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Response to Reviewer comments on “A classification algorithm for

selective dynamical downscaling of precipitation extremes”.

EP Meredith, HW Rust, U Ulbrich

March 10, 2018

1 Preliminaries

We would like to start off by thanking both reviewers for the time and effort they put into reviewing our manuscript.
This is most appreciated. Both reviews have raised a number of important points which we agree will improve the
manuscript.

In the following pages we set out in detail our responses to the comments of each reviewer and how we plan to act
on them.
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2 Response to Reviewer #1 (P Laux)

The manuscript presents a very interesting contribution to combine dynamical downscaling approaches with
a statistical classification procedure in order to save computational costs. The approach aims at extreme
precipitation events and is restricting the dynamical downscaling to those days, in which the probability of
extreme events is enhanced. For this reason, the concept of Potential Extreme Days (PEDs) is introduced,
which is based on a classification approach of synoptic circulation patterns. The manuscript is well written
and understandable in general. The procedure is scientifically sound and clearly described. However, there
are concerns in terms of its “applicability” and “usefulness”. In order to deserve publication, the following
aspects need to be considered and elaborated.

My main points center around the efforts required to restrict the dynamical downscaling (in convection-
permitting resolution) to selected events only and the credibility of the results obtained:

- First, I do not see clearly a potential application behind (at least it is not clearly described in the manuscript).
Please elaborate clearly which kind of research and practical application can be considered with this in hydro-
logical modelling.

- In addition, it might be difficult for hydrological models to deal with non-continuous data (time series)
focusing on the extreme events only. In particular, issues may arise in calibration/validation of such process-
based hydrological models based on extreme precipitation events only, i.e. the credibility might be limited if
these models are calibrated based on extremes exclusively.

We recognise the merit of these two points. Indeed, they have similarities with points made by the other reviewer
about how we should more clearly explain how results from a procedure like ours should/should not be used, so
this was clearly an oversight on our part. We shall include such a discussion in the updated version. As it happens,
results generated with this procedure are currently being applied in a number of research sites across Europe,
within the framework of the H2020 project BINGO (http://www.projectbingo.eu/).

- The efforts of the classification to identify the PEDs are high. The results depend on the selected domain,
number of clusters, selected predictors, selected threshold values, etc. It seems that this is not as straight-
forward and to be implemented as described in the manuscript. For instance, a predictor screening must be
undertaken if the approach is transferred to other regions. Please elaborate and discuss further.

We agree that a screening of factors such as predictor variables, thresholds, etc., must be performed before ap-
plying the approach to different catchments. It was not our intention to suggest that the method can be directly
transferred without modification to other catchments (we even apply it differently in summer and winter). Rather,
what we claim can be applied to other catchments is the same methodological framework, subject to necessary
changes in predictor variables, thresholds, etc. We can of course not issue blanket guidelines as to how users make
these choices, but rather issue guidance as to what would represent best practice. This has already been included
for the clustering domain size (P5, L15-17) and number of clusters (P6, L2-7), with a clear objective procedure for
the latter. For the choice of variables and thresholds, we already say that these must be empirically obtained (P7,
L5-6) and that the choice is flexible (P6, L18-20). Further reflections on the choices of variables/thresholds were
also included in the summary (P18, L29-34 / P19, L1-4).

In the revised manuscript, we shall use Sect. 2.2 to further elaborate on the key principles to keep in mind
when choosing the predictor variables and thresholds. We shall also endeavor to make it clearer throughout the
manuscript that (i) our predictor/threshold “settings” should not be blindly transferred to another catchment,
and (ii) that the predictor/threshold “settings” we use may at most be considered as a starting point for applying
the algorithm to other catchments. Additionally, since we first submitted our manuscript a new study has been
published which provides some guidance for the selection of variables from coarser models which may well-predict

http://www.projectbingo.eu/
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intense precipitation in high-resolution models (Chan et al., 2018); we will cite this too.

