementation will be

applied. The finest baseline resolution is chosen to correspond to that deemed important for representing processes in high-

complexity areas of a basin. The specific set of resolutions to be applied are chosen by the user; herein we use factor 2 multiples15

of a 90 m baseline resolution up to 720 m. The final spatial distribution of resolutions depends on the choice of a maximum

CM threshold (CMmax), above which pixels are simulated at the finest resolution and below which pixels are simulated at a

mix of coarser resolutions. The threshold is chosen based on available computational resources for an application. In this study

we chose to use a CMmax of 0.65, which corresponds to the 90th percentile of the CRB CM values (Figure 2). Based on the

benchmarking tests performed by Baldo and Margulis (2017), such a threshold leads to a decrease in total pixel numbers on20

the order of 60 to 70%, which corresponds to reasonable computational costs for a full CRB snow reanalysis.

By construct, all of the UYRB pixels with a CM value larger than 0.65 were resolved at the baseline spatial resolution of

90 m, while the less complex ones were assigned either 720 m, 360 m, 180 m or 90 m by the MR algorithm developed by

Baldo and Margulis (2017). The majority of the 720 m pixels are located in the northwestern part of the basin (Figure 2) corre-

sponding to flat and grassy areas. Modeling almost a quarter of the pixels at this coarse resolution represents the main source25

of computational savings, while minimizing the impact on snow accumulation and melt patterns given the homogeneous phys-

iography of the terrain. The remaining low CM pixels were assigned either 360 m, or 180 m depending on the complexity of

their neighbors. In terms of the most complex pixels, 31% of the pixels are resolved at 90 m in order to preserve the accuracy of

SWE estimates. In UYRB, these pixels tend to be located at higher elevations, where the terrain is rugged and densely forested

as described in Baldo and Margulis (2017) (Figure 2).30
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(31%)		(25%)		(20%)		(24%)	

Mix	of	90	m,	180	m,												90	m	only		

360	m	and	720	m	

MR algorithm  
(Baldo and Margulis, 2017) 

Figure 2. (left panel) Complexity metric distribution for the Upper Yampa River Basin. The choice of the maximum threshold CMmax of

0.65 represented as the red vertical line leads to (right panel) the spatial resolution distribution map.

2.3 SWE reanalysis framework

2.3.1 Model framework and forcings

The modeling setup used in this study is the same as described in Margulis et al. (2016). The Simplified Simple Biosphere

(SSiB) model developed by Xue et al. (1991), coupled with a three layer snow and atmosphere soil transfer (SAST) model

(Sun and Xue (2001), Xue et al. (2003)) was used as the land surface model (LSM) to represent the interactions between the5

atmosphere, vegetation, and snow. A snow depletion curve (SDC) (Liston (2004)) was used to represent the sub-grid hetero-

geneity in SWE and the resulting fSCA. The coupled LSM-SDC generates time series of SWE and fSCA as a function of the

sub-grid coefficient of variation (CV) and pixel-averaged cumulative snowfall and snowmelt.

The static inputs required by the LSM are latitude, longitude, elevation, slope, and aspect, which were derived from the

advanced spaceborne thermal emission and reflection (ASTER) DEM (JPL (2009)), as well as landcover derived from the10

National Land Cover Database (NLCD, Homer et al. (2007)). The static inputs were aggregated from their original 30 m reso-

lution to the model resolution (either 90 m for the baseline or a mix of 90 m, 180 m, 360 m, and 720 m for the MR case). The

dynamic meteorological forcings were obtained from the Phase 2 North American Land Data Assimilation System (NLDAS-2,

