

Q1: The introduction should be rewritten, and a brief introduction of the work whether has been done or not should be written thus highlighting the necessity and importance of this work.

A1: The introduction part has been rewritten, and key sentences have been added to address the importance and specific objectives of this project, which could be referred to lines 63-70.

Q2: References are mostly Chinese literatures, it is recommended to add some English literatures.

A2: Although most references in this paper are written by Chinese, the majority are published in top journals using English. Only two of them are in Chinese and have been labeled in the reference section. Also, we added several related literatures written by other countries' scholars to give a broader context of this topic.

Q3: It is suggested to modify the references format.

A3: The format of reference has been modified.

Q4: It is suggested to add the study area's location on the map of China in figure 1.

A4: We have demonstrated the location of Weihe river in the text. What we showed in Fig. 1 is the specific location of the study area in Weihe River basin, and the distribution of sampled sections, which are considered as more essential information.

Q5: TH in Table 1 is not described in the text, which can be deleted.

A5: Revised. The column of TH has been deleted.

Q6: The translation of name in figure 4 should be confirmed, which are Evaporation-crystallization dominance, Rock weathering dominance, Atmospheric precipitation dominance.

A6: The caption of Fig 4 has been revised.

1 Research on Hydrogeochemical Characteristics and Transformation Relationships
2 between Surface Water and Groundwater in the Weihe River

3 *Shibao Lu¹, Yizi Shang^{2,*}, Jihong Ou³, Wei Li¹, Zhipeng Gao^{4,2}, Wujin Li^{5,2}, Zhiping Li², Furong Yu²*

4 *1 School of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;*

5 *2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing
6 100018, China;*

7 *3 School of Public Administration, Zhejiang University of Finance and Economics, Hang Zhou 310018, China;*

8 *4 School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China*

9 *5 Guangdong Hydropower Planning and Design Institute, Guangzhou 510635, China.*

10 **corresponding author: yzshang@foxmail.com*

11 *Jihong Qu⁴, Shibao Lu^{2,*}, Zhipeng Gao^{3,4}, Wujin Li^{4,1}, Zhiping Li¹, Furong Yu¹*

12 *(1 School of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450045, China*

13 *2 School of Public Administration, Zhejiang University of Finance and Economics, Hang Zhou 310018, China;*

14 *3 School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China*

15 *4 Guangdong Hydropower Planning and Design Institute, Guangzhou 510635, China)*

16 **corresponding author: Lu5111284@aliyun.com*

17 **Abstract:** The transforming relationship between surface water and groundwater as well as their origins are the basis for studying the
18 transport of pollutants in river-groundwater systems. ~~At~~ Typical sections of the river ~~were~~ was chosen to sample the surface water and
19 shallow groundwater. Then, a Piper trilinear diagram, Gibbs diagram, ratios of major ions, factor analysis, cluster analysis and other
20 methods were ~~used~~ applied to investigate the hydrogeochemical evolution of surface water and groundwater and determine the
21 formation of hydrogeochemical components in different water bodies. Based on the distribution characteristics of hydrogen and
22 oxygen stable isotopes δD and $\delta^{18}O$ and discharge hydrograph separation methods, the relationship between surface water and
23 groundwater in the Weihe River was analyzed. The results ~~indicated~~ reveal that the river water is a SO_4^{2-} Cl^- Na^+ type and ~~that~~ the
24 groundwater hydrogeochemical types are not the same. The dominant anions are HCO_3^- in the upstream reaches and ~~are~~ SO_4^{2-} and Cl^-
25 in downstream reaches. Hydrogeochemical processes include evaporation and concentration, weathering of rocks, ion exchange, and
26 dissolution infiltration reactions. The δD and $\delta^{18}O$ of surface water change little along the river and are more enriched than are those
27 of the groundwater. With the influences of precipitation, irrigation, river recharge and evaporation, the δD and $\delta^{18}O$ of shallow
28 groundwater at different sections are not the same. *It could be established that surface water recharges groundwater at 5 sections
29 along the Weihe River, and each section has unique recharge intensity and relationship due to its specific hydraulic environment.*
30 *There is a close relationship between the surface water and groundwater.* Surface water supplies the groundwater, which provides the
31 hydrodynamic conditions for the entry of pollutants into the aquifer.

32 **Keywords:** hydrogeochemical characteristics; hydrogen and oxygen stable isotopes; surface water-groundwater system; cycle and
33 transformation

34 1. Introduction

35 The regularity of the water cycle and the conversion between surface water and groundwater is the basis for
36 the study of pollutant transport in river-groundwater systems (Lu et al., 2016a; Shang et al., 2017). Different water
37 bodies have ~~specific different~~ hydrogeochemical characteristics and isotopic signatures ~~because of due to their~~
38 different ~~sources of~~ recharge ~~sources~~, environments and circulation conditions. Hence, hydrogeochemical

characteristics are ~~the ideal tracers used~~ for ~~displaying tracking~~ water circulation processes ~~and~~. ~~a~~Analyses of hydrogeochemical and isotopic characteristics ~~of rivers and groundwater~~ can effectively reveal the ~~relationship in~~ transformation of river water to groundwater (Kanduč et al., 2014). An integration of the hydrogeological and isotopic data could be more reliable and meaningful (Matiatos et al., 2014).

A series of mathematical methods are employed and combined to process the measured data. Descriptive statistics, graphic analysis and multivariate statistical analysis methods are used to determine analyze the hydrogeochemical characteristics (Lu et al., 2015). ~~Graphic methods include the Durov diagram (1948), Stiff diagram (1951), Piper diagram (1944) and Gibbs diagram (1970) belong to graphical methods (Rekha et al., 2013).~~ Common multivariate statistical analysis methods include factor analysis (Keesari et al., 2016), principal component analysis (Chattopadhyay and Singh, 2103) and cluster analysis (Zhang et al., 2012). Stable isotopes of δ D and $\delta^{18}\text{O}$ are considered as ideal tracers for tracking various hydrogeochemical processes (Liu et al., 2014). The surface-ground water transformation mechanism is a worldwide topic, about which researches were conducted on many regions via the above methods. Dogramaci et al. (2012) investigated studied the hydrogeochemical and isotopic characteristics of the Hamersley Basin in northwestern Australia and provided a theoretical basis for the sustainable development of local water resource utilization. A series of methods, such as ~~the descriptive statistical method, the Piper diagram and the main ion component proportion coefficient and the~~ factor analysis method, were employed used to study hydrogeochemical characteristics of groundwater in the Sara Wusu aquifer system in the Ordos Basin (Yang et al., 2016). Fuzzy mathematics and multivariate statistical methods were used to study the quality characteristics of surface water and groundwater in the Songnen plain (Zhang et al., 2012). Zeng et al. (2013) investigated studied the spatial distribution of hydrogeochemical and isotopic characteristics of different water bodies in Tajikistan, including spring water, river water and lake water; in different parts of Tajikistan and discussed their origins and environmental significance. ~~Although there are many studies related to the chemical and isotopic characteristics of groundwater and surface water, the relationship between surface water and groundwater transformation is still a prevalent topic in hydrology and water resource studies (Wang et al., 2016; Lu et al., 2016b), hydrogeochemistry, biogeochemistry, and ecohydrology.~~ Hydrogen and oxygen stable isotopes ($\delta^{18}\text{O}$ and δ D) and electrical conductivity (EC) as typical parameters were adopted used to represent study the mutual relationship among precipitation, river water and groundwater in Taiwan Douliushan (Peng et al., 2014). Meanwhile, Multivariate statistical analysis methods and isotopic analysis methods were used to study the hydraulic linkage between surface water and groundwater and their temporal and spatial variations in the Condamine River in Australia (Martinez et al., 2015). Hydrogen and oxygen isotopes were used to study the relationship of recharge and discharge between the various water bodies on the Portuguese island of Madeira, from which a hydrogeological conceptual model of Madeira Island was established (Prada et al., 2016). By analyzing the hydrogeochemical characteristics of surface water and groundwater in the Heihe River Basin, Nie et al. (2005) identified the transformation relationship between groundwater and surface water in the main stream of Heihe River. ~~Hydrogen and oxygen isotopes and water chemistry were used to investigate the relationship between surface water and groundwater of the Second Songhua River, and t~~Except for the common relationship determination, the end element method was used to quantitatively calculate a conversion proportion between surface water and groundwater of the Second Songhua River was also calculated quantitatively through the end element method (Zhang et al., 2014). Although many studies related to the chemical and isotopic characteristics of groundwater and surface water have been conducted recently, the relationship between surface water and groundwater transformation is still a prevalent and essential topic in hydrology and water resource studies, hydrogeochemistry, biogeochemistry, and ecohydrology (Wang et al., 2016; Lu et al., 2016b).

