10

15

20

Improvement of model evaluation by incorporating
prediction and measurement uncertainty
Lei Chen®, Shuang Li*, Yucen Zhong', Zhenyao Shen'

! State Key Laboratory of Water Environment Simulation, School of Environment,
Beijing Normal University, Beijing 100875, PR China

Corresponding to: Zhenyao Shen (zyshen@bnu.edu.cn)

Abstract. Numerous researches have been conducted to assess uncertainty in
hydrological and nonpoint source pollution predictions, but few studies have
considered both prediction and measurement uncertainty in the model evaluation
process. In this study, the Cumulative Distribution Function Approach (CDFA) and the
Monte Carlo Approach (MCA) were developed as two new approaches for model
evaluation within an uncertainty condition. For the CDFA, a new distance between the
cumulative distribution functions of the predicted data and the measured data was
established in model evaluation process, whereas the MCA was proposed to address
conditions with dispersed data points. These new approaches were then applied in
combination with the Soil and Water Assessment Tool in the Three Gorges Region,
China. Based on the results, these two new approaches provided more accurate
goodness-of-fit indicators for model evaluation compared to traditional methods. The
model performance worsened when the error range became larger, and the choice of
probability density functions (PDFs) affected model performance, especially for
non-point source (NPS) predictions. The case study showed that if the measured error is
small and if the distribution can be specified, the CDFA and MCA could be extended to
other model evaluations within an uncertainty framework and even be used to calibrate

and validate hydrological and NPS pollution (H/NPS) models.
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1 Introduction

Prediction of non-point source (NPS) pollution has become increasingly utilized
because NPS pollution is a key threat to bodies of water (Shen et al., 2014). Numerous
hydrological models, including the Soil and Water Assessment Tool (SWAT), the
Hydrological Simulation Program-Fortran (HSPF) and the Agricultural Non-Point
Source Model (AGNPS), have been developed and widely applied to hydrological and
NPS (H/NPS) pollution analyses and watershed management (Yang et al., 2008). NPS
pollution is reportedly driven by random and diffuse factors, such as climate, land use,
soil, vegetation cover and human activities (Ouyang et al., 2009), and model confidence
in NPS prediction, represented by model calibration and validation, is currently lacking
in modelling research.

Hydrological models always require input data, optimal parameters and proper model
structure (Baldassarre and Montanari, 2009), whereas data measurement often involves
processes of sampling, transportation and analyses. Errors in these complex processes
lead to uncertainty in the data (Chaney et al., 2015). Uncertainties in hydrology and
NPS modelling are classified as either measurement uncertainty or prediction
uncertainty (Chen et al., 2015; Baldassarre and Montanari, 2009). Uncertainty analysis
is a crucial step in the application of hydrological models (Guinot et al., 2011). The
uncertainty surrounding model structure and parameterization has been extensively
investigated (Wu et al., 2016). Several approaches, including the Generalized
Likelihood Uncertainty Estimation (GLUE) (Hassan et al., 2008; Sathyamoorthy et al.,
2014; Cheng et al., 2014), the Bayesian approach (Freni and Mannina, 2010; Han and
Zheng, 2016; Parkes and Demeritt, 2016; Zhang et al., 2009), Sequential Uncertainty
Fitting (SUFI-2) (Vilaysane et al., 2015; Abbaspour et al., 2007), and Markov Chain

Monte Carlo (MCMC) (Vrugt et al., 2003; Zhang et al., 2016), have been proposed.
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However, due to the lack of data, relatively few studies have focused on the inherent
uncertainty in measured data, and even fewer studies have considered measurement and
prediction uncertainties in the evaluation of model performance (Baldassarre and
Montanari, 2009; Montanari and Baldassarre, 2013).

