
Research Highlights

• An analysis of almost 100,000 one-minute precipitation observations

recorded by two types of optical disdrometer, Thies LPM and OTT

Parsivel2, is presented.

• Disdrometer data processing was made by a custom software developed

for R environment which overcome binning differences when calculat-

ing particle size distribution statistics, allowing for disdrometer type

comparison.

• Thies LPM recorded on average double number of particles than OTT

Parsivel2, with a greater number of small particles resulting in kinetic

energy underestimation.

• Differences between disdrometer type increased with precipitation in-

tensity, with Thies LPM recording nine times higher number of particles

than OTT Parsivel2, influencing all precipitation variables.
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Abstract

Optical disdrometers are present weather sensors with the ability of pro-

viding detailed information of precipitation such as rain intensity, radar re-

flectivity or kinetic energy, together with discrete information on the particle

size and fall velocity distribution (PSVD) of the hydrometeors. Disdrom-

eters constitute a step forward towards a more complete characterization

of precipitation, being useful in several research fields and applications. In

this article the performance of two extensively used optical disdrometers, the

most recent version of OTT Parsivel2 disdrometer and Thies Clima Laser

Precipitation Monitor (LPM), is evaluated. During two years four collocated

optical disdrometers, two Thies Clima LPM and two OTT Parsivel2, col-

lected up to 100,000 minutes of data and up to 30,000 minutes with rain in

more than 200 rainfall events, with intensities peaking at 277 mm h−1 in one

minute. The analysis of these records show significant differences between

both disdrometer types for all integrated precipitation parameters, which

can be explained by differences in the raw particle size and velocity distri-
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bution (PSVD) estimated by the two sensors. Thies LPM recorded a larger

number particles than Parsivel2 and a higher proportion of small particles

than OTT Parsivel2, resulting in higher rain rates and totals and differences

in radar reflectivity and kinetic energy. These differences increased greatly

with rainfall intensity. Posible causes of these differences, and their practical

consequences, are discussed in order to help researchers and users in the elec-

tion of the sensor, pointing out at the same time limitations to be addressed

in future studies.

Keywords: Optical Disdrometer, Particle-size distribution, Precipitation

measurement, Instrumental intercomparison, Rainfall kinetic energy

1. Introduction1

Disdrometers are devices designed to measure the particle size distri-2

bution (PSD), or size and velocity distribution (PSVD), of falling hydro-3

meteors. The PSD describes the statistical distribution of falling particle4

sizes from the number of particles with a given equi-volume diameter per5

unit volume of air. The PSVD includes also information about the distribu-6

tion of the particle fall velocities.7

Information on the PSD / PSVD is required for a proper understanding8

of hydrometeorological regimes (Iguchi et al., 2000; Krajewski et al., 2006;9

Adirosi et al., 2016), soil erosion (Sempere-Torres et al., 1998; Loik et al.,10

2004; Cruse et al., 2006; Petan et al., 2010; Fernández-Raga et al., 2010;11

Shuttlewort, 2012; Iserloh et al., 2013; Angulo-Mart́ınez and Barros, 2015;12

Angulo-Mart́ınez et al., 2016) and other applications such as pollution wash13

off in urban environments (Kathiravelu et al., 2016; Castro et al., 2010) or14

interactions of rainfall with crop and forest canopies (Frasson and Krajew-15

ski, 2011; Nanko et al., 2004; Nanko et al., 2013). Rainfall estimation by16

remote sensing, radar and satellite, also rely on PSD information (Olsen et17

al., 1978; Atlas et al., 1999; Uijlenhoet and Sempere-Torres, 2006; Tapiador18
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et al., 2017). Disdrometer observations of PSD are also used to derive re-19