- From regional climate modelling perspectives, I have concerns in selecting single days only instead of per-
forming continuous simulations. I am referring to the initial conditions, when a new simulation is initiated.
It is well-known that these are rather imperfect. This is less problematic for the atmospheric compartment
of the RCMs (because of the relatively short memory), however, the terrestrial compartments such as e.g.
soil moisture need a certain time to reach equilibrium. For this reason, spin-up periods of several days to
weeks might be necessary, which limits the benefit of the presented approach tremendously. In addition to
that, time requirements to set-up and submit and control multiple short-term simulations are high.

We agree with the spin-up point too. For clarity: the 12 km resolution simulations from which the high-resolution
(2 km) downscaling is performed are continuous multi-decadal runs, so at the 12 km scale the soil moisture and
temperature can safely be considered to be fully spun-up. At the spatial scale of the high-resolution model, how-
ever, soil moisture/temperature may not necessarily be in equilibrium. While many studies show that the transient
boundary conditions are of first order importance for the occurrence of extreme precipitation (e.g. Pan et al.,
1999)), the role of surface feedbacks cannot be discounted in all applications. In the revised version we shall there-
fore explicitly mention this as a potential limitation for certain applications.

Regarding the time requirements to set up, submit and control multiple short-term simulations, it was not our
experience that this was burdensome; in fact it was more-or-less automated via a collection of scripts. Either
way, it is incumbent on modellers to carry-out their own cost-benefit analysis prior to implementing any modelling
strategy, based on their own needs and resources. We feel that readers are best placed to decide for themselves
whether this particular modelling strategy is compatible with their available time/resources.

- The application of the classification for the past is well justified, however, it might be very limited for
the future (“stationarity” assumption). As correctly mentioned, it can be expected that certain extremal
circulation patterns change or other patterns might become more important for extreme events. This is more
likely for periods in the far future, e.g. the time slice towards the end of this century, as used in this study.
For periods in the far future, I would trust more to the pure dynamical downscaling.

We fully agree with this comment. Our method cannot guarantee that 100 % of the precipitation extremes will
be captured, in particular in a future changed climate where new circulation patterns may also cause extreme
precipitation. We had thus attempted to highlight this issue in our manuscript (P16, L4-6 and L15-18) and make
clear what type of conclusions can and cannot reasonably be drawn after applying the method (P16, L1-11). A
similar comment to the above was also made by the other reviewer, who said we need to make clear how the results
can/cannot be used in order to avoid misinterpretation. In light of the comments of both reviewers, it is obvious
that we did not discuss this issue thoroughly enough. In the revised manuscript we shall aim to better address
these issues in an extended discussion.

Another concern is the validation of the identified PEDs (section 3.2). I would suggest to check not only
the occurrence frequencies, but also the timing of the extremes using the reanalyses data. These can be
checked with the timing of the extremes based on station data for the catchment. The frequency is not a good
performance criterion to my opinion.

We’re not sure that we fully understand what is being suggested here. As we read it, and especially with the use
of the word “timing”, it looks like it is being suggested that we compare the PEDs identified from reanalysis with
those identified from the 12 km CCLM simulations (ERA-Interim driven) in order to see if the PEDs are occurring
on the same days, e.g. if 12.06.2002 is a PED in the reanalysis, is it also a PED in the 12 km CCLM simulations
(ERA-Interim driven)? If this is indeed the suggestion, we unfortunately do not feel that it would enhance the
analysis.

Although an RCM may be forced at the lateral boundaries by reanalysis, the dynamical downscaling does not
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produce a higher-resolution version of that same reanalysis. RCMs without interior contstraints (i.e. some form of
internal nudging) are not capable of synchronously reproducing the local-scale (i.e. observed or grid-box) day-to-
day variability of their driving model (reanalysis or GCM) (e.g. Maraun and Widmann, 2015); due to the chaotic
nature of atmospheric dynamics, small-scale deviations from the driving model will propogate and grow, leading
to potentially quite different weather-system trajectories (ibid.). This is particularly true for RCMs with larger,
continental-scale, domains: such RCMs exhibit much stronger internal variability (Lucas-Picher et al., 2008). Fur-
ther still, RCM internal variability – that is, the development of internal solutions divergent from the parent model
– is greatest with distance from the inflow boundary and in situations with a weak zonal forcing (Giorgi and Bi,
2000), e.g. summer or blocking situations. Weak zonal forcing, in the Wupper catchment at least, is the large-scale
feature most associated with intense convective events.