In model evaluation, calibration is the process used to generate optimal parameters for
the best goodness-of-fit between the predicted data and the measured data, and
validation is the process of checking the model performance using another series of
measured data (Chen et al., 2014). Traditional model evaluation only considers the
goodness-of-fit between sets of measured data points and predicted data points
(Westerberg et al., 2011). Such point-to-point methods might be inadequate because
they fail to incorporate the existing uncertainties mentioned above. Previous studies
have noted that if prediction uncertainty exists, the predicted data could be expressed as
a confidence interval (Cl) or a probability density function (PDF) (Franz and Hogue,
2011; Shen et al., 2012). Harmel and Smith (2007) used the probable error range (PER)
as an expression of measurement uncertainty and modified the goodness-of-fit
indicators using the deviation term between the predicted data points and the nearest
measurement uncertainty boundaries. Harmel et al. (2010) further modified this
deviation term using a correction factor, which was determined by the degree of overlap
between each paired of measured and predicted intervals. This idea is instructive, but it
might be questionable sometimes because a larger uncertainty or error would result in
more overlap between the prediction and measurement intervals, which would indicate
better model performance. In this regard, Chen et al. (2014) developed an
interval-deviation approach (IDA), which demonstrated that H/WQ models should be
evaluated against both the nearest and farthest boundaries (the inherent uncertainty

intervals). Generally, this IDA approach is suitable for incomplete data conditions, but
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when more data could be collected or when a continuous and random data distribution
could be assumed, these intervals may not always be practical. Current research tends
to express uncertain data as certain function distributions to express an error term
(Zhang et al., 2009), which might lead to a more feasible expression than either the
traditional or IDA methods.

The objective of this study is to develop a new framework for model evaluation by
incorporating prediction and measurement uncertainty. Two methods, the Cumulative
Distribution Function Approach (CDFA) and the Monte Carlo Approach (MCA), were
proposed for different situations (Sect. 2). Then, the new methods were used in
combination with the SWAT to evaluate the Three Gorges Reservoir Area (TGRA),

China, as a case study (Sect. 3 and Sect. 4).

2 Methodology

In this study, the Nash-Sutcliffe efficiency coefficient (NSE) was selected from

commonly used indicators, and the expression is as follows:
NSE =1 - y=1(oi - Pi)z/zyzl(oi - 0y)? (4)

where {0 1 =1, 2,. .. ,N} is the set of measured data, {P;| i =1, 2,. .. ,N} is the set of
predicted data and O is the mean value of the measured data.

In traditional indicators, the deviation between the measured and predicted data is
expressed by the absolute distance (0; — P;) between the paired data points. This
method is questionable because it fails to incorporate prediction and measurement
uncertainty. In this paper, the probability distributions of each data set were statistically
estimated, and the calculations of 0; — P; were modified by using stochastic distances
between the paired PDFs. For the CDFA, cumulative distribution functions were used

to describe uncertain data because they are simple and do not depend on the

4
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distributional properties throughout the data sets (see Sect. 2.1). A topological distance,
which is based on the distance between cumulative distribution functions
(distribution-to-distribution), was proposed to replace the traditional error item in the
model evaluation. The Monte Carlo method was also used to generate groups of
discrete uncertain data throughout the sampling process (Vrugt and Ter Braak, 2011).
Thus, the MCA was proposed as a supplement to the CDFA when the uncertain data
were discrete or when no specific distributions could be used (see Sect. 2.2). A
flowchart of the model evaluation within the uncertainty framework is presented in

Figure 1.

2.1 The description of the CDFA method

The idea behind the CDFA was to replace the point-to-point comparison with the
deviation between uncertain measured data and predicted data expressed as cumulative
distribution functions. In fact, this is a modification of traditional good-of-fit indicators
by replacing the calculations of their O; — P; term by using stochastic distances
between the paired probability density functions (PDFs). A topological distance was
proposed, and visualizations of the topological distance are illustrated in Figure 2. The
cumulative distribution function was chosen because it is a monotone increasing
function with a limited threshold and an integral property. The distance between
cumulative distributions was then transformed into an area topological distance (D).
The proof of the rationality behind the topological distance D is shown in Table 1 (in
the supplementary material).

Based on Table 1, (B, D) is a reasonable metric space, and D is as a reasonable
measurement of B. Therefore, the difference between F,(x) and F,(x) is reasonable
and advisable.

The detailed steps of the CDFA are as follows:

5
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1) The prediction and measurement uncertainty are generated using GLUE, PER or
other methods;

2) The prediction and measurement data intervals are analysed, and the cumulative
distribution functions of the prediction uncertainty (F,(x)) and the measurement
uncertainty (F, (x)) are calculated.

