
Dear Editor, 

Thank you very much for your suggestions. We have carefully considered your 

comments and revised the manuscript. And more detailed description about CDFA 

could be founded in Response to the Reviewer 1 and Reviewer 2. And we would 

like to clearly descript the novelty, effectiveness, and limitations of the CDFA method 

proposed as following: 

The objective of this study is indeed to develop a new framework for model 

evaluation by incorporating prediction and measurement uncertainty. In traditional 

indicators (such as Nash–Sutcliffe model efficiency), the deviation between the 

measured and predicted data is expressed by the absolute distance (     ) between 

the paired data points. This method is questionable because it fails to incorporate 

prediction and measurement uncertainty. Thus, the idea behind the CDFA was to 

replace the point-to-point comparison with the deviation between uncertain measured 

data and predicted data expressed as cumulative distribution functions. In fact, this is 

a modification of traditional good-of-fit indicators by replacing the calculations of 

their       term by using stochastic distances between the paired probability 

density functions (PDFs). Thus, this CDFA could be used during the calibration and 

validation process if PDFs could be obtained for both prediction data and 

measurement data. Based on the results obtained from this study, we found that the 

model performance worsened when a larger error range existed, and the choice of 

PDF affected the model performance, especially for non-point source (NPS) pollution 

predictions. These proposed methods could be extended to other goodness-of-fit 

indictors and other watershed models to provide a substitution for traditional model 

evaluations within an uncertainty framework. Thus, the authors do believe our method 

could be a substitute of traditional goodness-of-fit indictors and they could be used for 

the calibration and validation process. 

However, we only compare the results between traditional Nash–Sutcliffe model 

efficiency and CDFA during certain ―post-calibration‖ process. The reasons could be 

due to the imperfect knowledge of prediction uncertainty as well as the huge 

calculation effects. We could not set fixed PDFs or error range for prediction data due 

to insufficient knowledge and natural randomness. Besides, the CDFA is more 

complex than the traditional indicators so this method would take more running time. 

Although the increasing techniques expand the calibration process, the execution of 

CDFA is computationally expensive and technical complex, especially for large 

numbers of simulations during the parameter optimization process.  



There are a number of concerns surrounding the application of this new 

algorithm in practice. In fact, we have focused on this issue (using the CDFA for 

model calibration) recently. First, we have considered different sources of uncertainty 

and the possible range of model performances in a real application. Second, we have 

incorporated a more realistic but simpler simulator to decrease the computational 

complexity while making full use of CDFA’s strengths. Thus, these issues would be 

solved in the future, and CDFA could be applied effectively for model calibration. 

 

Response to the Reviewer 1 

Comments: 1) The idea of evaluating the goodness of model fit by comparing the 

distributions of model predicted values and observed values is appealing. However, in 

typical setting of a hydrological/water quality modeling problem, the distributions of 

model predictions are constructed using certain ―calibration‖ process, as already 

indicated in manuscript. The definition of measure of goodness of fit, which could be 

used for model evaluation such as the Nash–Sutcliffe model efficiency, should be able 

to be used to help reduce the parametric uncertainty of the model or, using the terms 

from GLUE, differentiate between ―behavioral‖ and ―non-behavioral‖ parameter sets. 

I did not see the CDFA approach proposed in this manuscript can function this way 

according to the description of the method provided in section 2.1. To put it another 

way, when there is knowledge of uncertainty or distributions of observed values, it is 

desirable to incorporate this knowledge into model calibration. However, it seems to 

me that the proposed CDFA approach does not provide a way to allow that 

information into model calibration and simply provides an alternative metric to 

summarize the model calibration results at the post-calibration stage. The utility of the 

new approach is therefore not significant. 

Response: Thank for very much for this suggestion. I agree with your idea that the 

distributions of model predictions and measurement data should be used for the 

calibration process. In fact, the objective of this study is indeed to develop a new 

framework for model evaluation by incorporating prediction and measurement 

uncertainty. In traditional indicators (such as Nash–Sutcliffe model efficiency), the 

deviation between the measured and predicted data is expressed by the absolute 

distance (     ) between the paired data points. This method is questionable because 

it fails to incorporate prediction and measurement uncertainty. In this regard, we have 

developed an interval-deviation approach (IDA), which demonstrated that H/WQ 

models should be evaluated against both the nearest and farthest boundaries (the 



inherent uncertainty intervals). And this work has been published in Chen et al. (2014). 

However, we have noted that this IDA approach is suitable for incomplete data 

conditions, but when more data could be collected or when a continuous and random 

data distribution could be assumed, these intervals may not always be practical. Thus, 

we have developed CDFA method.  