Cosgrove et al. (2003), Xia et al. (2012)) hourly forcing dataset. NLDAS-2 variables include precipitation, incident shortwave

radiation, near-surface air temperature, humidity, wind speed and pressure at a coarse spatial resolution of 1/8 ◦. The NLDAS-215

forcings were downscaled to the model resolution using topographic correction methods that have been previously applied over

the Sierra Nevada and the Andes (Girotto et al. (2014b), Girotto et al. (2014a), Margulis et al. (2016) and Cortés et al. (2016))

as well as Upper Yampa in Baldo and Margulis (2017). Lapse rates of 6.5◦K/km and 4.1◦K/km were used for air temperature

and dewpoint temperature respectively. Downscaling approaches for atmospheric pressure, specific humidity, and the incoming

longwave and shortwave radiation fluxes are explained in detail in Girotto et al. (2014b) (Appendix A). The downscaling is20
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not deterministic, but also incorporates a priori uncertainty in the forcings (Girotto et al. (2014b); Appendix A). It is important

to note that the precipitation is not downscaled a priori, but treated as an uncertain random variable following a lognormal

distribution with a mean of 2.25 and a standard deviation of 0.5 that is then implicitly downscaled and updated as part of the

data assimilation framework.

5

2.3.2 Assimilation of Landsat-based fractional snow cover area using a particle batch smoother

The probabilistic DA framework used in this study is referred to as the Particle Batch Smoother, or PBS, and was developed

by Margulis et al. (2015) in order to improve the probabilistic reanalysis framework used previously for SWE reanalysis in

Durand et al. (2008), Girotto et al. (2014b) and Girotto et al. (2014a). The coupled LSM-SDC provides a prior ensemble esti-

mate for all snow states and fluxes based on the specified input uncertainty and its propagation through the model. The prior10

ensemble treats each replicate as an equally likely (equal weight) realization based on the postulated input uncertainty. The

goal of the PBS approach is to optimally weight the different uncertainty sources coming from the meteorological forcing and

fSCA retrievals in order to generate posterior snow estimates. Specifically, the reanalysis step is applied to a batch of the full

set of fSCA measurements (retrospectively) over the water year. A likelihood function updates the prior weights whereby the

posterior weights can be used to determine the pdf or moments (i.e. mean, median, variance, inter-quartile range, etc.) of any15

of the snow states/fluxes. The mathematical framework is presented in detail in Margulis et al. (2015).

Landsat-5 thematic mapper (TM), Landsat-7 enhanced thematic mapper (ETM+), and Landsat-8 operational land imager

(OLI) images from water year 1985 to 2015 were used to calculate fSCA and fractional vegetation cover over each pixel.

For a given sensor, measurements are available every 16 days at a spatial resolution of 30 m, and only clear-sky images were

processed to obtain fSCA. The raw data consist of multispectral top of atmosphere radiance measurements that are trans-20

formed into top of atmosphere reflectance before being atmospherically corrected. The spectral unmixing algorithm validated

by Cortés et al. (2014) and based on Painter et al. (2009) then retrieves the fraction and type of constituent (snow, vegetation or

bare rock/soil) within each pixel through a least-square-error optimization. The linear unmixing model estimates reflectances

from each constituent and selects the combination of constituents leading to the lowest root mean square error (RMSE) between

the modeled reflectance and a library of snow reflectances that have previously been calculated for different combinations of25

constituents within each pixel. The validation of the algorithm by Cortés et al. (2014) showed an fSCA retrieval error of ap-

proximately 15%. The vegetation cover fraction (fVEG) was also retrieved from the spectral unmixing algorithm and annually

averaged and used within the LSM-SDC. The fVEG derived from Landsat observations was chosen over the static NLCD for

use in the LSM-SDC model to allow for inter-annual variability and because it is also, by construct, more consistent with the

fSCA observations used in the assimilation step. Similar to the static input data, the fSCA and fVEG images at 30 m were then30

aggregated to either 90 m for the baseline case, or a mix of 90 m, 180 m, 360 m, and 720 m for the MR case.
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2.3.3 Verification of posterior SWE estimates

A posterior set of SWE reanalysis estimates was first generated for 31 years (WY 1985 – WY 2015) at the baseline resolution of

90 m, and compared to in-situ measurements to assess its accuracy. A total of 203 peak SWE measurements from six SNOTEL

stations and 1421 monthly manually sampled SWE from seven snow courses were used. Not all locations have full records for

the full period, with two snow pillows / courses starting in 1986 and one in 1998. All snow pillows are collocated with snow5

courses and station 5 is a snow course only (Figure 3). All in-situ observations are taken at high elevations, between 2500 and

3200 m, in densely forested clearings; some representativeness errors are therefore expected when compared to grid-averaged

SWE estimates.

