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Abstract. Numerous researches have been conducted to assess uncertainty in 

hydrological and nonpoint source pollution predictions, but few studies have 

considered both prediction and measurement uncertainty in the model evaluation 

process. In this study, the Cumulative Distribution Function Approach (CDFA) and the 10 

Monte Carlo Approach (MCA) were developed as two new approaches for model 

evaluation within an uncertainty condition. For the CDFA, a new distance between the 

cumulative distribution functions of the predicted data and the measured data was 

established in model evaluation process, whereas the MCA was proposed to address 

conditions with dispersed data points. These new approaches were then applied in 15 

combination with the Soil and Water Assessment Tool in the Three Gorges Region, 

China. Based on the results, these two new approaches provided more accurate 

goodness-of-fit indicators for model evaluation compared to traditional methods. The 

model performance worsened when the error range became larger, and the choice of 

probability density functions (PDFs) affected model performance, especially for 20 

non-point source (NPS) predictions. The case study showed that if the measured error is 

small and if the distribution can be specified, the CDFA and MCA could be extended to 

other model evaluations within an uncertainty framework and even be used to calibrate 

and validate hydrological and NPS pollution (H/NPS) models. 
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1 Introduction 

Prediction of non-point source (NPS) pollution has become increasingly utilized 

because NPS pollution is a key threat to bodies of water (Shen et al., 2014). Numerous 

hydrological models, including the Soil and Water Assessment Tool (SWAT), the 

Hydrological Simulation Program-Fortran (HSPF) and the Agricultural Non-Point 5 

Source Model (AGNPS), have been developed and widely applied to hydrological and 

NPS (H/NPS) pollution analyses and watershed management (Yang et al., 2008). NPS 

pollution is reportedly driven by random and diffuse factors, such as climate, land use, 

soil, vegetation cover and human activities (Ouyang et al., 2009), and model confidence 

in NPS prediction, represented by model calibration and validation, is currently lacking 10 

in modelling research.  

Hydrological models always require input data, optimal parameters and proper model 

structure (Baldassarre and Montanari, 2009), whereas data measurement often involves 

processes of sampling, transportation and analyses. Errors in these complex processes 

lead to uncertainty in the data (Chaney et al., 2015). Uncertainties in hydrology and 15 

NPS modelling are classified as either measurement uncertainty or prediction 

uncertainty (Chen et al., 2015; Baldassarre and Montanari, 2009). Uncertainty analysis 

is a crucial step in the application of hydrological models (Guinot et al., 2011). The 

uncertainty surrounding model structure and parameterization has been extensively 

investigated (Wu et al., 2016). Several approaches, including the Generalized 20 

Likelihood Uncertainty Estimation (GLUE) (Hassan et al., 2008; Sathyamoorthy et al., 

2014; Cheng et al., 2014), the Bayesian approach (Freni and Mannina, 2010; Han and 

Zheng, 2016; Parkes and Demeritt, 2016; Zhang et al., 2009), Sequential Uncertainty 

Fitting (SUFI-2) (Vilaysane et al., 2015; Abbaspour et al., 2007), and Markov Chain 

Monte Carlo (MCMC) (Vrugt et al., 2003; Zhang et al., 2016), have been proposed. 25 
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However, due to the lack of data, relatively few studies have focused on the inherent 

uncertainty in measured data, and even fewer studies have considered measurement and 

prediction uncertainties in the evaluation of model performance (Baldassarre and 

Montanari, 2009；Montanari and Baldassarre, 2013). 

In model evaluation, calibration is the process used to generate optimal parameters for 5 

the best goodness-of-fit between the predicted data and the measured data, and 

validation is the process of checking the model performance using another series of 

measured data (Chen et al., 2014). Traditional model evaluation only considers the 

goodness-of-fit between sets of measured data points and predicted data points 

(Westerberg et al., 2011). Such point-to-point methods might be inadequate because 10 

they fail to incorporate the existing uncertainties mentioned above. Previous studies 

have noted that if prediction uncertainty exists, the predicted data could be expressed as 

a confidence interval (CI) or a probability density function (PDF) (Franz and Hogue, 