3) The topological interval (area distance) between the two functions F,(x) and F,(x)
is quantified.

4) The new 0; — P; is quantified, and the modified evaluation indicators are used for

model evaluation.

2.2 The MCA method

In other cases, the measurement and prediction uncertainties might be expressed as
discrete data, or no continuous distribution function may fit the data set. For example,
even in some ideal conditions, the well-distributed gauges are available, the
rain-gauge network cannot fully capture every point over the watershed and it is more
common to have only a few stations distributed in space. Rainfall at unknown points
is thus estimated by means of interpolation techniques. Some results showed that
spatial interpolation techniques resulted in considerable uncertainty of rainfall spatial
variability and transferred larger uncertainty to H/NPS modeling. Besides, Shen et al.
(2013) have been carried out into the effect of GIS data on water quality modeling and
the uncertainty related to the combination of the available GIS maps. All these kinds
of prediction uncertainty relating to limited model structures, or model input data
could result in discrete variables. To incorporate this type of uncertainty, MCA was
implemented using the Monte Carlo technique, which has been used in many
hydrological uncertainty studies (Sun et al., 2008; Zhang et al., 2016). The Monte Carlo

technique is a type of random sampling method that considers combinations of different
6
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input components and determines a statistical distribution for the output data (Shen et
al., 2013). A key step is sampling variables randomly for discrete data so that the
measurement and prediction data can be expressed as certain distributions. Here,
(0; — P;) was replaced by a stochastic expression of the deviation between pairs of data
groups, and these stochastic deviations were then used to calculate the evaluation
indicators. The details of the MCA are as follows:

1) The distribution functions or discrete measured data points (f,(x)) and predicted
data (f,, (x)) are generated.

2) The sampling process of f,(x)) and f,(x) is realized using the Latin Hypercube
Sampling approach (Shen et al., 2012), and the software Crystal Globe was used to
sample for the MCA.

3) Based on the random samples of the predicted and measured data, corresponding
individual goodness-of-fit indicators are calculated.

4) The sampling process is repeated until the target sample size is achieved.

5) A group of goodness-of-fit indicator values are obtained, and these values are used to
produce the statistical analysis for the model evaluation within the uncertainty

framework.

3 Case study

In this study, the Daning Watershed, which is located in the central part of the TGRA,
was selected as the study area. Previously, the uncertainty ranges related to the flow,
sediment and TP predictions were quantified using the GLUE method (Chen et al.,
2014; Shen et al., 2012), and these results and uncertainty ranges were used as the
predicted data sets. Normal, uniform and lognormal distributions, which are classic and

simple PDFs, were assumed for each predicted data set. More details about the
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uncertainty ranges and PDFs of the predicted flow, sediment and total phosphorus (TP)
can be found in our previous study (Chen et al., 2014).

The measured stream flow, sediment and TP data at the Wuxi hydrological gauges were
obtained from the Changjiang Water Resources Commission. Due to data limitations,
the error range of the measured data was derived from Harmel et al. (2006), Harmel and
Smith, (2007) and Harmel et al. (2010). Based on our previous study (Chen et
al., 2014), the measurement uncertainty was assumed to be a normal distribution in
this paper, and three scenarios, an ideal case, a typical case and a worst case, were used.
The probable error ranges (PERs) for flow, sediment and TP were 2%, 2% and 2%,
respectively, for each ideal case scenario; 9%, 16% and 26%, respectively, for each
typical case scenario; and 36%, 102% and 221%, respectively, for each worst-case

scenario.

4 Results and discussion
4.1 The model evaluation results using the CDFA

The model evaluation results for flow, sediment and TP are shown in Table 2. For
simplicity, only the NSE indicator was chosen as a model evaluation indicator, and the
model evaluation results using a traditional point-to-point method were used as a
baseline scenario. For the traditional method, the NSE values were 0.736, 0.642 and
0.783 for flow, sediment and TP, respectively. Using the CDFA method (assuming the
measured error was small (the ideal case)), the following changes to the NSE values
were obtained: 0.752, 0.660 and 0.810 for flow, sediment and TP, respectively, in the
normal distribution scenario; 0.742, 0.661 and 0.814, respectively, in the uniform
distribution scenario; and 0.752, 0.660 and 0.812, respectively, in the lognormal
distribution scenario. However, when the measurement error became large (for the