lationships between radar reflectivity and rainfall rates (known usually as20

Z-R relationships), despite the difficulties due to differences in altitude of21

the measurement–surface vs. cloud base–and the sensing area–a few cm2 vs.22

km2–(Krajewski et al., 1998; Löffler-Mang and Blahak, 2001; Miriousky et23

al., 2004; Thurai and Bringi, 2008; Marzano et al., 2010; Jaffrain and Berne,24

2012; Jameson et al., 2015; Raupach and Berne, 2016; Gires et al., 2016).25

Many of these studies took place within Precipitation Measurement Missions26

helping the development of better sensors and algorithms for precipitation27

detection and quantification; some examples are: Ioannidou et al. (2016) for28

the Tropical Rainfall Measurement Mission (TRMM), Liao et al. (2014) and29

Tan et al. (2016) for the Global Precipitation Measurement Mission (GPM),30

Adirosi et al. (2016) for the Hydrological cycle in the Mediterranean Exper-31

iment (HyMex), or Calheiros and Machado (2014) for the Cloud Processes32

of the Main Precipitation Systems in Brazil (CHUVA) campaign.33

In addition, bulk precipitation variables can also be calculated from the34

PSD (sometimes called the ‘PSD moments’), including the rain rate, liquid35

water content, radar reflectivity, rainfall kinetic energy, among others (Ul-36

brich, 1983; Testud et al., 2001; Jameson and Kostinski, 1998). As such,37

disdrometers have been incorporated in operational meteorological networks38

as present weather sensors and pluviometers.39

Current commercial disdrometers are based mainly on two physical princi-40

ples to measure the PSD or the PSVD. The first ones are electro-mechanical41

impact devices recording the electrical pulses produced by the pressure of42

falling drops when impacting over a surface. Impact disdrometers such as43

the Joss and Waldvogel disdrometer (JWD, Joss and Waldvogel, 1967) or44

piezoelectric force transducers (Jayawardena and Rezaur, 2000) were largely45

used in the 1980s and 90s. The JWD disdrometer gives good results for light46

to moderate intensity but underestimates the amount of small size drops dur-47

ing heavy rainfall events, and it cannot detect raindrops smaller than 0.2 mm48
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of diameter (Tokay et al., 2001). Impact based and pressure disdrometers,49

however, rely on theoretical terminal velocity curves to determine the PSD.50

More recent disdrometers are based in optical principles (Hauser et al.,51

1984; Löflfer-Mang and Joss, 2000), either from the occlusion of a laser light52

beam between an emisor and a receptor device produced by the particle53

passing through; or based on light scattering measurements from particles54

passing through the light beam. Both types use an emissary and a receiver55

of the laser signal generally in a horizontal plane, and the emissary can56

be punctual or an array of emissaries. Commercial examples of the first57

type are the particle size and velocity disdrometers Parsivel and Parsivel258

by OTT Hydromet, and the Laser Precipitation Monitor (LPM) by Thies59

Clima. An example of the light scattering principle is the light scatter sensor60

PWS100 (Campbell Scientific Inc.). Optical disdrometers provide full PSVD61

measures from the unique light beam horizontal plane (∼1 cm thick) by the62

amplitude and duration obscuration when particles pass through the beam,63

respectively. Laser disdrometers are not devoid of detection problems related64

with the effects of uneven power distribution across the laser beam, wind,65

splashing, multiple drops appearing at the same time (double detections),66

edge events (‘margin-fallers’, or partial detections), as reviewed by several67

studies (Nespor et al., 2000; Habib and Krajewski, 2001; Tokay et al., 2001;68

Kruger and Krajewski, 2002; Frasson et al., 2011; Raupach and Berne, 2015).69

An improvement over laser disdrometers is the two-dimensional video70

disdrometer (2DVD, Joanneum Research). The 2DVD uses two perpendic-71

ular high-speed line-scan cameras, each with an opposing light source, to72

record particles from orthogonal angles. The 2DVD provides reliable mea-73

sures of particles fall velocity, size and shape (Kruger and Krajewski, 2002;74

Schönhuber et al., 2008). Currently this disdrometer is considered a reliable75

reference for particles larger than 0.3 mm (Tokay et al., 2013; Thurai et al.,76

2017), although its use is mostly restricted to experimentation due to its77

higher cost and data processing requirements.78
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A bibliography search by the key phrase ‘optical AND disdrometer’ on79