2011; Shen et al., 2012). Harmel and Smith (2007) used the probable error range (PER) 

as an expression of measurement uncertainty and modified the goodness-of-fit 15 

indicators using the deviation term between the predicted data points and the nearest 

measurement uncertainty boundaries. Harmel et al. (2010) further modified this 

deviation term using a correction factor, which was determined by the degree of overlap 

between each paired of measured and predicted intervals. This idea is instructive, but it 

might be questionable sometimes because a larger uncertainty or error would result in 20 

more overlap between the prediction and measurement intervals, which would indicate 

better model performance. In this regard, Chen et al. (2014) developed an 

interval-deviation approach (IDA), which demonstrated that H/WQ models should be 

evaluated against both the nearest and farthest boundaries (the inherent uncertainty 

intervals). Generally, this IDA approach is suitable for incomplete data conditions, but 25 
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when more data could be collected or when a continuous and random data distribution 

could be assumed, these intervals may not always be practical. Current research tends 

to express uncertain data as certain function distributions to express an error term 

(Zhang et al., 2009), which might lead to a more feasible expression than either the 

traditional or IDA methods.  5 

The objective of this study is to develop a new framework for model evaluation by 

incorporating prediction and measurement uncertainty. Two methods, the Cumulative 

Distribution Function Approach (CDFA) and the Monte Carlo Approach (MCA), were 

proposed for different situations (Sect. 2). Then, the new methods were used in 

combination with the SWAT to evaluate the Three Gorges Reservoir Area (TGRA), 10 

China, as a case study (Sect. 3 and Sect. 4). 

2 Methodology 

In this study, the Nash-Sutcliffe efficiency coefficient (NSE) was selected from 

commonly used indicators, and the expression is as follows: 

𝑁𝑆𝐸 = 1 − ∑ (Oi − Pi)
2N

i=1 ∑ (Oi − O̅i)
2 N

i=1⁄                                 15 

(4)                                         

where {𝑂i| i = 1, 2,. . . ,N} is the set of measured data, {𝑃i| i = 1, 2,. . . ,N} is the set of 

predicted data and O̅ is the mean value of the measured data. 

In traditional indicators, the deviation between the measured and predicted data is 

expressed by the absolute distance (𝑂i − 𝑃i ) between the paired data points. This 20 

method is questionable because it fails to incorporate prediction and measurement 

uncertainty. In this paper, the probability distributions of each data set were statistically 

estimated, and the calculations of 𝑂i − 𝑃i were modified by using stochastic distances 

between the paired PDFs. For the CDFA, cumulative distribution functions were used 
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to describe uncertain data because they are simple and do not depend on the 

distributional properties throughout the data sets (see Sect. 2.1). A topological distance, 

which is based on the distance between cumulative distribution functions 

(distribution-to-distribution), was proposed to replace the traditional error item in the 

model evaluation. The Monte Carlo method was also used to generate groups of 5 

discrete uncertain data throughout the sampling process (Vrugt and Ter Braak, 2011). 

Thus, the MCA was proposed as a supplement to the CDFA when the uncertain data 

were discrete or when no specific distributions could be used (see Sect. 2.2). A 

flowchart of the model evaluation within the uncertainty framework is presented in 

Figure 1. 10 

2.1 The description of the CDFA method 

The idea behind the CDFA was to replace the point-to-point comparison with the 

deviation between uncertain measured data and predicted data expressed as cumulative 

distribution functions. In fact, this is a modification of traditional good-of-fit indicators 

by replacing the calculations of their 𝑂i − 𝑃i  term by using stochastic distances 15 

between the paired probability density functions (PDFs). A topological distance was 

proposed, and visualizations of the topological distance are illustrated in Figure 2. The 

cumulative distribution function was chosen because it is a monotone increasing 

function with a limited threshold and an integral property. The distance between 

cumulative distributions was then transformed into an area topological distance (D). 20 

The proof of the rationality behind the topological distance D is shown in Table 1 (in 

the supplementary material). 