typical case), the following NSE values were obtained: 0.751, 0.657 and 0.789 for flow,
8
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sediment and TP, respectively, in the normal distribution scenario; 0.742, 0.661 and
0.814, respectively, in the uniform distribution scenario; and 0.751, 0.657 and 0.791,
respectively, in the lognormal distribution scenario. When the measurement error
became negative (the worst-case scenario), the following NSE values were obtained:
0.744, 0.551 and -0.056 for flow, sediment and TP, respectively, in the normal
distribution scenario; 0.736, 0.545 and -0.019, respectively, in the uniform distribution
scenario; and 0.744, 0.437 and -0.072, respectively, in the lognormal distribution

scenario.

4.2 The model evaluation results using MCA

The sampling size is important for MCA, so a sensitivity analysis was first conducted.
Groups of O; and P; values (10, 50, 100, 200, 500, 1000, 2000 and 5000) were
randomly generated and used to calculate the NSE, and the sampling sizes were
obtained using statistical analysis of the NSE (only the results for 1000, 2000, and 5000
are shown in Table 3). The sampling results showed that with increasing sampling size,
the mean value and the coefficients of variation (Cy/) of the flow, sediment and TP also
increased. However, when the sampling sizes are larger than 2000, the model
performance become stable, and all indicators only changed within 1%, indicating that
larger sampling sizes of O0; and P; would not further benefit the performance of the
model. Thus, a sampling size of 5000 was chosen in this study.

The evaluation results, which are expressed as the 95% confidence interval of the NSE
for the flow, sediment and TP predictions, are shown in Table 2. The NSE ranges for
flow, sediment and TP in the ideal case were as follows: 0.73~0.74, 0.61~0.69 and
0.71~0.82, respectively (normal distribution); 0.73~0.75, 0.60~0.70 and 0.71~0.84,
respectively (uniform distribution); and 0.73~0.74, 0.61~0.69 and 0.69~0.81,

respectively (lognormal distribution). The NSE ranges for flow, sediment and TP in the
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typical case were as follows: 0.71~0.75, 0.59~0.69 and 0.62~0.83, respectively (normal
distribution); 0.71~0.76, 0.59~0.71 and 0.55~0.86, respectively (uniform distribution);
and 0.71~0.75, 0.59~0.68 and 0.62~0.83, respectively (lognormal distribution). The
NSE ranges for flow, sediment and TP in the worst case were as follows: 0.63~0.79,
-0.31~0.67 and -3.10~0.67, respectively (normal distribution); 0.63~0.79, -0.53~0.68
and -3.27~0.72, respectively (uniform distribution); and 0.63~0.79, -0.28~0.66 and

-3.01~0.67, respectively (lognormal distribution).

4.3 Analysis of influencing factors
4.3.1 Impact of error range

Generally, the data uncertainty range should always be obtained by analysing a large
amount of data, so it is difficult to ensure the error range of the predicted or measured
data due to data limitations. In this study, the measurement error is expressed as the
PER, and three PERs were obtained as expressions of different error ranges (Harmel
and Smith, 2007). In this section, the error ranges of the measured data were assumed as
the PERs, and the impacts of the PERs on the evaluation results of the CDFA and the
MCA were quantified. Only the normal distribution was considered for the prediction
data. For the ideal case scenario (PER of 2%), the NSE for the flow evaluation was
0.752, but for the typical case and the worst-case scenarios, the values of the NSE
changed to 0.751 and 0.744, respectively. Compared to the point-to-point result, the
goodness-of-fit indicators obtained from the CDFA (NSE) increased by 21.3% for flow
in the ideal case. The NSE increased by 20.1% and 9.8% for the typical case and the
worst-case scenarios, respectively. Similar variation in the evaluation results were
observed for the MCA method. The NSE for the flow evaluation was 63.5% for the
ideal case (normal distribution) and was 40.9% and 10.6% for the typical case and the

worst case, respectively (Harmel and Smith, 2007; Shen et al., 2013b). For flow
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prediction, the evaluation results obtained using the CDFA were all satisfactory with
measurement error of any size; however, for the sediment and TP evaluations, the
goodness-of-fit indicators became unacceptable if the measurement errors were large
(in the worst-case scenario). In this regard, the range of measurement error showed
different impacts on the flow, sediment and TP predictions. For example, the NSE
values were 0.752, 0.660 and 0.810 for the flow, sediment and TP evaluations in the
ideal case scenario. From the results above, a large measurement error would cause
decreasing evaluation performance, which is different from the results of Harmel and
Smith (2007). Similar results were observed for the MCA.