While the aforementioned does not negate the usefulness of RCM downscaling – taken over sufficiently long time
periods the statistics at a given location should still be representative (Maraun and Widmann, 2015) – it does
instruct us that one should not a priori expect that PEDs obtained from reanalysis will also be found in RCM
simulations forced at the lateral boundaries by that same reanalysis. Indeed, this is very much the case for our
study catchment, which is centrally located in the EURO-CORDEX domain. As described in Sect. 3.2 and shown
in Table 2, we investigate the coincidence rates between observed extremes and reanalysis-based PEDs, before
applying the method to ERA-Interim-forced CCLM simulations and then downscaling the CCLM-based PEDs to
2 km resolution. As the 12 km CCLM simulations are driven with ERA-Interim reanalysis, one might expect that
there is a very close temporal coincidence between the PEDs from ERA-Interim and those identified from the
12 km CCLM simulations. As mentioned on page 11 (L2-9), this is however not the case: Only 123 of the 320 PED
dates in summer and 150 of 220 PED dates in winter are coincident between ERA-Interim and CCLM. While we
briefly sought to explain the reasons for this difference (P11, L3-11), we shall attempt to give further clarity in a
revised version. This also relates to comments of the other reviewer, who felt that some sentences could benefit
from rephrasing in order to make the paper more accessible to the wider community.

We will thus re-word the relavant text (currently P11, L3-11) along the following lines (subject to minor edits):

This is attributable to the fact that RCMs without interior constraints (i.e. some form of internal nudging) can-
not synchronously reproduce the local-scale day-to-day variability of their parent model (Maraun and Widmann,
2015). RCMs of sufficiently large domain size thus often generate large internal variability (e.g Lucas-Picher
et al., 2008), often comparable to that found in GCMs (Christensen et al., 2001), which can cause the local RCM
solution to significantly deviate from that of its parent model. In the presence of a stronger zonal throughflow,
e.g. in winter, the growth of differing internal solutions is limited due to small-scale perturbations being more
rapidly swept out of the domain (Giorgi and Bi, 2000). This explains the higher fraction of common days which
we find in winter (150/220).

Minor issues:

- I suggest to leave out the code fraction (page 8)

We are a bit surprised by this comment, as the feedback we received prior to submission was that this code-
schematic concisely summarized the method and was helpful for understanding the algorithm. As this has only
been categorized as a “minor issue” and the other reviewer has not expressed a similar view, if the Editor agrees
we would strongly prefer to retain the schematic in the manuscript.

- Section 3.3 (Page 13): The authors claim that they perform a performance testing on continuous simu-
lations, but the tests are restricted to the summer periods. I also understood that the RCM downscaling is
done only for the summer periods, but maybe I misunderstood this. Anyway, I think it is confusing and the
term “continuos” should be omitted.

Thank you for raising this. The 12 km simulations from Sect. 3.3 are truly continuous, i.e. they were run contin-
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uously from 1949-2100 by the CLM-Community, as described in the methodology (Sect. 2.4). The high-resolution
simulations downscale this run over 30 historical (1970-1999) and 30 future (2070-2099) 5-month time-slices (April-
August each year), as stated in Sect. 2.4. We accept that the term “continuous” could be confusing here and will
therefore re-formulate the new version with the use of the term “time-slice” as well, where appropriate.

- Please check the brackets given after high-resolution data (abstract, line 1, introduction, lines 21 and 23;
Page 18, line 2, etc.)