Based on Table 1, (B, D) is a reasonable metric space, and D is as a reasonable 

measurement of B. Therefore, the difference between 𝐹𝑝(𝑥) and 𝐹𝑜(𝑥) is reasonable 

and advisable. 25 
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The detailed steps of the CDFA are as follows: 

1) The prediction and measurement uncertainty are generated using GLUE, PER or 

other methods; 

2) The prediction and measurement data intervals are analysed, and the cumulative 

distribution functions of the prediction uncertainty (𝐹𝑜(𝑥)) and the measurement 5 

uncertainty (𝐹𝑝(𝑥)) are calculated. 

3) The topological interval (area distance) between the two functions 𝐹𝑜(𝑥) and 𝐹𝑝(𝑥)  

is quantified. 

4) The new 𝑂i − 𝑃i is quantified, and the modified evaluation indicators are used for 

model evaluation. 10 

2.2 The MCA method 

In other cases, the measurement and prediction uncertainties might be expressed as 

discrete data, or no continuous distribution function may fit the data set. For example, 

even in some ideal conditions, the well-distributed gauges are available, the 

rain-gauge network cannot fully capture every point over the watershed and it is more 15 

common to have only a few stations distributed in space. Rainfall at unknown points 

is thus estimated by means of interpolation techniques. Some results showed that 

spatial interpolation techniques resulted in considerable uncertainty of rainfall spatial 

variability and transferred larger uncertainty to H/NPS modeling. Besides, Shen et al. 

(2013) have been carried out into the effect of GIS data on water quality modeling and 20 

the uncertainty related to the combination of the available GIS maps. All these kinds 

of prediction uncertainty relating to limited model structures, or model input data 

could result in discrete variables. To incorporate this type of uncertainty, MCA was 

implemented using the Monte Carlo technique, which has been used in many 

hydrological uncertainty studies (Sun et al., 2008; Zhang et al., 2016). The Monte Carlo 25 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E8%BF%9E%E7%BB%AD%E5%88%86%E5%B8%83
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technique is a type of random sampling method that considers combinations of different 

input components and determines a statistical distribution for the output data (Shen et 

al., 2013). A key step is sampling variables randomly for discrete data so that the 

measurement and prediction data can be expressed as certain distributions. Here, (𝑂i −

𝑃i) was replaced by a stochastic expression of the deviation between pairs of data 5 

groups, and these stochastic deviations were then used to calculate the evaluation 

indicators. The details of the MCA are as follows: 

1) The distribution functions or discrete measured data points (𝑓𝑜(𝑥)) and predicted 

data (𝑓𝑝(𝑥)) are generated. 

2) The sampling process of 𝑓𝑝(𝑥)) and 𝑓𝑜(𝑥) is realized using the Latin Hypercube 10 

Sampling approach (Shen et al., 2012), and the software Crystal Globe was used to 

sample for the MCA. 

3) Based on the random samples of the predicted and measured data, corresponding 

individual goodness-of-fit indicators are calculated.  

4) The sampling process is repeated until the target sample size is achieved. 15 

5) A group of goodness-of-fit indicator values are obtained, and these values are used to 

produce the statistical analysis for the model evaluation within the uncertainty 

framework. 

3 Case study 

In this study, the Daning Watershed, which is located in the central part of the TGRA, 20 

was selected as the study area. Previously, the uncertainty ranges related to the flow, 

sediment and TP predictions were quantified using the GLUE method (Chen et al., 

2014; Shen et al., 2012), and these results and uncertainty ranges were used as the 

predicted data sets. Normal, uniform and lognormal distributions, which are classic and 
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simple PDFs, were assumed for each predicted data set. More details about the 

uncertainty ranges and PDFs of the predicted flow, sediment and total phosphorus (TP) 

can be found in our previous study (Chen et al., 2014). 

The measured stream flow, sediment and TP data at the Wuxi hydrological gauges were 

obtained from the Changjiang Water Resources Commission. Due to data limitations, 5 

the error range of the measured data was derived from Harmel et al. (2006), Harmel and 

Smith, (2007) and Harmel et al. (2010). Based on our previous study (Chen et 

al.，2014), the measurement uncertainty was assumed to be a normal distribution in 

this paper, and three scenarios, an ideal case, a typical case and a worst case, were used. 