The surface water of Weihe River in this paper is seriously polluted and has become a major pollution source

86 for nearby shallow groundwater. This seriously affects the exploitation, utilization and protection of groundwater
87 resources and endangers the ecological safety and the health of the residents (Lu et al., 2016c). This present study
88 has three main objectives as follows: (1) To investigate the hydrogeochemical components formation of surface
89 water and groundwater through the samples taken from~~The surface water and groundwater were sampled in~~
90 several typical sections of the Weihe River Basin; (2) To study determine the rechargeconversion relationship
91 between surface water and groundwater based on the hydrogeochemical and isotopic characteristics; (3) and To
92 provide at the systematic- methods for hydrogeochemical analysis including Piper trilinear diagram, Gibbs
93 diagram, factor analysis and cluster analysis.basis for groundwater protection, restoration and management.

95 2. Materials and methods

96 2.1 Study area

97 The Weihe River Basin, which is with the length of 344.5 km ~~long~~ and ~~has~~ a basin area of 14970 km², is
98 located in the northern part of the Henan Province, south of the North China Plain. It is the main tributary to the
99 Zhangweinan Canal, which is ~~a~~ tributary to the Haihe River. The Weihe River Basin has a typical warm,
100 temperate, continental monsoon climate. It is cold and dry, with minor rain in the winter, hot and rainy in the
101 summer, and the average annual precipitation in the basin is 608 mm (Zhu et al., 2006). The influence of river
102 pollutants on groundwater is mainly banded and has a relatively small rangearea of influence. Considering the
103 shallow groundwater along both sides of the river, a~~A~~ 26.67-km-long segment of the Weihe River between
104 Xizhangzhuang village of Xiaohe Town and Dongwangqiao village of Liyang Town, ~~considering the shallow~~
105 ~~groundwater along both sides of the river~~, was selected as the study area. ~~This is an area~~ of approximately 160
106 km² (as shown in Fig. 1). The Weihe River Basin is closely related to groundwater, and the polluted river water of
107 the Weihe River is a pollution source of groundwater on both sides of the river. The groundwater is mainly
108 supplied by atmospheric precipitation, lateral seepage, piedmont lateral runoff and canal leakage, and drainage is
109 dominated by artificial extraction and evaporation. Groundwater flows from the southwest to the northeast, which
110 is generally consistent with the topography. The average hydraulic gradient is 1/3000.

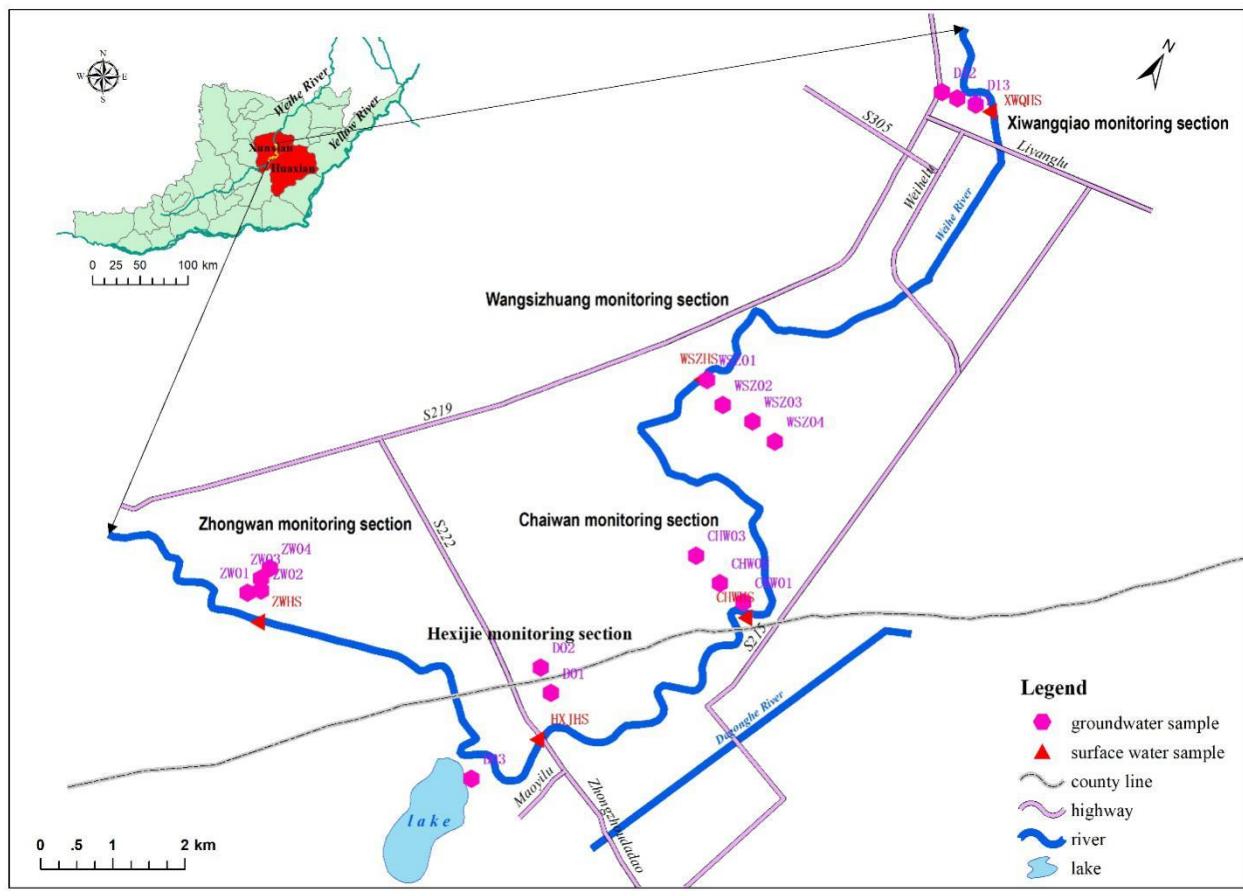


Fig. 1 The location of the study area and the distribution of sampled sections

2.2 Sample collection

According to the goals of the study, the surface water sampling sites were chosen parallel to the direction of river flow, and while the groundwater sampling sites were chosen perpendicular to the river flow. There were 5 sections sampled from upstream to downstream between Xiaohe Town and Liyang Town along the Weihe River (i.e., the Zongwan sample section, Hexijie sample section, Chaiwan sample section, Wangsizhuang sample section and Xiwangqiao sample section). A total of 5 surface water samples and 17 groundwater samples were collected in May 2016. Among them, ZWHS, HXJHS, CHWHS, WSZHS and XWQHS were surface water sampling sites, and the others were groundwater sampling sites. The samples were collected in May 2016. The sampling sites encompassed the band of influence of pollutants from the Weihe River on groundwater. The locations and types of the sampling sites and the types of water samples are shown in Figure 1.

Groundwater was sampled mainly from irrigation wells and drinking wells. Prior to sampling, wells were should be pumped for more than 20 min until the temperature, electrical conductivity (EC), and pH were become stable. Surface water samples were collected from the river bank at a depth of more than 50 cm and kept. Samples were collected in 500 ml polyethylene bottles, which were cleaned washed with sample water at least three times prior to before sampling. When After sampling work having been finished each sample was collected, it should be confirmed that no bubbles were left in the bottle, and the outer cap was sealed with sealant to prevent air exchange. Samples were brought back to the laboratory and stored in a refrigerated container at 0 to 4 °C.

131 **2.3 Stable hydrogen and oxygen isotopes and hydrogeochemical analysis**

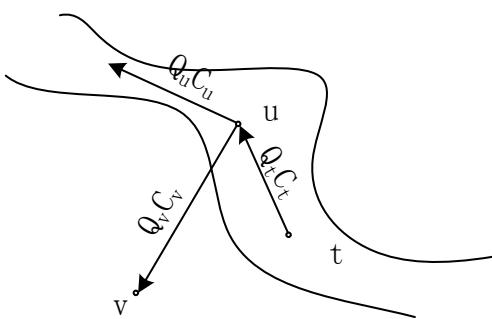
132 Hydrogen and oxygen isotopes were measured in the laboratory of groundwater science and engineering of
133 the Ministry of Land and Resources of the Institute of Hydrogeology and Environmental Geology at the Chinese
134 Academy of Geological Sciences. Analyses were conducted using wavelength scanning-optical cavity ring down
135 spectroscopy. The ratio of hydrogen and oxygen isotopes (δ) is expressed as the deviation relative to Vienna
136 VSMOW (Zhao, et al, 2015):

137
$$\delta(\text{‰}) = \frac{R_{sp} - R_{st}}{R_{st}} \times 1000 \quad (1)$$

138 where R_{sp} and R_{st} refer to the ratio of D/H (or $^{18}\text{O}/^{16}\text{O}$) in samples and VSMOW, respectively. When δD and
139 $\delta^{18}\text{O}$ are positive, the samples are enriched with D and ^{18}O compared to the VSMOW standard; when they are
140 negative, the two isotopes are diluted compared to the VSMOW standard (Zhang et al., 2006).