As shown in Table 2, increasing measurement error would lead to decreased NSE,
which means less confidence in the model performance. The worst evaluation
indicators were observed when the measurement error was the largest. The
performance of the TP predictions became unacceptable when the PER was 221%
(worst case). This result indicated that a threshold error range might exist for model
evaluation. When the error range is less than this specific value (such as the ideal and
typical cases for TP prediction used in this study), the model evaluation result is
acceptable. However, if the measurement error exceeds this threshold value (worst case)

the model evaluation would be unacceptable, and the confidence in the model

performance would be lost, especially for the NPS prediction. However, in reality, it is
often difficult to accurately measure pollutant data, especially in developing countries,
such as China. In these countries, a "calibrated model™ would have few advantages over

an un-calibrated model because of the lack of precisely measured data.

4.3.2 Impacts of data distribution

The assignment of PDFs might be the most difficult and subjective task in the

application of uncertainty analysis to hydrological models (Shen et al., 2013). Thus,
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model performance might be influenced not only by the error range but also by the
choice of PDF. In this study, the prediction uncertainty was assumed as three certain
distribution functions, but it is always difficult to ensure which PDFs should be used
(Shen et al., 2013). In this section, we further quantified the impacts of the different
PDFs on model performance. For simplicity, only the results of the CDFA and typical
case scenario are considered here. For the flow evaluation, the NSE values were 0.751,
0.742 and 0.751 when the predicted data were modelled using the normal distribution,
uniform distribution and lognormal distribution, respectively. For TP evaluation, the
NSE values were 0.789, 0.814 and 0.791 for the normal distribution, uniform
distribution and lognormal distribution, respectively. As in a previous study, the CI of
the prediction was larger for flow than for TP (Shen et al., 2012). Thus, the prediction
distributions have a low impact on the evaluation in cases of high CI values but have a
bigger impact on the evaluation when the CI of the prediction is low. Compared to the
baseline scenario, the NSE values for the hydrological prediction increased by 20.1%,
7.3% and 20.3% for the normal, uniform and lognormal distributions, respectively.
These results indicated that the choice of PDF would show certain impacts the model
evaluation for hydrological, sediment and TP applications. This result is consistent with
previous studies, which also showed that prediction uncertainty distributions can affect
the goodness-of-fit indicators (Harmel et al., 2010). Table 2 also indicates that the
choice of predicted PDFs should be dependent on the selection of the measured PDFs.
If the measurement and prediction uncertainties are set using the same PDFs, such as a
normal distribution, the goodness-of-fit indicators would be larger, indicating a more
reliable model performance. Thus, the choice of proper PDFs is important to make
accurate model evaluation for NPS predictions. Based on these results, we suggest that

model acceptability can be attained by using certain PDFs on the model output by
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collecting information from model documentation, previous studies, and other

literature to make an "educated guess".

4.4 Comparison with previous methods

In a previous study, Harmel and Smith (2007) advanced the IDA method, and this
"point-to-interval” method was based on the distance between the nearest boundaries of
paired intervals. Compared to our results, the difference between the paired data
intervals or the paired PDFs overlapping for larger uncertainties would be mistakenly
regarded as "no difference”. The point-to-interval method gave a higher goodness-of-fit,
but the measured data were only treated as data points. In this regard, deviations
between measurements and the prediction data would be ignored in the model
evaluation, which is not appropriate because the measurement error range would
greatly affect the model performance (as mentioned in section 4.3).