The probable error ranges (PERs) for flow, sediment and TP were 2%, 2% and 2%, 10 

respectively, for each ideal case scenario; 9%, 16% and 26%, respectively, for each 

typical case scenario; and 36%, 102% and 221%, respectively, for each worst-case 

scenario. 

4 Results and discussion 

4.1 The model evaluation results using the CDFA 15 

The model evaluation results for flow, sediment and TP are shown in Table 2. For 

simplicity, only the NSE indicator was chosen as a model evaluation indicator, and the 

model evaluation results using a traditional point-to-point method were used as a 

baseline scenario. For the traditional method, the NSE values were 0.736, 0.642 and 

0.783 for flow, sediment and TP, respectively. Using the CDFA method (assuming the 20 

measured error was small (the ideal case)), the following changes to the NSE values 

were obtained: 0.752, 0.660 and 0.810 for flow, sediment and TP, respectively, in the 

normal distribution scenario; 0.742, 0.661 and 0.814, respectively, in the uniform 

distribution scenario; and 0.752, 0.660 and 0.812, respectively, in the lognormal 
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distribution scenario. However, when the measurement error became large (for the 

typical case), the following NSE values were obtained: 0.751, 0.657 and 0.789 for flow, 

sediment and TP, respectively, in the normal distribution scenario; 0.742, 0.661 and 

0.814, respectively, in the uniform distribution scenario; and 0.751, 0.657 and 0.791, 

respectively, in the lognormal distribution scenario. When the measurement error 5 

became negative (the worst-case scenario), the following NSE values were obtained: 

0.744, 0.551 and -0.056 for flow, sediment and TP, respectively, in the normal 

distribution scenario; 0.736, 0.545 and -0.019, respectively, in the uniform distribution 

scenario; and 0.744, 0.437 and -0.072, respectively, in the lognormal distribution 

scenario. 10 

4.2 The model evaluation results using MCA 

The sampling size is important for MCA, so a sensitivity analysis was first conducted. 

Groups of 𝑂𝑖 and 𝑃𝑖  values (10, 50, 100, 200, 500, 1000, 2000 and 5000) were 

randomly generated and used to calculate the NSE, and the sampling sizes were 

obtained using statistical analysis of the NSE (only the results for 1000, 2000, and 5000 15 

are shown in Table 3). The sampling results showed that with increasing sampling size, 

the mean value and the coefficients of variation (CV) of the flow, sediment and TP also 

increased. However, when the sampling sizes are larger than 2000, the model 

performance become stable, and all indicators only changed within 1%, indicating that 

larger sampling sizes of 𝑂𝑖 and 𝑃𝑖 would not further benefit the performance of the 20 

model. Thus, a sampling size of 5000 was chosen in this study. 

The evaluation results, which are expressed as the 95% confidence interval of the NSE 

for the flow, sediment and TP predictions, are shown in Table 2. The NSE ranges for 

flow, sediment and TP in the ideal case were as follows: 0.73~0.74, 0.61~0.69 and 

0.71~0.82, respectively (normal distribution); 0.73~0.75, 0.60~0.70 and 0.71~0.84, 25 
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respectively (uniform distribution); and 0.73~0.74, 0.61~0.69 and 0.69~0.81, 

respectively (lognormal distribution). The NSE ranges for flow, sediment and TP in the 

typical case were as follows: 0.71~0.75, 0.59~0.69 and 0.62~0.83, respectively (normal 

distribution); 0.71~0.76, 0.59~0.71 and 0.55~0.86, respectively (uniform distribution); 

and 0.71~0.75, 0.59~0.68 and 0.62~0.83, respectively (lognormal distribution). The 5 

NSE ranges for flow, sediment and TP in the worst case were as follows: 0.63~0.79, 

-0.31~0.67 and -3.10~0.67, respectively (normal distribution); 0.63~0.79, -0.53~0.68 

and -3.27~0.72, respectively (uniform distribution); and 0.63~0.79, -0.28~0.66 and 

-3.01~0.67, respectively (lognormal distribution). 