141 Analyses of water chemical ~~calstry~~ components ~~wasere conducted completed~~ in the laboratory of hydrogeology
142 at the North China University of Water Resources and Electric Power. ~~The analyses includ~~ ~~inged~~ Cl^- , SO_4^{2-} , Na^+ ,
143 K^+ , NH_4^+ , Mg^{2+} , HCO_3^- , CO_3^{2-} and Ca^{2+} . Among these ions, HCO_3^- and CO_3^- were detected using acid-base
144 indicator titration, Ca^{2+} and Mg^{2+} were ~~tested via deeteded using~~ EDTA titration, and the other ions were ~~through~~
145 ~~deeteded using~~ ion chromatography. ~~pPH~~, ~~total dissolved solids (TDS)~~, ~~rugged dissolved oxygen (RDO)~~,
146 conductivity, redox potential and other indicators were detected *in situ* with a PX.68-smarTROLL MP hand-held
147 multi-parameter water quality detector.

148 **2.4 Conversion ratio of surface water to ~~ground water~~groundwater**


149 The stable hydrogen and oxygen isotope method can determine the sources of runoff, the division of river
150 runoff and the conversion of surface water and groundwater. The principle of division is based on the law of mass
151 conservation of isotopes (Song et al., 2007), in which the sum of two runoff components is equal to the total flow
152 ~~of the resultant runoff~~, and the sum of ~~the tracer flow of~~ the two ~~tracer runoff~~ components ~~is~~ equals to the sum of
153 the tracer of synthetic runoff (Fig~~ure~~ 2). The ~~calculations basic equations~~ are as follows:

154
$$Q_t = Q_u + Q_v \quad (2)$$

155
$$Q_t \cdot C_t = Q_u \cdot C_u + Q_v \cdot C_v \quad (3)$$

156
$$f = \frac{Q_v}{Q_t} = \frac{C_t - C_u}{C_v - C_u} \quad (4)$$

157 where Q is the flux, C is the isotope-~~concentration component~~, t and u ~~are indicate~~ surface water, and v
158 ~~represents is~~ ~~groundwater~~. f is the ratio of ~~surface river~~ water to ~~ground water~~groundwater and is calculated with
159 δD as a standard.

160
161 **Fig. 2 Principle diagram of the discharge hydrograph separation methods**

162 **3. Results and discussion**

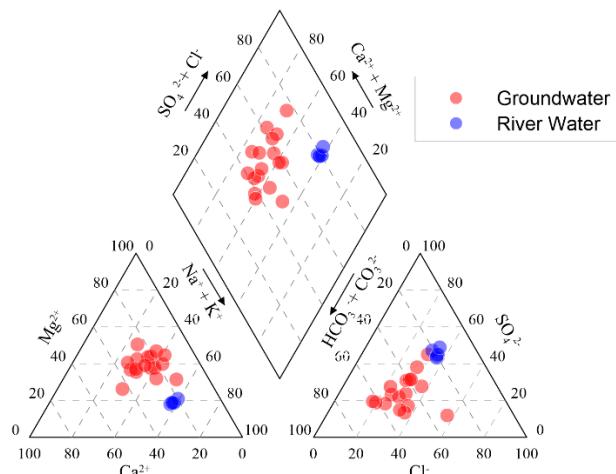
163 **3.1 Characteristics of main hydrogeochemical components**

164 The water composition results are shown in Table 1. The groundwater pH ~~in the study of the sampling~~ area
 165 was ~~near close to~~ neutral, ranging from 6.83 to 7.81. The TDS ~~ranged from values were between~~ 564.66 ~~and to~~
 166 1747.84 mg/L, ~~and the TDS of~~ all 17 groundwater samples ~~of which~~ exceeded the World Health Organization
 167 (WHO) drinking water ~~standard threshold~~ of 500 mg/L. As illustrated in Table 1, The relationship between the
 168 average concentrations of groundwater anions ~~wereas sorted as~~ $\text{HCO}_3^- > \text{SO}_4^{2-} > \text{Cl}^-$. The concentration of HCO_3^-
 169 ~~ranged from 461.75 mg/L to 735.15 mg/L, with an average concentration of 635.88 mg/L. The concentration of~~
 170 SO_4^{2-} ~~ranged from 116.11 mg/L to 833.33 mg/L, with an average concentration of 307.52 mg/L. The concentration~~
 171 ~~of Cl ranged from 102.17 mg/L to 640.13 mg/L, with an average concentration of 275.24 mg/L.~~ The relationship
 172 of the average concentrations of the cations was $\text{Na}^+ > \text{Ca}^{2+} > \text{Mg}^{2+} > \text{K}^+$. Na^+ and Ca^{2+} were dominant, and their
 173 concentrations ranged from 74.21 mg/L to 272.00 mg/L and 64 mg/L to 268.80 mg/L, respectively, with average
 174 values of 182.78 mg/L and 121.69 mg/L.

175 The pH of the Weihe River in the study area ranged from 8.03 to 8.22, ~~which and~~ was ~~therefore~~ weakly
 176 alkaline. The TDS ~~ranged from 1401.32 to 1518.71 mg/L with an average value of 1473.74, which~~ is generally
 177 higher than that of groundwater. The ~~sorting results of relationships between~~ the concentrations of anions and
 178 cations in surface water were $\text{SO}_4^{2-} > \text{Cl}^- > \text{HCO}_3^-$ and $\text{Na}^+ > \text{Ca}^{2+} > \text{Mg}^{2+} > \text{K}^+$, ~~respectively~~. The concentration of
 179 SO_4^{2-} in the river water ranged from 627.07 mg/L to 664.06 mg/L, with an average value of 647.12 mg/L. The
 180 concentration of Cl^- ranged from 325.95 mg/L to 391.57 mg/L, with an average concentration of 365.89 mg/L.
 181 The concentrations of Na^+ and Ca^{2+} ranged from 294.47 mg/L to 314.27 mg/L and 94.40 mg/L to 115.20 mg/L,
 182 respectively, and their mean values were 305.58 mg/L and 107.52 mg/L. As seen in Table 1, there is no significant
 183 change in the ion concentration between the upstream and downstream parts of the Weihe River.

184 According to WHO ~~standard of~~ drinking water standards, except for K^+ and pH, the other measured
 185 components of surface water and groundwater all exceeded the maximum acceptable values in the study area. As
 186 suchUnder such conditions, both surface water and groundwater along the Weihe River could not be considered as
 187 are not suitable drinking water sources.

188 **Table 1 Analytical results of water quality in the study area**


	Ion content/ (mg·L ⁻¹)	pH	TDS	Na^+	K^+	Mg^{2+}	Ca^{2+}	Cl^-	SO_4^{2-}	HCO_3^-
Groundwater (17)	Minimum	6.73	564.66	74.21	6.20	57.76	64.00	102.17	116.11	461.75
	Maximum	7.81	1747.84	272.00	34.26	162.38	268.80	640.13	833.33	735.15
	Average	7.30	1170.00	182.78	16.58	110.23	121.69	275.24	307.52	635.88