Will do. Our reason for using the square brackets was so as not to have the same type of bracket twice in the same
expression, we thought this would improve readability. In the new version we will simply delete the square brackets.
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3 Response to Reviewer #2 (R Benestad)

The paper “A classification algorithm for selective dynamical downscaling of precipitation extremes” by
Meredith et. al. presents an interesting strategy for a more efficient and targeted simulations of heavy
precipitation with high-resolution convective-permitting regional climate models. They make use of the de-
pendency of local rainfall on the large-scale (synoptic) conditions in terms of circulation patterns, and apply
a cluster analysis to distinguish between days when the conditions are right for heavy rainfall and days when
heavy rainfall is unlikely. Then they run a high-resolution regional climate model based on the first principles
(physics-based) to simulate rainfall for the selected subset. This approach can in a sense be considered as
a hybrid between traditional empirical-statistical downscaling and dynamical downscaling, since statistical
techniques (clustering) were used to select times for simulations.

The analysis presented in Meredith et. al. are in my opinion scientifically sound and this paper merits
publication, but there are a number of important caveats and there are a number of statements with which
I think are wrong. I also think the paper needs to explain how the results of their strategy can be used and
how they should not be used (I think there is a room for the misinterpretation of such results). A targeted
selection of cases, which the clustering analysis implies, means that the results are no random selection of
data that can be used in traditional projections. However, such results are useful for case studies, scenarios
and in stress testing, and the strategy enables the establishment of a catalogue of weather events with more
events than traditional simulations. These points could be made in the paper (in the Discussion).

We agree that there are important caveats to keep in mind when using data generated via a method like ours
as, like you say, the data are not equivalent to a random sample so one must be careful not to misuse the data.
In fact, we had tried to discuss this in the manuscript (e.g. P16, L4-6 & L15-18) and make clear what sort of
conclusions can/cannot be drawn from such data (P16 L1-11). As the other reviewer also made a similar point, it
is clear that we have not adequately communicated this aspect of our results. We shall do so in a revised discussion.

I also found the paper a bit hard to read and digest, and the figure and table captions especially cryptic. The
paper seems to be written for scholars who already are well-versed in the matter, but is less accessible for
the wider community. Hence, the paper could benefit from rephrasing some sentences. I hope I have not
misunderstood too much of the text.

We will do our best to add more clarity to the figure and table captions, and also rephrase any sentences which
appear difficult to digest. To achieve this, we will have the manuscript checked by a colleague who does not spe-
cialize in the field, in case we have missed anything.

Some of the caveats are connected with statistics and need at least some discussion. The observations con-
sisted in gridded daily precipitation (REGNIE), but such products are associated with spatial inhomogeneity:
because of small-scale features in precipitation, the amount recorded in neighbouring rain gauges are rarely
as extreme as each other, which means that the gridded values which are a weighted sum of a number of
rain gauge records tend to reduce the extreme values. Moreover, the individual gridded values tend to have a
different statistical distribution to the individual underlying rain gauge data (which can be approximated as a
gamma distribution). Furthermore, models with different resolution (grid box area) are expected to produce
data with different statistical characteristics (area mean) which are not directly comparable to observations
(the closest is reanalyses). A related caveat is that a comparison between the area mean from different data
sets with different resolutions implies comparing statistical samples of different size, which also are expected
to differ merely because of the different sample sizes. To make this even more complicated, the models may
generate grid boxes with greater inter-dependency than the observations and less real degrees of freedom. I
think such caveats must at least be discussed in the paper, even if it is harder to find a good solution to avoid
such shortcomings.
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We accept that gridded observational datasets have limitations with respect to precipitation extremes, which is
unfortunately an unavoidable problem if considering area averages. An extensive discussion of this issue is however
beyond the scope of the manuscript. In the revised manuscript, we shall therefore add text to Sect. 2.1 to (a)
make readers aware of and (b) briefly explain this issue; references for further reading may be provided. In this
context, we shall add a warning that gridded (observed) precipitation datasets may not be suitable for identifying
extremes in certain contexts – e.g. if the station density underlying the gridded data is too low in and around the
catchment.

