
Response to the review of “Should radar precipitation depend on incident air 
temperature? A new estimation algorithm for cold climates”. 
 
RC2: Responses to Anonymous Referee 2  
The authors wish to thank the reviewer for his constructive comments and corrections to the 
discussion paper. In the following, we have responded to each of the comments from the 
reviewer. The comment from the reviewer (RC) is in italic font while the author comment (AC) 
and changes in the manuscript (CM) are in blue normal font. Revised Figures are added 
herewith as Appendices. 
 
RC: Overview 
In their paper entitled “Should radar precipitation depend on incident air temperature? A new 
estimation algorithm for cold climates”, Sivasubramaniam and colleagues present an attempt 
to improve radar-based quantitative estimation of precipitation by using observed near 
surface air temperature as a co-variate. The authors claim that the inclusion of air 
temperature in a non-parametric statistical estimation technique reduces the RMSE of 
precipitation estimates, particularly for cold climates. 
The paper is fairly well written and fits the scope of HESS, although a discussion of 
hydrological implications is clearly missing. However, I have serious doubts about the 
methodological approach, the significance of the results, and the conclusions drawn by the 
authors, some of which I will explain in the following. 
 
Understanding the cumulative and non-uniform effects of temperature 
The authors state, on p. 2, ll. 9 ff. that "the scope of the present study is limited to radar 
precipitation estimation uncertainty during conversion from reflectivity to rain rate, with a 
focus on cold regions experiencing a mixture of solid and liquid precipitation.“ I doubt that. 
Temperature not only affects the R(Z) relationship e.g. subject to the precipitation phase. 
Near surface air temperature either indirectly affects or correlates with different processes in 
the formation of precipitation in the atmosphere, but also along the radar observation and 
processing chain. That might lead to systematic effects on estimated precipitation intensities 
which accumulate over the entire estimation chain with R(Z) transformation only being the 
very last step. Near surface air temperature is e. g. indicative of different vertical reflectivity 
gradients (thus affecting observed reflectivity as a function of distance from radar), and also 
vertical air density gradients (affecting atmospheric refractivity and thus beam propagation / 
altitude). Higher precipitation intensities and thus path-integrated attenuation tend to increase 
with higher temperatures. The study misses is a systematic framework that takes into 
account different temperature effects that cause systematic precipitation estimation errors. 
The fact that the VPR is addressed in the met.no radar data processing chain does not mean 
that VPR effects (or the effects of correction) are not systematically present in the data 
anymore. A way to better understand these effects is to use polarimetric radar observations. 
That way, snow and rain can be discriminated (where radar actually measures them – not in 
a gauge on the ground!), so the quantitative effects could be investigated in order to 
understand the contribution of R(Z) uncertainty. The authors provide a general reasoning 
about some temperature-related effects (p. 3. ll. 25-30), but these effects are never really 
picked up again in the rest of the paper. 
 
AC: We agree with the reviewer that there are effects of temperature with different processes 
in the formation of precipitation in the atmosphere and along the radar observation. However, 
in this study, we investigated the radar data product from met.no, which are converted by 
using single Z-R equation. The focus of this study is to improve the data for practical 
applications by using the available data sources. As discussed in the summary and 



conclusion (ref. p. 14 ll. 20 – 22), if precipitation phase can be identified by alternative 
mechanism (e.g., polarimetric radar), the temperature effects can be better understood.  
 
CM: The “Results” section will be renamed as “Results and Discussion” and hydrological 
implications will be discussed. 
The following text will be added. 
“A more accurate estimation of radar precipitation can provide better estimation of 
hydrological response. It is common practice to adjust radar precipitation against gauge 
observation. It should be noted though that this adjustment, while effective in an operational 
sense, can often mask the corrections that could be incorporated in the estimation procedure 
through use of additional data for the VPR and its relationship to snow. We recommend, 
when such data is readily available, use be made to infer the changes to the VPR for the low 
temperatures in focus here. This, however, is not attempted in our study as we are restricted 
to using available gauge and weather radar data collected in Norway.” 
 
