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Response to Reviewer comments on “A classification algorithm for

selective dynamical downscaling of precipitation extremes”.

EP Meredith, HW Rust, U Ulbrich

May 3, 2018

1 Preliminaries

In the following pages we set out in detail the actions we have taken to address the concerns of the reviewers.
At the end of the document, a marked-up version of the revised manuscript is appended, highlighting all of the
changes to the text. Aside from changes to the text, the form of the rightmost column in Tables 2 and 3 has
been modified to make it easier to understand, and Figure 2 has also been updated (Fig. 2 shows the catchment
boundaries, important waterways in the region, and the orography of the 0.02° model). The new Figure 2 now
additionally shows the locations of precipitation-measuring stations of the German weather service, so that readers
have an idea of the underlying station-density behind the gridded observations we use.

In the initial Author Comments (AC1) we provided our initial responses to the reviewer comments (RC1, RC2)
and set out our planned changes to the manuscript. The full detailed reasoning for changes made, or not made, is
therefore not repeated in this document, but rather presented as necessary in an abridged form. See here for AC1:
https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-660/hess-2017-660-AC1-supplement.pdf.

All references to page/line numbers are for the new version of the manuscript.

https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-660/hess-2017-660-AC1-supplement.pdf
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2 Response to Reviewer #1 (P Laux)

The manuscript presents a very interesting contribution to combine dynamical downscaling approaches with
a statistical classification procedure in order to save computational costs. The approach aims at extreme
precipitation events and is restricting the dynamical downscaling to those days, in which the probability of
extreme events is enhanced. For this reason, the concept of Potential Extreme Days (PEDs) is introduced,
which is based on a classification approach of synoptic circulation patterns. The manuscript is well written
and understandable in general. The procedure is scientifically sound and clearly described. However, there
are concerns in terms of its “applicability” and “usefulness”. In order to deserve publication, the following
aspects need to be considered and elaborated.

My main points center around the efforts required to restrict the dynamical downscaling (in convection-
permitting resolution) to selected events only and the credibility of the results obtained:

- First, I do not see clearly a potential application behind (at least it is not clearly described in the manuscript).
Please elaborate clearly which kind of research and practical application can be considered with this in hydro-
logical modelling.

- In addition, it might be difficult for hydrological models to deal with non-continuous data (time series)
focusing on the extreme events only. In particular, issues may arise in calibration/validation of such process-
based hydrological models based on extreme precipitation events only, i.e. the credibility might be limited if
these models are calibrated based on extremes exclusively.

As mentioned in AC1, these concerns were also shared by the other reviewer. We have thus taken the following
steps:

1. Added brief (one sentence) application examples to the introduction (P3 L28)

2. Added a new paragraph to the ‘Further Discussion’ (P20 L20-32), in which the main applications of our method
and how the data could be applied are discussed. This paragraph starts off by outlining appropriate applications
for the data produced via our method, before explaining why observations and/or coarse-model data may be
sub-optimal for these applications. The paragraph finishes by stating how models could be calibrated and
initialized prior to performing simulations. This is in addition to the already-existing paragraph (P20 L33 -
P21 L4) which discusses further applications.

3. The Further Discusson section now also contains a warning about how the data should NOT be used (P20
L16-19), to avoid the risk that such data are used to draw unjustifiable conclusions.

- The efforts of the classification to identify the PEDs are high. The results depend on the selected domain,
number of clusters, selected predictors, selected threshold values, etc. It seems that this is not as straight-
forward and to be implemented as described in the manuscript. For instance, a predictor screening must be
undertaken if the approach is transferred to other regions. Please elaborate and discuss further.

As mentioned in AC1, we agree that a screening of factors such as predictor variables, thresholds, etc., must be
performed before applying the approach to different catchments; the method should not be directly transferred to
other catchments/situations without modification. We have implemented the following changes:

1. Added guidance to Sect. 2.2 about selecting predictors (P7 L9-11), including the citation of a relavant new
study from Chan et al. (2018).

2. In the ‘Further Discussion’ (P20 L1-2), we add that the predictors we use, or those proposed in Chan et al.
(2018), may be used as a starting point for applying the method elsewhere, but not more.
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3. In Table 1 (the table which shows our predictors/thresholds), we add a warning which says that our predic-
tors/thresholds could be used as a starting point for applying the method to other catchments, but that they
should not be directly transferred without first considering meteorological characteristics specific to heavy
rainfall events at the new catchment.

We feel that these changes help to better communicate our message that the same methodological framework can be
applied to other catchments, though subject to necessary changes in predictor variables, thresholds, etc. The issue
of predictors performing more/less successfully across different regions and/or seasons is unfortunately unavoidable
in any empirical-statistical framework (e.g. Volosciuk et al., 2017). This very point is indeed already covered in the
‘Further Discussion’ (P19 L20 - P20 L2) when we talk about the desirability of users finding predictors “most suit-
able to their own catchment”. This new information about the selection of predictors is in addition to pre-existing
guidance (see e.g. P7 L7-9 & L20-21, P19 L19 - P20 L10).

- From regional climate modelling perspectives, I have concerns in selecting single days only instead of per-
forming continuous simulations. I am referring to the initial conditions, when a new simulation is initiated.
It is well-known that these are rather imperfect. This is less problematic for the atmospheric compartment
of the RCMs (because of the relatively short memory), however, the terrestrial compartments such as e.g.
soil moisture need a certain time to reach equilibrium. For this reason, spin-up periods of several days to
weeks might be necessary, which limits the benefit of the presented approach tremendously. In addition to
that, time requirements to set-up and submit and control multiple short-term simulations are high.

The issue of soil-moisture and soil-temperature spin-up is an important one, and we have clarified the situation as
follows (Sect. 2.3, P8 L13-20):

1. Explained that we initialize the convection-permitting model (CPM) by interpolating from the 12 km resolution
model (a standard procedure in ‘weather-forecast mode’)

2. Explained that the soil components of the 12 km model can be considered fully spun-up at the 12 km scale
due to the multi-decadal simulations at 12 km resolution

3. Warned that this does not mean that the soil components will be fully spun-up at the scale of the CPM and
that CPMs tend to have a drier soil-moisture climatology

4. Warned that our method thus may not be suitable for simualating precipitation extremes sensitive to local
soil-moisture anomalies

In combination with the aforementioned new discussions of what applications our method is appropriate for (P20
L20-32), some of which don’t even require initialization of terrestrial components from the CPM, we believe that
appropriate caveats are now provided for the reader.

- The application of the classification for the past is well justified, however, it might be very limited for
the future (“stationarity” assumption). As correctly mentioned, it can be expected that certain extremal
circulation patterns change or other patterns might become more important for extreme events. This is more
likely for periods in the far future, e.g. the time slice towards the end of this century, as used in this study.
For periods in the far future, I would trust more to the pure dynamical downscaling.

As mentioned in AC1, we fully agree with this comment. To properly emphasize the issue of stationarity to the
reader, we have made the following additions to the text:

1. In the Introduction (P2 L16-18), we explain that the predictor-predictand relationships used in both model
parametrization schemes and statistical methods may not remain the same in the future.

2. In the Further Discussion (P20 L12-16) we discuss the stationarity assumption in more detail and then re-
emphasize (P20 L17-19) that traditional projections can only be made with continuous downscaling.

In addition to the pre-existing text in Sect. 3.4 (where we say that only continuous downscaling would work for
the case where new circulation patterns cause precipitation extremes in a future climate), we feel that the issue of
stationarity has now been comprehensively addressed.
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Another concern is the validation of the identified PEDs (section 3.2). I would suggest to check not only
the occurrence frequencies, but also the timing of the extremes using the reanalyses data. These can be
checked with the timing of the extremes based on station data for the catchment. The frequency is not a good
performance criterion to my opinion.

In our original response in AC1, we set out in detail why we did not think that this would enhance the analysis,
though with the caveat that we may have misunderstood the suggestion. We thus promised to instead include a
more detailed discussion of the issue of RCM internal variability in the manuscript and how this affects the relation
between potential extreme days (PEDs) identified from reanalysis and PEDs identified from reanalysis-forced RCM
simulations. We have thus re-written the relevant paragraph in Sect. 3.2, starting on page 12 line 7, to better ex-
plain that the PEDs identified from ERA-Interim reanalysis are not the same as the PEDs we identify from CCLM
simulations which use the same reanalysis as lateral boundary conditions. This re-written section also incorporates
some re-wordings suggested by the other reviewer. References on RCM internal variability are provided for further
reading.

Minor issues:

- I suggest to leave out the code fraction (page 8)

As explained in AC1, we would prefer to retain this so long as the Editor agrees, as we feel that the code-schematic
concisely summarizes the method and is helpful for understanding the procedure.

- Section 3.3 (Page 13): The authors claim that they perform a performance testing on continuous simu-
lations, but the tests are restricted to the summer periods. I also understood that the RCM downscaling is
done only for the summer periods, but maybe I misunderstood this. Anyway, I think it is confusing and the
term “continuos” should be omitted.

Across the manuscript, we have replaced the term ‘continuous’ with ‘seasonal time-slice’ where appropriate. For
example, P1 L15-16, P10 L1 & L20, P14 L19 & L26, titles of Sect. 2.4 and 3.3. We also emphasize that the
0.02◦-simulations are continuous from April - August and that analysis is restricted to the summer (JJA) months
(P10 L14-15).

- Please check the brackets given after high-resolution data (abstract, line 1, introduction, lines 21 and 23;
Page 18, line 2, etc.)

We have deleted all square brackets.
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3 Response to Reviewer #2 (R Benestad)

The paper “A classification algorithm for selective dynamical downscaling of precipitation extremes” by
Meredith et. al. presents an interesting strategy for a more efficient and targeted simulations of heavy
precipitation with high-resolution convective-permitting regional climate models. They make use of the de-
pendency of local rainfall on the large-scale (synoptic) conditions in terms of circulation patterns, and apply
a cluster analysis to distinguish between days when the conditions are right for heavy rainfall and days when
heavy rainfall is unlikely. Then they run a high-resolution regional climate model based on the first principles
(physics-based) to simulate rainfall for the selected subset. This approach can in a sense be considered as
a hybrid between traditional empirical-statistical downscaling and dynamical downscaling, since statistical
techniques (clustering) were used to select times for simulations.