publications between 2000 and 2017 in Scopus showed that the two models80

most currently used are OTT Parsivel (mentioned in 50% of a total of 20081

documents) and Thies LPM (mentioned in 25%). In some disciplines, both82

disdrometers have been used interchangeably. This is the case, for instance, of83

soil erosion studies, where Thies LPM was used for monitoring rainfall char-84

acteristics, most notably the kinetic energy, in relation with splash erosion85

experiments (Angulo-Mart́ınez et al., 2012; Fernández-Raga et al., 2010), and86

also in the calibration of the European portable rainfall simulator (Iserloh et87

al., 2013). Parsivel disdrometers, on the other hand, have been used to deter-88

mine the kinetic energy - rainfall intensity relationship (Petan et al., 2010 ;89

Sánchez-Moreno et al., 2012). Both disdrometers were used interchangeably90

in Slovenia to estimate rainfall parameters, including kinetic energy (Petan91

et al., 2010; Ciaccioni et al., 2016), and to inter-compare solid precipitation92

observations in the Tibetan Plateau (Zhang et al., 2015).93

The performance of Parsivel and Thies disdrometers has been compared94

to other disdrometers such as the 2DVD, the JWD, or by taking a pluviome-95

ter as a reference. Parsivel disdrometers have been evaluated since its first96

version became commercially available from PM Tech Inc (Sheppard and97

Joe, 1994; Löffler-Mang and Joss, 2000), with slightly different results de-98

pending on the version of the device analysed (Krajewski et al., 2006; Lanza99

and Vuerich, 2009; Battaglia et al., 2010; Jaffrain and Berne, 2011; Thurai100

et al., 2011; Park et al., 2017). In 2005, OTT Hydromet purchased the rights101

of Parsivel disdrometer and redesigned the instrument. Differences between102

the PM Tech and the first version of OTT Hydromet Parsivel are described103

in Tokay et al. (2013), who found important biases in the frequency of small104

and large drops with respect to a JWD disdrometer. In 2011, OTT Hydromet105

redesigned the device and presented the Parsivel2. This is the current ver-106

sion of the disdrometer, and includes a more homogeneous laser beam and107

some other modifications that improve its performance (Tokay et al., 2014;108

Angulo-Mart́ınez and Barros, 2015). The Parsivel2 has been compared to109
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other disdrometers. Tokay et al. (2014) compared it with the JWD, and110

found good agreement in the PSD spectra between both devices for particles111

sizes larger than 0.5 mm. They also reported systematic underestimation of112

fall velocities in the Parsivel2, for drop diameters of 1.09 mm and higher.113

Raupach and Berne (2015) and Park et al. (2017) compared the two ver-114

sions of Parsivel with a reference 2DVD, and found that Parsivel2, although115

improving the performance of the first iteration of the disdrometer, still had116