Regarding the issue of sample size (e.g. calculating area mean from datasets with different grid-cell resolution),
differences in the means resulting from different numbers of grid cells should decrease as the area over which the
mean is being taken increases. We will thus urge readers to be cognizant of the “sample size issue” in particular if
their catchment is particularly small and there are large differences between the observational and model grid sizes.
As requested below under “minor comments”, we will also give the numbers of grid cells within the catchment for
the cases of REGNIE (753) and CCLM (161). We also expect that such effects will be smaller when comparing
not-dissimilar-resolution grid cells (REGNIE = 1 km, CCLM = 2 km).

In addition to that, there’s no reason why our method can’t be applied with extremal circulation patterns identi-
fied from extreme days at a single station, if this better suits the needs of the end users; this will also be mentioned.

I found a number of statements both in the introduction and on page 19 with which I strongly disagree and
think are misconceptions. One reason may be the narrow and biased review of the literature. First of all,
statistical downscaling is a term that spans a wide range of techniques, and there have been some examples
of poor exercise of statistical downscaling that have given it a bad name. Furthermore, the paper uses a false
dichotomy between statistics and physics, which I find unfortunate - but this is also a common misconception.

Having reviewed the comments and offending passages, we accept that our phrasing and occasionally imprecise
choice of words appear unjustly critical of statistical downscaling, even though this wasn’t the intention. We will
respond to the specific cases further below.

Regarding the false dichotomy between physics and statistics, this is also a valid criticism, which arises from our
loose usage of the term ‘physical basis’. It was thus incorrect of us to say that statistical downscaling ‘lacks a
physical basis’ in general, as you highlight. What we instead want to differentiate is the ‘first principles’ nature of
the (unparametrized) physical processes which can be simulated in dynamical models with the ‘empirical-physical’
relationships used in statistical downscaling (and many parametrization schemes). A relevant difference, for our
purposes, is that the former are based on the primitive equations, which should fulfill the stationarity assumption,
whereas the latter are based on empirical physical relationships which may not hold in a future climate. A good
illustration of this is found in Prein et al. (2017), where a convection-permitting model (CPM) is used to reveal a
different relationship between temperature and precipitation intensity in a future climate. We will make this more
clear in the revised version and also avoid unjustly singling out statistical downscaling if parametrization schemes
are similarly affected.

While there are some types of statistical downscaling techniques which are just statistics (e.g. the analog
model, neural nets), there are also statistical downscaling methods which are based on physical dependencies
(e.g. regression-based techniques). I have emphasised the importance to use physics as a basis for statistical
downscaling in a text book on statistical downscaling [1]. The passage ‘the lack of a physical basis behind
standard statistical downscaling techniques’ is therefore a gross generalisation that is both misleading and
incorrect.

As outlined above, we do not wish to discount the physical basis behind many statistical downscaling techniques
and will thus modify this passage accordingly.

While the sentence ‘Widely used univariate approaches do not capture physical and spatial dependencies and
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thus physical and spatial coherence between different meteorological variables may not be maintained after
downscaling (Maraun et al., 2010), leading to combinations which are suboptimal as boundary conditions for
hydrological modelling’ gives a false impression about the merit of statistical downscaling. It is important
to stress that the statistical downscaling approach is tailored to a specific use to a much greater degree than
dynamical downscaling, and if there has not been a need to preserve the physical and spatial dependencies,
then univariate approaches are adequate. I think this part of the discussion suffers from a limited and biased
literature review, as it is perfectly possible to use statistical downscaling for cases where spatial coherence be-
tween different meteorological variables is preserved [2]. Furthermore, the regional climate models also suffer
from similar problems: (a) when they produce different precipitation patterns to the driving global models,
the two levels of models are mutually physically inconsistent, and (b) when the the global and regional cir-
culation models use different parameterisation schemes, they are physically inconsistent. In addition, the
regional models tend to produce a smoother picture of the geographical patterns, partly due to the way the
lower boundary is provided.