The analysis presented in Meredith et. al. are in my opinion scientifically sound and this paper merits
publication, but there are a number of important caveats and there are a number of statements with which
I think are wrong. I also think the paper needs to explain how the results of their strategy can be used and
how they should not be used (I think there is a room for the misinterpretation of such results). A targeted
selection of cases, which the clustering analysis implies, means that the results are no random selection of
data that can be used in traditional projections. However, such results are useful for case studies, scenarios
and in stress testing, and the strategy enables the establishment of a catalogue of weather events with more
events than traditional simulations. These points could be made in the paper (in the Discussion).

To make clearer how data produced via our method can and cannot be used, we have added a new paragraph to
the ‘Further Discussion’ section (P20 L11-19). Here we explicitly state that our method cannot be used in the same
way as traditional projections, and that only continuous downscaling is appropriate for traditional projections. We
also discuss issues related to the assumption of stationarity in this paragraph. Additionally, a second paragraph
(P20 L20-32) in the ‘Further Discussion’ discusses the specific type of modelling applications for which our method
could be used and why observations and/or coarser model data may be sub-optimal for such applications. Some
of the content of these two paragraphs addresses points raised by the other reviewer.

I also found the paper a bit hard to read and digest, and the figure and table captions especially cryptic. The
paper seems to be written for scholars who already are well-versed in the matter, but is less accessible for
the wider community. Hence, the paper could benefit from rephrasing some sentences. I hope I have not
misunderstood too much of the text.

We have done our best to add more clarity to the figure and table captions, and to make the text generally more
accessible. The captions for figures 1, 2, and 5-9, and tables 1-3 have all been modified to add more detail and
explanation. We hope that they are now easier to follow. We have also attempted to make the text more accessible,
e.g. by changing certain words and wordings in places. For example, P13 L3-10.

Some of the caveats are connected with statistics and need at least some discussion. The observations con-
sisted in gridded daily precipitation (REGNIE), but such products are associated with spatial inhomogeneity:
because of small-scale features in precipitation, the amount recorded in neighbouring rain gauges are rarely
as extreme as each other, which means that the gridded values which are a weighted sum of a number of
rain gauge records tend to reduce the extreme values. Moreover, the individual gridded values tend to have a
different statistical distribution to the individual underlying rain gauge data (which can be approximated as a
gamma distribution). Furthermore, models with different resolution (grid box area) are expected to produce
data with different statistical characteristics (area mean) which are not directly comparable to observations
(the closest is reanalyses). A related caveat is that a comparison between the area mean from different data
sets with different resolutions implies comparing statistical samples of different size, which also are expected
to differ merely because of the different sample sizes. To make this even more complicated, the models may
generate grid boxes with greater inter-dependency than the observations and less real degrees of freedom. I
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think such caveats must at least be discussed in the paper, even if it is harder to find a good solution to avoid
such shortcomings.

To address the limitations of gridded datasets for studying precipitation extremes, we have added new text to
Sect. 2.1 to make readers aware of these issues (P5 L16 - P6 L6). Here we discuss issues of spatial variability and
homogeneity and emphasize the importance of a sufficiently dense observational network underlying the gridded
product for the study of extremes. References are provided for further reading, as an extensive discussion is beyond
the scope of this paper. We also added extra information specific to the REGNIE dataset which we use (P5 L14-16)
and have marked the locations of the precipitation-measuring stations of the German weather service on Figure 2
(which shows the Wupper catchment and surrounding orography).

To address potential issues arising from differing sample sizes, when presenting the methods (see Sect. 2.3, P9 L6-9)
and results (see Sect. 3.2, P14 L14-17) we now make users aware that in certain cases statistical properties may
differ simply because of different sample sizes (i.e. number of grid cells comprising area mean), in particular for
cases of large differences in grid-cell resolution and for small catchments. In the caption for Fig. 5, where ECDFs
from CCLM and REGNIE are plotted alongside each other, we now also list the number of grid cells contained
within the Wupper catchment for each dataset, so that results can be more easily interpreted. Additionally, when
the REGNIE and CCLM data are first presented in the Methods section, their numbers of grid cells contained
within the Wupper catchment are also given in the text. See P5 L13 and P8 L14, respectively.

Finally, we have also added a sentence to the Methods (Sect. 2.1, P6 L5-6) saying that extremal circulation patterns
could also be identified from extreme precipitation days taken from a single station, if this station is known to be
broadly representative. This would be imaginable for smaller-sized catchments.

I found a number of statements both in the introduction and on page 19 with which I strongly disagree and
think are misconceptions. One reason may be the narrow and biased review of the literature. First of all,
statistical downscaling is a term that spans a wide range of techniques, and there have been some examples
of poor exercise of statistical downscaling that have given it a bad name. Furthermore, the paper uses a false
dichotomy between statistics and physics, which I find unfortunate - but this is also a common misconception.

We have removed all references to statistical downscaling which characterize it as lacking a physical basis. We have
also added discussions of the strengths/weaknesses of model parametrization schemes, to add more balance to the
literature review (specific examples will be referenced further below). Additionally, an effort has been made to
somewhat merge the discussions of strengths and weaknesses of statistical and dynamical downscaling methods, so
that any comparable weaknesses are presented together, rather than appearing to single-out one particular method
(e.g. P2 L5-23).

While there are some types of statistical downscaling techniques which are just statistics (e.g. the analog
model, neural nets), there are also statistical downscaling methods which are based on physical dependencies
(e.g. regression-based techniques). I have emphasised the importance to use physics as a basis for statistical
downscaling in a text book on statistical downscaling [1]. The passage ‘the lack of a physical basis behind
standard statistical downscaling techniques’ is therefore a gross generalisation that is both misleading and
incorrect.

As mentioned, we do not wish to discount the physical basis behind many statistical downscaling techniques and
have thus deleted all references to statistical downscaling lacking a physical basis.

While the sentence ‘Widely used univariate approaches do not capture physical and spatial dependencies and
thus physical and spatial coherence between different meteorological variables may not be maintained after
downscaling (Maraun et al., 2010), leading to combinations which are suboptimal as boundary conditions for
hydrological modelling’ gives a false impression about the merit of statistical downscaling. It is important
to stress that the statistical downscaling approach is tailored to a specific use to a much greater degree than
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dynamical downscaling, and if there has not been a need to preserve the physical and spatial dependencies,
then univariate approaches are adequate. I think this part of the discussion suffers from a limited and biased
literature review, as it is perfectly possible to use statistical downscaling for cases where spatial coherence be-
tween different meteorological variables is preserved [2]. Furthermore, the regional climate models also suffer
from similar problems: (a) when they produce different precipitation patterns to the driving global models,
the two levels of models are mutually physically inconsistent, and (b) when the the global and regional cir-
culation models use different parameterisation schemes, they are physically inconsistent. In addition, the
regional models tend to produce a smoother picture of the geographical patterns, partly due to the way the
lower boundary is provided.

We have deleted the passage on univariate approaches and physical/spatial coherence. All references to ‘coherence’
have been removed. As part of a general discussion of RCM added value (P2 L24 - P3 L2), we now mention that
RCMs can provide a large set of physically-consistent variables (i.e. consistent amongst the downscaled variables)
as input for hydrological models and illustrate with an example what we mean by this (P2 L35 - P3 L2), similar
to the example given in Author Comments 1 (AC1).

The notion of stationarity (p.2, L.15) is a problem for all models, and the passage ‘in the absence of a
physical foundation there is no intrinsic reason why a statistical downscaling method which performs well
in the present climate should also perform well in a future climate‘ is a bit like shooting oneself in the foot
(keeping in mind that the proposed strategy also makes use of large-scale predictors on par with statistical
downsclaing) - in addition to being incorrect (statistical downscaling does not lack a physical foundation in
general). All the general circulation models make use of parameterisation schemes (ironically called ‘model
physics‘) which essentially are ways to calculate bulk effect of various (unresolved) processes with the help
of statistical models (the parameterisation schemes are upscaling rather than downscaling models). Whereas
the degree of non-stationarity between scales can be examined in statistically downscaled results, it’s much
harder in dynamical downscaling and the global models where errors feed back into to model framework with
a non-linear effect.

As mentioned in AC1, stationarity is a limitation for our method, which we had previously attempted to highlight
(Sect 3.4, P18 L1-3 L12-, P19 L1-2). In the Introduction, we now mention that stationarity of the predictor-
predictand relationship in model parametrization schemes and statistical methods cannot be guaranteed (P2 L16-
18). We have also added a passage to the ‘Further Discussion’ (P20 L12-16) explaining how our method could be
affected in the absence of stationarity. Here we also mention that stationarity issues are common to both model
paramterizations and statistical methods.

I also find the notion ‘statistical downscaling method which performs impressively in one region or season
may not work as well in other seasons or regions‘ somewhat misleading. There is no reason why one would
use the same statistical downscaling approach everywhere, but it should instead be tailored to the specific
problem. Furthermore, statistical downscaling models should be properly evaluated wherever and whenever
they are applied (there have been poor studies where this has not been done properly). I can use my statistical
downscaling framework over the whole world without problem, depending on the availability of good ground
observations, but the models need to be tailored to the specific region. Moreover, statistical downscaling has an
advantage over dynamical downscaling through low computational costs which makes it ideal for downscaling
large multi-model ensembles of global climate model simulations [4]. The small ensemble size of independent
dynamically downscaled results is major problem that is likely to produce misleading results according to the
law of small numbers, even if the downscaling models themselves were perfect. It is therefore important to
stress the need for both statistical and dynamical downscaling. The introduction of the paper and page 19 need
a major revision with updated information. It is important to stop the spread of common misconceptions
about both statistical and dynamical downscaling.

We have deleted the sentence about a statistical downscaling methods performing differently in different regions.
We have in general now produced a major re-write of the Introduction and Discussion so that statistical downscal-
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ing is no longer misrepresented and/or unfairly singled-out.

Minor details:

The concept of added-value is tricky and context-dependent (p.2, L. 20). At least, it needs to be defined,
however, more details is not the same as added value. There have been criticism of regional climate models
for the lack of added-value [3].

We have clarified this sentence so that it is clear that AV must be considered at the spatial scale of the parent
model. It now reads as follows: “Importantly, this AV should not simply be understood as representing increased
small-scale detail, but rather AV at the spatial scale of the driving GCM due to more processes being represented
(Torma et al., 2015).”