Figure 3. Elevation map of the Upper Yampa River Basin with the location of the seven snow courses shown in red and the location of the

six snow pillows shown in blue.

The prior SWE estimates are highly uncertain by construct, and overestimated in–situ observations from both snow courses10

and pillow (Figure 4). Prior estimates had a mean difference (MD) of 30 cm, and a root mean square difference (RMSD) of 41

cm for snow courses, and a MD of 43 cm, with a RMSD of 51 cm for snow pillows. Both showed a similar correlation coef-

ficient (R2) of 0.86. Note that, based on previous work (Luo et al. (2003), Girotto et al. (2014b)), the NLDAS-2 precipitation

was assumed biased and therefore bias-corrected using the prior distribution (using a mean of 2.25 as indicated above). The

fact that the prior SWE overestimates in situ data is an indication that there is likely an over-correction in the prior precipitation15

(at least at these sites). In contrast, the reanalysis generated posterior SWE estimates that are much more consistent with the

in-situ data, are extremely well correlated to in-situ measurement and show limited mean differences. The MD is less than 2 cm
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for snow courses and less than 5 cm for snow pillows, with RMSD of 10 cm and R2 higher than 0.95 for both. The small differ-

ences observed may be partly explained by undercatch problems with SNOTEL pillows measurements, and also by the fact that

in-situ SWE measurements are usually made in easily accessible areas such as clearings and therefore not fully representative

of the collocated 90 m pixel-average values. The difference in errors between the prior and posterior is primarily indicative of

the data assimilation method properly selecting ensemble members with precipitation forcing that is consistent with the fSCA5

observations. Based on the comparison with in situ data, the posterior SWE estimates generated at 90 m can be considered to

be an accurate representation of the true underlying SWE for the UYRB and are thus used as a baseline throughout.

MD = 0.302 m 
RMSD = 0.408 m 
R2 = 0.858 

MD = 0.018m 
RMSD = 0.104 m 
R2 = 0.951 
 

MD = 0.426 m 
RMSD = 0.507 m 
R2 = 0.865 

MD = 0.042 m 
RMSD = 0.100 m 
R2 = 0.968 

Figure 4. (left panel) Scatter plots of prior estimated snow water equivalent (SWE) vs. in situ, (middle panel) posterior estimated SWE vs.

in situ and (right panel) histogram of the difference for (a) all snow courses and (b) snow pillows. The markers represent ensemble medians

while the intervals represent the interquartile range (IQR). The mean difference (MD), root mean square difference (RMSD) and correlation

coefficient (R2) are displayed.
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3 Performance of the MR SWE reanalysis compared to the 90 m baseline

As shown previously in section 2.3.3, performing a SWE reanalysis at 90 m yields an accurate reference solution for our test

basin. However, such a simulation is very expensive in terms of computational resources. Modeling the basin uniformly at

90 m meant running almost 840,000 pixels with an ensemble size of 100 replicates, which took over a month on the UCLA

computer cluster and required 850G of space to store the resulting outputs. On the other hand, the MR approach decreased the5

number of pixels and storage need by 59%. Since pixels are simulated independently from each other, they are run in parallel,

which is why runtime also decreased by 59% and took less than 2 weeks. Knowing that the MR SWE reanalysis can decrease

computational constraints by a factor of two or more, the following section aims to assess its performance in terms of accuracy.