The idea behind the CDFA was to replace the point-to-point comparison with the 

deviation between uncertain measured data and predicted data expressed as cumulative 

distribution functions. In fact, this is a modification of traditional good-of-fit 

indicators by replacing the calculations of their       term by using stochastic 

distances between the paired probability density functions (PDFs). Thus, this CDFA 

could be used during the calibration and validation process if PDFs could be obtained 

for both prediction data and measurement data (why we only did it during 

post-calibration stage would be explained below). This process could be described as 

below： 

1) The prediction and measurement uncertainty are generated or assumed using 

previous knowledge. 

2) The prediction and measurement data intervals are analysed, and the 

cumulative distribution functions of the prediction uncertainty (     ) and the 

measurement uncertainty (     ) are calculated. 

3) The topological interval (area distance) between the two functions       and 

       is quantified. 

4) The new       is quantified, and the modified evaluation indicators are 

used for model evaluation. 

Based on the results obtained from this study, we found that the model 

performance worsened when a larger error range existed, and the choice of PDF 

affected the model performance, especially for non-point source (NPS) pollution 

predictions. These proposed methods could be extended to other goodness-of-fit 

indictors and other watershed models to provide a substitution for traditional model 

evaluations within an uncertainty framework. Thus, the authors do believe our method 

could be a substitute of traditional goodness-of-fit indictors and they could be used for 

the calibration and validation process. 

However, it should be noted that we only compare the results between traditional 

Nash–Sutcliffe model efficiency and CDFA during certain ―post-calibration‖ process. 

The reasons could be due to the imperfect knowledge of prediction uncertainty as well 



as the huge calculation effects. First, the meteorological-, geological-, hydrological-, 

and ecological processes in catchments are notably complex and are not always well 

known. Faced with such insufficient knowledge and natural randomness, uncertainty 

becomes an inherent part of watershed modeling. On one hand, measurement 

uncertainty may stem from errors in flow measurements, water quality sample 

collection, the processes of preservation, storage, transport and laboratory analysis, 

could be fixed as certain PDFs. In a thorough review (Harmel et al., 2006), all 

possible errors in the H/WQ measured data were compiled, indicating that appreciable 

inherent errors exist in the measured data even when following strict quality assurance 

and quality control (QA/QC) guidelines (Beven et al., 2012). Thus, we could fix 

certain possible errors or PDFs for each H/WQ measured data and used them during 

the calibration or validation process. One the other hand, the prediction uncertainty is 

more complex due to different sources of uncertainty, uncertainty propagation, 

evaluation methods, uncertainty expression and the control of uncertainty. Beck (1987) 

reported that residual uncertainty exists even with the best model structure and input 

data. Thus, we could not set fixed PDFs or error range for prediction data due to 

insufficient knowledge and natural randomness. That is the main reason why we did 

not use the CDFA method during the whole calibration process. Second, it should be 

noted the CDFA is more complex than the traditional indicators so this method would 

take more running time. Although the increasing techniques expand the calibration 

process, the execution of CDFA (also for MCA) is computationally expensive and 

technical complex, especially for large numbers of simulations during the parameter 

optimization process. In this paper, we have tried the CDFA into the calibration 

process (only for CN2) but we found the computing time is large.  

We agree with your idea that there are a number of concerns surrounding the 

application of this new algorithm in practice. In fact, we have focused on this issue 

(using the CDFA for model calibration) recently. First, we have considered different 

sources of uncertainty and the possible range of model performances in a real 

application. Second, we have incorporated a more realistic but simpler simulator to 

decrease the computational complexity while making full use of CDFA’s strengths. 

Thus, these issues would be solved in the future, and CDFA could be applied 

effectively for model calibration. 

Comments: 2) As for the MCA approach, I am afraid I could not find which variables 

are discrete variables of interest in the case study designed to demonstrate the 



implementation of MCA approach (section 4.2). All SWAT output variables 

mentioned in the case studies seem to be continuous. 

Response: In this study, two methods, the Cumulative Distribution Function 

Approach (CDFA) and the Monte Carlo Approach (MCA), were proposed for 

different situations. For the CDFA, cumulative distribution functions were used to 

describe uncertain data because they are simple and do not depend on the distributional 

properties throughout the data sets. The MCA was proposed as a supplement to the 

CDFA when the uncertain data were discrete or when no specific distributions could be 

used. A flowchart of the model evaluation within the uncertainty framework is 

presented in Figure 1. 

Previous studies have noted that if prediction uncertainty exists, the predicted data 

could be expressed as a confidence interval (CI) or a probability density function (PDF) 

(Franz and Hogue, 2011; Shen et al., 2012). Current research tends to express uncertain 

data as certain function distributions to express an error term (Zhang et al., 2009), 

which might lead to a more feasible expression than the traditional indicators. However, 

prediction uncertainty can be expressed as discrete variables of interest. For example, 

uncertainty related to rainfall is currently recognized as the major challenge for 

hydrological modeling science. Many previous studies have investigated uncertainty 

associated with measurement errors and spatial variability associated with rainfall. A 

number of researchers have investigated deviations in measured data, such as Sun et 

al. (2000), Kavetski et al. (2006), Bárdossy and Das (2008), McMillan et al. (2011). 