It’s a bit of a stretch to use the term “extreme” (and ‘PED‘) for the 99-percentile of rainfall applied to all
days: that translates to 3-4 events per year. The label ‘heavy rainfall‘ is more appropriate. (p. 5, L. 1)

We have clarified that we take 99th percentile as a seasonal statistic (P5 L13), so it would equate to < 1 event per
year considering each season separately. We have also replaced the term ‘extreme’ with ‘heavy rainfall’ in many
places.

Caption of Fig 1 is not easy to understand. Can it be improved?

We have re-worded and hope that it is now clearer.

I found line 30 on page 6 (p.6, L30) a bit cryptic and suggest rephrasing.

This has been re-phrased and we hope that it is now clearer. See P7 L22-25.

Please state the ‘pan-European EURO-Cordex domain‘ (p.7, L-8). It will save the reader looking it up and
it should not take much space in the text.

We have added the approximate coordinates of the EURO-CORDEX domain to the text (P7 L33).

I think that ‘internal solutions’ is a more appropriate term than ‘error growth’ (p. 11, L.8) if I have under-
stood the text correctly (the regional model can generate its own description of internal details which may
differ from the GCM simulations used for boundary conditions?).

We have modified the text accordingly (P13 L8).

Table 2. Caption is not very helpful, and exactly what does ‘All Days’ mean?

We have added more detail and explanation to table captions 2 and 3. We have additionally changed the appear-
ance of the fifth column in tables 2 and 3, so that it is clearer that we are contrasting the fraction of redundant
days between the PEDs and the set containing all days.

What is ‘this’ referring to on p. 12 L.8 (‘... is far removed from this as . . .’).

The sentence has been reworded as promised in AC1 (P13 L18 - P14 L1).
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Reference to Fig 5 & Fig 1 (p.12, L.13). The ECDF presented is for an area mean precipitation? Please
state how many grid boxes/rain gauge stations this statistics comprises. The reason is that aggregated statis-
tics such as sums and averages converge towards a normal distribution (‘∼N()‘) with larger samples. If the
obs and CCLM area estimates involve different degrees of freedom (sample size), then we should expect to
see different types of curves. It would be easier to interpret these results if information of the number of
grid-boxes were provided with some test results on the type of distribution (e.g. Kolmogorov-Smirnov against
gamma & N()).

The caption states that this is an area average over the catchment. We have added the number of grid cells to the
caption too. We have also marked all precipitation-measuring stations of the German weather service on Fig. 2,
which is referred to in the caption for Fig. 5 so that readers know where to look if of interest.

More generally, we have rewritten the caption for the plot so that it is clearer what we are aiming to demonstrate,
namely (i) differences between the red curve (all observed days) and blue curve (observed PEDs), and (ii) sim-
ilarities between the blue curve and green curve (PEDs downscaled from CCLM-0.11° to 0.02°). We have also
attempted to add a bit more clarity on this to the main text (Sect. 3.2, P13 L18 - P14 L1).

I suggest splitting the Summary and Conclusions into a Discussions section and a short conclusions section.
This is useful for scholars who browse papers to see if it is of relevance and to make the take-home message
clearer.

We have split the ‘Summary and Conclusions’ into a ‘Further Discussion’ and a short ‘Conclusions’ section. As
mentioned in AC1, the former section name was chosen in light of the fact that its preceding section is already
called ‘Results and Disussion’.
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A classification algorithm for selective dynamical downscaling of precipitation
extremes

Abstract

High-resolution  climate  data  [O(1  km)] at  the  catchment  scale  can  be  of  great  value  to  both
hydrological  modellers  and  end  users,  in  particular  for  the  study  of  extreme  precipitation.
WhileDespite the well-known advantages  of dynamical downscaling with convection-permitting
models is a valuable approach for producing quality high-resolution O(1 km) data,  itsthe added
value  of dynamically downscaling to  O(1 km) resolutions  can often not be realised due to the
prohibitive computational expense. Here we present a novel and flexible classification algorithm for
discriminating between days with an elevated potential for extreme precipitation over a catchment
and  days  without,  so  that  dynamical  downscaling  to  convection-permitting  resolution  can  be
selectively  performed  on  high-risk  days  only,  drastically  reducing  total  computational  expense
compared to continuous simulations; the classification method can be applied to climate model data
or  reanalyses.  Using  observed  precipitation  and  the  corresponding  synoptic-scale  circulation
patterns from reanalysis, characteristic extremal circulation patterns are identified for the catchment
via a clustering algorithm. These extremal patterns serve as references against which days can be
classified  as  potentially  extreme,  subject  to  additional  tests  of  relevant  meteorological
variablespredictors in  the  vicinity  of  the  catchment.  Applying  the  classification  algorithm  to
reanalysis, the set of potential extreme days (PEDs) contains well below 10 % of all days, though
includes essentially all extreme days; applying the algorithm to reanalysis-driven regional climate
simulations  over  Europe  (12  km  resolution)  shows  similar  performance  and  the  subsequently
dynamically downscaled simulations (2 km resolution) well reproduce the observed precipitation
statistics  of  the  PEDs  from the  training  period.  Additional  tests  on  continuous  12-  and  2 km
resolution historical and future (RCP8.5) climate simulations, downscaled to 2 km resolution time-
slices, show the  algorithm again  reducing  the  number  of  days  to  simulate  by over  90  % and
performing consistently across climate regimes. The downscaling framework we propose represents
a  computationally  inexpensive  means  of  producing  high-resolution  climate  data,  focused  on
extreme precipitation, at the catchment scale, while still retaining the advantages of  convection-
permittingthe physically-based dynamical downscaling approach.

1 Introduction

Hydrological modellers and regional decision-makers benefit greatly from high spatial  [O(1 km)]
and temporal resolution climate data to both drive their catchment-scale hydrological models and
design regional planning strategies. These high-resolution data are necessary as standard- resolution
model data  [O(10-100 km)] suffer from many deficiencies, most noticeably both “averaging” and
“scale-interaction” effects whereby (i) area averaging over large grid cell areas smooths-out fine-
scale detail and (ii) feedbacks from small to large scales are not represented (Volosciuk et al., 2015);
these deleterious effects are amplified towards the tails of the distribution (Volosciuk et al., 2015).
Despite their desirability, suitably high-resolution datasets are however rarely available, either due
to insufficiently  dense  observational  networks  or  the  computational  expenses  associated  with
running climate models at such high spatial resolutions or, in the case of observations, insufficiently
dense  observational  networks.  To  bridge  this  gap,  both  statistical  and  dynamical  downscaling
techniques have been developed for precipitation (Maraun et al., 2010) and other variables. 

Statistical downscaling, encompassing a range of approaches (Wilby and Wigley, 1997) in which
statisticalempirical relationships  between  large-scales  and  local  weather  (i.e.  observations)  are
developed,  allows large ensembles of  provides the computationally cheaper means of generating
high-resolution  climate  data to  be  produced from  coarse-resolution  models at  minimal
computational expense and tailored to specific end-user needs. Such relationships can however only



be developed in the presence of both appropriate local weather data (typically observations) and
corresponding large-scale data (reanalysis or observational data), which are often unavailable at
sub-daily and sub-hourly temporal resolutions and/or spatially too sparse. Dynamical downscaling
with regional climate models (RCMs), O(10 km), provides an alternative to the statistical approach,
which is however computationally far more expensive. Issues of computational expense aside, both
methods have their  own strengths and (sometimes common) weaknesses.  The representation of
large scales in the parent general circulation model (GCM) can be a limiting factor, the so-called
“garbage  in,  garbage  out”  problem (Rummukainen,  2010).  If  the  large  scales  are  not  skilfully
represented, then downscaling techniques cannot add value (Benestad et al., 2008) as errors in the
large scales will not be corrected; isolated examples of value being added via RCMs correcting
large-scale  errors  have,  however,  been  reported  (e.g.  Veljovic  et  al.,  2010).  Assumption  of
stationarity – that predictor-predictand relationships will remain unchanged in a future climate – in
RCM parametrizations and statistical downscaling methods may also not be valid (Takayabu et al.,
2016),  lowering  confidence  in  projections.  Statistical  and dynamical  downscaling  both  produce
climate change signals which are, to varying degrees, influenced by the climate change signal of the
parent GCM. If the GCM has an incorrect climate-change signal this may be inherited without
meaningful modifications. Takayabu et al. (2016) further discuss different facets of the statistical
and  dynamical  downscaling  approaches,  additionally  explaining  that  the  approaches  are
complementary and can be combined, rather than being treated as mutually exclusive alternatives.

In general,  high-resolution RCMs (~10 km)  add value  to  coarser  GCMs for  multiple  variables
(Feser et al., 2011). This added value (AV) is primarily achieved through better representation of
surface forcings and mesoscale processes, and is thus most evident in the presence of complex
topography (Heikkilä et al.,  2011; Torma et al.,  2015) or strong land-sea contrasts (Feser et al.,
2011). For example, recent studies have shown cases in which high-resolution RCMs can not only
modify but even reverse the mean-precipitation climate-change signal in their parent GCM (Torma
et al., 2015), which is attributable to their representation of complex topography and ability to hence
simulate increased convective activity at higher elevations in a warmer climate. Precipitation, due to
its high spatial and temporal variability, is perhaps the variable for which high-resolution RCMs
exhibit  the  most  AV.  The  strongest  manifestations  of  AV for  precipitation  are  found  at  short
temporal scales, in the warm season, and in regions of complex topography regardless of temporal
scale and season (Di Luca et al., 2012); AV is most evident for the extremes (Heikkilä et al., 2011).
Importantly, this AV should not simply be understood as representing increased small-scale detail,
but rather AV at the spatial scale of the driving GCM due to more processes being represented
(Torma et al.,  2015). As input for impact and hydrological models,  dynamical downscaling can
provide a large set of physically-consistent variables (Rummukainen, 2010),  meaning that,  e.g.,
changes in cloud cover will be reflected in appropriate knock-on effects on other input variables
such as radiation, temperature, humidity, surface pressure, etc.

Issues with reference data aside, the lack of a physical basis behind standard statistical downscaling
techniques can present other difficulties. Widely used univariate approaches do not capture physical
and spatial dependencies and thus physical and spatial coherence between different meteorological
variables may not be maintained after downscaling (Maraun et al., 2010), leading to combinations
which are suboptimal as boundary conditions for hydrological modelling. Additionally, a statistical
downscaling method which performs impressively in one region or season may not work as well in
other seasons or regions (Volosciuk et al., 2017). Finally, and crucially, in the absence of a physical
foundation there is no intrinsic reason why a statistical downscaling method which performs well in
the present climate should also perform well in a future climate and thus if the coarse model has an
incorrect climate change signal the statistical downscaling method will not apply any physically-
based modifications to this (Maraun, 2016).