To avoid giving false impressions we will remove the reference to univariate approaches, in addition to reformu-
lating the passage. In the revised passage we will focus instead on the aims of our method: namely, to generate
gridded data at minimal computational expense which could be used, amongst other things, to force a hydrological
model. We will eliminate usage of the term “physically coherent” and instead talk in terms of “physical consis-
tence” between the dynamically downscaled variables. While the different downscaled variables from an RCM
may not be in exact physical balance – e.g. due to numerical discretization, bulk approximations, etc. – we view
physical consistence between output variables as an advantage of RCMs, and especially CPMs where convective
processes are explicitly simulated. As one moves to complex hydrological models which require multiple input
variables as forcing, the physical consistency between these variables becomes an issue (e.g. we consider a day
with large amounts of precipitation while there is no cloud cover as not consistent). Although certainly possible,
it would become extremely challenging to represent these complex interdependencies between multiple co-existing
variables via statistical downscaling. To take a perhaps extreme example, a statistical downscaling technique could
easily make sure that there is full cloud cover whenever precipitation occurs, but this should then have knock-on
effects on other input variables like radiation, temperature, humidity, pressure, etc.; accounting for such extensive
interdependencies would represent a remarkable challenge outside of dynamical downscaling.

The notion of stationarity (p.2, L.15) is a problem for all models, and the passage ‘in the absence of a
physical foundation there is no intrinsic reason why a statistical downscaling method which performs well
in the present climate should also perform well in a future climate‘ is a bit like shooting oneself in the foot
(keeping in mind that the proposed strategy also makes use of large-scale predictors on par with statistical
downsclaing) - in addition to being incorrect (statistical downscaling does not lack a physical foundation in
general). All the general circulation models make use of parameterisation schemes (ironically called ‘model
physics‘) which essentially are ways to calculate bulk effect of various (unresolved) processes with the help
of statistical models (the parameterisation schemes are upscaling rather than downscaling models). Whereas
the degree of non-stationarity between scales can be examined in statistically downscaled results, it’s much
harder in dynamical downscaling and the global models where errors feed back into to model framework with
a non-linear effect.

Stationarity is a limitation for our method and we have highlighted this on P16 (L4-6, L15-18). As mentioned
above, we also intend to remove misleading statements about statistical downscaling lacking a physical basis in
general. We also agree that stationarity may be an issue for parametrization schemes. We think that the issue of
inheriting incorrect climate change signals from GCMs is still an important one, and would thus like to retain men-
tion of it in a revised introduction. In the revised version, we will however avoid unjustly identifying this problem
as one unique to statistical downscaling. In the case of CPMs, whose high-resolution allows convective processes
to be explicitly simulated and convective parametrizations to be avoided, there are however a number of studies
demonstrating their ability to modify the climate-change signal of summertime extreme precipitation inherited
from their coarser parent models (e.g. Kendon et al., 2014; Ban et al., 2015). We will retain this information later
in the introduction, as we view our use of CPMs as an advantage of the method.
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I also find the notion ‘statistical downscaling method which performs impressively in one region or season
may not work as well in other seasons or regions‘ somewhat misleading. There is no reason why one would
use the same statistical downscaling approach everywhere, but it should instead be tailored to the specific
problem. Furthermore, statistical downscaling models should be properly evaluated wherever and whenever
they are applied (there have been poor studies where this has not been done properly). I can use my statistical
downscaling framework over the whole world without problem, depending on the availability of good ground
observations, but the models need to be tailored to the specific region. Moreover, statistical downscaling has an
advantage over dynamical downscaling through low computational costs which makes it ideal for downscaling
large multi-model ensembles of global climate model simulations [4]. The small ensemble size of independent
dynamically downscaled results is major problem that is likely to produce misleading results according to the
law of small numbers, even if the downscaling models themselves were perfect. It is therefore important to
stress the need for both statistical and dynamical downscaling. The introduction of the paper and page 19 need
a major revision with updated information. It is important to stop the spread of common misconceptions
about both statistical and dynamical downscaling.