4.3 Analysis of influencing factors 10 

4.3.1 Impact of error range 

Generally, the data uncertainty range should always be obtained by analysing a large 

amount of data, so it is difficult to ensure the error range of the predicted or measured 

data due to data limitations. In this study, the measurement error is expressed as the 

PER, and three PERs were obtained as expressions of different error ranges (Harmel 15 

and Smith, 2007). In this section, the error ranges of the measured data were assumed as 

the PERs, and the impacts of the PERs on the evaluation results of the CDFA and the 

MCA were quantified. Only the normal distribution was considered for the prediction 

data. For the ideal case scenario (PER of 2%), the NSE for the flow evaluation was 

0.752, but for the typical case and the worst-case scenarios, the values of the NSE 20 

changed to 0.751 and 0.744, respectively. Compared to the point-to-point result, the 

goodness-of-fit indicators obtained from the CDFA (NSE) increased by 21.3% for flow 

in the ideal case. The NSE increased by 20.1% and 9.8% for the typical case and the 

worst-case scenarios, respectively. Similar variation in the evaluation results were 

observed for the MCA method. The NSE for the flow evaluation was 63.5% for the 25 
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ideal case (normal distribution) and was 40.9% and 10.6% for the typical case and the 

worst case, respectively (Harmel and Smith, 2007; Shen et al., 2013b). For flow 

prediction, the evaluation results obtained using the CDFA were all satisfactory with 

measurement error of any size; however, for the sediment and TP evaluations, the 

goodness-of-fit indicators became unacceptable if the measurement errors were large 5 

(in the worst-case scenario). In this regard, the range of measurement error showed 

different impacts on the flow, sediment and TP predictions. For example, the NSE 

values were 0.752, 0.660 and 0.810 for the flow, sediment and TP evaluations in the 

ideal case scenario. From the results above, a large measurement error would cause 

decreasing evaluation performance, which is different from the results of Harmel and 10 

Smith (2007). Similar results were observed for the MCA. 

As shown in Table 2, increasing measurement error would lead to decreased NSE, 

which means less confidence in the model performance. The worst evaluation 

indicators were observed when the measurement error was the largest. The 

performance of the TP predictions became unacceptable when the PER was 221% 15 

(worst case). This result indicated that a threshold error range might exist for model 

evaluation. When the error range is less than this specific value (such as the ideal and 

typical cases for TP prediction used in this study), the model evaluation result is 

acceptable. However, if the measurement error exceeds this threshold value (worst case) 

the model evaluation would be unacceptable, and the confidence in the model 20 

performance would be lost, especially for the NPS prediction. However, in reality, it is 

often difficult to accurately measure pollutant data, especially in developing countries, 

such as China. In these countries, a "calibrated model" would have few advantages over 

an un-calibrated model because of the lack of precisely measured data. 
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4.3.2 Impacts of data distribution 

The assignment of PDFs might be the most difficult and subjective task in the 

application of uncertainty analysis to hydrological models (Shen et al., 2013). Thus, 

model performance might be influenced not only by the error range but also by the 

choice of PDF. In this study, the prediction uncertainty was assumed as three certain 5 

distribution functions, but it is always difficult to ensure which PDFs should be used 

(Shen et al., 2013). In this section, we further quantified the impacts of the different 

PDFs on model performance. For simplicity, only the results of the CDFA and typical 

case scenario are considered here. For the flow evaluation, the NSE values were 0.751, 

0.742 and 0.751 when the predicted data were modelled using the normal distribution, 10 

uniform distribution and lognormal distribution, respectively. For TP evaluation, the 

NSE values were 0.789, 0.814 and 0.791 for the normal distribution, uniform 

distribution and lognormal distribution, respectively. As in a previous study, the CI of 

the prediction was larger for flow than for TP (Shen et al., 2012). Thus, the prediction 

distributions have a low impact on the evaluation in cases of high CI values but have a 15 

bigger impact on the evaluation when the CI of the prediction is low. Compared to the 

baseline scenario, the NSE values for the hydrological prediction increased by 20.1%, 

7.3% and 20.3% for the normal, uniform and lognormal distributions, respectively. 

These results indicated that the choice of PDF would show certain impacts the model 

evaluation for hydrological, sediment and TP applications. This result is consistent with 20 

previous studies, which also showed that prediction uncertainty distributions can affect 

the goodness-of-fit indicators (Harmel et al., 2010). Table 2 also indicates that the 

choice of predicted PDFs should be dependent on the selection of the measured PDFs. 