Dynamical downscaling with regional climate models (RCMs) provides a physically-based, though
computationally more expensive, alternative to the statistical approach, crucially maintaining the
physical coherence between different meteorological variables as far as the relevant processes are
represented in the model. High-resolution RCMs (~10 km) add significant value to coarser general
circulation models (GCMs) for multiple variables (Feser et al.,  2011). This added value (AV) is
primarily achieved through better representation of surface forcings and mesoscale processes, and is
thus most evident in the presence of complex topography (Heikkilä et al., 2011; Torma et al., 2015)
or strong land-sea contrasts (Feser et al., 2011). Precipitation, due to its high spatial and temporal
variability,  is  perhaps  the  variable  for  which  high-resolution  RCMs  exhibit  the  most  AV.  The
strongest manifestations of AV for precipitation are found at short temporal scales, in the warm
season, and in regions of complex topography regardless of temporal scale and season (Di Luca et
al., 2012); AV is most evident for the extremes (Heikkilä et al., 2011). Importantly, this AV does not
just represent increased small-scale detail, but also AV at the spatial scale of the driving GCM due
to more processes being represented (Torma et al., 2015).

Despite  their  relatively  high  resolution,  typical  RCMs  [O(10  km)] still  cannot  resolve  many
precipitation-causing  processes  such  as  convection,  which  must  instead  be  parametrized.  As  a
result,  models  with  parametrized  convection  tend  to  misrepresent  heavy  precipitation  events,
causing  them to  be  too  temporally  persistent,  too  spatially  widespread  and  locally  not  intense
enough (Kendon et  al.,  2012);  further  issues are  too much drizzle  (Boberg et  al.,  2009) and a
temporally  displaced  diurnal  convective  cycle  (Hohenegger  et  al.,  2008).  Increasing  horizontal
resolution below about 4 km, convection-permitting models (CPMs) can explicitly simulate deep-
convective processes and improve on many of these shortcomings (Prein et al., 2015). The explicit
representation  of  convective  dynamics  in  CPMs  produces  more  realistic  convective  features
(Weisman et al.,  2008), more accurate local precipitation intensities (Lean et al.,  2008), and an
improved representation of the diurnal convective cycle (Prein et al., 2013). With respect to the
accuracy of precipitation totals, the main AV of CPMs can be expected to be found in area averages
over, for example, a river catchment (Roberts, 2008). Importantly, the AV of CPMs is not restricted
to improved present-climate precipitation statistics (e.g. Ban et al., 2014), but may also extends to
the climate change signal. Recent studies show that sub-daily convective extremes in CPMs exhibit
an  amplified  response  to  enhanced  boundary forcings  compared  to  that  found in  their  coarser
models with  parametrized -convection parent models (Kendon et al., 2014), which can be highly
non-linear (Meredith et  al.,  2015). The explicit  simulation of physical process chains in CPMs,
which can be highly-localized, gives more confidence in their projections than those derived from
modelsethods lacking in such a foundation or using convective parametrizations.

Of the current state-of-the-art options, CPMs provide the most a reliable and state-of-the-art means
of downscaling coarse-model output to the high spatial-resolutions climate data (with fine-scale
variability) needed by hydrologists and end-users for many applications, particularly for the study
of extremes. A serious limitationconstraint ofn CPMs, however, is the considerable computational
expense incurred when carrying out convection-permitting simulations on multi-year timescales,
making them an infeasible option for many; an approach for limiting these costs must be sought.
For  users  interested  in  studying  the  impact  of  heavy or  extreme  precipitation  events  on  their
catchment, at least 90 % of the days in any continuous simulation will be of little interest and could
be  viewed  as  wasted  computational  time.  In  an  ideal  procedure,  dynamically  downscaling  to
convection-permitting resolution might be skipped on these redundant days and only be carried out
when  there  is  a  significant  chance  of  the  catchment  experiencing  extremeheavy precipitation.
Similarly, some users are more interested in assessing the catchment-scale impacts of a selection of
physically-plausible extremes from a  present or  future climate, without being focused on precise
probabilities derived from continuous CPM simulations (Hazeleger et al., 2015); examples of this
include  design  situations for  hydraulic  infrastructure,  process-oriented  case-studies,  and  stress
testing. The identification of which days to downscale, however, is a non-trivial task. Coarse model



precipitation on its own is a poor predictor of extreme precipitation events in both observations and
CPMs, especially in the summer, when precipitation extremes tend to be short-duration and of a
convective nature (Fig. 1).

With the aim of slashing computational time and expense, we develop a transferable methodology
to discriminate between days  with an increased likelihood of extreme precipitation – “potential
extreme  days”  (PEDs)  –  and  redundant  days  so  that  dynamical  downscaling  to  convection-
permitting resolution can be performed over a catchment only when a day has been identified as a
PED.  In  Sect.  2  we  set  out  in  detail  our  methodology  and  validation  approach,  with  the
followingsubsequent sections containing results, discussion and conclusions.

2 Methodologdy and Data

To identify for dynamical downscaling days with an increased likelihood of extreme precipitation –
“potential extreme days” (PEDs) – over the region of interest, we develop a two-step classification
method  based  on  (1)  the  synoptic-scale  circulation  pattern  and  (2)  local-scale  (modelled)
meteorological  indicatorspredictors in  the  coarser-resolution  parent  model.  This  requires  the
identification  of  synoptic-scale  circulation  patterns  which  typically  accompany  extreme
precipitation  events  in  our  catchment  and  the  careful  selection  of  meteorological
parameterspredictors which, when in the vicinity of the catchment a defined threshold is exceeded,
are conducive to the development of intense precipitation. 

Our  study catchment  is  that  of  the  River  Wupper  in  western  Germany (Fig.  2).  The  Wupper
catchment, home to some 950,000 inhabitants, has an area of 813 km2 , contains about 2,300 km of
streams and rivers,  and drains into the River  Rhine.  The Wupper basin is  vulnerable to winter
flooding and summertime flash-flooding from mesoscale convective events; we thus focus on these
two seasons.

2.1 Identification of synoptic-scale extremal circulation patterns

The REGNIE gridded daily precipitation dataset (Rauthe et al., 2013), developed by the German
weather service specifically for hydrological applications and with a spatial resolutiongrid spacing
of roughly 1 km, is  used to  compute separate  time series  of  observed daily precipitation area-
averaged over the Wupper catchment (Fig. 2) for each full winter and summer in the period 1979-
2015.  From these  time  series  the  99th precipitation  percentiles  of  all  days (P99D) are  computed
separately for  each  season, and all days above their  seasonal 99th   percentile (P99D) are defined as
‘extreme’. The  areal  extent  of  the  Wupper catchment  contains  753  REGNIE  grid  cells;
precipitation-recording  stations  of  the  German  weather  service  are  marked  in  Figure  2. An
advantage of the REGNIE dataset is that measured totals are conserved, so that observed  events
(dry or wet) can be found preserved in the gridded field, which is in contrast to other methods on
coarser grids which use smoothing (Rauthe et al.,  2013). Despite this, the usual warnings about
using gridded observations to study heavy precipitation events must be recalled. In the absence of a
sufficiently-dense rain-gauge network in and around the catchment, the spatial variability and local
intensity maxima of heavy precipitation events will not be captured in the gridded product, leading
to  precipitation  extremes  which  are  both  underestimated  and  too  spatially  homogeneous,  in
particular in areas of complex topography and for convective events (e.g. Hofstra et al, 2010; Ly et
al., 2011). The rain-gauge network underlying the gridded dataset must thus be sufficiently dense so
that catchment-relevant extremes are acceptably captured. Alternatively, individual station(s) known
to be broadly representative could be used for small- to medium-sized catchments.

To identify the large-scale circulation patterns associated with these heavy rainfallextreme days, the
corresponding 500 hPa geopotential height (Z500) anomalies are extracted from the ERA-Interim



reanalysis (Dee et al., 2011). REGNIE  precipitation  has an accumulation measurement period of
0730-0730 local time, that isequating to 0530-0530 UTC in summer and 0630-0630 UTC in winter.
Z500 anomalies are thus averaged over the timesteps 12, 18 and 00 UTC, i.e. the middle of the
accumulation period, and are relative to their 1979-2015 seasonal means.

The extracted Z500 anomaly patterns next undergo a cluster analysis via the simulated annealing
and diversified randomization (SANDRA) method (Philipp et al., 2007). SANDRA has been shown
to overcome many of the limitations of standard k-means clustering algorithms, greatly reducing the
role of stochastic effects in the final cluster partitions and thus providing clusters much closer to the
“global  optimum”  (Philipp  et  al.,  2007).  It  is  also  less  numerically  costly  than  model-based
clustering algorithms such as Gaussian mixture models (e.g. Rust et al., 2010). Relevant software
for meteorological applications has been developed in the EU COST Action 733 (Philipp et al.,
2016), and we use this software in our study. Geopotential height is a standard variable for cluster
analyses of atmospheric circulation patterns (e.g. Hidalgo-Muñoz et al., 2011; Merino et al., 2016;
Romero et al., 1999). Following Brigode et al. (2013), the spatial extent of the clustering domain is
subjectively chosen such that the typical synoptic patterns associated with extreme precipitation in
the Wupper catchment can be captured within the domain when present (Figs. 3-4), which is easily
identifiable from historical extremes. Prior to the cluster analyses, outliers which would have little
chance of being assigned to an appropriate  cluster  are  removed from the datasets.  Outliers are
identified by computing, for each day, the Pearson pattern correlation of each Z500 anomaly pattern
with that on all other extreme days; any day whose maximum pattern correlation (i.e. across all
days) is more than two standard deviations below the sample mean of the same is excluded from the
cluster analysis. In our case, this results in just one day being removed from each of the winter and
summer input data,  leaving 31 and 33 days respectively.  As a stability criterion, the number of
clusters  K is  increased  until  the  minimum intra-cluster  pattern  correlation  –  that  is,  the  Z500-
anomaly pattern correlation between each cluster member and its own cluster mean – is not less
than 0.5. This way all days are assigned to a cluster with which they have genuine similarities,
rather than simply the error-minimized ‘least bad’ cluster, as is typically the case in clustering large
datasets of meteorological variables.