We will delete this sentence and, as mentioned above, re-write the relevant passages of the introduction and dis-
cussion.

Minor details:

The concept of added-value is tricky and context-dependent (p.2, L. 20). At least, it needs to be defined,
however, more details is not the same as added value. There have been criticism of regional climate models
for the lack of added-value [3].

We agree with this comment and see that our current wording is not precise enough. We shall rephrase the offending
sentence to something along the lines of: “Importantly, this AV does not justshould not simply be understood as
representing increased small-scale detail, but alsorather AV at the spatial scale of the driving GCM due to more
processes being represented (Torma et al., 2015).”

It’s a bit of a stretch to use the term “extreme” (and ‘PED‘) for the 99-percentile of rainfall applied to all
days: that translates to 3-4 events per year. The label ‘heavy rainfall‘ is more appropriate. (p. 5, L. 1)

Actually the 99th percentile is computed as a seasonal statistic, so it would equate to < 1 event per year considering
each season separately. We shall make this clearer in the text, and also use the term ‘heavy rainfall’ (or similar) in
the text where appropriate.

Caption of Fig 1 is not easy to understand. Can it be improved?

This was also a problem prior to submission, and we tried to make it clearer. We shall try again.

I found line 30 on page 6 (p.6, L30) a bit cryptic and suggest rephrasing.

We assume you are referring to the sentence: To account for different model climatologies, the absolute relative hu-
midity values are transformed into multiples of the model’s climatological mean prior to assessment., which begins
on p.6, L31. We will reformulate this, with added explanation.

What we wanted to communicate is that the relative humidity thresholds (absolute values) obtained from the
ERA-Interim training data are not transferred identically to the CCLM simulations. This is because of the con-
siderable differences in RH climatologies that exist between models, which are often just artefacts of how the
model internally (or in a post-processing stage) computes relative humidity. There are a number of different ways
to compute relative humidity, e.g. saturation with respect to ice or water. Additionally, more sophisticated al-
gorithms which switch between computing the saturation with respect to either ice or water depending on the
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ambient temperature often differ in the temperature ranges at which the switch (i.e. from saturation wrt. water
→ saturation wrt. ice) is made. For these reasons, it can be difficult to directly compare RH values between
different models. We instead apply the RH thresholds obtained from the training data by re-defining them as a
function of the model’s climatological mean (e.g. if RH threshold is 90 % and clim. mean is 60 %, then we have
RHthresh,ERAI = 1.5RHclim,ERAI). This function is then applied to the climatological mean of the new model (e.g.
RHthresh,CCLM = 1.5RHclim,CCLM ) in order to get the absolute value of the RH threshold for that model.

Please state the ‘pan-European EURO-Cordex domain‘ (p.7, L-8). It will save the reader looking it up and
it should not take much space in the text.

Not sure if we fully understand this comment, as the text already states ‘pan-European EURO-CORDEX domain’
(Jacob et al. always capitalize “CORDEX”). To avoid readers having to look-up the article, we will also include
the approximate coordinates (i.e. lat/lon) of the EURO-CORDEX domain in the sentence.

I think that ‘internal solutions’ is a more appropriate term than ‘error growth’ (p. 11, L.8) if I have under-
stood the text correctly (the regional model can generate its own description of internal details which may
differ from the GCM simulations used for boundary conditions?).

While we think that the term “error growth” is reasonable in the case of RCMs with reanalysis as lateral boundary
conditions, as is the case in Sect. 3.2, we also find the term “internal solutions” to be an illuminating alternative,
so we will modify the text accordingly.

Table 2. Caption is not very helpful, and exactly what does ‘All Days’ mean?