important biases that resulted in underestimation of small drops and overes-117

timation of large drops, especially during high intensity rains.118

Thies LPM, on the other hand, became commercially available in 2005119

from Adolf Thies GmbH & Co. Early analysis of the performance of the Thies120

disdrometer for detecting different hydrometeors was presented by Bloemink121

and Lanzinger (2005) at the WMO Technical Conference on Meteorological122

and Environmental instruments and methods of observations (TECO-2006,123

Geneva, Switzerland), while an evaluation of its capacity for measuring rain-124

fall intensities and amounts was presented in the same conference one year125

later (Lanzinger et al., 2006). Since then, this disdrometer has been used126

worldwide with several firmware updates. Frasson et al. (2011) evaluated127

the performance of four collocated Thies disdrometers and found that sys-128

tematic biases existed between the devices, and attributed them to miscalcu-129

lation of the disdrometer’s sensing area. Lanzinger et al. (2006) found that130

three LPMs measured higher rainfall amounts than a collocated reference131

rain gauge, especially during higher intensities, and also reported system-132

atic biases between the three disdrometers. Upton and Brawn (2008) also133

found discrepancies in the velocity records by three collocated Thies, while134

the number of particles and their sizes were more consistent.135

There number of studies inter-comparing Thies and Parsivel disdrometers,136

however, is very reduced. Brawn and Upton (2008) evaluated the parame-137

ters of fitted gamma distributions to the PSD data, and found substantial138

differences between Thies and Parsivel. Upton and Brawn (2008) found that139
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Parsivel tended to underestimate the number of small drops (up to three140

times less for the two lowest size bins) with respect to Thies, while it tended141

to over-estimate the number of drops larger than 2 mm. They also reported142

an underestimation of particle fall velocity in comparison with Thies and143

with the theoretical terminal velocity, especially for midsize drops (1 mm -144

3 mm), and underestimation of total rainfal volume by Parsivel with respect145

to Thies. These studies were based on the earlier version of the Parsivel dis-146

drometer, and no study up to date has focused on comparing the Thies LPM147

and the Parsivel2. Such a study, however, is highly needed if measurements148

made with these two disdrometers are to be compared.149

The objective of this study is to compare the measurements recorded by150

Thies LPM and OTT Parsivel2 optical disdrometers, with the goal of provid-151

ing a quantitative assessment of both sensors and highlighting the associated152

uncertainties. Measurements of PSVD and integrated rainfall variables as153

rain rate, kinetic energy, reflectivity and number of drops per volume of air154

under natural rainfall events are compared, either at the one-minute, the155

event and the whole season scales. Some technical problems that arise from156

the different binning of the PSVD matrix by the two devices, which hinder157

the comparison between their measurements, are dealt with. In the following158

section a description of the two sensor types and the sampling site is given,159

together with details of the data processing. Section 3 analyses the results160

obtained, which are discussed in section 4. Section 5 concludes.161

2. Data and Methods162

2.1. Sampling site and instrumentation163

Rainfall characteristics under natural conditions were monitored at Aula164

Dei Experimental Station (EEAD-CSIC) in the central Ebro valley, NE Spain165

(41o43’30”N, 0o48’39”W, 230 m.a.s.l.). The experimental site is located in a166
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research farm located on a flat river terrace, classified as having a cold semi-167

arid climate (BSk, Köppen-Geiger). The average annual precipitation was168

344.4 mm in the period 1990-2017 (recorded at the Aula Dei meteorological169

station which belongs to the network of the Spanish national weather agency,170

AEMET) with equinoctial rainfalls (monthly maxima in May, 44 mm, and171

October, 39.3 mm; and minima in July, 16.2 mm, and December, 21.7 mm).172

Four disdrometers, two Thies Clima LPM and two OTT Parsivel2, were173

operated in continuous record during the period between 17/06/2013 and174

21/07/2015. Two disdrometers of both types were placed in two masts (Mast-175

1 and Mast-2), which were located 1.5 m apart from each other (Figure 1).176

Each mast consisted in a pole with two arms 0.5 m apart from each other177

where two devices, one of each model, were installed. The four sensors were178

oriented in the same N-S direction. One-minute rainfall PSVD observations179

were recorded automatically during the period, and rainfall episodes were180

identified according to the following criteria: a rainfall episode started when181

rainfall was continuously recorded by at least two disdrometers of different182

type during at least 10 minutes; and two rainfall episodes were delimited183

by, at least, one entire hour without rain in at least two disdrometers of184

different type. Observations corresponding to solid or mixed precipitation185

were disregarded, as were those with internal error or bad quality flags.186

[FIGURE 1: Sampling site with four collocated disdrometers ]187

Both optical disdrometers, Thies Clima LPM and OTT Parsivel2, are188

based on the same measurement principle. Their external structure is formed189

by two heads that connect the sheet of laser light through which falling190

drops are measured. Drop diameter and fall velocity are determined from the191

obscurations amplitude and duration in the path of an infrared laser beam,192

between a light emitting diode and a receiver, within a sampling area of193

approximately 50 cm2 (Donnadieu et al. 1969; Löffler-Mang and Joss, 2000).194
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Raindrops are assumed spherical for sizes less than 1 mm in diameter, and195