The  resulting  Z500  anomaly  clusters  and  any  outliers  are  considered  as  ‘reference’ extremal
circulation patterns against which candidate days from a given dataset can be classified as PEDs,
based  on  their  similarity  to  these  references.  To  this  end,  the  area-weighted  Pearson  pattern
correlation ρi,j (uncentred) between the Z500 anomaly fields of the candidate day i and the cluster
centroid j is used; for our clustering domain (Figs. 3-4) this encompasses 1,935 data points (i.e. grid
cells). A perfect ρi,j would have a value of 1. With the guiding aim of correctly classifying as many
‘extreme’ days (i.e. P ≥ P99D) and rejecting as many non-extreme days as possible, a ρ threshold (ρjt)
is chosen for each cluster centroid j, and days with a ρi,j below this threshold are rejected. ρjt for each
cluster is simply the minimum intra-cluster pattern correlation, reduced by 10 % so that days with a
ρ comparable to the lowest intra-cluster ρ are not rejected. To account for clusters with a particularly
high ρjt due to few members, ρjt is capped at 2/3.

2.2 Assessment of local-scale meteorological indicatorspredictors

All  remaining  days  not  rejected  based  on  their  ρi,j are  next  assessed  in  terms  of  relevant
meteorological variablespredictors at the local-scale, i.e. in the vicinity of the catchment. The choice
of meteorological  variablepredictor and the area around the catchment in which it is assessed are
flexible. In general, they may depend on the catchment, season and variables available from the
coarser parent model. Chan et al. (2018) advise choosing predictors that are easy to diagnose from
coarse-resolution models and consistent with meteorological knowledge of precipitation extremes,
e.g. circulation and stability metrics. Guidance may also be sought from statistical  downscaling
techniques  which  have  been  successfully  applied  in  the  region. For  the  Wupper  catchment  in



summer (JJA) and winter (DJF) we select daily maxima (0600-0559 UTC) of relative humidity (700
hPa JJA, 300 hPa DJF) as an indicator of (near-)saturated air masses in the troposphere, 500 hPa
horizontal divergence (JJA, DJF) as an indicator of tropospheric vertical  ascent (of a frontal  or
convective  nature),  convective  available  potential  energy  (CAPE;  JJA)  as  an  indicator  of
atmospheric instability, and daily accumulated coarse-model precipitation (JJA, DJF). As with the
Z500 data, variables are extracted from ERA-Interim on a Gaussian N128 grid (~0.7°). To account
for the transient nature of many extreme weather systems and the often low temporal resolution of
reanalysis/model data (e.g. 6-hourly in the case of ERA-Interim), it is not only the nearest ERA-
Interim grid cell to the catchment centre which is considered, but an entire 7x7 cells around it (3x3
in the case of coarse-model precipitation). With the guiding aim of ‘catching’ the highest number of
observed precipitation extremes (i.e.  P ≥ P99D) while excluding as many other days as possible,
exceedance thresholds for each variable are  empirically chosen, either as exceedances of a given
percentile (divergence, CAPE, coarse-model precipitation) or as absolute values (relative humidity).
The thresholds used for the Wupper catchment are summarized in Table 1. To account for different
model  climatologies and  thus  facilitate  transferability  to  other  models,  the  (absolute) relative
humidity  valuesthreshold (RHthresh)  determined from the training data can be redefined as a are
transformed into multiples function of the model’s climatological mean (RH), i.e. RHthresh = A·RH,
with  A a constant prior to assessment; this function can be applied to another model’s  RH to get
RHthresh for that model.

In order to be classified as a PED, each threshold must be exceeded at any one of the grid cells (not
necessarily the same cell) around the catchment. A schematic summarizes the full two-step selection
algorithm (Algorithm 1). Extremal patterns identified for the Wupper catchment are presented in
Sect. 3.1.

2.3 Validation and simulation

The combination of variables, thresholds and clusters for detecting observed precipitation extremes
and excluding non-extreme days is, as discussed above, empirically determined on the basis of the
ERA-Interim and REGNIE datasets. Once this has been achieved, the method is applied identically
to 0.11° (~12.2 km) evaluation simulations over the pan-European EURO-CORDEX domain (Jacob
et  al.,  2014),  roughly  25-72°N/20°W-50°E, covering  the  period  1979-2015.  Simulations  were
performed with the regional climate model COSMO-CLM (CCLM; Rockel et al., 2008) version
4.8,  with  ERA-Interim reanalysis  (Dee et  al.,  2011)  as  lateral  boundary forcing.  CCLM is  the
community model of the German regional climate research community jointly further developed by
the CLM-Community. The years 1989-2008 were simulated by the CLM-Community as part of the
EURO-CORDEX  experiment  (Kotlarski  et  al.,  2014).  Years  1979-1988  and  2009-2015  (up  to
31.07.2015) were simulated by the present authors using identical model version and settings.

Z500  CCLM  data  are  interpolated  to  the  clustering  domain  and  the  selected  meteorological
variables are conservatively regridded to a grid of similar spatial  resolution to that used in  the
training stage, i.e. 0.7° and centred on the Wupper catchment. All winter and summer days are then
either classified as PEDs for further dynamical downscaling with CCLM to a convection-permitting
resolution of 0.02° (~2.2 km) or rejected; the nesting ratio of 5.5:1 is in line with that recommended
in the literature (Denis et al., 2003). The enhanced performance of CCLM at convection-permitting
resolution  (relative  to  coarser  resolutions)  in  reproducing  precipitation  statistics,  particularly
extreme statistics, over central Europe has been extensively documented (Ban et al., 2014; Fosser et
al., 2015; Brisson et al., 2016b). 

The additional downscaling step is performed using the same version of CCLM with a 221x221
grid cell  domain centred on the  Wupper  catchment  (Figs.  3-4),  giving  sufficient  spatial  spinup
(Brisson et al., 2016a) upstream of the Wupper catchment. 161 of the CCLM grid cells fit inside the



catchment. The  simulations  are  carried  out  in  ‘weather  forecast  mode’,  i.e.  initialized  with
interpolated values from the parent model. The multi-year simulations of the parent model ensure
that  soil moisture and temperature are spun-up at the 12 km scale, though not necessarily at the
scale of the CPM. The soil moisture climatology tends to be drier in CPMs due to the sparser nature
of their precipitation events (Kendon et al., 2017). While studies suggest that the transient boundary
conditions are of first order importance for the occurrence of  precipitation (e.g. Pan et al., 1999),
precipitation extremes highly sensitive to localized soil-moisture anomalies may be inadequately
represented under such a procedure.

Lateral boundary conditions are updated 3-hourly and 50 unevenly spaced terrain-following vertical
levels  are  used.  For  each  identified  PED,  the  0.02°  simulation  is  initialized  at  1200 UTC the
preceding day to  allow abundant  precipitation spin-up time;  as little  as 3-6 hours  are  typically
sufficient in convection-permitting models though (Sun et al., 2012). PEDs on consecutive days are
downscaled  continuously  to  save  resources.  For  validation,  the  precipitation  statistics  of  the
dynamically downscaled PEDs from the CCLM evaluation runs are compared with those of the
observed PEDs identified from ERA-Interim. Area averages of daily precipitation over the Wupper
catchment are considered, using REGNIE and 0.02° model output. The REGNIE and CCLM grids
are  of  similar  spatial  resolution  (1 km and 2.2  km,  respectively).  Users  should  nonetheless  be
cognizant that datasets of different resolution may exhibit differing statistical characteristics simply
because of their  different resolutions, e.g. for the area mean. The evaluation and validation of the
identified PEDs is presented in Sect. 3.2.

2.4 Verification via continuousseasonal time-slice simulations

To provide a sterner test of the method, we additionally perform two sets of continuous 30-season
convection-permitting  time-slice  simulations over the Wupper catchment so that the method can
also be assessed in reverse – of the actually simulated 0.02° extreme days (P ≥ P99D), how many
would have been identified as PEDs from the 0.11° coarse model?

A different GCM – the Max Planck Institute’s Earth System Model (MPI-ESM-LR) – at the start of
the modelling chain provides  a new challenge for the method from the previous  ERA-Interim-
driven simulations. The MPI-ESM-LR runs are continuous transient simulations performed as part
of the CMIP5 project (Taylor et  al.,  2012), using observed greenhouse gas concentrations from
1949-2005 (historical) and representative concentration pathway 8.5 (RCP8.5; Van Vuuren et al.,
2011) from 2006-2100. One MPI-ESM-LR member (1949-2100) has been continuously downscaled
with  CCLM  over  the  EURO-CORDEX  domain  to  0.11°  resolution  by  the  CLM-Community
(Keuler  et  al.,  2016);  model  settings  are  as  in  the  previously  discussed  ERA-Interim-driven
evaluation runs, greenhouse gas concentrations excepted.

For the present study, we have dynamically downscaled the aforementioned 0.11° CCLM transient
simulations  to 0.02° over  30 summers  from the historical  and RCP8.5 periods,  1970-1999 and
2070-2099 respectively. The 0.02° model domain and setup are the same as in Sect. 2.3 (greenhouse
gas concentrations aside); simulations are initialized in April and run continuously until the end of
August each year, with analysis restricted to JJA. Summertime extreme precipitation in the Wupper
basin tends to be of a convective and more catchment-scale nature than its wintertime counterpart,
with small-scale variability and chaotic processes playing an enhanced role in event intensity. In
addition to this, potential differences in large-scale circulation found in a future climate pose an
additional  challenge  for  the  classification  algorithm.  The choice  of  30 summers,  historical  and
future,  is  thus  intended to ensure  a  robust  testing of  our  method.  The performance testing  via
continuous seasonal time-slice simulations is presented in Sect. 3.3.