RC: Effects of systematic undercatch of snowfall 
Still, one might argue: I am not so much interested in understanding the processes behind 
the phenomenon. I just want to produce a better precipitation estimate (i.e. decrease the 
systematic error). But is that really achieved? On p. 3, ll. 1-15, the authors illustrate the 
motivation of their study by showing different regression slopes between radar-based 
precipitation (predictor) and precipitation as observed by the gauge (independent variable), 
for assumed snowfall and rainfall conditions. That example clearly reveals a fundamental 
issue: Measurement of snowfall by precipitation gauges has consistently been shown to 
exhibit a systematic undercatch that is significantly more pronounced than the undercatch of 
rainfall (see e.g. Gross et al. 2017, Wolff et al.2015). So which effect do the authors observe: 
a “bias in the radar precipitation estimation for snow” (p. 3, l. 11), as assumed out by the 
authors, or a bias in the snow observation by gauges. Maybe a mix of both? In my opinion, it 
is almost impossible to reach any substantial conclusions based on the data and methods 
presented in the study. 
AC: We agree with the reviewer that precipitation undercatch is more important for snowfall 
than for rain. However, for the gauges used in this study, there is a lack of data for 
performing wind corrections. Only 15 out of 88 gauges are equipped with wind speed 
measurement and thereby suitable for correction. By using the Nordic correction model 
(Wolff et al., 2015), we corrected precipitation at temperatures below +3 C for wind induced 
under catch for these 15 gauges. It was found that 14 gauges out of 15 showed less 
correlation between radar precipitation and gauge precipitation after wind correction. Further, 
the total radar precipitation volume is less than the uncorrected gauge precipitation volume 
computed from the data used in the study for all those 15 gauges. We think this analysis 
show that there is a winter underestimation of precipitation by the radar. Hence, the bias is 
not due to precipitation undercatch by gauges for snow in the data. 
 
CM: Text will be included to the paragraph on p3, l1-14 and the precipitation under catch and 
catch correction will be discussed.  
 
RC: Transparency of the cross-validation framework 
The methods section does not elaborate on the leave-one-out-cross-validation (LOOCV) 
setup. Only in the results section, on p. 10, ll. 17-25, the application of LOOCV is pointed out. 
Still, the exact setup of the LOOCV remains unclear and leaves the reader with substantial 
doubts. If one gauge is left out to test the prediction, on which basis are the partial weights 
inferred for that prediction? From the nearest neighbour? From a weighted average of 
neighbours? For Fig. 3, as a result of what is described on p. 10, ll. 21-25, we do not know 



that. For Fig. 4, where an average partial weight of the entire study area is used, we do not 
know whether LOOCV has been applied at all, and on what basis. Only for Fig. 5, the 
authors state that for each gauge, the partial weights had been derived from the five 
neighbouring gauges. Apart from that, p. 11, l. 16 – p. 12, ll. 1-2, casts serious doubts on the 
integrity of the LOOCV setup: “As mentioned in section 3, this study uses the gauge 
precipitation as the observed response for the regression estimation. So insufficient data 
points can also be the reason for lesser improvement in these locations because 
nonparametric k-nearest neighbour prediction (a data-based model) depends highly on the 
availability of sufficient data.” Does that mean that only the partial weights are independently 
computed from the validation target, while the observations of the target are still used in 
order to carry out the k-nearest neighbour regression? That could not be considered a valid 
LOOCV approach. The issue needs to be clarified in the minutest details, including a full 
disclosure of the data and the code used for the analysis. In this context, I have to 
emphasize that I cannot say anything about the nonparametric statistical techniques used in 
this study, which are outlined in section 3.1. I assume these techniques are fine, but I do not 
feel qualified to assess their applicability and the implications for the validity of the LOOCV, 
at least not from the present manuscript. 
AC: We agree with the reviewer that LOOCV setup was not elaborated in the manuscript. We 
clarify as follows and we will add text to the manuscript.  
In the study, two settings of LOOCV were used.  
1) k-nn regression estimate of expected response by leave one out cross validation 
(“knnregl1cv” - tool in the NPRED package (Sharma et al., 2016)). 
As described in the manuscript (p.10, ll. 17-18), k-nn regression estimate of expected 
response was calculated by leaving out that observed response value from the regression 
and then RMSE was calculated. For each gauge location, data from that gauge location was 
used (Results on Figure 3). 
Partial weight for each gauge location was calculated independently using the data at each 
gauge location and then RMSE was estimated as described above by using entire data at 
that gauge location. However, a split sample test was done to verify the results, where two-
thirds of the data were used to estimate partial weight and one-third of the data were used to 
estimate RMSE for each gauge location. The split sample test gave the same results as 
before. 
 