therefore the size parameter is the equivalent diameter for raindrops below196

this size. For larger raindrops, a correction for oblateness is made, and197

the size parameter is interpreted as an equi-volume sphere diameter. The198

laser signal is processed by a proprietary software, and the size (equi-volume199

particle diameter) and velocity of each particle is determined. The meteor200

type (drizzle, rain, hail, or snow) is determined based on typical size and201

velocities, and weather codes (SYNOP and METAR) are generated. A PSVD202

matrix counting the number N i,j of particles for given size (i) and velocity (j )203

classes is recorded at desired intervals, usually one minute. Several integrated204

variables are also computed and stored at the same intervals. These include205

the number of particles detected (NP, min−1), the particle density (ND,206

m−3 mm−1), the rainfall amount (P, mm) and intensity (R, mm h−1), the207

radar reflectivity (Z, dB mm6 m−3), visibility (m) and kinetic energy (J m−2208

mm−1).209

This operational principle in subject to a number of potential sources of210

bias, as reviewed by Frasson et al. (2011). One of such sources of bias is the211

uneven power distribution across the laser beam, or variations of this power212

with time. Also, the geometry of the laser beam limits the estimation of213

fall velocity to the vertical component, producing biased measures when the214

particles fall with a different trajectory or angle due to wind or eddy drag215

(Salles and Poesen, 1999). Other source of biased measurements is due to the216

ocurrence of coincident particles, which are perceived as just one single drop217

by the sensor. Similarly, the event of one drop falling at the edge of the laser218

beam (‘margin faller’), therefore being only partially observed, leads to biased219

measurements. Both sensors mention in their technical data some correction220

for edge-detection (margin fallers) and coincident particles, although there is221

little information on how these two events are identified and treated. More222

details of both instruments and the measurement technique, along with the223

assumptions used to determine the size and velocity of hydrometeors, can224

be found in Löffler-Mang and Joss (2000), Battaglia et al. (2010), Tapiador225
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et al. (2010), Frasson, et al. (2011) Jaffrain and Berne (2011), Tokay et al.226

(2013 and 2014), Raupach and Berne (2015), and in their respective technical227

manuals.228

There are slight hardware variations between the two instruments, as229

well as differences in how the raw data are treated and converted into the230

outputted variables. Since these differences may have a impact on the final231

records, we review the relevant characteristics of each device in the following232

paragraphs.233

Thies Clima Laser Precipitation Monitor234

The Laser Precipitation Monitor (LPM) uses a 780 nm laser beam which235

is 228 mm long, 20 mm wide, and 0.75 mm thick on average, resulting in236

a sampling area of 45.6 cm2. Geometric deviations from this standard are237

reported by the manufacturer for each particular disdrometer, and for in-238

stance the sampling areas of the two devices used on the experiment were239

46.65314 and 49.04051 cm2. It records particles starting from 0.16 mm of240

diameter, and precipitation starting from 0.005 mm h−1. The Thies tech-241

nical documentation indicates that that the size and velocity measurements242

are ‘checked for plausibility’ to prevent issues such as edge events, implying243

that some particles are filtered out, although the details of this procedure244

are not specified. From the raw particle data several bulk variables (‘PSVD245

moments’) are integrated internally by the device’s firmware. Drop diame-246

ters and velocities are then grouped into 22 and 20 classes ranging between247

0.125 mm up to 9 mm and 0 m s−1 up to 12 m s−1, respectively (see Table248

6), and the number of particles recorded at each size and velocity pair bin249

is stored. The bulk variables computed by the Thies LPM does not include250

the kinetic energy. In addition, several status flags are provided in the data251

telegrams informing about voltage oscillations, sensor temperature, and an252

evaluation of the measurement quality.253
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[TABLE 1]254