3 Results and Discussion



3.1 Extremal circulation patterns for the Wupper catchment

The greater diversity of synoptic patterns which can lead to extreme precipitation in the Wupper
catchment in summer, compared to winter, can be seen in the number of clusters K necessary before
our stability criterion (see Sect. 2.1) is reached (Figs. 3-4). The higher K also hints at the in general
more challenging nature of forecasting summertime intense precipitation, when synoptic forcing
tends to be weaker and small-scale chaotic processes play an increased role. In winter (Fig. 3),
precipitation  extremes  in  the  Wupper  catchment  are  most  often  associated  with  a  dipole-like
structure characteristic of a strong positive phase of the North Atlantic Oscillation (Hurrell, 1995),
with various shifts of the dipole centres (clusters 1-3). Such a synoptic pattern gives a strong zonal
forcing,  sweeping  deep  low-pressure  systems  and  associated  frontal  precipitation  across  the
catchment;  similar  clusters  have  previously  been  identified  for  north-eastern  Switzerland
(Giannakaki and Martius, 2016). For the remaining cluster (cluster 4) and the outlier, shallower
depressions become embedded in a relatively weak zonal flow, depositing their albeit less intense
precipitation over a more prolonged period; these patterns account for less than one sixth of all
extreme days (P ≥ P99D ) though. In summer, a dipole-like pattern can also be seen on some extreme
days (cluster 1), though accounting for just over one seventh of all extremes; such events in summer
can also be expected to include enhanced frontal convection. The remainder of the summertime
extremes  are  associated with a  weaker  zonal  forcing.  High pressure over  eastern Europe often
advects warm, moist air from the Mediterranean into central Europe (clusters 2 and 4), enhancing
instability and increasing the chance of deep convection; Bárdossy (2010) also identified such a
pattern as bringing intense precipitation to south-west Germany during summer. Another common
pattern is that of a front, often with a small embedded low, extending across the catchment (clusters
3 and 8) in the wake an eastward moving ridge and triggering frontal lifting as it passes. Quasi-
stationary mid-tropospheric cut-off lows (clusters 5-7) are the most common cause of summertime
extremes in  our  catchment,  allowing slow-moving surface lows to advect  a  persistent  moisture
stream, within which intense convective cells can develop, across the catchment. A not dissimilar
pattern was also identified by Brigode et al. (2013) in their study of extreme precipitation in Austria.

3.2 Evaluation and validation of identified PEDs

While still capturing more-or-less all observed extreme days, the constraints derived from ERA-
Interim variables enable the classification algorithm to reduce the number of PEDs to well below 10
% of all days (Table 2). In the process, the number of “redundant days” (i.e. P < P90D ) falls from
about 3,000 to 48 in winter and 126 in summer. The “redundant days” thus occupy a much smaller
fraction in the PEDs than in the set of all days. Such a good performance in the training dataset is,
however, no surprise. 

Applying the same methodology to the 0.11° CCLM evaluation runs (ERA-Interim driven) over the
same period, a similar number of PEDs are identified for dynamical downscaling to 0.02° (Table 2).
The PEDs again represent well below 10 % of all days, slashing the computational expense against
a continuous simulation of the whole period by an order of magnitude. Of note is that although the
0.11° CCLM simulations are forced at the lateral boundaries by ERA-Interim, only 123 of the 320
dates identified as PEDs in CCLM in summer are also found amongst the ERA-Interim PEDs. This
is attributable to the fact that RCMs without interior constraints (i.e. some form of internal nudging)
cannot  synchronously  reproduce  the  local-scale  day-to-day  variability  of  their  parent  model
(Maraun and Widmann, 2015). RCMs of sufficiently large domain size thus often generatethe large
internal variability  that can be generated in RCMs of sufficiently large domain size  (e.g. Lucas-
Picher et al., 2008),  which is  often comparable to that found in GCMs (Christensen et al., 2001),
andwhich can  cause  the  local  RCM solution  to  significantly deviate  from that  of  itsthe parent
modelGCM. The fraction of common days is higher in winter at 150/220, representing the typically



smaller internal variability found in RCMs during winter (Giorgi and Bi, 2000) asIn the presence of
a stronger zonal throughflow,  e.g.  in  winter,  the forcing  more  rapidly  sweeps  small-scale
perturbations out of the domain, thus limiting error growth of differing internal solutions is limited
due to small-scale perturbations being more rapidly swept out of the domain (Giorgi and Bi, 2000).
This explains the higher fraction of common days which we find in winter (150/220).

Comparing  the  empirical  cumulative  distribution  functions  (ECDFs)  for  catchment-averaged
precipitation (observed) of all days and PEDs from the training data set (ERA-Interim), the greatly
increased probability of  daily extreme  heavy  precipitation on a randomly selected PED becomes
apparent (Fig. 5, blue curve): in the set of PEDs, the probability of exceeding the climatological
winter (left panel) 90th /99th percentile is about 80 %/20 %, whereas in the set of all days it is only
10 %/1 %. For summer (right panel), the situation is less pronounced but the climatological (JJA)
90th /99th percentile is exceeded on about 60 %/15 % of the days in the PED set. Taking all days,
the ECDF can be well described by a typical gamma distribution; the gamma distribution is known
to well represent the bulk of the daily precipitation distribution, though perform less well for the
tails (Rust et al., 2013). The form of the ECDF of the observed PEDs (blue curve), however, is far
removed from thisthat of the set of all days (red curve), as the probability is shifted towards more
intense precipitation. The change in form of the ECDF – from one dominated by dry to light-rain
days, to one dominated by heavy- to extreme-rain days – results from the classification algorithm’s
removal of days with a low potential for intense precipitation.

Dynamically downscaling all CCLM 0.11° PEDs to 0.02° produces ECDFs of daily precipitation
which closely resemble those of the observed PEDs, for both seasons (Fig. 5, green curve); both
ECDFs are again dominated by heavy to extreme precipitation events, with dry days (PD < 0.1 mm)
almost completely eliminated. Indeed, many of the seemingly dry to light-rain days counted over
the Wupper catchment in the convection-permitting simulations do still feature heavy precipitation,
though displaced to neighbouring regions of the 0.02° simulation domain (Fig. 6); this occurs most
often in summer, owing to the more small-scale and chaotic nature of convective precipitation. The
good  match  between  the  ECDFs  of  observed  and  downscaled  PEDs  shows  that,  with  skilful
classification of the PEDs, selective downscaling can be relied on to realistically reproduce the
same range of precipitation events over the catchment as expected from the training dataset and
observations, allowing of course for known model biases (e.g. Fosser et al., 2015). In the process,
computational expense is reduced by over 90 % (Table 2) as compared to the computational efforts
which would be required for a continuous simulation over the same period at such high spatial
resolution. While the spatial resolutions of REGNIE and CCLM are similar (1 km and 2.2 km,
respectively),  users  should  beware  that  area  means  in datasets  with considerably different  grid
resolutions  may differ  simply because  of the different sample sizes, i.e. the number of grid cells
contained within the averaging area, in particular for small catchments and large differences in grid-
box area.

3.3 Performance testing on seasonal time-slicecontinuous simulations

The continuous dynamical-downscaling of two sets of 30 -summer time-slices – historical (1970-
1999) and RCP8.5 (2070-2099) – from 0.11° to 0.02° provides an additional set of tests for the
classification algorithm, namely: what fraction of the actually simulated extreme days in the 0.02°
model  would  the  method  have  identified  as  PEDs  from  the  0.11°  model?  In  addition,  is
classification performance degraded in a future climate? The summer season is chosen to ask these
questions due to the greater challenges in predicting summertime intense precipitation (see Sect.
2.4, Sect. 3.1). 

Applying the classification algorithm, identically as in Sect. 3.2, to the 0.11° historical and RCP8.5
simulations again yields selections of PEDs representing less than 10 % of the total days (Table 3).



Amongst these PEDs, at least 75 % of 0.02°-simulation extreme days are captured in both time-
slices. In the case of the historical simulations, the fraction of redundant days (i.e. P < P 90D) climbs
by almost six percentage points relative to the training data set; for the RCP8.5 simulations, the
fraction falls marginally. The former increase may simply be an artefact of the fewer summers (30
vs. 37) present in this testing data set. The similarity of performance between the historical and
future simulations is noteworthy, particularly in light of RCP8.5 2070-2099 representing the end of
the most extreme RCP scenario. Projected changes in large-scale extratropical circulation can be
considerable (e.g. Barnes and Polvani, 2013; Zappa et al., 2013), and are known to exert strong
control on regional precipitation climatologies (Shepherd, 2014). In the case of the MPI-ESM-LR
model used in this study, for example, a northward shift of the annual-mean jet in the Atlantic sector
(Barnes and Polvani, 2013) and reduction in the frequency of both North Atlantic and Eurasian
summertime anticyclonic blocking (Masato et al., 2013) are projected under the RCP8.5 scenario.
Despite this, the classification algorithm performs more-or-less the same in historical and future
climates. This,  incidentally,  adds credence to the approach used in conditional event attribution
(Trenberth  et  al.,  2015). While  the  classification  algorithm  unsurprisingly  fails  to  capture  all
extreme days in either the historical or RCP8.5 simulations, the fact that the performance is the
same  across  both  climates  indicates  the  added  value  of  employing  a  physically-basedour
downscaling methodology, allowing more robust conclusions to be drawn from the output. Of the
extreme days which are not captured, 6 out of 7 (historical) and 4 out of 5 (RCP8.5) are lost due to
their circulation patterns not well matching any of the pre-defined extremal clusters. This could
indicate that the training period for identifying the extremal patterns is too short to encompass
sufficient diversity or, more likely, that the GCM in question (MPI-ESM-LR) does n’ot adequately
represent  the  frequency and/or  persistence  of  the  large-scale  circulation  patterns  which  lead  to
observed extremes in our catchment. For example, CMIP5 GCMs are known to underestimate the
frequency of Eurasian blocking (Masato et al., 2013) and GCMs in general often underestimate the
persistence  of  blocking  systems  (e.g.  Matsueda,  2011);  the  poleward  flank  of  such  blocking
anticyclones  often  transports  warm  moist  air  into  central  Europe  enabling  intense  convective
precipitation (see Sect. 3.1). In the case of MPI-ESM-LR during summer, a southward bias in the
storm-track axis and over-active North Atlantic blocking are also evident in the CMIP5 historical
simulations (Masato et al., 2013). 

The similar performance of the classification algorithm across climates, as well as the evaluation
period, is confirmed by looking at the historical and RCP8.5 ECDFs (Fig. 7). As in the training
dataset, the ECDFs of the PEDs are shifted towards more intense precipitation compared to the
ECDFs  for  the  sets  of  all  days.  For  the  PEDs,  the  probability  of  exceeding  the  respective
climatological (JJA) 90th/99th percentile in the historical and RCP8.5 simulations is similar to that
found  in  the  training  dataset  and  the  dynamically  downscaled  PEDs  of  the  evaluation  period,
roughly 55 %/10 % (as compared to 10 %/1 % for all days), and the ECDFs are dominated by heavy
to  extreme events  with  dry days  almost  absent.  To quantify differences  in  the  distributions  of
precipitation events amongst all days and the PEDs for discrete intensity ranges, we compute the
relative  likelihoods  (R)  of  finding  a  precipitation  event  within  a  given  intensity  range  for  the
historical and RCP8.5 simulations (Fig. 8); this is simply the ratio of the respective probabilities,
e.g. P (E|PED):P(E), with the smaller of the two probabilities used as the denominator for plotting
purposes.