Chen et al. (2014) improved the nearest method by correcting for the overlapping parts
of the uncertainty data and using both the nearest and farthest boundaries. Using the
IDA, the NSE for the hydrological prediction would be 0.834 in the ideal case. However,
the CDFA method produced lower NSE values, which were 0.752 for the normal
distribution, 0.742 for the uniform distribution and 0.752 for the lognormal distribution.
In the typical case, the IDA method would produce an NSE value of 0.833, but the
CDFA would result in an NSE value of 0.751 for the normal distribution, 0.742 for the
uniform distribution, and 0.751 for the lognormal distribution. The difference between
the IDA and the CDFA would be largest for the worst case, in which the NSE values
would be 0.780 for the IDA method and 0.744 (normal distribution), 0.736 (uniform
distribution), or 0.744 (lognormal distribution) for the CDFA method (all results of the

IDA can be found in Chen et al., 2014).
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In Chen et al. (2014), an "interval-to-interval” method was proposed in which an
absolute distance between measurement and prediction uncertainty data was derived
from both the nearest and farthest boundaries. However, due to data limitations, a
weight factor was used to balance the nearest boundaries and the farthest boundaries,
and the choice of weight factor was subjective. When the weight factor was set to 0.5,
the IDA method would produce similar goodness-of-fit indicators as the results of the
CDFA using the uniform or normal distributions for both the predicted and measured
data (Chen et al., 2014). For example, the NSE value for the hydrological prediction
was 0.764 using the IDA method; if the CDFA was used, the goodness-of-fit indicators
would be 0.752, 0.742 and 0.752 for the normal, lognormal, and uniform distributions,
respectively. Therefore, when specific PDFs were used, the IDA method could be
viewed as a simplification of the CDFA. Previous studies have also indicated that the
lognormal distribution provides a relatively close approximation to the true error
characteristics, so the CDFA could be more practical if certain prediction uncertainties

exist (Shen et al., 2015).

5 Conclusion

In this study, two new methods were proposed and employed to evaluate model
performance within an uncertainty framework: the CDFA and the MCA. Using the
CDFA and the MCA, both prediction and measurement uncertainty were considered in
a model evaluation process, and the possible impacts of error range and the choice of
PDFs were quantified for a real application. Based on the results, the model
performance worsened when a larger error range existed, and the choice of PDF
affected the model performance, especially for NPS pollution predictions. These

proposed methods could be extended to other goodness-of-fit indictors and other
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watershed models to provide a substitution for traditional model evaluations within an
uncertainty framework. Thus, the new approaches could be a substitute of traditional
goodness-of-fit indictors and they could be used for the calibration and validation
process.

With the results presented, fixed PDFs or error range for prediction data could not be
founded due to insufficient knowledge and natural randomness. Thus modellers
should better assess the error range of measured data for their use in watershed
simulations, and more data should be gathered to obtain a real measurement error range
and a proper PDF for the predicted data. Further explanations are also suggested for the
inherent uncertainty of hydrological and pollutant transportation processes. More case
studies should be conducted to test the IDA, CDFA and MCA in future practical

analyses of other watershed models.
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Table 1. The proof for the rationality of topological distance D.

objective

| implementation

| constraints

The definition of D

Defined Vf € A

the changing of it (f) is denoted by g;

The definition of g 0 (x < x1) Jx;,%, ER, f(x) =0 and f(x) =1, then (x; < x,);
) =4f) (rn<x<x)
1 (x>xy)
f,(x):{O (x <x) Ix, €R, f(x)=0 and 3! x, €R, f(x) = 1;
fO) (x = x)
F1(x) = {f(x) (x <x3) Ix, €ER, f(x) =1 and 3! x, €R, f(x)=0;
1 (x >x3)
f'(x) = f(x) 3! x,x, ER, f(x) =0 and f(x) =0;
The definition of B B ={hlh = g(f(x))},B+ @ h s a continuous function;
The definition of Topological D= fb|f1 - £l a<b,ab €R,aandb are all real numbers?;
distance D a
vD ¢ {D|D = f:lfl — fld,, Vfi,f, € B} Im € R;m > D (D is a limited value);
Proof of positive Definiteness DG—-j)=0 Vj €B,|j —jl =0,then D = fblj —jld, = 0;
) ) a 1