This uncertainty originates mainly from inaccuracy in measuring devices, local 

meteorological effects, and errors in data transmission. This kind of uncertainty could 

be expressed as confidence interval (CI) or a probability density function (PDF). 

However, another important source of uncertainty that can be expressed as 

discrete variables also existed. For example, even in ideal conditions, where the dense 

and well-distributed gauges are available, the rain-gauge network cannot fully capture 

every point over the watershed. It is more common to have only a few stations 

distributed in space over the watershed. Rainfall at unknown points is thus estimated 

by means of interpolation techniques. Several techniques—such as the Centroid 

method, the Thiessen Polygon method, IDW and the Kriging method—have been 

used in spatial interpolation to produce information on the spatial distribution of 

rainfall (Mamillapalli, 1998; Chaubey et al., 1999; Bárdossy and Das, 2008; Hamed et 

al., 2009; Cho et al., 2009; Fu et al., 2011). It is therefore logical to take interpolation 



methods into account when determining the impacts of spatial rainfall variability on 

H/NPS predictions in large watershed.  

We have investigated variability in spatial rainfall estimates associated with 

interpolation methods on modeling in large watershed. In our previous studies, the 

uncertainty introduced by spatial rainfall variability was determined using a number 

of different interpolation methods. These comprehensively-used techniques are: 1) the 

Centroid method; 2) the Thiessen Polygon method; 3) the Inverse Distance Weighted 

(IDW) method; 4) the Disjunctive Kriging method, and 5) the Co-Kriging method. A 

semi-distributed model—the Soil and Water Assessment tool (SWAT) was used in a 

large watershed in the Three Gorges Reservoir Area (TGRA), China. The modeling 

outputs considered were flow, sediment, and total phosphorus (TP) at the watershed 

outlet. Results indicated that spatial interpolation techniques resulted in considerable 

uncertainty of rainfall spatial variability and transferred even larger uncertainty to 

H/NPS modeling. Similar studies could be also been found in our other previous 

studies. For example, we have been carried out into the effect of GIS data on water 

quality modeling and the uncertainty related to the combination of the available GIS 

maps (Shen et al., 2013). Besides, we have focused on the structural uncertainty 

caused by the algorithms and equations that are used to describe the phosphorus (P) 

cycle at the watershed scale. All these kinds of prediction uncertainty relating to 

limited model structures or model input datasets could result in discrete variables.  

Thus, we also considered this kind of the measurement and prediction 

uncertainties, which might be expressed as discrete data. To incorporate this type of 

uncertainty, MCA was implemented using the Monte Carlo technique, which has been 

used in many hydrological uncertainty studies (Sun et al., 2008; Zhang et al., 2016). 

The Monte Carlo technique is a type of random sampling method that considers 

combinations of different input components and determines a statistical distribution for 

the output data (Shen et al., 2013). A key step is sampling variables randomly for 

discrete data so that the measurement and prediction data can be expressed as certain 

distributions. Here, (     ) was replaced by a stochastic expression of the deviation 

between pairs of data groups, and these stochastic deviations were then used to 

calculate the evaluation indicators.  

 

Response to the Reviewer 1 

Comments: 1) The idea of combining both predictive and observed uncertainty to 

assess model performances and uncertainty is quite interesting. However, it is not 



clear for me how the assessed uncertainty is used with the model to gain knowledge 

and to improve model performance?  

Response: Thank for very much for this suggestion. In fact, the objective of this study 

is indeed to develop a new framework for improving the evaluation of model 

performance by incorporating prediction and measurement uncertainty. In traditional 

indicators (such as Nash–Sutcliffe model efficiency), the deviation between the 

measured and predicted data is expressed by the absolute distance (     ) between the 

paired data points. This method is questionable because it fails to incorporate prediction 

and measurement uncertainty. In this regard, we have developed an interval-deviation 

approach (IDA), which demonstrated that H/WQ models should be evaluated against 

both the nearest and farthest boundaries (the inherent uncertainty intervals). And this 

work has been published in Chen et al. (2014). However, we have noted that this IDA 

approach is suitable for incomplete data conditions, but when more data could be 

collected or when a continuous and random data distribution could be assumed, these 

intervals may not always be practical. Thus, we have proposed CDFA method.  

The idea behind the CDFA was to replace the point-to-point comparison with the 

deviation between uncertain measured data and predicted data expressed as cumulative 

distribution functions. In fact, this is a modification of traditional good-of-fit 

indicators by replacing the calculations of their       term by using stochastic 

distances between the paired probability density functions (PDFs). Thus, this CDFA 

could be used during the calibration and validation process if PDFs could be obtained 

for both prediction data and measurement data.  

