Table S1. The proof for the rationality of topological distance D.

| objective | implementation | constraints |
| :---: | :---: | :---: |
| The definition of D | Defined $\forall f \in A$ | the changing of it ( $f$ ) is denoted by $g$; |
| The definition of g | $f^{\prime}(x)=\left\{\begin{array}{rc} 0 & \left(x<x_{1}\right) \\ f(x) & \left(x_{1} \leq x \leq x_{2}\right) \\ 1 & \left(x>x_{2}\right) \end{array}\right.$ | $\exists x_{1}, x_{2} \in R, f(x)=0$ and $f(x)=1$, then ( $x_{1}<x_{2}$ ); |
|  | $f^{\prime}(x)=\left\{\begin{array}{cc} 0 & \left(x<x_{1}\right) \\ f(x) & \left(x \geq x_{1}\right) \end{array}\right.$ | $\exists x_{1} \in R, f(x)=0$ and $\exists!x_{2} \in R, f(x)=1$; |
|  | $f^{\prime}(x)= \begin{cases}f(x) & \left(x \leq x_{2}\right) \\ 1 & \left(x>x_{2}\right)\end{cases}$ | $\exists x_{2} \in R, f(x)=1$ and $\exists!x_{1} \in R, f(x)=0$; |
|  | $f^{\prime}(x)=f(x)$ | $\exists!x_{1}, x_{2} \in R, f(x)=0$ and $f(x)=0$; |
| The definition of B | $B=\{h \mid h=g(f(x))\}, B \neq \varnothing$ | $h$ is a continuous function; |
| The definition of Topological distance D | $D=\int_{a}^{b}\left\|f_{1}-f_{2}\right\|$ | $\mathrm{a}<\mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathrm{R}$, a and b are all real numbers ${ }^{\text {a }}$; |
|  | $\forall D \notin\left\{D\left\|D=\int_{a}^{b}\right\| f_{1}-f_{2} \mid d_{x}, \forall f_{1}, f_{2} \in B\right\}$ | $\exists m \in \mathrm{R} ; m>D$ ( D is a limited value); |
| Proof of positive Definiteness | $D(j-j)=0$ | $\forall j \in B,\|j-j\|=0$, then $D=\int_{a}^{b}\|j-j\| d_{x}=0$; |
| Proof of symmetry | $D\left(j_{1}, j_{2}\right)=D\left(j_{2}, j_{1}\right)$ | $\forall j_{1}, j_{2} \in B$, then, $\left\|j_{1}-j_{2}\right\|=\left\|j_{2}-j_{1}\right\|$; |
| Trigonometric inequality | $\left\|j_{1}-j_{3}\right\|=\left\|j_{1}-j_{2}+j_{2}-j_{3}\right\| \leq\left\|j_{1}-j_{2}\right\|+\left\|j_{2}-j_{3}\right\|$ | $\forall j_{1}, j_{2}, j_{3} \in B ;$ |
|  | $\mathrm{D}\left(j_{1}, j_{3}\right) \leq \mathrm{D}\left(j_{1}, j_{2}\right)+\mathrm{D}\left(j_{2}, j_{3}\right)$ | $\begin{aligned} \int_{a}^{b}\left\|j_{1}-j_{3}\right\| d_{x} \leq & \int_{a}^{b}\left(\left\|j_{1}-j_{2}\right\|+\left\|j_{2}-j_{3}\right\|\right) d_{x} \\ & =\int_{a}^{b}\left\|j_{1}-j_{2}\right\| d_{x}+\int_{a}^{b}\left\|j_{2}-j_{3}\right\| d_{x} \end{aligned}$ |

${ }^{\mathrm{a}}$ where the values of a and b are as far from the origin as possible, thus the functions are integrated over a limited interval, and there are only small differences between the results and the results integrated for the real numbers $R$.

