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Dear Reviewer, Thank you very much for your scan and the valuable questions of
our manuscript“Improvement of model evaluation by incorporating prediction and mea-
surement uncertainty”. We have carefully considered your comments and detailed
responses can be summarized as follows: Comments: 1) The idea of evaluating the
goodness of model fit by comparing the distributions of model predicted values and ob-
served values is appealing. However, in typical setting of a hydrological/water quality
modeling problem, the distributions of model predictions are constructed using certain
“calibration” process, as already indicated in manuscript. The definition of measure of
goodness of fit, which could be used for model evaluation such as the Nash–Sutcliffe
model efficiency, should be able to be used to help reduce the parametric uncertainty
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of the model or, using the terms from GLUE, differentiate between “behavioral” and
“non-behavioral” parameter sets. I did not see the CDFA approach proposed in this
manuscript can function this way according to the description of the method provided
in section 2.1. To put it another way, when there is knowledge of uncertainty or dis-
tributions of observed values, it is desirable to incorporate this knowledge into model
calibration. However, it seems to me that the proposed CDFA approach does not pro-
vide a way to allow that information into model calibration and simply provides an alter-
native metric to summarize the model calibration results at the post-calibration stage.
The utility of the new approach is therefore not significant. Response: Thank for very
much for this suggestion. I agree with your idea that the distributions of model predic-
tions and measurement data should be used for the calibration process. In fact, the
objective of this study is indeed to develop a new framework for model evaluation by in-
corporating prediction and measurement uncertainty. In traditional indicators (such as
Nash–Sutcliffe model efficiency), the deviation between the measured and predicted
data is expressed by the absolute distance (O_i-P_i) between the paired data points.
This method is questionable because it fails to incorporate prediction and measure-
ment uncertainty. In this regard, we have developed an interval-deviation approach
(IDA), which demonstrated that H/WQ models should be evaluated against both the
nearest and farthest boundaries (the inherent uncertainty intervals). And this work
has been published in Chen et al. (2014). However, we have noted that this IDA
approach is suitable for incomplete data conditions, but when more data could be col-
lected or when a continuous and random data distribution could be assumed, these
intervals may not always be practical. Thus, we have developed CDFA method. The
idea behind the CDFA was to replace the point-to-point comparison with the deviation
between uncertain measured data and predicted data expressed as cumulative dis-
tribution functions. In fact, this is a modification of traditional good-of-fit indicators by
replacing the calculations of their O_i-P_i term by using stochastic distances between
the paired probability density functions (PDFs). Thus, this CDFA could be used dur-
ing the calibration and validation process if PDFs could be obtained for both prediction
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data and measurement data (why we only did it during post-calibration stage would
be explained below). This process could be described as belowïijŽ 1) The prediction
and measurement uncertainty are generated or assumed using previous knowledge.
2) The prediction and measurement data intervals are analysed, and the cumulative
distribution functions of the prediction uncertainty (F_o (x)) and the measurement un-
certainty (F_p (x)) are calculated. 3) The topological interval (area distance) between
the two functions F_o (x) and F_p (x) is quantified. 4) The new O_i-P_i is quantified,
and the modified evaluation indicators are used for model evaluation. Based on the
results obtained from this study, we found that the model performance worsened when
a larger error range existed, and the choice of PDF affected the model performance,
especially for non-point source (NPS) pollution predictions. These proposed meth-
ods could be extended to other goodness-of-fit indictors and other watershed models
to provide a substitution for traditional model evaluations within an uncertainty frame-
work. Thus, the authors do believe our method could be a substitute of traditional
goodness-of-fit indictors and they could be used for the calibration and validation pro-
cess. However, it should be noted that we only compare the results between traditional
Nash–Sutcliffe model efficiency and CDFA during certain “post-calibration” process.
The reasons could be due to the imperfect knowledge of prediction uncertainty as well
as the huge calculation effects. First, the meteorological-, geological-, hydrological-,
and ecological processes in catchments are notably complex and are not always well
known. Faced with such insufficient knowledge and natural randomness, uncertainty
becomes an inherent part of watershed modeling. On one hand, measurement uncer-
tainty may stem from errors in flow measurements, water quality sample collection, the
processes of preservation, storage, transport and laboratory analysis, could be fixed
as certain PDFs. In a thorough review (Harmel et al., 2006), all possible errors in the
H/WQ measured data were compiled, indicating that appreciable inherent errors exist
in the measured data even when following strict quality assurance and quality control
(QA/QC) guidelines (Beven et al., 2012). Thus, we could fix certain possible errors
or PDFs for each H/WQ measured data and used them during the calibration or vali-
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dation process. One the other hand, the prediction uncertainty is more complex due
to different sources of uncertainty, uncertainty propagation, evaluation methods, un-
certainty expression and the control of uncertainty. Beck (1987) reported that residual
uncertainty exists even with the best model structure and input data. Thus, we could
not set fixed PDFs or error range for prediction data due to insufficient knowledge and
natural randomness. That is the main reason why we did not use the CDFA method
during the whole calibration process. Second, it should be noted the CDFA is more
complex than the traditional indicators so this method would take more running time.