In other cases, the measurement and prediction uncertainties might be expressed 

as discrete data, or no continuous distribution function may fit the data set. For 

example, the input uncertainty relating to spatial rainfall variability might only result 

in a limited number of predicted data points that cannot be expressed as certain PDFs 

(Shen et al. 2012). Thus, we used MCA method. A key step is sampling variables 

randomly for discrete data so that the measurement and prediction data can be 

expressed as certain distributions. Here, (     ) was replaced by a stochastic 

expression of the deviation between pairs of data groups, and these stochastic 

deviations were then used to calculate the evaluation indicators.  

Based on the results obtained from this study, we found that the model 

performance worsened when a larger error range existed, and the choice of PDF 

affected the model performance, especially for non-point source (NPS) pollution 



predictions. These proposed methods could be extended to other goodness-of-fit 

indictors and other watershed models to provide a substitution for traditional model 

evaluations within an uncertainty framework. Thus, the authors do believe our method 

could be a substitute of traditional goodness-of-fit indictors and they could be used for 

the calibration and validation process. 

 

Comments: 2) Then, how can the proposed approaches be implemented within the 

calibration process to reduce model error? 

Response: In this study, two methods, the Cumulative Distribution Function 

Approach (CDFA) and the Monte Carlo Approach (MCA), were proposed for 

different situations. Previous studies have noted that if prediction uncertainty exists, 

the predicted data could be expressed as a confidence interval (CI) or a probability 

density function (PDF) (Franz and Hogue, 2011; Shen et al., 2012). Current research 

tends to express uncertain data as certain function distributions to express an error term 

(Zhang et al., 2009), which might lead to a more feasible expression than the traditional 

indicators. However, prediction uncertainty can be expressed as discrete variables of 

interest. For example, uncertainty related to rainfall is currently recognized as the 

major challenge for hydrological modeling science. Many previous studies have 

investigated uncertainty associated with measurement errors and spatial variability 

associated with rainfall. A number of researchers have investigated deviations in 

measured data, such as Sun et al. (2000), Kavetski et al. (2006), Bárdossy and Das 

(2008), McMillan et al. (2011). This uncertainty originates mainly from inaccuracy in 

measuring devices, local meteorological effects, and errors in data transmission. This 

kind of uncertainty could be expressed as confidence interval (CI) or a probability 

density function (PDF). 

However, another important source of uncertainty that can be expressed as 

discrete variables also existed. For example, even in ideal conditions, where the dense 

and well-distributed gauges are available, the rain-gauge network cannot fully capture 

every point over the watershed. It is more common to have only a few stations 

distributed in space over the watershed. Rainfall at unknown points is thus estimated 

by means of interpolation techniques. Several techniques—such as the Centroid 

method, the Thiessen Polygon method, IDW and the Kriging method—have been 

used in spatial interpolation to produce information on the spatial distribution of 

rainfall (Mamillapalli, 1998; Chaubey et al., 1999; Bárdossy and Das, 2008; Hamed et 



al., 2009; Cho et al., 2009; Fu et al., 2011). It is therefore logical to take interpolation 

methods into account when determining the impacts of spatial rainfall variability on 

H/NPS predictions in large watershed.  

Thus, the cumulative distribution functions were used to describe uncertain data 

in CDFA, and MCA was implemented using the Monte Carlo technique, which has 

been used in many hydrological uncertainty studies (Sun et al., 2008; Zhang et al., 

2016). Here, (     ) was replaced by a stochastic expression of the deviation between 

pairs of data groups, and these stochastic deviations were then used to calculate the 

evaluation indicators. Actually, in H/WQ models, the process of the calibration is to 

filter the optimal parameters for the model. In some sense, the evaluation approach is 

used to determine if there are the optimal parameters. Based on the results in the paper, 

these two new approaches provided more accurate goodness-of-fit indicators for model 

evaluation compared to traditional methods. Thus, it can be considered that the 

traditional evaluation method can be replaced by CDFA or MCA to reduce model 

error. 

However, we didn’t incorporate the approaches with model because that there 

are some limitations in applying of the two approaches. 1) The study of measured and 

predicted uncertainty is few, thus the distributions of uncertainties are not ensured. 2) 

In CDFA and MCA methods, high computer performance is needed. Because, the 

ordinary computers won't support the mass data computation for calibration.   

Thank you very much for your wonderful job. Hope that our responses are 

satisfactory. Best regards. 

 

Best wishes, 

Zhenyao Shen 

Professor 

School of Environment,  

Beijing Normal University,  

Beijing, China, 100875 

Tel: +86-10-5880 0398 

E-mail: zyshen@bnu.edu.cn 
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