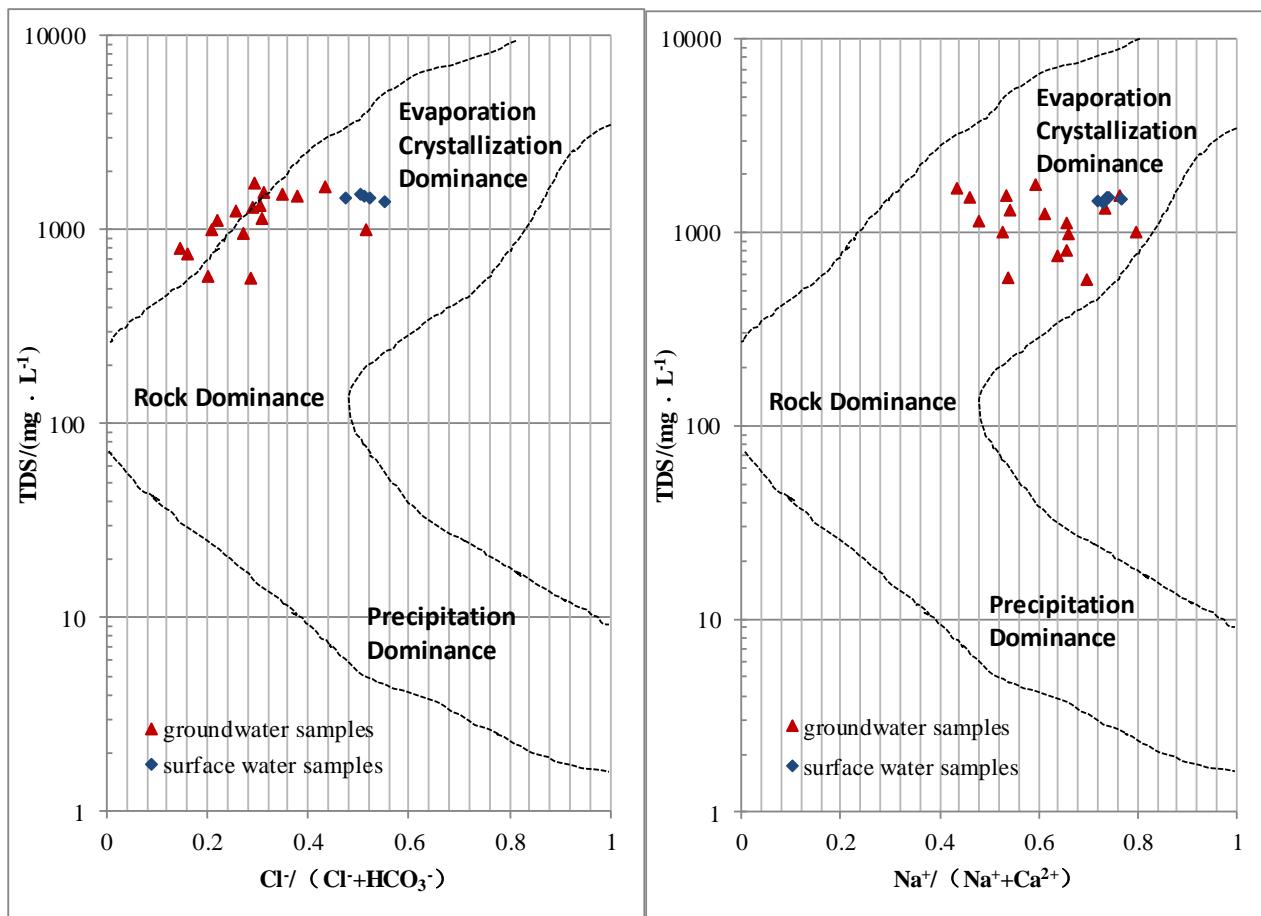
Surface water (5)	Minimum	8.03	1401.32	294.47	24.23	49.90	94.40	325.95	627.07	282.52
	Maximum	8.22	1518.71	314.27	28.35	59.54	115.20	391.57	664.06	385.80
	Average	8.11	1473.74	305.58	26.40	53.79	107.52	365.89	647.12	350.56
	WHO drinking water standards	6.5~8.5	500	200	100	30	75	200	200	200
	Over-standard rate of groundwater (%)	0	100	47	0	100	70	70	65	100
	Over-standard rate of surface water (%)	0	100	100	0	100	100	100	100	100

189

190 3.2 Hydrogeochemical characteristics

191 The Piper diagram is ~~widely one of the most commonly used applied as~~ graphical methods for ~~settling~~
 192 ~~interpreting~~ hydro-geological problems. According to the analytical results, the Piper diagram of the
 193 hydrogeochemical compositions of all water samples in the study area is shown in Fig. 3. The results
 194 ~~illustrate~~~~indicate~~ that the chemical type of surface water ~~in the study area~~ is ~~the~~ SO₄ Cl—Na type, indicating that
 195 the surface water is uniform across the study ~~area~~~~region~~. From upstream to downstream along the Weihe River,
 196 the water ~~ehemistry~~~~chemical~~ type of each groundwater section is as follows: The Zong Wan section and Hexijie
 197 section are mainly HCO₃—Mg Na types, the Chaiwan section is mainly the SO₄ Cl—Mg Na type, the
 198 Wangsizhuang section is mainly the HCO₃ SO₄ Cl—Mg Na type, and the Xiwangqiao section is mainly the
 199 HCO₃ Cl—Mg Ca Na type. ~~From the recharge area to the discharge area, Usually,~~ the chemical types of
 200 groundwater ~~usually, from the recharge area to the discharge area,~~ change in the following ways: HCO₃[—]—SO₄²⁻
 201 —Cl[—]. ~~Considering Based on~~ the results of groundwater chemical types of groundwater of each section, it could be
 202 ~~concluded that~~ HCO₃[—] is dominant in groundwater on both sides of river in the upstream section, whereas SO₄²⁻
 203 and Cl[—] are dominant in the middle and lower reaches. The ~~type of water chemistry~~~~water chemical types~~ can
 204 indirectly verify ~~that~~ the groundwater flow on both sides of river.

205 206 Fig. 3 Piper diagram of water chemical components for surface and groundwater in the study area


207 3.3 Analysis of formation function of water chemical compositions

208 3.3.1 Analysis of formation function based on the Gibbs diagram

209 The Gibbs diagram can clearly indicate whether the chemical components of river and groundwater are the
 210 precipitation dominance type, rock dominance type or evaporation crystallization dominance type. It is an
 211 ~~efficient important~~ way to qualitatively determine the effects of regional rocks, atmospheric precipitation, and
 212 evaporation concentration on river water components (Wang et al., 2010). Generally, samples with low TDS and

213 high $\text{Na}^+/(\text{Na}^+ + \text{Ca}^{2+})$ or $\text{Cl}^-/(\text{Cl}^- + \text{HCO}_3^-)$ ratios (close to 1), are mainly distributed in the lower-right corner, indicating indicate precipitation dominance. Samples with slightly high TDS and $\text{Na}^+/(\text{Na}^+ + \text{Ca}^{2+})$ or $\text{Cl}^-/(\text{Cl}^- + \text{HCO}_3^-)$ ratios of approximately 0.5 or less than 0.5 are mainly distributed in the middle zone, indicating indicate rock dominance. Samples with very high TDS and large $\text{Na}^+/(\text{Na}^+ + \text{Ca}^{2+})$ or $\text{Cl}^-/(\text{Cl}^- + \text{HCO}_3^-)$ ratios, are mainly distributed in the upper-right corner, indicating evaporation crystallization dominance type, reflecting the influence of evaporation on arid areas (Sun et al., 2014).

219 The ion concentrations of the 5 river surface groundwater samples and 17 groundwater samples from the
 220 study area are shown on a Gibbs diagram in Fig. 4. Apparently, It is apparent that the surface water samples in the
 221 study area are distributed located the upper-right corner of the diagram with a $\text{Na}^+/(\text{Na}^+ + \text{Ca}^{2+})$ or $\text{Cl}^-/(\text{Cl}^- + \text{HCO}_3^-)$
 222 ratio greater than 0.5 and with a high content of TDS, which means indicating that surface water has an
 223 evaporation crystallization dominance origin. The groundwater samples differing in the two criterions figures but
 224 are mainly distributed in the evaporation crystallization dominance region, slightly towards to the rock dominance
 225 region, indicating that the chemical composition of water is both controlled by evaporation crystallization and
 226 rock weathering.

227

228 Fig. 4 Gibbs plots of the surface river and groundwater chemistry in the study area, confirming the type of
 229 evaporation-crystallization dominance, rock weathering dominance and precipitation dominance.

230

231 3.3.3 Analysis of formation function based on multivariate statistics

232 To further analyze the hydrogeochemical formation functions, factor analysis and R cluster analysis were

233 conducted on surface and ground water samples using TDS, Cl⁻, SO₄²⁻, HCO₃⁻, Na⁺, K⁺, Ca²⁺, and
 234 Mg²⁺ as the original parameters. Seventeen groups of groundwater samples and 5 groups of surface water samples
 235 were calculated. After the calculation, the initial KMO value of the groundwater samples was 0.596. According
 236 to the KMO test standard, when 0.5 < KMO < 0.6, the original variable is barely suitable for factor analysis when
 237 0.5 < KMO < 0.6. According to the calculation results shown in Table 2, the formation function of the groundwater
 238 chemical composition could be summarized in 3 factors, and the cumulative contribution rate of the all 3
 239 factors is 75%. The Ca²⁺, Cl⁻, SO₄²⁻ and TDS of factor 1 have higher positive loads and the coefficient of Ca²⁺ and
 240 SO₄²⁻ is large, indicating that there may be weathering of calcium feldspar, dissolution of gypsum, or oxidation of
 241 pyrite. A large coefficient of Cl⁻ indicates suggests that there may be leaching of halite. The Na⁺, Mg²⁺ and HCO₃⁻
 242 of factor 2 have higher positive loads, which indicates possible weathering of carbonate or silicate. The alternating
 243 adsorption of cations between Na⁺ and Ca²⁺ causes the content of Na⁺ to increase. The K⁺ content of factor 3 is
 244 large, which indicates possible weathering of feldspar. Meanwhile, Surface water samples can be summarized in
 245 2 factors with, and the contribution rate of the 2 factors is 91%. The K⁺, HCO₃⁻ and TDS of factor 1 have higher
 246 positive loads, indicating the possible weathering of carbonate and feldspar. The Mg²⁺, Na⁺ and Cl⁻ of factor 2
 247 have a higher positive loads, which indicates the possible dissolution of halite and the alternate adsorption of
 248 cations between Na⁺ and Ca²⁺, which causes the content of Na⁺ to increase.