2) Spatial cross validation 
As described in the manuscript (p.12, ll.3-5), for each gauge location, partial weight was 
calculated by leaving that gauge out and from 5 nearest neighbours. Then for that gauge 
location (independent from partial weight computation), expected response was calculated 
by using tool “knnreglcv” in the NPRED and then RMSE was calculated (Results on Figure 
5). 
A single average partial weight was calculated by arithmetic mean value of partial weights of 
all gauge locations which were computed independently at each gauge location and 
presented in the Figure 2 and Table 1. The idea is to use a single regional value for partial 
weight. RMSE was calculated and presented (Results on Figure 4). 
 
CM: Text will be updated in the manuscript (Results section) to clearly describe the two 
settings of LOOCV used in the study. 
 
 
 
 



RC: Other issues (some of them major) 
The entire section 2 (background) is far too extensive and provides a lot of information that is 
not pertinent to the study, and that does not play a role for discussing the results. 
AC / CM: Background section provides additional information for those who are unfamiliar 
with the topic. We will update the text to make it more succinct where this can be 
accomplished without sacrificing clarity. 
 
How is Eq. 1 an equation? 
AC: Expression can be a better word.   
CM: “Equation” will be replaced with “Expression”. 
 
Section 3.2: Would be helpful to additionally use an evaluation criterion that measures 
the systematic error (e.g. mean error). 
AC: We estimated mean absolute error (MAE) and it showed similar patterns as RMSE. We 
feel use of additional metrics may not offer new insights to what we have reported here. 
 
p. 8, ll. 27-29: It should be carefully analyzed whether simply choosing the nearest neighbour 
provides the best correspondence between radar-based QPE and rain gauge observations. 
Particularly at hourly intervals, the consistency depends on the neighbourhood definition due 
to representativeness issues. 
AC: We agree that there are representativeness issues. However, in this study we assumed 
that, radar precipitation estimates at a gauge location are as same as the pixel location 
where the gauge located. 
 
p. 8, ll. 33-25: Including such intensities as low as 0.05 – 0.5 mm might lead to the fact that 
insignificant precipitation dominates the results in terms of relative changes of the RMSE, as 
hourly rainfall follows a gamma-like distribution. Confining the analysis to significant 
precipitation should address that issue. 
AC: Intensity of precipitation in the study area is low moreover; winter precipitation intensity 
is very low. Nearly 75 % of the data used in the study is within the intensities of 0.05 - 0.5 
mm at temperatures below +3o C.  
 