OTT Parsivel 2 disdrometer255

The Parsivel disdrometers used in this study belong to the second gener-256

ation manufactured by OTT Hydromet Inc (Parsivel2). The Parsivel2 uses a257

780 nm laser beam which is 180 mm long, 30 mm wide, and 1 mm thick on258

average, with no indication about deviations from these values from the man-259

ufacturer. The sampling area for the two Parsivel disdrometers was therefore260

54 cm2. The Parsivel2 records particles starting from 0.2 mm of diameter,261

and precipitation starting from 0.001 mm h−1. The measured particles are262

stored in drop diameter and fall velocity bins in a 32 x 32 matrix with uneven263

intervals starting at 0 mm diameter up to 26 mm and from 0 m s−1 up to264

22.4 m s−1 (Table 6). The first two size categories, which correspond to sizes265

of less than 0.25 mm, are left empty by the manufacturer because of the low266

signal-to-noise ratio. The Parsivel2, similarly to the Thies, also provides a267

sensor status flag and several control variables in its data telegram.268

According to Battaglia et al. (2010), particles up to 1 mm are assumed269

spherical, and between 1 and 5 mm they are assumed as horizontally-oriented270

oblate spheroids with axial ratio linearly varying from 1 to 0.7, with this ratio271

being kept constant at 0.7 for larger sizes. The Parsivel technical documen-272

tation mentions that the device filters out edge events, although the exact273

details of this procedure are not given. Battaglia et al. (2010) mention that274

the newest Parsivel units include two extra photo-diodes at the edge of the275

laser beam to detect and remove the edge events, but the manufacturer pro-276

vides no information about this. Independently to filtering our edge events,277

Löffler-Mang and Joss (2000) indicate that a correction of the effective sam-278

pling area is used depending on the particle size. Some sources (Tokay et279

al., 2013) also refer that a correction to the fall velocity is applied to drop280

sizes between 1 and 5 mm, although once again there is not more information281

on this correction. Parsivel2 disdrometers external structure differs from the282
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Thies LPM in incorporating a splash protection shield above the laser heads,283

which aims at minimising the effect of splashed drops that interfere with a284

high velocity with the laser beam and result in biased measurements.285

2.2. Processing disdrometer data286

One minute disdrometer data telegrams were stored in an industrial287

miniature PC (Matrix 504 Artila Inc). The PC included custom software288

to collect, pre-process and send data telegrams to a central server. Time289

synchronisation was performed once per day using the Network Time Proto-290

col (NTP), allowing bias correction of the internal disdrometer clocks that291

have a tendency to drift. Direct reading of the data telegrams generated292

by the disdrometers resulted in one-minute time series of the variables of293

interest for this study: PSVD matrices (Ni,j), bulk variables (P, R, NP, ND,294

Z, E ), SYNOP codes, and status and error flags. An exception were Thies295

disdrometers, which do not compute the kinetic energy, E. Parsivel, on the296

other hand, gives the kinetic energy expressed in J, so it was divided by the297

sampling area and the rainfall amount to obtain E.298

In addition to the bulk variables computed by the internal software of the299

devices, the bulk variables were computed again from the PSVD matrices,300

using the following expressions:301

P =
4

3
π
∑
i,j

(
1

Ai
Ni,j

(
Di

2

)3
)

(1)

R =
P

∆t
(2)

NP =
∑
i,j

Ni,j (3)
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ND =
1

R∆t

∑
i,j

(
1

Ai

Ni,j

Vj

)
(4)

Z = log

(
1

∆t

∑
i,j

(
1

Ai
Ni,j

D6
i

Vj

))
(5)