The greatest difference between all days and the PEDs is found in the relative likelihoods of a
randomly sampled  day being  dry,  which  is  an  order-of-magnitude  lower  in  the  PEDs.  Indeed,
considering the set of non-PEDs, the probability density function exhibits an even higher density of
dry days than found for all days (not shown). Focusing on just wet-day percentiles, a regime shift
from a higher R for all days to a higher R for PEDs occurs above the median wet day event. The
higher R for the PEDs grows further as event intensity nears the most extreme precipitation events,
consistent across historical and RCP8.5 experiments and approaching a factor of 10 in places (Fig.



8). For the most extreme events (PD ≥ PW99.9), more variability between historical and RCP8.5  R-
values emerges as the number of days involved limits towards zero. Future changes in the fraction
of wet-days, and the sensitivity of wet-day percentiles to such changes (Schär et al., 2016), likely
contributes  to  some  of  the  small  differences  in  relative  likelihood  between  the  historical  and
RCP8.5 experiments. 

3.4 Applications and Outlook

The preconditioning of PEDs on known extremal circulation patterns does not just reduce the total
number of days  to dynamically downscale.  Importantly,  it  also allows conclusions to be drawn
about  changes  in  catchment-relevant  precipitation  between two periods,  e.g.  present  and future
climates,  for  these  circulation  patterns.  A classification  method  which  does  not  guarantee  the
capture of all extreme days clearly cannot be used to draw overall conclusions about precipitation
changes  in  a  given  catchment.  Preconditioning  on  circulation  types  does,  however,  allow
conclusions to be drawn about changes in specific classes of precipitation extreme (Fig. 9), e.g. as
identified via the clustering methodology outlined in Sect. 2.1. For example, for a known extremal
circulation  pattern,  will  the  likelihood  that  the  accompanying  precipitation  exceeds  some
catchment-relevant threshold be higher or lower in the future? This approach is in a way analogous
to the framework used in conditional event attribution (e.g. Trenberth et al., 2015; Pall et al., 2017),
where the question is posed: for some observed circulation pattern, how is the event’s intensity
affected by known thermodynamic changes in the earth’s climate system? A major advantage of
such an approach is  the relative robustness of projected thermodynamic changes in the climate
system compared to projected dynamical changes (Shepherd, 2016). From a catchment-hydrology
perspective, one could imagine this being particularly useful for catchments vulnerable to specific
compound extremes, for example intense precipitation in an estuarine catchment compounded by a
shoreward moving low-pressure system with strong onshore winds (e.g. Bevacqua et al.,  2017).
Beyond  the  extremal  patterns  identified  from the  training  period,  however,  there  remains  the
possibility that a future climate may also contain new extremal circulation patterns which were
previously  either  not  associated  with  extreme  precipitation  or  simply  not  present  at  all.  Such
systematic effects could only be explored with continuous dynamical downscaling of the different
climates.

4 Further DiscussionSummary and Conclusions

Hydrological modellers, amongst others, benefit greatly from high-resolution climate data at the
catchment scale – particularly for studying the impacts of extreme precipitation. In achieving these
high resolutions  [O(1 km)] while maintaining data quality, dynamical downscaling to convection-
permitting  resolution  presents  numerous  advantages,  though  comes  at  an  often  prohibitive
computational  expense.  To  reduce  the  overall  computational  burden  and  instead  dynamically
downscale only those days for which there is an elevated likelihood of extreme precipitation in a
catchment, we have developed a flexible and transferable classification algorithm for identifying
PEDs and rejecting days unlikely to produce intense precipitation. While reducing computational
expense by over 90 %, the precipitation distribution of the training dataset’s PEDs – in which more-
or-less  all  extreme  days  were  captured  –  can  be  well  reproduced  via  convection-permitting
dynamical downscaling, showing an ECDF dominated by  strong to extreme precipitation events.
Testing the classification algorithm on continuous datasets driven by a different global model, at
least three quarters of the CPM’s summertime extremes – which are intrinsically more challenging
to identify than their wintertime counterparts – were caught and computational expenses were again
slashed by over 90 %.

The consistent performance of the classification scheme across historical and future climates further
demonstrates its utility for studying changes in defined classes of precipitation extreme, for example



those preconditioned on an identified extremal synoptic pattern which is known to severely affect a
given catchment. In this regard, our method is complementary to current trends in how the projected
impacts  of  climate  change are  communicated  and adapted  to  end-user  needs.  Recent  literature
advocates the use of high-resolution weather models to create bespoke storylines of high-impact
weather events for a given catchment in a future climate (Hazeleger et al., 2015). In the so-called
‘Tales’ approach of Hazeleger et al.  (2015), the broad statistical terms in which climate change
projections are  typically communicated are replaced by high-resolution simulations of carefully
selected past and future weather events over a given catchment in order to study the catchment-
specific impacts of individual hydrometeorological events from past/future climates. This approach
is designed to form part of a collaborative process in which end-users play a key role in selecting
the type of events to be studied, providing vivid case-studies on which adaptation strategies can be
decided  (Hazeleger  et  al.,  2015).  Our  methodology  could  be  integrated  seamlessly  into  this
workflow.  An additional  advantage  of  this  type  of  modelling  framework  is  that  anthropogenic
factors extraneous to global climate change can easily be implemented into the modelling chain
(Shepherd,  2016),  for  example  adding  potential  changes  in  land-use  to  a  high-resolution
hydrological  model,  or  changes  in  hydraulic  infrastructure  to  a  hydraulic  model  for  assessing
impacts on reservoirs, water-treatment plants, drainage systems, etc.

An  important  element  in  the  transferability  of  the  method  to  other  catchments  is  its  inherent
flexibility, allowing in particular for an active involvement of end-users. UEnd-users can contribute
and integrate their empirical knowledge towards the identification of the local-scale meteorological
predictors most suitable for their own catchment, perhaps taking the ones we use or those suggested
in Chan et al. (2018) as a starting point. Data availability in the models to be downscaled may,
however,  require choosing parameters that are only approximate indicators of the most suitable
ones. For the Wupper catchment studied here,  for example,  we found daily maximum 700 hPa
vertical  velocity  to  perform  better  than  daily  maximum 500  hPa  horizontal  divergence  as  an
indicator of extreme precipitation in the training dataset. The regional model which we wished to
downscale, however, had saved vertical velocity at too low a temporal resolution to meaningfully
calculate  daily  maxima.  Adoption  of  horizontal  divergence  was  thus  necessitated,  allowing  the
PEDs to still be appropriately classified while avoiding an unacceptable increase in computational
expense.  The method is  additionally adaptable to  the computing capacity of  the user.  With the
caveat that excessively high thresholds will result in more undesirably-rejected days, thresholds for
the  identification  of  PEDs  can  be  either  raised  or  lowered  based  on  available  computational
resources.

Data  produced  via  a  method  like  ours  are  indeed  useful  for  many  applications,  though  not
universally so and do also come with their own limitations. Care must therefore be taken when
applying  such  data  and  interpreting  subsequent  results.  The  issue  of  stationarity  should  be
acknowledged: one can never be certain that a future climate will not include heavy precipitation
events caused by previously unimportant circulation patterns. Non-stationarity may also, positively
or  negatively,  impact  the  effectiveness  of  local-scale  predictors.  Non-stationarity  is  indeed  a
common  issue  also  affecting  model  parametrization  schemes  and  statistical  downscaling  – a
motivating factor for anchoring our method with a convection-permitting model. Additionally, the
catalogue of downscaled PEDs is no random sample of high-resolution climate data and thus cannot
be treated as  traditional  projections.  Traditional  projections can  only be made with continuous,
multi-decadal downscaling, and not with the discontinuous time series which we produce.

Our method is  instead ideal for applications requiring high-resolution data suitable as input for
modelling the catchment-scale impacts of extremes. Such applications include (i) design situations
and stress testing for hydraulic infrastructure, e.g. dams, canal networks, urban sewerage systems,
and (ii) process-oriented case studies of the catchment’s response to extremes, e.g. runoff formation
processes leading to flooding. In such applications, the emphasis is on combining realistic initial



conditions with physically-plausible and realistic extremes, as input for the hydrological models.
Typical problems with using observational data for such studies are that the spatial and/or temporal
coverage of the observational network was insufficient to capture suitably extreme historical events
to use in, e.g., design situations. Coarser model data present problems too, in that they also tend not
to  realistically  capture  the  peak  intensities  and  spatial  variability  of  such  intense  events  (see
Introduction).  For  such  studies,  hydrological  models  would  need  to  be  calibrated  with  either
observations or lower-resolution RCM data. Realistic initial conditions, e.g. for design situations,
can also be obtained from such sources or, as is often the case, prescribed and varied in order to test
the sensitivity to initial conditions of the catchment’s response to a given extreme. For example, the
reservoir level prior to a rain-on-snow event – such events can quickly mobilise large volumes of
water into runoff, potentially overwhelming hydraulic infrastructure.

A further means through which our methodology can be used to limit computational expense is in
the selection of individual models from multi-model ensembles (e.g. CMIP) to downscale over a
given region,  avoiding the computational  expense of  dynamically downscaling  an entire  multi-
model ensemble. GCMs whose historical runs fail to satisfactorily reproduce the observed PED
climatology,  i.e.  the  seasonal  frequency of  PEDs, could  be  considered  to  poorly  represent  the
regional extremal circulation patterns and thus be rejected in favour of the top N best-performing
models,  with  N a  function  of  both  available  computing  resources  and  the  reduction  in  intra-
ensemble spread which can be tolerated. Such a region-targeted selection of GCMs (Maraun et al.,
2017) could even be combined with the aforementioned ‘Tales’ approach, making a potent tool. 