3.1 Impact of the MR approach on the assimilated fSCA observations

The MR modeling approach as applied previously in Baldo and Margulis (2017) impacts the prior snow simulations, but in10

the context of a DA (reanalysis) framework as done herein, it also coarsens the fSCA observations that provide the key con-

straint that generates the posterior estimates. Assessing the difference between the baseline and MR fSCA is therefore crucial

to understand the full effect of the MR approach on the data assimilation step. To this end, processed fSCA images at the 90 m

baseline and at the MR were first compared during the accumulation season, around day of peak (DOP) and during the ablation

season. As seen in Figure 5, the MR approach does not significantly alter the fSCA observations for the three sample dates15

chosen, and the mean absolute difference (MAD) is on the order of 5% (the MD is 0% for all three measurements) over the

UYRB. The largest differences are concentrated over areas with partial snow cover (notably the Southeastern corner in Figure

5a and the more central parts of the basin in Figure 5b-c), which most likely correspond to snow ablation.
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MAD = 4.64 %  

MAD = 5.2 % 

MAD = 3.3 % 

Figure 5. Maps of fractional snow cover area (fSCA) during (a) the accumulation season, (b) at a time near day of peak (DOP), and (c) during

the ablation season over the Upper Yampa River Basin for the 90 m baseline, the multi-resolution (MR) case and the difference between the

two approaches. The exact acquisition day and sensor type (L5 for Landsat-5 TM, L7 for Landat-7 ETM+, and L8 for Landat-8 OLI) are

displayed for all three samples. White areas inside the watershed bounds (in the left and middle panels) were covered by clouds.

In order to better understand the seasonality of the fSCA differences, all observations were binned by month and averaged

over the 31 years of record (Figure 6a). The differences are negligible between the 90 m baseline and the MR case during

the accumulation season (October to January), while the MR method slightly overestimates the baseline fSCA by 4% or less

during the ablation season (February to August). The annual average difference is 0.87%. The expected impact of assimilating

larger fSCA values during the ablation season is an overestimation of the length of the snowmelt period, which, for the same5

amount of melt season energy inputs, would translate into larger posterior SWE estimates. As seen in Figure 6b-c, fSCA from

both the baseline and the MR case share a similar distribution with respect to CM and Peak SWE (SWEpeak). As expected,
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areas of high fSCA correspond to areas of high SWE accumulation at the higher elevation of the basin, which also tend to

be the most complex. By design, the MR approach does not coarsen areas of high physiographic complexity that can experi-

ence sharp differences in accumulation/ablation from one pixel to another. Hence, by construct, the MR fSCA is identical to

the baseline for CM larger than 0.65, and slightly differs from the baseline in low complexity areas as seen in Figure 6b. In

addition, Figure 6c shows that the difference in fSCA over regions of high SWE accumulation is negligible as well (1.3% or5

less). Given the small differences observed, the effect of the MR approach on the assimilated fSCA observations is minimal and

therefore is not expected to significantly alter the performance of the data assimilation scheme (discussed in more detail below).

Figure 6. fSCA climatology derived from the 31-yr record of Landsat observations over the Upper Yampa River Basin: bin-averaging of all

observations across the range of (a) months of the water year, (b) CM values, and (c) peak SWE (SWEpeak) values for the 90 m baseline

and MR case. The CM maximum threshold CMmax of 0.65 is represented by the vertical dashed line (b).
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3.2 Impact of the MR approach on snow climatology metrics

The following analysis focuses on the comparison of the posterior ensemble median SWE estimates for the baseline and MR

cases. Peak SWE (SWEpeak), day of peak (DOP), and duration of melt (DOM) were chosen for analysis. SWEpeak is defined

as the maximum daily SWE in a given WY. DOP is defined for each WY as the day when SWE is equal to SWEpeak. DOM is

the difference between the melt-out day, defined as the day when only 1% of the original SWEpeak remains, and DOP, which5

effectively quantifies the duration of the ablation season. These metrics can be defined either pixel-wise or for basin-averaged

values.

3.2.1 Mean spatial distribution

Figures 7a, 8a, and 9a show maps of the 31-yr average pixel-wise SWEpeak, DOP and DOM, while figures 7b, 8b, and 9b show10

the distribution of the respective 31-yr average relative differences binned by CM, elevation (Z), slope, fVEG, and SWEpeak.

In these figures, the baseline estimates were always subtracted from the MR estimates, which means that a positive difference

represents an overestimation of the baseline by the MR case and vice versa.

