Table S1. The	proof for the	rationality of to	pological distance D.	

objective	implementation	constraints	
The definition of D	Defined $\forall f \in A$	the changing of it (f) is denoted by g ;	
The definition of g	$f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x_1 \le x \le x_2) \\ 1 & (x > x_2) \end{cases}$	$\exists x_1, x_2 \in R, f(x) = 0 \text{ and } f(x) = 1, \text{ then } (x_1 < x_2);$	
	$f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x \ge x_1) \end{cases}$	$\exists x_1 \in R, f(x) = 0 \text{ and } \exists ! x_2 \in R, f(x) = 1;$	
	$f'(x) = \begin{cases} f(x) & (x \le x_2) \\ 1 & (x > x_2) \end{cases}$	$\exists x_2 \in R, f(x) = 1 \text{ and } \exists ! x_1 \in R, f(x) = 0;$	
	f'(x) = f(x)	$\exists ! x_1, x_2 \in R$, $f(x) = 0$ and $f(x) = 0$;	
The definition of B The definition of Topological distance D	$B = \{h h = g(f(x))\}, B \neq \emptyset$	h is a continuous function;	
	$D = \int_a^b f_1 - f_2 $	$a < b, a, b \in R$, a and b are all real numbers ^a ;	
	$\forall D \notin \left\{ D \middle D = \int_{a}^{b} f_1 - f_2 d_x, \ \forall f_1, f_2 \in B \right\}$	$\exists m \in \mathbb{R}; m > D$ (D is a limited value);	
Proof of positive Definiteness	D(j-j) = 0	$\forall j \in B, j - j = 0$, then $D = \int_{a}^{b} j - j d_x = 0$;	
Proof of symmetry	$D(j_1, j_2) = D(j_2, j_1)$	$\forall j_1, j_2 \in B$, then, $ j_1 - j_2 = j_2 - j_1 $;	
Trigonometric inequality	$ j_1 - j_3 = j_1 - j_2 + j_2 - j_3 \le j_1 - j_2 + j_2 - j_3 $	$\forall j_1, j_2, j_3 \in B;$	
	$D(j_1, j_3) \le D(j_1, j_2) + D(j_2, j_3)$	$\int_{a}^{b} j_{1} - j_{3} d_{x} \leq \int_{a}^{b} (j_{1} - j_{2} + j_{2} - j_{3}) d_{x}$	
		$= \int_{a}^{b} j_{1} - j_{2} d_{x} + \int_{a}^{b} j_{2} - j_{3} d_{x}$	

^a where the values of a and b are as far from the origin as possible, thus the functions are integrated over a limited interval, and there are only small differences between the results and the results integrated for the real numbers R.