E =
4

3
π
ρ

P

∑
i,j

(
1

Ai
Ni,j

(
Di

2

)3 V 2
j

2

)
(6)

where ρ is the density of water (1000 kg m−3), D i is the mean diameter of302

class i, V j is the mean velocity of velocity class j, and ∆t is the sampling303

frequency (s). The effective sampling area, Ai (m−2) depends on the particle304

size, since in order to be correctly sensed the particles need to be inside the305

light beam in its entirety, so:306

Ai = A

(
1− Di

2w

)
(7)

where A is the sampling area of the disdrometer and w is the width of the307

laser beam. As it can be seen, the effective sampling area gets reduced as the308

drop size increases, and the magnitude of the correction applied is inversely309

proportional to w.310

This allowed, on one hand, obtaining E for Thies disdrometers, but also311

permitted to apply a number of corrections that simplified the comparison312

between the two types of disdrometer. Thus, we ignored the particle counts313

in the first size bin of Thies disdrometers and the counts in the size bins314

larger than 8 mm, so the two disdrometer types were measuring the same315

range of drop sizes (0.25 to 8 mm). We also applied a filter to remove highly316

unlikely drop size and velocity combinations, as done in many studies (e.g.,317

Tokay et al., 2001; Jaffrain and Berne, 2011; Tokay et al., 2013; Raupach et318
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al., 2015). In order to do that, each size and velocity bin was compared with319

the terminal fall velocity model of Beard (1976), and the bins for which a320

difference larger than 50% existed with the theoretical model were excluded.321

In order to compare PSVD data between disdrometer types, the 10th,322

50th and 90th percentiles of the particle size (D10, D50, D90 ) and velocity323

(V10, V50, V90 ) were computed (Table 2). One problem that arises when324

percentiles are computed from binned data is that the resulting percentiles325

may be biased depending on the binning structure of the data. If all the326

particles recorded in one bin are assigned the mean value of the bin (the327

easiest option), different bin configurations will lead to different computed328

percentiles, even if the raw data before binning were the identical. When329

data from different binning structures are compared, as it is the case here330

between Thies and Parsivel disdrometers, an interpolation scheme needs to331

be used for distributing the range of values within each bin across all the332

particles corresponding to that bin. Here we used a random distribution333

over the range of values in the bin following a linear probability distribution334

constructed by fitting a line between two points determined as the average335

of the number of particles in the bin and the corresponding values on the336

neighbouring bins. Given the high number of particles detected, the random337

component of this scheme has a negligible effect on the results. Once all338

the number of particles by minute were assigned particle size and velocity339

values, the percentiles were calculated, allowing for a comparison between340

disdrometers.341

In addition to one-minute data, the mean (m) and maximum (M) values342

of some of these variables (Rm, RM, KEm, KEM, Em, EM, NPm) were343

computed for each rainfall event. A summary of the variables analysed is344

provided on Table 2.345

[TABLE 2]346
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All data processing, including reading the raw telegrams, computing the347

integrated variables (erosivity for Thies LPM and size and velocity per-348

centiles), and plotting, was performed using a custom package for the R349

environment, disdRo (Begueŕıa et al., 2017).350

2.3. Comparison of disdrometer measurements351

Prior to any analysis, minute observations with low-quality or bad sensor352

status flags were removed from the comparison dataset. Minutes with miss-353

ing data, precipitation below 0.1 mm h−1 or less than 10 particles detected354

in any of the four disdrometers were also removed. This way, only minutes355

with good quality data in the four devices were considered in the analysis.356

The comparison was made primarily on the bulk variables computed from357

the PSVD matrix stored in the one-minute telegrams outputted by the four358

disdrometers, by applying equations 1 to 6. We also compared the bulk vari-359

ables calculated by the internal firmware of the devices, in order to check the360

impact of the effective sampling area correction and the removal of unlikely361

size-velocity bins.362

Kernel density and violin plots, i.e. non-parametric graphical estima-363

tions of the probability density functions of the variables, were used as a364

preliminary analysis tool. A formal comparison between the two disdrom-365

eter types was performed using a Gamma generalised linear mixed model366

(Gamma GLMM), with the bulk variables listed in Table 2 as response367

variables. Mixed models allow incorporating both fixed-effects and random-368

effects in the regression analysis (Pinheiro and Bates, 2000). The fixed-effects369