0.431 m 0.424 m - 1.6 % 

Posterior 90 m SWEpeak
(31-yr average)

Posterior MR SWEpeak
(31-yr average)

Difference
(MR – 90 m)

Figure 7. (a) Maps of pixel-wise 31-year average posterior peak SWE (SWEpeak) over the Upper Yampa River Basin for the 90 m baseline,

the MR case, the percent difference between the two approaches (MR – baseline), and the corresponding scatter plot. Basin averages are

displayed at the bottom of each map. (b) Distribution of SWEpeak relative difference with complexity metric (CM), elevation (Z), slope,

forested fraction (fVEG), and SWEpeak. Pixels with a 31-yr average SWEpeak lower than 5 cm were discarded from the analysis.
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As expected, the climatological SWEpeak shows significant spatial variability for both the MR and 90 m baseline with values

ranging from zero to well over 1 m of SWE (Figure 7a). The middle and western parts of the basin that are not physiographically

complex (see Figure 1) receive 25 cm or less on average. Given their location and relatively low elevation (less than 2000 m)

the SWE accumulation is not orographically driven, but more heavily influenced by the few winter snowstorms occurring over

the basin. The more complex areas in the eastern and southern edges of the basin accumulate a much larger amount of SWE5

(on the order of 1 m or more). On average, the MR approach underestimated pixel-wise SWEpeak by 7.2 mm or 1.6%, with

the most complex areas showing no difference since they were modeled at 90 m by design, and the less complex but high

elevation areas showing larger differences on the order of 10 cm, or roughly 10% of SWEpeak. As seen in the density scatter

plot, the majority of pixels have a SWEpeak around 20 cm, and the correlation between the baseline and the MR case is very

strong with a correlation coefficient of 0.96. Figure 7b shows that the bin-averaged relative differences between the pixel-10

wise MR and baseline SWEpeak are constrained between -5 and 5%. By construct, the CM bands larger than 0.65 show no

difference because all the MR pixels were simulated at the baseline resolution. All elevations bands show an underestimation of

SWEpeak, with the largest differences observed at middle elevations between 2600 m and 3200 m. Since the UYRB is densely

forested at these elevations, this is consistent with the largest underestimation occurring for the highest fVEG bands. Regarding

the distribution of the differences with slope, the lower slope bands (0° – 15°) underestimate SWEpeak while the higher slope15

bands (20° – 35°) show overestimation. As discussed in Baldo and Margulis (2017), the coarsening of pixel properties by the

MR method leads to a slight increase in fVEG for densely vegetated pixels, as well as an increase of more gentle sloped and

north facing pixels. In the context of the SWE reanalysis, the magnitude of melt energy flux largely dictates the peak SWE

that is consistent with a given fSCA depletion time series. The increase in fVEG as a result of the MR approach leads to an

underestimation of the melt (energy) flux at the snow surface (as a result of attenuation of solar radiation), which decreases the20

posterior MR SWEpeak for these pixels. Since the minimum solar zenith angle during the ablation season over the UYRB is

16◦, reducing gentle slopes (0◦ – 15◦) leads to an underestimation of the melt flux (as a result of becoming less perpendicular

to the incoming direct beam solar radiation), which decreases the posterior MR SWEpeak for these pixels. Reducing steeper

slopes (20◦ – 35◦) has the opposite effect and overestimates the melt flux, increasing the posterior MR SWEpeak for these

pixels.25

The posterior SWEpeak estimates are therefore impacted by the MR approach in two ways: i) an overestimation of the

assimilated fSCA during the ablation season and ii) a general underestimation of the melt flux due to the coarsening of the basin

physiography, with the exception of steep pixels where the melt flux is overestimated. The basin-averaged underestimation of

SWEpeak observed in Figure 7 suggests that the effect of coarsening the static inputs and meteorological forcing on SWEpeak

is more important than the effect from the coarsened assimilated fSCA images. More importantly, the differences are the largest30

for the lowest SWEpeak band (less than 15 cm). The MR approach therefore concentrated the largest SWEpeak differences

to areas of low CM that tend to accumulate less SWE.
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March 12th  March 11th  - 0.5 % 

Posterior 90 m DOP
(31-yr average)

Posterior MR DOP
(31-yr average)

Difference
(MR – 90 m)

Figure 8. (a) Maps of pixel-wise 31-year average day of peak (DOP) over the Upper Yampa River Basin for the 90 m baseline, the MR case,

the percent difference between the two approaches (MR – baseline), and the corresponding scatter plot. Basin averages are displayed at the

bottom of each map. (b) Distribution of DOP relative difference with complexity metric (CM), elevation (Z), slope, forested fraction (fVEG),

and SWEpeak. Pixels with a 31-yr average SWEpeak lower than 5 cm were discarded from the analysis.