Most figures in section 5: I find the continuous colorbars very difficult to interpret. 
Please use a discrete colorbar instead. 
AC / CM:  The colour ramp for the Figure 2 will be differentiated from Figure 3-5 (ref. Figure 2 
Appendix). It can be noted that presented values are in the continuous domain, continuous 
colour bar could be more appropriate.  
 
p. 10, ll. 4-6: How do you know the number of snow data pairs? 
AC: Air temperature was used to classify the data pairs as snow or rain and hence number of 
snow pairs were counted in the preliminary investigation presented in the manuscript (ref. 
p.3, ll.5-6). As Figure 1 is referred, simplistic estimation of snow pairs was mentioned in this 
sentence. 
 
p. 10, ll. 9-10: “This outcome is a result of sampling uncertainty due to which a minimum of 
0.2 for the partial weight for radar rain rate has been used in the results.” That explanation is 
not satisfactory at all. More generally, any gauge with a very high partial weight for 
temperature should be considered with great caution – why should temperature be a better 
predictor than radar rainfall?? Presumably only in case radar rainfall at that particular location 
is affected by serious artefacts. Here, a systematic analysis of the relation between radar and 
gauges on a per-gauge basis is required, together with a spatial analysis of systematic errors 
in the radar rainfall (e.g. due to partial beam blockage, residual clutter, ...). 



AC / CM: Please note our response against this point to Reviewer 1. Essentially, there is 
sampling uncertainty in any statistic that is estimated. Similar uncertainty exists for the partial 
weight given it is a nonparametric measure. We argue that physical reasoning invalidates 
radar precipitation to be a function of temperature and not of ground precipitation. Hence we 
impose a prior belief that disallows this possibility. The threshold adopted reflects our prior 
belief and is consistent with any similar modelling applications that are used in hydrology. 
We emphasise here that our aim is to assess simply the importance of temperature on radar 
precipitation estimation, keeping other factors unchanged. We have approached this issue 
using extensive data allowing us to statistically meaningful assertions. It is for this reason we 
speculate on possible factors that may be impacting our results (in the lines of what the 
assessor has mentioned) but keep our results focussed on the temperature related impacts 
noticed. We will clarify this further and note other possible factors more clearly in the revised 
manuscript. 
 
Table 1: Why not show a histogram instead? 
AC: Histogram will be presented with Table 1. However, we keep Table 1 as it summarises 
the partial weight values which are used to describe the results in the manuscript (p.10, 
ll.13). 
CM: Histogram will be added to the manuscript (ref. Figure new nr., Appendix) 
 
p. 10. ll. 27-28: “Further, it can be noted that all the gauge locations with an associated 
partial weight of air temperature (betaT > 0) shows an improvement in radar precipitation 
estimation.” What does that mean in the context of a crossvalidation where you do not know 
the partial weight at the target location? 
AC: As described above for the response to “RC: Transparency of the cross-validation 
framework”, two LOOCV settings used in this study. Here the “knnregl1cv”, tool in the 
NPRED was used for each gauge location. Partial weight was estimated independently for 
each gauge location and that partial weight was used in k-nn regression. 
 
p. 10, ll. 1-2: “raingauge locations with a minimum partial weight for radar rain rate (betaR = 
0.2 betaT = 0.8), did not show improvement in RMSE.” How can you compare the two 
settings – one only based on radar rainfall and the other with betaR arbitrarily set to 0.2? 
AC: Partial weight computation resulted in a zero partial weight for radar rain rate on those 
locations. Presumably, partial weight of radar precipitation rate could not be 0 and hence we 
set a minimum partial weight of 0.2 for radar precipitation rate. However, in order to inform 
the reader that whether such less partial weight for radar rain rate (0.2) can or cannot 
improve RMSE, RMSE was estimated and presented. 
 