Proof of symmetry D(j1,j2) = D(z,j1) Vji, j2 € B, then, |j; —jo| = |j2 — jil

Trigonometric inequality ljr —Jsl = lir —j2 + 2 — J3l < Ui — J2l + 12 — Jsl Vj1,j2.j3 € B;

D < D 5 DG , ,,
Uirks) = DU L2) + DU o) [ V=l < [ Qaciol + i = oDt
a a

b b
= J- |]1 _j2|dx +J- |]2 _j3|dx
a a

@where the values of a and b are as far from the origin as possible, thus the functions are integrated over a limited interval, and there are only small differences between the

results and the results integrated for the real numbers R.
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Table 2. The goodness-of-fit indicators for hydrological, sediment and TP models using both the new and traditional methods.

Variable Indicator

Point-to-point  Normal distribution

Uniform distribution

Lognormal distribution

method Ideal Typical Worst Ideal Typical Worst Ideal Typical Worst
Flow — INSE 0.752 0.751 0.744 0.742 0.742 0.736 0752 0751 0.744
(CDFA) 0.736
E\II\EIEA) 0.73-0.74 0.71-0.75 0.63-0.79 0.73-0.75 0.71-0.76 0.63-0.79 0.73-0.74 0.71-0.75 0.63-0.79
Sediment NSE 0.660 0.657 0.551 0.661 0.661 0.545 0.660 0.657 0.437
(CDFA) 0.642
NSE ' 0.610-0.690 0.59-0.69 -0.31-0.67 0.600-0.700 0.59-0.71 -0.53-0.68 0.61-0.69 0.59-0.68 -0.28-0.66
(MCA)
TP NSE 0.810 0.789 -0.056 0.814 0.814 -0.019 0.812 0.791 -0.072
(CDFA) 0783
NSE ' 0.71-0.82 0.62-0.83 -3.10-0.67 0.71-0.84 0.55-0.86 -3.27-0.72 0.69-0.81 0.62-0.83 -3.01-0.67
(MCA)
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Table 3. The result of sampling (2000 times and 5000 times) the flow, sediment and TP in different distributions.

Normal distribution Uniform distribution Lognormal distribution
Number of simulations a b
My Cv My Cv My Cv

Ideal 1000 0.738 0.005 0.742 0.006 0.736 0.005
2000 0.737 0.005 0.742 0.006 0.736 0.005
5000 0.737 0.005 0.742 0.006 0.736 0.005
Typical 1000 0.734 0.013 0.736 0.013 0.735 0.014
Flow 2000 0.734 0.013 0.738 0.013 0.732 0.013
5000 0.733 0.013 0.737 0.013 0.733 0.013
Worst 1000 0.578 0.055 0.824 0.014 0.713 0.015
2000 0.683 0.047 0.748 0.013 0.730 0.013
5000 0.693 0.048 0.737 0.013 0.737 0.013
Ideal 1000 0.643 0.029 0.657 0.043 0.641 0.028
2000 0.642 0.030 0.657 0.044 0.642 0.028
5000 0.642 0.030 0.657 0.044 0.642 0.029
. Typical 1000 0.639 0.039 0.652 0.05 0.64 0.057
Ser?t'me 2000 0.640 0.038 0.654 0.049 0.637 0.038
5000 0.638 0.039 0.653 0.049 0.638 0.038
Worst 1000 0.378 0.818 0.484 0.987 0.467 1.224

2000 0.440 0.713 0.440 0.906 0.415 1.21
5000 0.446 0.717 0.433 0.914 0.424 1.213
Ideal 1000 0.773 0.038 0.782 0.044 0.771 0.039
2000 0.772 0.039 0.782 0.044 0.771 0.039
P _ 5000 0.771 0.039 0.781 0.045 0.772 0.040
Typical 1000 0.744 0.074 0.747 0.106 0.747 0.106
2000 0.745 0.073 0.749 0.104 0.744 0.072
5000 0.743 0.073 0.748 0.105 0.746 0.072
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Worst 1000 -0.091 -12.224 -0.168 -8.907 -0.172 -8.529
2000 -0.106 -10.543 -0.153 -8.172 -0.148 -8.737
5000 -0.108 -10.716 -0.150 -8.249 -0.156 -8.449

a My is the mean value; ° Cy is the coefficient of variation.
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