249 Cluster analysis can be simplified as the identification of the relationship between large-scale samples. R
 250 cluster analysis is used to classify variables, while Q cluster analysis is used to classify samples (Sun and Gui,
 251 2013). The results of the R cluster analysis are shown in Fig. 5. The groundwater components can be divided
 252 into 3 groups, which is totally consistent with the results of the factor analysis. The first group includes Ca²⁺, Cl⁻,
 253 SO₄²⁻ and TDS. The second group includes Na⁺, Mg²⁺ and HCO₃⁻. Finally, the third group includes K⁺. Surface
 254 water ions can be divided into 2 groups which differ from the results of factor analysis. The first group includes
 255 TDS, Cl⁻, HCO₃⁻, Na⁺, K⁺ and Mg²⁺, and the second group includes Ca²⁺ and SO₄²⁻. This indicates the
 256 presence of gypsum dissolution, which differs from the results of factor analysis.

257 In summary, a variety of complex hydrogeochemical processes may have occurred in the study area, such as
 258 concentration through evaporation, rock weathering, cation alternate adsorption, oxidation and dissolution.

259
 260 Table 2 Factor analysis composition coefficient of ground and surface water

Parameter variable	Groundwater			Surface water	
	Factor 1	Factor 2	Factor 3	Factor 1	Factor 2
Ca ²⁺	0.889	-0.083	0.339	0.206	-0.970
Na ⁺	0.261	0.799	-0.041	0.650	0.738
K ⁺	0.061	0.081	0.916	0.783	0.540
Mg ²⁺	0.298	0.702	0.265	0.106	0.986
Cl ⁻	0.735	0.259	0.323	0.479	0.817
SO ₄ ²⁻	0.760	0.299	-0.046	-0.883	0.351
HCO ₃ ⁻	-0.004	0.915	0.010	0.812	0.151
TDS	0.762	0.197	-0.208	0.972	0.200
Characteristic value	3.472	1.492	1.037	4.856	2.446
Contribution rate%	43.394	18.649	12.965	60.704	30.578
Cumulative contribution rate	43.394	62.043	75.008	60.704	91.282

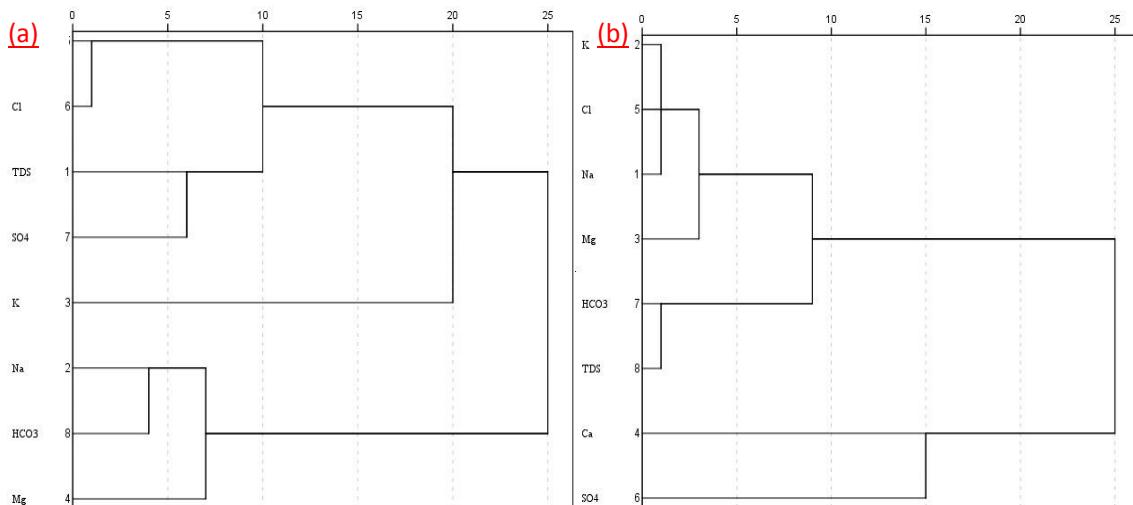


Fig. 5 R type cluster analysis. (a) groundwater variables; (b) surface water variables.

262

263

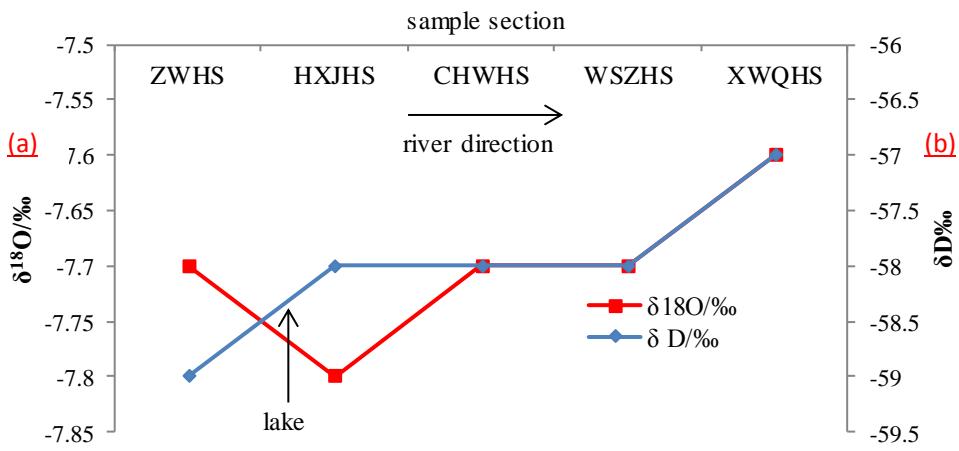
264 3.4 Isotopic characteristics and transformation relationships of surface water and groundwater

265 3.4.1 Isotopic variation characteristics

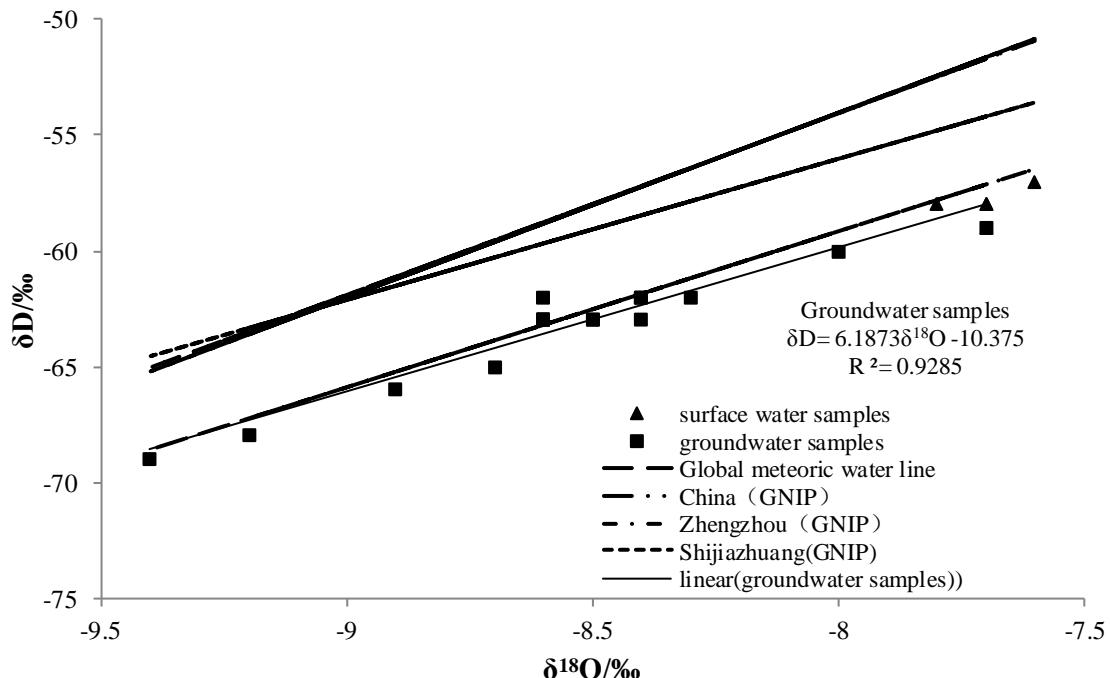
266 δD and $\delta^{18}O$ of surface water and groundwater and the d value of deuterium excess in the study area are
267 listed in Table 3, ~~in which where~~ $d = \delta D - 8\delta^{18}O$.