Regarding DOP, Figure 8a shows that SWE in the middle and western regions of the basin that are not physiographically

complex peaks early during the winter between January and March. In contrast, the more complex regions in the eastern and

southern parts of the UYRB accumulated SWE until much later during the spring (April to June). These complex regions show

very good agreement between the baseline and MR case in term of timing, with larger differences over the rest of the basin.

The average underestimation of 0.8 day or - 0.5% is negligible. As seen in the density scatter plot, the majority of pixels have5

peak values around March 1st, with a strong correlation coefficient of 0.89. Figure 8b shows DOP difference distributions with

CM, elevation, slope, fVEG and SWEpeak similar to SWEpeak (Figure 7b), while the magnitude of the DOP differences is

much smaller and ranges between 0.5% and -2%. The MR approach therefore preserves the accuracy of areas accumulating

large amounts of SWE, that peak later in the spring.
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60.7 days 61.7 days + 1.6 %  

Posterior 90 m DOM
(31-yr average)

Posterior MR DOM
(31-yr average)

Difference
(MR – 90 m)

Figure 9. (a) Maps of pixel-wise 31-year average duration of melt (DOM) over the Upper Yampa River Basin for the 90 m baseline, the MR

case, the percent difference between the two approaches (MR – baseline), and the corresponding scatter plot. Basin averages are displayed

at the bottom of each map. (b) Distribution of DOM relative difference with complexity metric (CM), elevation (Z), slope, forested fraction

(fVEG), and SWEpeak. Pixels with a 31-yr average SWEpeak lower than 5 cm were discarded from the analysis.

Regarding the duration of the ablation season, DOM can vary from less than a month over the areas that accumulated little

SWE and started melting as soon as the snowstorm events ended, to almost five months over the southwestern edge of the basin

(Figure 9a). The average DOM is 61.7 days, or 2 months for the MR case, which overestimates the 90 m baseline by 1 day

or 1.6%. The density scatter plot shows that the majority of pixels have a DOM between one and two months, with a strong

correlation coefficient of 0.88. The slight overestimation of DOM by the MR case was expected, given the underestimation of5

melt fluxes from the increase of gentle north facing and densely forested pixels (Baldo and Margulis (2017)) and the higher

assimilated fSCA observations in the MR case. Figure 9b shows that the largest DOM overestimation occurs at the lowest band

for all five variables. When looking at the distribution with SWEpeak specifically, pixels accumulating 15 cm of SWE of less

show a DOM difference of 7%, while pixels accumulating 1 m or more only show a DOM difference of 1% or less. Pixels

accumulating low amounts of SWE can be very intermittent in nature, without a clear SWEpeak or DOP, which can explain10

the higher difference seen in Figure 9b.

Based on these results, when applying the MR approach to the SWE reanalysis framework, we therefore expect the largest

differences to occur over areas of low physiographic complexity. These types of areas tend to peak early during the winter,
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accumulate less SWE, and melt within a month and display lower levels of spatial variability that are easier to model at coarser

resolutions.