If the measurement and prediction uncertainties are set using the same PDFs, such as a 

normal distribution, the goodness-of-fit indicators would be larger, indicating a more 25 
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reliable model performance. Thus, the choice of proper PDFs is important to make 

accurate model evaluation for NPS predictions. Based on these results, we suggest that 

model acceptability can be attained by using certain PDFs on the model output by 

collecting information from model documentation, previous studies, and other 

literature to make an "educated guess". 5 

4.4 Comparison with previous methods 

In a previous study, Harmel and Smith (2007) advanced the IDA method, and this 

"point-to-interval" method was based on the distance between the nearest boundaries of 

paired intervals. Compared to our results, the difference between the paired data 

intervals or the paired PDFs overlapping for larger uncertainties would be mistakenly 10 

regarded as "no difference". The point-to-interval method gave a higher goodness-of-fit, 

but the measured data were only treated as data points. In this regard, deviations 

between measurements and the prediction data would be ignored in the model 

evaluation, which is not appropriate because the measurement error range would 

greatly affect the model performance (as mentioned in section 4.3). 15 

Chen et al. (2014) improved the nearest method by correcting for the overlapping parts 

of the uncertainty data and using both the nearest and farthest boundaries. Using the 

IDA, the NSE for the hydrological prediction would be 0.834 in the ideal case. However, 

the CDFA method produced lower NSE values, which were 0.752 for the normal 

distribution, 0.742 for the uniform distribution and 0.752 for the lognormal distribution. 20 

In the typical case, the IDA method would produce an NSE value of 0.833, but the 

CDFA would result in an NSE value of 0.751 for the normal distribution, 0.742 for the 

uniform distribution, and 0.751 for the lognormal distribution. The difference between 

the IDA and the CDFA would be largest for the worst case, in which the NSE values 

would be 0.780 for the IDA method and 0.744 (normal distribution), 0.736 (uniform 25 
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distribution), or 0.744 (lognormal distribution) for the CDFA method (all results of the 

IDA can be found in Chen et al., 2014).  

In Chen et al. (2014), an "interval-to-interval" method was proposed in which an 

absolute distance between measurement and prediction uncertainty data was derived 

from both the nearest and farthest boundaries. However, due to data limitations, a 5 

weight factor was used to balance the nearest boundaries and the farthest boundaries, 

and the choice of weight factor was subjective. When the weight factor was set to 0.5, 

the IDA method would produce similar goodness-of-fit indicators as the results of the 

CDFA using the uniform or normal distributions for both the predicted and measured 

data (Chen et al., 2014). For example, the NSE value for the hydrological prediction 10 

was 0.764 using the IDA method; if the CDFA was used, the goodness-of-fit indicators 

would be 0.752, 0.742 and 0.752 for the normal, lognormal, and uniform distributions, 

respectively. Therefore, when specific PDFs were used, the IDA method could be 

viewed as a simplification of the CDFA. Previous studies have also indicated that the 

lognormal distribution provides a relatively close approximation to the true error 15 

characteristics, so the CDFA could be more practical if certain prediction uncertainties 

exist (Shen et al., 2015). 

5 Conclusion 

In this study, two new methods were proposed and employed to evaluate model 

performance within an uncertainty framework: the CDFA and the MCA. Using the 20 

CDFA and the MCA, both prediction and measurement uncertainty could be 

considered for model evaluation in a post calibration process, and the possible impacts 

of error range and the choice of PDFs could be quantified for a real application. Based 

on the results, the model performance worsened when a larger error range existed, and 
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the choice of PDF affected the model performance, especially for NPS pollution 

predictions. These proposed methods could be extended to other goodness-of-fit 

indictors and other watershed models to provide a substitution for traditional model 

evaluations within an uncertainty framework. Thus, the new approaches could be a 

substitute of traditional goodness-of-fit indictors and they could be used for the model 5 

evaluation process. 

However, it should be noted the proposed CDFA and the MCA would serve for model 

evaluation in a post calibration process rather than a new calibration technique due to 

the technical complexity in implementing this approach within the model calibration. 