For all investigated changes in RMSE, please investigate the statistical significance of that 
change (e.g. by using bootstrapping). E.g. on p. 11, ll. 7-8, it is stated that “over 80 percent of 
the gauge locations in the study area show more than 3 percent improvement in RMSE”. 
Which portion of these changes is statistically significant? 
AC: All changes denoted in the manuscript are assessed using cross-validation. As a result, 
any differences, when present, represent statistical significance. There is no need of 
bootstrapping in this scenario as model complexity is not relevant in the results obtained. In 
fact, if the model were overly complex (for instance using additional predictor variables or a 
smaller value of ‘k’), cross-validation performance will deteriorate, with poorer results than 
have been presented. 
 
p. 11, ll. 3-11: What is the implication of the fact that using an average partial weight over the 
entire study area produces better results? Was that result also achieved from an LOOCV? It 



is important to understand how the partial weights were assigned in the analysis that assigns 
a specific partial weight to each station, on order to understand the implications of this 
experiment. 
AC: The implication is that a single regional partial weight can be used at any ungauged 
location within the study area. A single average partial weight is an arithmetic mean value of 
the partial weights of gauge locations in the study area. It can be noted that results 
(improvement in RMSE) from single average resembles with the results from 5 nearest 
neighbours (ref. p.12, ll. 6-8) which was achieved by LOOCV. 
 
p. 11, ll. 3-11: One implication of this paragraph is that the spatial pattern of partial weights is 
meaningless (unless proved otherwise), since a simple average provides better results.  As a 
consequence, I recommend to drop the maps in section 5, and show e.g. histograms instead, 
or any other visualisation that allows the reader to better understand the quantitative 
implications of the results. 
AC: Spatial plots shows also the reader that the temperature dependency is spread 
throughout the study area. Further, it can be noted that there are spatial variation of partial 
weight and RMSE, e.g., the most southerly locations showed lesser improvement in RMSE 
(ref. p. 12, ll. 9-13). 
CM: Histogram will be added to show the estimated partial weights at gauge locations (ref. 
Figure new nr., Appendix). 
 
p. 12, ll. 11-13: Meaning remains unclear. 
AC: The most southerly locations showed less dependency on air temperature. The mean 
negative temperature is lower (almost zero degree Celsius) for these locations than other 
locations. There can be no many snow events at these locations. 
CM: The following sentence is added on p.12, ll.12.  “Hence there can be no many snow 
events at these locations.” 
 
p. 13, ll. 1-5: “[...] resulted in a maximum of 20 percent total improvement [...]” – where has 
that been shown? “[...] The nonparametric k-nn predictive model with radar rain rate as a 
single predictor improves the prediction.” – that has not been shown in the results, either – 
no benchmark based on a direct rainfall estimation from reflectivity is shown. 
AC: As main focus of this paper is to investigate the dependency of radar precipitation on air 
temperature, results from the k-nn predictive model with radar rain rate as a single predictor 
was not presented for all stations. To compare and discuss the results with those in the 
literature, the maximum improvement was reported in the results and then discussed. 
CM: Text will be updated. 
 
p. 13, l. 12 ff.: That paragraph basically shows that the predictive model does not contribute 
to an understanding of temperature effects. It rather feeds the suspicion that the effect of 
temperature merely balances different observational biases of the precipitation gauges with 
regard to rain and snow. 
AC: We repeated the computation for 15-gauge locations where wind speed measurements 
are available for wind induced precipitation catch correction. Partial weight and RMSE were 
estimated with corrected precipitation as observed response for these gauges. After we 
corrected the gauges for catch correction, we still see a partial weight for air temperature and 
an improvement in RMSE for the corrected gauges. We do believe that this shows a 
temperature effect and the viability of the method presented. 
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Appendix – Revised Figures 

 
 

 
 
Figure 2. Partial weights of radar precipitation rate (beta_R) for precipitation gauge locations 
(colour scale) and number of data pairs (circle size), which are used to estimate partial 
weight at each gauge location, overlaid on the coastline of the study area. Partial weights 
provide a measure of relative importance of predictor variables on the response and the 
summation of partial weights (beta_R + beta_T =1) is equal to 1. 

 
 
 
 
 
 
 
 



 
Figure new nr.  Percentage number of precipitation gauges against estimated partial weight 
of radar precipitation rate (beta _R) for those gauge locations and the mean partial weight 
(red dash line) for the study area. Total number of gauges used in the study = 88. 
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