Although the increasing techniques expand the calibration process, the execution of
CDFA (also for MCA) is computationally expensive and technical complex, especially
for large numbers of simulations during the parameter optimization process. In this pa-
per, we have tried the CDFA into the calibration process (only for CN2) but we found the
computing time is large. We agree with your idea that there are a number of concerns
surrounding the application of this new algorithm in practice. In fact, we have focused
on this issue (using the CDFA for model calibration) recently. First, we have considered
different sources of uncertainty and the possible range of model performances in a real
application. Second, we have incorporated a more realistic but simpler simulator to de-
crease the computational complexity while making full use of CDFA’s strengths. Thus,
these issues would be solved in the future, and CDFA could be applied effectively for
model calibration. Comments: 2) As for the MCA approach, I am afraid I could not find
which variables are discrete variables of interest in the case study designed to demon-
strate the implementation of MCA approach (section 4.2). All SWAT output variables
mentioned in the case studies seem to be continuous. Response: In this study, two
methods, the Cumulative Distribution Function Approach (CDFA) and the Monte Carlo
Approach (MCA), were proposed for different situations. For the CDFA, cumulative dis-
tribution functions were used to describe uncertain data because they are simple and
do not depend on the distributional properties throughout the data sets. The MCA was
proposed as a supplement to the CDFA when the uncertain data were discrete or when
no specific distributions could be used. A flowchart of the model evaluation within the
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uncertainty framework is presented in Figure 1. Previous studies have noted that if
prediction uncertainty exists, the predicted data could be expressed as a confidence
interval (CI) or a probability density function (PDF) (Franz and Hogue, 2011; Shen et
al., 2012). Current research tends to express uncertain data as certain function dis-
tributions to express an error term (Zhang et al., 2009), which might lead to a more
feasible expression than the traditional indicators. However, prediction uncertainty can
be expressed as discrete variables of interest. For example, uncertainty related to
rainfall is currently recognized as the major challenge for hydrological modeling sci-
ence. Many previous studies have investigated uncertainty associated with measure-
ment errors and spatial variability associated with rainfall. A number of researchers
have investigated deviations in measured data, such as Sun et al. (2000), Kavetski et
al. (2006), Bárdossy and Das (2008), McMillan et al. (2011). This uncertainty origi-
nates mainly from inaccuracy in measuring devices, local meteorological effects, and
errors in data transmission. This kind of uncertainty could be expressed as confidence
interval (CI) or a probability density function (PDF). However, another important source
of uncertainty that can be expressed as discrete variables also existed. For example,
even in ideal conditions, where the dense and well-distributed gauges are available,
the rain-gauge network cannot fully capture every point over the watershed. It is more
common to have only a few stations distributed in space over the watershed. Rainfall at
unknown points is thus estimated by means of interpolation techniques. Several tech-
niquesâĂŤsuch as the Centroid method, the Thiessen Polygon method, IDW and the
Kriging methodâĂŤhave been used in spatial interpolation to produce information on
the spatial distribution of rainfall (Mamillapalli, 1998; Chaubey et al., 1999; Bárdossy
and Das, 2008; Hamed et al., 2009; Cho et al., 2009; Fu et al., 2011). It is therefore
logical to take interpolation methods into account when determining the impacts of spa-
tial rainfall variability on H/NPS predictions in large watershed. We have investigated
variability in spatial rainfall estimates associated with interpolation methods on model-
ing in large watershed. In our previous studies, the uncertainty introduced by spatial
rainfall variability was determined using a number of different interpolation methods.
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These comprehensively-used techniques are: 1) the Centroid method; 2) the Thiessen
Polygon method; 3) the Inverse Distance Weighted (IDW) method; 4) the Disjunctive
Kriging method, and 5) the Co-Kriging method. A semi-distributed modelâĂŤthe Soil
and Water Assessment tool (SWAT) was used in a large watershed in the Three Gorges
Reservoir Area (TGRA), China. The modeling outputs considered were flow, sediment,
and total phosphorus (TP) at the watershed outlet. Results indicated that spatial inter-
polation techniques resulted in considerable uncertainty of rainfall spatial variability
and transferred even larger uncertainty to H/NPS modeling. Similar studies could be
also been found in our other previous studies. For example, we have been carried out
into the effect of GIS data on water quality modeling and the uncertainty related to the
combination of the available GIS maps (Shen et al., 2013). Besides, we have focused
on the structural uncertainty caused by the algorithms and equations that are used to
describe the phosphorus (P) cycle at the watershed scale. All these kinds of prediction
uncertainty relating to limited model structures or model input datasets could result in
discrete variables. Thus, we also considered this kind of the measurement and pre-
diction uncertainties, which might be expressed as discrete data. To incorporate this
type of uncertainty, MCA was implemented using the Monte Carlo technique, which
has been used in many hydrological uncertainty studies (Sun et al., 2008; Zhang et al.,
2016). The Monte Carlo technique is a type of random sampling method that considers
combinations of different input components and determines a statistical distribution for
the output data (Shen et al., 2013). A key step is sampling variables randomly for dis-
crete data so that the measurement and prediction data can be expressed as certain
distributions. Here, (O_i-P_i) was replaced by a stochastic expression of the deviation
between pairs of data groups, and these stochastic deviations were then used to cal-
culate the evaluation indicators. Thank you very much for your wonderful job. Hope
that our responses are satisfactory, and look forward to hearing from you. Best re-
gards. Best wishes, Zhenyao Shen Professor School of Environment, Beijing Normal
University, Beijing, China, 100875 Tel: +86-10-5880 0398 E-mail: zyshen@bnu.edu.cn

Reference: Chen, L., Shen, Z., Yang, X., Liao, Q. and Yu, S.L., 2014. An Interval-
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Please also note the supplement to this comment:
https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-66/hess-2017-66-AC3-
supplement.pdf
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