268 As seen in Table 3, δD and $\delta^{18}O$ of surface water are more enriched than ~~in those of~~ groundwater. The
269 variation ~~in~~ ~~in~~ δD and $\delta^{18}O$ ~~offer~~ ~~surface~~ water ~~from the Weihe River~~ is ~~relatively~~ small. $\delta^{18}O$ ranges from -7.8‰
270 to -7.6‰ with an average value of -7.7‰, and δD ranges from -59‰ to -57‰ with an average value of -58‰. The
271 range of $\delta^{18}O$ for shallow groundwater is from -9.4‰ to -7.7‰, with an average value of -8.55‰; the range of δD
272 is from -59‰ to -69‰, with an average value of -63.3‰. The d value of deuterium excess ~~of water~~ is positive and
273 less than 10 of the atmospheric precipitation intercept. The ~~value at~~ of surface water is less than that of shallow
274 groundwater, indicating that the recharge sources of surface water and groundwater are subject to evaporation
275 effects but ~~that~~ shallow groundwater is less influenced ~~by evaporation effects~~.

276 Generally, the isotopic ~~characteristics concentrations~~ of river water bodies increase from upstream to
277 downstream because of the isotopic fractionation ~~that is~~ caused by the evaporation of water. ~~The fractionation~~
278 ~~effect on the isotopes could be greater as the location is c~~ ~~The~~ closer to the lower reaches of the river, ~~the greater~~ ~~the fractionation effect is on the isotopes~~ (Liu et al., 2014). ~~Figure 6 shows the variation in δD and $\delta^{18}O$ in river~~
279 ~~water. As shown in Fig. 6, it~~ is apparent that δD and $\delta^{18}O$ become more enriched as the river flows downstream,
280 in which $\delta^{18}O$ declines in HXJHS, probably because there is a lake in the vicinity of the upstream reaches and
281 river water supplies the lake.


282 For groundwater, the values of δD and $\delta^{18}O$ in the Zongwan section, Hexijie section and Xiwangqiao section
283 become more depleted as the distance between sampling points and Weihe River increases. ~~The closer As~~ the
284 sample location is ~~closer~~ to the river, ~~the closer~~ the δD and $\delta^{18}O$ values are ~~more similar~~ to the surface water,
285 ~~revealing~~ ~~indicating~~ that the influence of surface water on groundwater decreases with increasing distance. In contrast,
286 the influence of precipitation and irrigation infiltration recharge on groundwater is enhanced. The values of δD
287 and $\delta^{18}O$ for the Chaiwan section and the Wangsizhuang section become enriched as the distance between the
288 sampling points and the Weihe River increases. ~~The reason is probably that This is likely because~~ the farmland in
289 the Chaiwan section and the Wangsizhuang section is mainly irrigated using Weihe River water, and the
290 infiltration of irrigation water causes the enrichment of hydrogen and oxygen isotopes in the groundwater. The

292 hydrogen and oxygen isotope characteristics are more similar to those of the Weihe River. The CHW02 and
 293 CHW03 sampling points in the Chaiwan section are located in an area affected by river irrigation, and CHW01 is
 294 a household well. ~~As such, the~~ The hydrogen and oxygen isotope values are CHW03≥CHW02>CHW01. Similarly,
 295 WSZ02, WSZ03 and WSZ04 in the Wangsizhuang section are located in an area affected by river irrigation, and
 296 WSZ01 is a household well. Thus, the hydrogen and oxygen isotope values are WSZ04≥WSZ03≥WSZ02>
 297 WSZ01.


298 -

299 **Table 3 δD , $\delta^{18}\text{O}$ and d values of water samples in study area**

Water sample type	No.	$\delta D/\text{‰}$	$\delta^{18}\text{O}/\text{‰}$	$d/\text{‰}$	$f/\%$
Surface water	ZWHS	-59	-7.7	2.6	
	HXJHS	-58	-7.8	4.4	
	CHWHS	-58	-7.7	3.6	
	WSZHS	-58	-7.7	3.6	
	XWQHS	-57	-7.6	3.8	
Shallow groundwater	average	-58	-7.7	3.6	
	ZW01	-62	-8.6	6.8	33.3
	ZW02	-63	-8.6	5.8	25
	ZW03	-63	-8.6	5.8	25
	ZW04	-69	-9.4	6.2	10
	D01	-65	-8.7	4.6	14.3
	D02	-66	-8.9	5.2	12.5
	D03	-60	-8	4	50
	CHW01	-63	-8.6	5.8	20
	CHW02	-62	-8.4	5.2	25
	CHW03	-62	-8.3	4.4	25
	WSZ01	-68	-9.2	5.6	10
	WSZ02	-63	-8.6	5.8	20
	WSZ03	-63	-8.5	5	20
	WSZ04	-63	-8.5	5	20
	D11	-59	-7.7	2.6	50
	D12	-62	-8.4	5.2	20
	D13	-63	-8.4	4.2	16.7
	Average	-63.3	-8.55	5.1	

301
302 Fig. 6 Isotopic variation of surface water. (a) $\delta^{18}\text{O}$; (b) δD

303
304 Fig. 7 Relationship between δD and $\delta^{18}\text{O}$ of surface water and groundwater
305

306 According to the 27 Global Network of Isotopes in Precipitations (GNIPs) set up in China by the
307 International Atomic Energy Association (IAEA), the monitoring sites that could be considered as substitutes
308 for are closest to the study area are at Shijiazhuang and Zhengzhou (IAEA/WMO, 2015; Zhang and Wang, 2016).
309 The meteoric water line of $\delta\text{D}=6.75 \delta^{18}\text{O}-5.12$ in Zhengzhou is close to the characteristic line for hydrogen and
310 oxygen isotopes of samples in the this study area region (Fig. 7), so the meteoric water line in
311 Zhengzhou which is taken as assumed to be the local meteoric water line (LMWL). When the compositions of δD
312 and $\delta^{18}\text{O}$ of water samples are compared to the meteoric water line, the source of the local river water and shallow
313 groundwater and their mutual transformation relationship can be distinguished. From From drawing the trend line
314 between of the underground water groundwater sample points, the relationship between δD and $\delta^{18}\text{O}$ is
315 $\delta\text{D}=6.1873\delta^{18}\text{O}-10.375$, and the with a correlation coefficient of is 0.9285. From drawing the trend line between of
316 the the groundwater and surface water sample points, the relationship between δD and $\delta^{18}\text{O}$ is fitted with
317 $\delta\text{D}=6.19328\delta^{18}\text{O}-10.321$, and and the correlation coefficient is is 0.9585. The two trend lines are basically the

318 ~~sameextremely close with, and the high~~ related coefficient ~~is very high~~. The surface water sample points are
319 located in the direction of the groundwater trend line that extends to the right. δD and $\delta^{18}\text{O}$ are relatively enriched,
320 indicating that the sources of surface water and groundwater are the same and that there is a hydraulic connection.
321 ~~The hydraulic connection between the two is, i.e.~~ a single-line infiltration of the surface river water into
322 groundwater. The trend line is close to the local meteoric water line (LMWL) and the slope is small, ~~which~~
323 ~~means~~ indicating that surface water and groundwater are recharged from meteoric water but ~~are~~ also subject to the
324 evaporation, resulting in the enrichment of hydrogen and oxygen isotopes.