Taking into account the limitations of current statistical downscaling techniques stemming from
their  lacking  a  physical  basis  (see  Introduction),  our  method  represents  a  computationally
inexpensive procedure to produce high-resolution climate data, focused on extreme rainfall events,
for hydrological  modellers  and decision-makers.  The explicit  simulation of fine-scale  processes
along the modelling chain gives additional confidence in the end product, as fine-scale processes
can substantially modulate the regional climate change signal (Diffenbaugh et al.,  2005). Future
advances in statistical downscaling techniques to better account for local fine-scale forcings and
incorporate  more physical predictors  could  provide  another alternative,  though  widespread
transferability would be hard to envisage. Irrespective of  improvements in statistical downscaling
techniques or increases in processor power, regional models will always be able to be run at higher
spatial resolutions than their global counterparts. When global models some day run at convection-
permitting resolution as standard, classification algorithms can still be utilised for downscaling to
ever higher resolutions at which even more processes can be explicitly simulated, e.g. turbulence.
Classification  algorithms,  such as  the  one presented  here,  for  selective  dynamical  downscaling
preconditioned on known extremal circulation patterns can thus play an important and enduring role
in climate modelling.

Conclusions

Hydrological modellers, amongst others, benefit greatly from high-resolution climate data at the
catchment scale – particularly for studying the impacts of extreme precipitation. In achieving these
high resolutions  O(1 km) while maintaining data quality, dynamical downscaling to convection-
permitting  resolution  presents  numerous  advantages,  though  comes  at  an  often  prohibitive
computational  expense.  To  reduce  the  overall  computational  burden  and  instead  dynamically
downscale only those days for which there is an elevated likelihood of extreme precipitation in a
catchment, we have developed a flexible and transferable classification algorithm for identifying
potential extreme days (PEDs) and rejecting days unlikely to produce intense precipitation. While
reducing computational expense by over 90 %, the precipitation distribution of the training dataset’s
PEDs  –  in  which  more-or-less  all  extreme  days  were  captured  –  was  well  reproduced  via
convection-permitting dynamical downscaling, showing an ECDF dominated by heavy precipitation



events.  Testing  the  classification  algorithm on continuous  datasets  driven by a  different  global
model, at least three quarters of the convection-permitting model’s summertime extremes – which
are intrinsically more challenging to identify than their wintertime counterparts – were caught and
computational expenses were again slashed by over 90 %.

Our method represents a computationally inexpensive procedure to produce high-resolution climate
data,  focused on extreme rainfall  events, for hydrological modellers and decision-makers, while
retaining the advantages of the convection-permitting modelling framework (see Introduction). The
explicit simulation of fine-scale processes along the modelling chain gives additional confidence in
the end product,  as fine-scale processes can substantially modulate  the regional climate change
signal (Diffenbaugh et al., 2005). Irrespective of increases in processor power, regional models will
always be able to be run at higher spatial resolutions than their global counterparts. Should global
models some day run at convection-permitting resolution as standard, classification algorithms can
still be utilised for downscaling to ever-higher resolutions at which even more processes can be
explicitly simulated, e.g. turbulence. Classification algorithms, such as the one presented here, for
selective dynamical downscaling preconditioned on known extremal circulation patterns can thus
play an important and enduring role in climate modelling.
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Figure and Table Captions

Figure 1. Coarse model extreme precipitation is a poor predictor of extreme precipitation in both
observations and high-resolution simulations.  Plots show the rate at which extreme precipitation
events in a coarse model are temporally/spatially coincident with extreme precipitation events in
(a,b) observations and (c, d) further downscaled high-resolution simulations.



(a) For summer extreme precipitation (1979-2015), the percentage of 99th percentile days in ERA-
Interim (Dee et al., 2011) for which the corresponding day in observations (REGNIE; Rauthe et al.,
2013) exceeds the observed 99th percentile; percentiles are over all days. A value of 100 % would
mean that, for a given grid cell, all  ‘extreme’ dates in ERA-Interim were also ‘extreme’ dates in
REGNIE on which the 99th percentile was exceeded in the model, the observed 99th percentile was
also exceeded in observations on the same date. (b) As in (a), except for winter (1980-2015). (c), (d)
As in (a), except between the 0.11° and 0.02° CCLM simulations discussed in Sect. 2 for the (c)
historical (1970-1999) and (d) RCP8.5 (2070-2099) periods. Values in the bottom-left of each panel
show the area average over all data points, while values in the bottom right show area averages over
the Wupper catchment in western Germany (marked; see also Sect. 2).

Figure 2. The Wupper catchment (black outline) with main tributaries and lakes, and the River
Rhine running north-northwestwards. Shading represents the regional orography as represented in
the 0.02° CCLM model used in the simulations (see Sect. 2.3). Note that this is is not the full 0.02°
simulation domain, but rather a zoom-in over the Wupper catchment; Tthe full spatial extent of the
CPM domain and the exact region covered by this map areis marked in the inner box of the top-left
panels  in  Figs.  3  and  4. Magenta-coloured  circles  mark  precipitation-recording  stations  of  the
German  weather  service,  as  listed  here
<https://www.dwd.de/DE/leistungen/klimadatendeutschland/statliste/statlex_html.html?
view=nasPublication&nn=16102.html>. Note that some stations do not cover the entire 1979-2015
period.

Figure  3. 500  hPa  geopotential  height  anomalies  (shading)  of  extremal  circulation  patterns
identified for the Wupper catchment in winter, via the clustering algorithm, and one outlier; the
zero-line  is  marked  in  black.  White  contours  represent  the  accompanying  sea  level  pressure
patterns. The grey box centred over western Germany is the 0.02° simulation domain (Sect. 2.3).

Figure 4. As in Figure 3, except for summer.

Figure  5. Empirical  cumulative  distribution  functions  of  daily  precipitation  for  all  days  (red,
observed), PEDs (blue, observed), and CCLM PEDs (green, downscaled to 0.02°). (a) Winter 1980-
2015, (b) summer 1979-2015 (up to  31.07.2015). Differences  between the blue and red curves
(REGNIE) highlight the increased likelihood of heavy rainfall events amongst the PEDs. All values
are area averages over the Wupper catchment. Vertical red lines mark important percentiles of the
all-day distribution. The area of the Wupper catchment encompasses  753 and 161 grid cells of
REGNIE and CCLM data, respectively. Stations in and around the Wupper catchment are marked in
Fig. 2. The similarity of the blue (REGNIE) and green (CCLM) PED-curves show that, with skilful
identification of PEDs, convection-permitting downscaling can well-reproduce the observed PED
statistics.

Figure 6. Illustrative modelled PEDs. (a) Example summer PED downscaled to 0.02° and (b) the
same day in the 0.11° parent model. In this example, the strongest precipitation directly strikes the
catchment  in  the  0.02°  CCLM despite  missing  the  catchment  in  the  parent  0.11°  CCLM.  (c)
Example summer PED with highly localised intense precipitation which falls outside the catchment
in the 0.02° CCLM. (d) The corresponding day in the 0.11° CCLM.

Figure 7. Empirical cumulative distribution functions of daily precipitation for all days (red) and
PEDs (blue) downscaled to 0.02° . (a) Historical (JJA, 1970-1999), (b) RCP8.5 (JJA, 2070-2099).
All  values  are  area  averages  over  the  Wupper  catchment.  Vertical  red  lines  mark  important
percentiles of the all-day distribution.

https://www.dwd.de/DE/leistungen/klimadatendeutschland/statliste/statlex_html.html?view=nasPublication&nn=16102.html
https://www.dwd.de/DE/leistungen/klimadatendeutschland/statliste/statlex_html.html?view=nasPublication&nn=16102.html


Figure 8. Relative likelihoods of precipitation on a randomly sampled day from the set of all days
and the PEDs being within a  given intensity range for the (a)  historical and (b) RCP8.5 0.02°
simulations. Note that precipitation intensities are based on the percentiles of wet days (PD ≥ 0.1
mm)

Figure 9. Percentage change in  daily precipitation intensity between the historical and RCP8.5
periods (JJA), conditional on extremal circulation pattern, from the 0.02° simulations. The numbers
indicate the total number of PEDs for each pattern (i.e. cluster) in the historical (left) and RCP8.5
(right) periods, while vertical bars represent 90 % confidence intervals. Clusters with less than 10
days in either period are excluded from the calculations. On the right hand side, the corresponding
climate change signal for the 95th and 99th percentile of all days is provided for reference.

Table 1. Predictor variables, thresholds and region. Note that these thresholds are relative to the
model’s/reanalysis’ own climatology, so that the absolute values of the anomalies/percentiles will
vary depending on the model/reanalysis on which the classification algorithm is being applied. On
the Gaussian N128 grid, one cell has a width of roughly 75 km. These predictors/thresholds could
be used as a starting point if applying the method to other catchments, though should not be directly
transferred without first considering meteorological characteristics specific to heavy rainfall events
in the new catchment.

Table  2. Summary table  of  performance  of  classification  algorithm for  training  period  (ERA-
Interim) and CCLM evaluation runs. “Redundant days” are defined as days with precipitation below
the 90th percentile of daily precipitation (all days). The third column shows the percentage of total
days identified as PEDs, with the fourth column showing  the percentage of actual extreme days
contained  within  these  PEDs.  The  rightmost  column  compares  the  fraction  of  redundant  days
contained in the PEDs and amongst the set containing all days (“All Days”).

Table 3. Summary table of performance of classification algorithm for 0.11° CCLM historical and
RCP8.5 simulations, continuously downscaled to 0.02° over 30 summers. “Redundant days” are
defined as days with precipitation below the 90th percentile of daily precipitation (all days). The
third column shows the percentage of total days identified as PEDs, with the fourth column showing
the  percentage  of  actual  extreme  days  contained  within  these  PEDs.  The  rightmost  column
compares the fraction of redundant days contained in the PEDs and amongst the set containing all
days (“All Days”).

Algorithm 1. Schematic of classification algorithm for identifying PEDs in summer. Example for a
single day i.  ρi,j is the Pearson pattern correlation between day i and extremal pattern j,  RH700 is
relative humidity at 700 hPa,  DIV500 is horizontal  divergence at 500 hPa,  CAPE is convective
available potential energy, P is accumulated daily precipitation.

ρjt (i.e. ρ thresholds) are determined as described in Sect. 2.1. if tests of local-scale meteorological
variables are performed using the thresholds and grids described in Table 1. If any of the cells in the
grid pass the test, then the next test is applied.

For winter the algorithm is the same, except that CAPE is excluded and relative humidity is at 300
hPa.
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