With the results presented, fixed PDFs or error range for prediction data could not be 10 

founded due to insufficient knowledge and natural randomness. Thus modellers 

should better assess the error range of measured data for their use in watershed 

simulations, and more data should be gathered to obtain a real measurement error range 

and a proper PDF for the predicted data. Further explanations are also suggested for the 

inherent uncertainty of hydrological and pollutant transportation processes. More case 15 

studies should be conducted to test the IDA, CDFA and MCA in future practical 

analyses of other watershed models. 
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Figure 1. A general flow chart of model evaluation within the uncertainty framework. 
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Figure 2. Expression of topological distance for (a) the case in which the measured and predicted 

data are non-overlapping and (b) the case in which the measured and predicted data are overlapping. 
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Table 1. The proof for the rationality of topological distance D. 

objective implementation constraints 

The definition of D Defined f A    the changing of it (f) is denoted by g; 

The definition of g 

 𝑓′(𝑥) = {

0           (𝑥 < 𝑥1)

𝑓(𝑥)      (𝑥1 ≤ 𝑥 ≤ 𝑥2)

1           (𝑥 > 𝑥2)
 

∃𝑥1, 𝑥2  ∈ 𝑅, 𝑓(𝑥) = 0 and 𝑓(𝑥) = 1, then (𝑥1 < 𝑥2);
 

 
𝑓′(𝑥) = {

0       (𝑥 < 𝑥1)

𝑓(𝑥)   (𝑥 ≥ 𝑥1)
  ∃ 𝑥1 ∈ 𝑅, 𝑓(𝑥) = 0 and ∃！𝑥2  ∈ 𝑅, 𝑓(𝑥) = 1; 

 
 𝑓′(𝑥) = {

𝑓(𝑥)       (𝑥 ≤ 𝑥2)
1            (𝑥 > 𝑥2)

 ∃ 𝑥2 ∈ 𝑅, 𝑓(𝑥) = 1 and ∃！𝑥1  ∈ 𝑅, 𝑓(𝑥) = 0; 

  𝑓′(𝑥) = 𝑓(𝑥) ∃！𝑥1, 𝑥2  ∈ 𝑅 , 𝑓(𝑥) = 0 and 𝑓(𝑥) = 0; 

The definition of B 𝐵 = {ℎ|ℎ = 𝑔(𝑓(𝑥))}, 𝐵 ≠ ∅ h  is a continuous function; 

The definition of Topological 

distance D 
𝐷 = ∫ |𝑓1 − 𝑓2|

𝑏

𝑎
   a < b, a, b ∈ R, a and b are all real numbersa; 

  ∀𝐷 ∉ {𝐷|𝐷 = ∫ |𝑓1 − 𝑓2|𝑑𝑥 , ∀𝑓1, 𝑓2 ∈ 𝐵
𝑏

𝑎
} ∃𝑚 ∈ R; 𝑚 > 𝐷 (D is a limited value);  

Proof of positive Definiteness  𝐷(𝑗 − 𝑗) = 0 ∀𝑗 ∈ 𝐵,|𝑗 − 𝑗| = 0, then 𝐷 = ∫ |𝑗 − 𝑗|𝑑𝑥 = 0
𝑏

𝑎
; 

Proof of symmetry 𝐷(𝑗1, 𝑗2) = 𝐷(𝑗2, 𝑗1) ∀𝑗1, 𝑗2 ∈ 𝐵, then, |𝑗1 − 𝑗2| = |𝑗2 − 𝑗1|; 

Trigonometric inequality |𝑗1 − 𝑗3| = |𝑗1 − 𝑗2 + 𝑗2 − 𝑗3| ≤ |𝑗1 − 𝑗2| + |𝑗2 − 𝑗3|  ∀𝑗1, 𝑗2, 𝑗3 ∈ 𝐵; 

 D(𝑗1, 𝑗3) ≤ D(𝑗1, 𝑗2) + D(𝑗2, 𝑗3)
 ∫ |𝑗1 − 𝑗3|𝑑𝑥 ≤ ∫ (|𝑗1−𝑗2| + |𝑗2 − 𝑗3|)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

= ∫ |𝑗1 − 𝑗2|𝑑𝑥

𝑏

𝑎

+ ∫ |𝑗2 − 𝑗3|𝑑𝑥

𝑏

𝑎

 

a where the values of a and b are as far from the origin as possible, thus the functions are integrated over a limited interval, and there are only small differences between the 

results and the results integrated for the real numbers R. 