325 3.4.2 Estimation of recharge capacity of river water to groundwater

326 According to the stable isotope signatures of the water samples, the calculated results of ratio f of
327 groundwater recharge to river water are shown in Table 43. ~~As illustrated in Fig. 8, except for regular pattern, the~~
328 ~~ratio f of surface water infiltration to recharge groundwater in each observation section also shows has a~~
329 ~~different, but regular, pattern, and the results are shown in Figure 8.~~

330 In the Zongwan section (Fig. 8a), as the distance between groundwater sampling sites and the river
331 increased (ZW01 toward ZW04), the ratio of surface water infiltration to groundwater recharge (f) decreased from
332 33.3% to 10%, ~~confirming indicating~~ that the river water recharges groundwater in this section and the direction
333 of groundwater flow is from ZW01 toward ZW04. The infiltration rates at D01 and D02 in the Hexijie section
334 (Fig. 8b) are 14.3% and 12.5% ~~—~~—respectively, ~~and with from the~~ decreasing trend, ~~it can be~~
335 ~~deduced~~ indicating that there is a small amount of river water recharging groundwater in that section, with a
336 direction of groundwater flow from D01 toward D02. The ratio of surface water infiltration to groundwater at D03
337 is as high as 50%, ~~indicating which means~~ that the river mainly recharges the artificial lake that exists near D03 in
338 the Hexijie section. The ratio of surface water infiltration to groundwater in the Chaiwan section (Fig. 8C)
339 increases from 20% to 25% as the distance increases between groundwater sampling sites and the river, whereas it
340 increases from 10% to 20% in the Wangsizhuang section (Fig. 8D). This may be associated with the unique
341 river trend of the two sections. The Chaiwan section and the Wangsizhuang section are located near the right
342 corner of the river, where the influence of ~~the~~ river water on groundwater is complicated, but the river is the main
343 supply ~~ier~~ of groundwater. The groundwater flow line is ~~an the~~ enclosed space where ~~therewate~~ is ~~no water~~ not
344 exchanged with the outside ~~world~~. ~~I~~ ~~Some~~ ~~input~~ values ~~like δD and $\delta^{18}\text{O}$~~ remain constant along the entire
345 ~~streamline, such as δD and $\delta^{18}\text{O}$, inferring. Therefore, it is possible to interpret~~ that WSZ01, WSZ02, and WSZ03
346 are on the same streamline. At the same time, because farmland is primarily irrigated by ~~water from~~ the Weihe
347 River, irrigation water infiltrates the soil to recharge groundwater, resulting in the enrichment of hydrogen and
348 oxygen isotopes. For the Xiwangqiao section (Fig. 8e), the ratio of river water infiltration to groundwater at
349 D11 is close to 50%, whereas it is 20% and 16.7% at D12 and D13, respectively. This is primarily because D11 is
350 located in the convexity of the river, where it is significantly eroded with a large amount of infiltration.

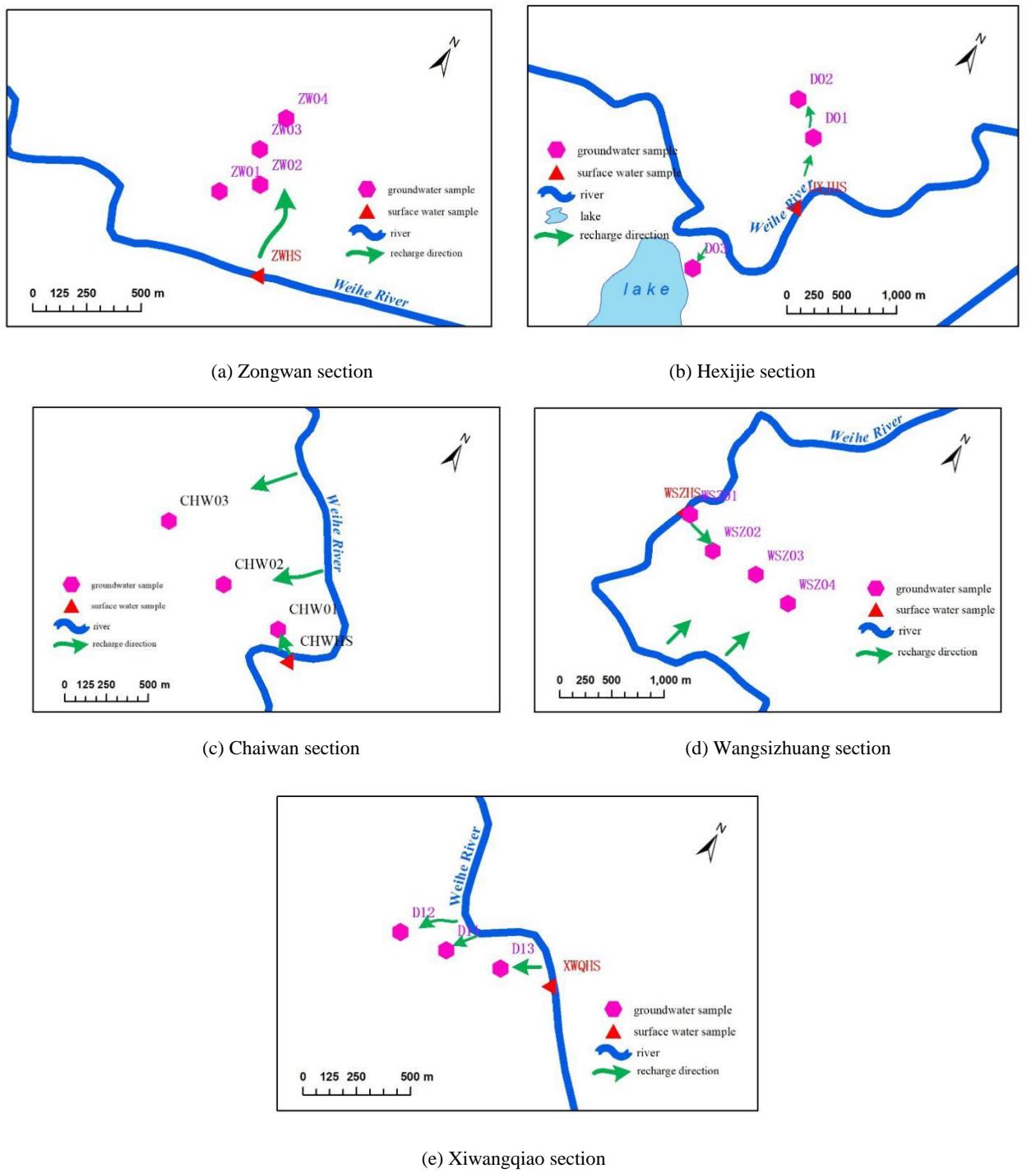


Fig. 8 Relationships between Recharge directions between surface water and groundwater at all sampling sections

4. Conclusions

This paper provides systematical methods for hydrogeochemical components analysis which could contribute to the relationship of surface water and groundwater. The main results are concluded as follows:

(1) The surface water components of Weihe River display no significant spatial variations, but the ion concentrations of groundwater samples from 5 sections are different. The cation concentrations of surface water and groundwater are consistent, with $\text{Na}^+ > \text{Ca}^{2+} > \text{Mg}^{2+} > \text{K}^+$. The relative concentrations of anions in groundwater are $\text{HCO}_3^- > \text{SO}_4^{2-} > \text{Cl}^- > \text{NO}_3^-$, whereas the relative concentrations of anions in the surface water are $\text{SO}_4^{2-} > \text{Cl}^- >$

365 HCO₃⁻>NO₃⁻. The surface water in all sections of the Weihe River is the SO₄ Cl—Na type, whereas the
366 hydrogeochemical types of groundwater are not the same different. HCO₃⁻ dominates in the groundwater in the
367 upper reaches of the river, and while SO₄²⁻ and Cl⁻ dominate in the middle and lower reaches.

368 (2) By using Based on a Gibbs diagram, factor analysis and cluster analysis, we established that the
369 geochemical processes of the Weihe River Basin include concentration by evaporation, rock weathering, cation
370 alternate adsorption and dissolution. Because surface water is an open system, the source of ions in a water body
371 is greatly influenced by human activity and atmospheric precipitation, whereas the factors contributing to the
372 formation of water chemistry are more complex.

373 (3) The isotope results show that δD and δ¹⁸O of the surface water in the Weihe River of small variations

374 varies little are and is more enriched than those of the groundwater is. Affected by rainfall, irrigation, river

375 recharge and evaporation, the shallow groundwater at different sections is affected by rainfall, irrigation, river

376 recharge and evaporation, resulting in have different δD and δ¹⁸O values. By analyzing hydrogen and oxygen

377 isotopic characteristics of surface water and groundwater in different sections and using the segmentation of flow

378 duration curve, it was established that surface water recharges groundwater at 5 sections along the Weihe River,

379 and each section has unique recharge intensity and relationship due to its specific unique hydraulic environment.

380 However, dDue to the lack of local isotope monitoring data for meteoric water, the Zhengzhou meteoric

381 water line was used to analyze the isotopic characteristics of surface water and groundwater. The existing

382 household wells, were used as groundwater sampling points. Because they are affected by towns and villages

383 surrounding the Weihe River, causing that groundwater sampling points cannot be fully symmetric and isometric

384 relative to the Weihe River. As such, the research results need to be improved by sufficient monitoring more

385 local measured complete—data in future research. Moreover, the methods conducted in this paper could offer

386 efficient ways of research on surface water and groundwater, and the specific results could also provide valuable

387 information for the local water groundwater protection, restoration and management.