Thank you for pointing this out. We will add more detail to the caption. ‘All Days’ is supposed to refer to the set
which contains all days, i.e. prior to applying our classification method. This should have been in the caption. Its
inclusion is intended to help communicate the improvements gained by applying the classification method, as with
the red curves in Figure 5. So, taking the top row of Table 2, we can see that in the set of all days that (obviously)
90 % of days have precipitation below the 90th percentile, which is our definition for a “redundant day”, i.e. one
that you definitely don’t want to downscale. Meanwhile amongst days classified as PEDs, only 22.5 % of days
are “redundant”. We’ll also properly separate ‘PEDs’ and ‘All Days’ by splitting the rightmost column. Similar
changes will be made to Table 3.

What is ‘this’ referring to on p. 12 L.8 (‘... is far removed from this as . . .’).

‘this’ was intended to refer to the form of the ECDF seen in Figure 5 for the set of all days (red curve). Rewriting
the sentence with the actual entity being referred to, in place of the demonstrative ‘this’, the sentence would have
read: ‘The form of the ECDF of the observed PEDs, however, is far removed from thisthe form of the ECDF of all
days, as the probability is shifted towards more intense precipitation.’ We will reformulate the sentence along the
following lines:

‘The form of the ECDF of the observed PEDs (blue curve), however, is far removed from that of the set of all days
(red curve), as the probability is shifted towards more intense precipitation.’

Reference to Fig 5 & Fig 1 (p.12, L.13). The ECDF presented is for an area mean precipitation? Please
state how many grid boxes/rain gauge stations this statistics comprises. The reason is that aggregated statis-
tics such as sums and averages converge towards a normal distribution (‘∼N()‘) with larger samples. If the
obs and CCLM area estimates involve different degrees of freedom (sample size), then we should expect to
see different types of curves. It would be easier to interpret these results if information of the number of
grid-boxes were provided with some test results on the type of distribution (e.g. Kolmogorov-Smirnov against
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gamma & N()).

This is an area average over the catchment (as stated in the caption). We will add the number of grid cells to the
caption (REGNIE: 1 km resolution/753 cells; CCLM: 2.2 km resolution/161 cells). We think that we can also find
the number of stations in and around the catchment, and will do our best to include this too.

Regarding the issue of sample size and degrees of freedom (DOF) ... If all cells are independent then the sample
size is equal to the DOF; all cells are however not independent here. The depencence of the cells, and hence the
DOF, is determined by the physical process being described: in our case observed and simulated precipitation.
Increasing the resolution at which the physical process is recorded increases the number of cells but also increasese
the dependence of these cells. We expect the “effective sample size” to be very similar between the different reso-
lutions because the same process (daily precipitation) is being measured. The improved realism of, in particular
heavy, rainfall in CPMs (e.g. Kendon et al., 2012) – including the duration and spatial extent – gives us increased
confidence that the physical processes are being realistically modelled and that the grid-cell interdependencies are
hence also realistic.

More generally, the motivation behind this plot is to show (i) differences between the red curve (all observed days)
and blue curve (observed PEDs), and (ii) similarities between the blue curve and green curve (PEDs downscaled
from CCLM-0.11°):

(i) The blue and red curves come from the same dataset (REGNIE) and hence have the same number of grid
cells. Differences between the blue and red curves cannot therefore be a statistical artefact of differing sample
sizes. We rather show that the PED-based subsample (blue) is very different from the full sample (“all days”, red).

(ii) The green curve, however, need not necessarily be similar to the blue curve, because they are different days
from simulations and observations, respectively. In fact, what we see is that the blue and green curves are similar,
which we claim supports our thesis that if the PEDs are skillfully selected that the convection-permitting model
will realistically reproduce the observed PED statistics.

The best solution may well be to add more information to the caption of Fig. 5, so that the message we are trying
to convey is clearer.

I suggest splitting the Summary and Conclusions into a Discussions section and a short conclusions section.
This is useful for scholars who browse papers to see if it is of relevance and to make the take-home message
clearer.

We will do this. However, as Section 3 is already called ‘Results and Discussion’, we will most likely call the new
sections (i) ‘Further Discussion’ and (ii) ‘Conclusions’.
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