3.2.2 Basin-average mean seasonal cycle

The mean seasonal cycle of MR SWE underestimates the baseline case by less than 1 cm as shown by the 31-yr average

difference displayed in black in Figure 10b. Figure 10a-b show that the seasonal cycles for both the MR and baseline case5

closely match during the accumulation season (November to March) with differences in the range of +1 / -1 cm and a negative

mean around – 5 mm as shown by the grey shaded area and the black line respectively in Figure 10b. The basin-averaged mean

SWEpeak is 0.374 m for the MR case, and 0.381 m for the 90 m baseline (Figure 10a), which leads to a mean difference of

-7.1 mm (or -1.95%, Figure 10b). In terms of timing, DOP based on the mean seasonal cycle fits almost perfectly within a day,

with the MR case peaking on March 15th and the baseline case on March 16th on average (Figure 10a). The underestimation10

is more pronounced during the early ablation season (March to June), where the difference in assimilated fSCA observations

is the largest (Figure 6a) with the entire range of WYs showing negative differences, and a maximum of -2.1 cm (or -5.4%)

observed for the wettest year, WY 1996. Even though the MR case is assimilating slightly larger fSCA observations during

the ablation season (Figure 6a), the coarsening of the static inputs shown in Baldo and Margulis (2017) decreases the energy

inputs, which ultimately lowers the posterior MR SWE estimates, and therefore explains the slight underestimation observed15

during the ablation season in Figure 10.
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Figure 10. (a) Daily timeseries of basin-averaged posterior SWE from WY 1985 to WY 2015. The 31-yr averages are displayed in solid

lines, while the shaded regions represent the full range across WYs. (b) The 31-yr averaged difference between the MR case and the baseline

is displayed in black, with the full range of differences shaded in grey.

3.2.3 Inter-annual variability

The baseline and MR annual timeseries of SWEpeak show close agreement in inter-annual variations (Figure 11a). The scatter

plot illustrates the positive performance of the MR case, including at both ends of the spectrum, which confirms that the MR

case is estimating dry and wet years accurately. Figure 11b-c also illustrates the similarities in DOP and DOM inter-annual

variability. WY 1985 shows the largest differences because there were two similar values of maximum SWE within 1 cm that5

occurred 15 days apart. The MR case identified the first peak as SWEpeak, while the baseline did the opposite, which does not

impact the SWEpeak, estimate, but does impact both DOP and DOM. Beyond this single-year, the MR case closely represents

the inter-annual variability in the timing and length of accumulation and ablation seasons over the reanalysis period.
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Figure 11. (left panel) Annual timeseries and (right panel) scatter plot with linear regressions of basin-averaged (a) peak SWE (SWEpeak),

(b) day of peak (DOP), and (c) duration of melt (DOM) or the 90 m baseline and the MR case.

The fact that the MR case is capturing inter-annual variability correctly is further confirmed by the similar shapes of the

baseline and MR empirical distribution functions (ECDFs) for all three metrics (Figure 12). The 10th percentiles, medians

and 90th percentiles for both the MR and baseline cases are presented in Table 1. The statistics between the baseline and MR

cases only differ by 1 cm for SWEpeak, and 2 days for DOM. Regarding DOP, the statistics are identical (Table 1), and the

difference between the two ECDFs in Figure 12b is due to the special conditions in WY 1985 as explained above. Half of the5

WYs had SWEpeak less than 0.37 m, while 10% had less than 0.29 m and 90% had less than 0.47 m for the baseline, or 0.36

m, 0.28 m, and 0.46 m for the MR case. The DOP distribution was identical between the baseline and MR cases, with the

median, 10th and 90th percentiles on March 12, March 4 and April 2 respectively. Finally, DOM was shorter than 303 days for

the baseline or 301 days for the MR case for half of the WYs simulated, with the 10th and 90th percentiles being 278 days / 276

days and 327 days / 325 days respectively.10
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Percentile
Baseline Multi-Resolution (MR)

SWEpeak (m) DOP DOP (day) SWEpeak (m) DOP DOP (day)

10th 0.29 March 4 278 0.28 March 4 276

50th 0.37 March 12 303 0.36 March 12 301

90th 0.47 April 2 327 0.46 April 2 325

Table 1. Return period values for peak SWE (SWEpeak), day of peak (DOP), and duration of melt (DOM) for both the baseline and MR

cases.