388

389 Acknowledgments

390 The study was financially supported by Non-Profit Industry Specific Research Projects of Ministry of Water
391 Resources, China, Grant NO: 201401041 and 201501008, the Open Research Fund of State Key Laboratory of
392 Simulation and Regulation of Water Cycle in River Basin (China Institute of Water Resources and Hydropower
393 Research), Grant NO: IWHR-SKL-201208, and Science and Technology Research Key Project of the Education
394 Department of Henan Province, Grant NO: 14A170006.

395 References

396 Chattopadhyay Pallavi Banerjee, Singh, V. S. Hydrochemical evidences: Vulnerability of atoll aquifers in Western Indian Ocean to
397 climate change[J]. *Global & Planetary Change*, 2013, 106:123-140.

398 Dogramaci Shawan, Skrzypek Grzegorz, Dodson Wade Pauline F. Stable isotope and hydrochemical evolution of groundwater in the
399 semi-arid Hamersley Basin of subtropical northwest Australia[J]. *Journal of Hydrology*, 2012, 475 (26): 281-293.

400 IAEA/WMO. 2015. *Global Network of Isotopes in Precipitation*. 2015-11-29.

401 Kanduč T, Grassa F, McIntosh J, et al. A geochemical and stable isotope investigation of groundwater/surface-water interactions in
402 the Velenje Basin, Slovenia[J]. *Hydrogeology Journal*, 2014, 22(4): 971-984.

403 Keesari Tirumalesh, Ramakumar K.L., Chidambaram S., Pethperumal S., Thilagavathi R. Understanding the hydrochemical behavior
404 of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India – A step towards
405 sustainable development[J]. *Groundwater for Sustainable Development*, 2016, 2-3, 143-153.

406 Liu Fen, Wang Shui-Xian, Lan Yong-Chao, Hu Xing-lin. Environmental isotopes and exchanges of surface-water-groundwater

407 system in the Zhangye basin of Heihe River watershed[J]. *South-to-North Water Transfers and Water Science & Technology*,
408 2014, 12(2): 92-96. [\(In Chinese\)](#)

409 Lu Shi-Bao, Bao Hai-Jun, Pan Hu-Lin. Urban water security evaluation based on similarity measure model of Vague sets[J].
410 *International Journal of Hydrogen Energy*, 2016c, 41(35):15944-15950.

411 Lu Shi-Bao, Wang Jian-Hua, Pei Liang. Study on the Effects of Irrigation with Reclaimed Water on the Content and Distribution of
412 Heavy Metals in Soil[J]. *International Journal of Environmental Research & Public Health*, 2016b, 13(3): 298.

413 Lu Shi-Bao, Pei Liang, Bai Xiao. Study on method of domestic wastewater treatment through new-type multi-layer artificial
414 wetland[J]. *International Journal of Hydrogen Energy*, 2015, 40(34):11207-11214.

415 Lu Shi-Bao, Zhang Xiao-Ling, Bao Hai-Jun, Skitmore Martin. Review of social water cycle research in a changing environment[J].
416 *Renewable & Sustainable Energy Reviews*, 2016a, 63:132-140.

417 [Matiatos I, Alexopoulos A, Godelitsas A. Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the](#)
418 [groundwater resources in northeastern Peloponnesus \(Greece\)\[J\]. *Science of the Total Environment*, 2014, 476: 577-590.](#)

419 Martinez Jorge L., Raiber Matthias, Cox Malcolm E. Assessment of groundwater-surface water interaction using long-term
420 hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia[J]. *Science of*
421 *the Total Environment*, 2015, 536:499-516.

422 Ma Rui, Dong Qi-Ming, Sun Zi-Yong, Zheng Chun-Miao. Using heat to trace and model the surface water-groundwater interactions:
423 a review[J]. *Geological Science and Technology Information*, 2013, 32 (2):131-137.

424 Nie Zhen-Long, Chen Zong-Yu, Chen Xu-Xue, Hao Ming-Lin, Zhang Guang-Hui. The chemical information of the interaction of
425 unconfined groundwater and surface water along the Heihe River, Northwestern China[J]. *Journal of Jilin University (Earth*
426 *Science Edition)*, 2005, 35(1):48-51.

427 Prada Susana, Cruz J. Virgilio, Figueira Celso. Using stable isotopes to characterize groundwater recharge sources in the volcanic
428 island of Madeira, Portugal[J]. *Journal of Hydrology*, 2016, 536:409-425.

429 Peng Tsung-Ren, Lu Wan-Chung, Chen Kuan-Yu, Zhan Wen-Jun, Liu Tsung-Kwei. Groundwater-recharge connectivity between a
430 hills-and-plains' area of western Taiwan using water isotopes and electrical conductivity[J]. *Journal of Hydrology*, 2014,
431 517:226-235.

432 [Rekha V B, George A V, Rita M. A Comparative Study of Ion Chemistry of Groundwater Samples of Typical Highland and Midland](#)
433 [Sub-watersheds of the Manimala River Basin, Kerala, South India\[J\]. *Environmental Research, Engineering and Management*,](#)
434 [2013, 66\(4\): 22-33.](#)

435 Shang Yi-Zi, Lu Shi-Bao, Li Xiao-Fei, Hei Peng-Fei, Lei Xiao-Hui, Gong Jia-Guo, Liu Jia-Hong, Zhai Jia-Qi, Wang Hao. Balancing
436 development of major coal bases with available water resources in China through 2020[J]. *Applied Energy*, 2017, 194:735-750.

437 Song Xian-Fang, Liu Xiang-Chao, Xia Jun, Yu Jing-Jie, Tang Chang-Yuan. A study of interaction between surface water and
438 groundwater using environmental isotopes in Huasha River basin[J]. *Science in China (Series D)*, 2007, 37(1):102-110.

439 Sun Lin-Hua, Gui He-Rong. Statistical analysis of deep groundwater geochemistry from Taoyuan Coal Mine, northern Anhui
440 Province[J]. *Journal of China Coal Society*, 2013, 38(s2):442-447.

441 Sun Peng-Fei, Yi Ji-Tao, Xu, Guang-Quan. Characteristics of water chemistry and their influencing factors in subsidence waters in
442 the Huainan and Huabei mining areas, Anhui Province[J]. *Journal of China Coal Society*, 2014, 39(7):1345-1353.

443 Wang Jian-Hua, Lu Shi-Bao, Pei Liang. Study on rules of dynamic variation of nitrogen in soil after reclaimed water drip irrigation[J].
444 *International Journal of Hydrogen Energy*, 2016, 41(35):15938-15943.

445

446 Wang Ya-Ping, Wang Lan, Xu Chun-Xue, Yang Zhong-Fang, Ji Jun-Feng, Xia Xue-Qi, An Zi-Yi, Yuan Jian. Hydro-geochemistry and
447 genesis of major ions in the Yangtze River, China[J]. *Geological Bulletin of China*, 2010, 29(2-3):446-456. [\(In Chinese\)](#)

448

449 Yang Qing-Chun, Wang Lu-Chen, Ma Hong-Yun, Yu Kun, Martí Jordi Delgado. Hydrochemical characterization and pollution
450 sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China[J]. *Environmental Pollution*, 2016,

451 216:340-349.

452 Zhao Shi-Kun, Pang Shuo-Guang, Wen Rong, Liu Zhong-Fang. Influence of below-cloud secondary evaporation on stable isotope
453 composition in precipitation in the Haihe River Basin, China[J]. *Progress in Geography*, 2015, 34 (8):1031-1038.

454 Zeng Hai-Ao, Wu Jing-Lu. Water isotopic and hydrochemical characteristics and causality in Tajikistan[J]. *Advances in Water
455 Science*, 2013, 24(2):272-279.

456 Zhang Bing, Song Xian-Fang, Zhang Ying-Hua, Han Dong-Mei, Tang Chang-Yuan, Yu Li-Lei, Ma Ying. Hydrochemical
457 characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China[J]. *Water
458 Research*, 2012, 46(8):2737-2748.

459 Zhang Bing, Song Xian-Fang, Zhang Ying-Hua, Han Dong-Mei, Yang Li-Hu, Tang Chang-Yuan. Relationship between surface water
460 and groundwater in the second Songhua River basin[J]. *Advances in Water Science*, 2014, 25(3):336-347.

461 Zhang Mingjun, Wang Shengjie. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J].
462 *Journal of Geographical Sciences*, 2016, 26 (7): 921-938.-

463 Zhu Xin-Jun, Wang Zhong-Gen , Li Jian-Xin, Yu Lei, Wang Jin-Gui. Applications of SWAT model in Zhang Wei River Basin[J].
464 *Progress in Geography*, 2006, 25(5):106-111.

465 Zhang Ying-Hua, Wu Yan-Qing, Wen Xiao-Hu, Su Jian-Ping. Application of environmental isotopes in water cycle[J]. *Advances in
466 Water Science*, 2006, 17(5):738-747.