23 
 

Table 2. The goodness-of-fit indicators for hydrological, sediment and TP models using both the new and traditional methods. 

Variable Indicator Point-to-point 

method 

Normal distribution Uniform distribution Lognormal distribution 

Ideal Typical Worst Ideal Typical Worst Ideal Typical Worst 

Flow NSE 

(CDFA) 
0.736 

0.752 0.751 0.744 0.742 0.742 0.736 0.752 0.751 0.744 

 NSE 

(MCA) 
0.73-0.74 0.71-0.75 0.63-0.79 0.73-0.75 0.71-0.76 0.63-0.79 0.73-0.74 0.71-0.75 0.63-0.79 

Sediment NSE 

(CDFA) 
0.642 

0.660 0.657 0.551 0.661 0.661 0.545 0.660 0.657 0.437 

 NSE 

(MCA) 

0.610-0.690 0.59-0.69 -0.31-0.67 0.600-0.700 0.59-0.71 -0.53-0.68 0.61-0.69 0.59-0.68 -0.28-0.66 

TP NSE 

(CDFA) 
0.783 

0.810 0.789 -0.056 0.814 0.814 -0.019 0.812 0.791 -0.072 

 NSE 

(MCA) 

0.71-0.82 0.62-0.83 -3.10-0.67 0.71-0.84 0.55-0.86 -3.27-0.72 0.69-0.81 0.62-0.83 -3.01-0.67 



24 
 

Table 3. The result of sampling (2000 times and 5000 times) the flow, sediment and TP in different distributions. 

  
  

    Number of simulations 

Normal distribution Uniform distribution Lognormal distribution 

MV
a CV

b MV CV MV CV 

Flow 

Ideal  1000 0.738 0.005 0.742 0.006 0.736 0.005 

 2000 0.737 0.005 0.742 0.006 0.736 0.005 

5000 0.737 0.005 0.742 0.006 0.736 0.005 

Typical 1000 0.734 0.013 0.736 0.013 0.735 0.014 

2000 0.734 0.013 0.738 0.013 0.732 0.013 

5000 0.733 0.013 0.737 0.013 0.733 0.013 

Worst 1000 0.578 0.055 0.824 0.014 0.713 0.015 

2000 0.683 0.047 0.748 0.013 0.730 0.013 

5000 0.693 0.048 0.737 0.013 0.737 0.013 

Sedime

nt 

Ideal 1000 0.643 0.029 0.657 0.043 0.641 0.028 

2000 0.642 0.030 0.657 0.044 0.642 0.028 

5000 0.642 0.030 0.657 0.044 0.642 0.029 

Typical 1000 0.639 0.039 0.652 0.05 0.64 0.057 

2000 0.640 0.038 0.654 0.049 0.637 0.038 

5000 0.638 0.039 0.653 0.049 0.638 0.038 

Worst 1000 0.378 0.818 0.484 0.987 0.467 1.224 

2000 0.440 0.713 0.440 0.906 0.415 1.21 

5000 0.446 0.717 0.433 0.914 0.424 1.213 

TP 

Ideal 1000 0.773 0.038 0.782 0.044 0.771 0.039 

2000 0.772 0.039 0.782 0.044 0.771 0.039 

5000 0.771 0.039 0.781 0.045 0.772 0.040 

Typical 1000 0.744 0.074 0.747 0.106 0.747 0.106 

2000 0.745 0.073 0.749 0.104 0.744 0.072 

5000 0.743 0.073 0.748 0.105 0.746 0.072 



25 
 

Worst 1000 -0.091 -12.224 -0.168 -8.907 -0.172 -8.529 

2000 -0.106 -10.543 -0.153 -8.172 -0.148 -8.737 

5000 -0.108 -10.716 -0.150 -8.249 -0.156 -8.449 
a MV is the mean value; b CV is the coefficient of variation. 