Figure 12. Empirical cumulative distribution functions (ECDFs) of (a) peak SWE (SWEpeak), (b) day of peak (DOP), and (c) duration of

melt (DOM) for the 90 m baseline and the MR case.
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3.3 Impact of the MR approach on spatial variations of SWE uncertainty

The previous analysis focused on the impact of the MR approach on the posterior ensemble SWE median (i.e. a metric of

central tendency). However, another strength of the reanalysis framework is to also provide a measure of uncertainty via the

posterior ensemble. In this section the impact of the MR approach on the posterior ensemble SWEpeak standard deviation

(<σ>) and coefficient of variation (<CV >) is examined, where the angle brackets (< >) are used to emphasize the ensemble5

operator.

In order to focus on the spatial distribution of the ensemble posterior SWEpeak uncertainty, the 31-yr average maps of <σ>

and <CV > (Figure 13) were created by pooling <σ> and <CV > for each pixel over all 31 WYs as follows (Bingham and Fry

(2010)):

< σ >i =

√∑31
y=1(< σ >y

i )2 +
∑31

y=1(< µ >y
i −< µ >i)2

31
10

<CV >i =
< σ >i

< µ >i
(2)

where the overbar notation denotes the 31-year average.< σ >i is the 31-yr average ensemble SWEpeak standard deviation

for pixel i, and < µ >i is the 31-year average ensemble SWEpeak mean for the same pixel i. < σ >y
i and < µ >y

i are respec-

tively the ensemble SWEpeak standard deviation and mean for each individual WY y. The 31-yr average SWEpeak coefficient

of variation (<CV >i) for each pixel i was calculated as the ratio between the pixel 31-yr average ensemble SWEpeak stan-15

dard deviation and mean.
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- 1.06 %  

+ 0.47 %  

σ	 σ	90 m < σ > MR < σ >
Difference

(MR – 90 m)

Difference
(MR – 90 m)90 m < CV > MR < CV >

Figure 13. Maps of the 31-yr average ensemble SWEpeak (a) standard deviation (< σ >i), and (b) coefficient of variation (<CV >i) for

(left panel) the 90 m baseline, and (middle panel) MR case. The relative differences in < σ >i and <CV >i are shown in the right panel.

The basin-averaged differences are displayed at the bottom of the maps in the right panel.

As seen in Figure 13, the spatial distributions of < σ > and <CV > are highly variable. For both the baseline and MR

cases, the high elevation areas accumulating large amounts of SWE (see Figure 7a) show < σ > on the order of 15 - 20 cm

with a <CV > on the order of 10% – 20%, while the lower parts of the UYRB have a < σ > around 5 cm or less, with a

<CV > higher than 60%. Regarding the relative difference between the MR and baseline cases (Figure 13a-b, right panel),

no particular spatial pattern can be observed for < σ >, with the exception of a few areas showing an underestimation on the5

order of 10%, bringing the basin-average difference to -1.06% or -1.8 cm. Figure 13b shows that the regions accumulating the

most SWE with the lowest <CV > also have the lowest relative difference between the MR and baseline cases (white areas

on the eastern and southern edges of the UYRB). Similar to the difference in < σ >, the basin-average difference in <CV >

of 0.47% is negligible.
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4 Conclusions

This study demonstrated the performance of a new MR terrain discretization approach in the context of a snow reanalysis

framework using the assimilation of Landsat-derived fSCA observations. The MR approach was shown to have an insignificant

impact on the fSCA observations assimilated and the reanalysis framework led to posterior SWE ensembles similar to the high-

resolution 90 m baseline. The SWE reanalysis dataset generated with the MR approach matched the 90 m baseline ensemble5

median within 1 cm on average for peak SWE magnitude and within 1 day on average for timing of the accumulation and

melt seasons. Most of the difference between the two approaches occurs in areas accumulating less than 15 cm of SWE, while

areas accumulating more than that are estimated with a high degree of accuracy. In addition, the MR approach also preserved

the SWE uncertainty, where the ensemble standard deviation and coefficient of variation showed differences on the order of

-1% and 0.5% respectively. This study has demonstrated the feasibility of the MR approach in the context of a snow reanalysis10

framework, where the significant decrease in computational costs will allow much larger scale implementations of the SWE

reanalysis over full mountain ranges, while preserving the accuracy of fine spatial resolution simulations.
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