describe the values of the response variable in terms of explanatory variables370

that are considered to be non-random, whereas random-effects are treated371

as arising from random causes, such as those associated with individual ex-372

perimental units sampled from the population. Hence, mixed models are373

particularly suited to experimental settings where measurements are made374

on groups of related, and possibly nested, experimental units. If the group-375
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ing factor was ignored when modelling grouped data, the random (group)376

effects would be incorporated to the error term, leading to an inflated esti-377

mate of within-group variability. This allowed us to assess for differences in378

the response variables as a function of the disdrometer type (fixed factor),379

while controlling for possible differences due to the location of the two masts380

(random factor). Since the explanatory variable is a dichotomic variable381

(the disdrometer type), this configuration is equivalent to a random-effects382

Analysis of Variance (ANOVA). A Gamma distribution was used to model383

the response variables, since this distribution is best suited to positive data384

with variance increasing with the mean, as it is the case of the disdrometric385

variables analysed here. This model configuration can be described as:386

yi ∼ Gamma(θi, ν)

θi = ν/µi

g(µi) = µ+ βt(i) + αm(i) + ε

βt(j) ∼ N (0, σ2
β)

αm(i) ∼ N (0, σ2
m(i))

ε ∼ N (0, σ2)

(8)

where yi is the ith observation of the response variable Y ; ν is a shape387

parameter; θi is a scale parameter, which can be expressed in terms of ν388

and a mean value corresponding to the ith observation µi; µ is a global389

mean; βt(i) is a parameter accounting for the effect of the disdrometer type390

corresponding to observation i, t(i); and αm(i) is a parameter accounting for391

the location (mast) corresponding to observation i, m(i). In our case, we392

counted with four disdrometers grouped into t(i) = (T, P ) disdrometer types393

(Thies and Parsivel, respectively), and located in m(j) = (1, 2) masts, and394

we set β1 = α1 = 0. For the link function g(µi) we used an identity link,395

g(µi) = µi, except for R, Z, E and NP for which a log link, g(µi) = log µi,396

was used.397

17



The model in eq. (8) was fitted by generalized least squares (GLS), using398

the function lme from the R library lme4 (Pinheiro and Bates, 2011). A399

random sample of N=1000 records, corresponding to 250 minutes, was used400

in the analysis, in order to avoid size effects affecting negatively the statistical401

significance tests (Type I error inflation; see, e.g., Lin et al., 2013).402

3. Results403

A summary report on the data acquired by the four disdrometers is re-404

ported on Table 3. Almost 100,000 minutes of data were obtained from405

each device. Missing values due to technical issues (power supply failures406

and device hangouts, data communication problems) were found in all dis-407

drometers, although they were more prevalent on one of the Parsivels (P2),408

resulting in a significantly lower number of records by this device. The num-409

ber of errors, as reported by the status flags of the devices, was low, albeit410

larger in Parsivel than in Thies devices. Some records were discarded due to411

quality issues, either based on the quality flat reported by Thies (only data412

with quality flags above 90% were accepted), or on non-consistent data in the413

telegram (saturation of the PSVD bins or excessively large intensity values)414

in the Parsivels. Since Parsivel does not report the data quality, no quality415

threshold could be used. Around 31% of the minutes recorded rain hydrome-416

tors in both Thies, while this percentage was lower for Parsivel (27.5% in417

P1; the value of P2 was even lower, but can not be considered since this418

device recorded a significantly reduced number of minutes due to technical419

issues). The larger amount of minutes with rainfall in Thies disdrometers420

can be attributed to their highest sensitivity, since they are able to records421

smaller raindrops (more on this later).422

All types of precipitation events occurring in the sampling site were repre-423

sented, with the majority of observations corresponding with autumn rains,424

as corresponds to the climatology of the area. Rain rates varied between425
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0.014 mm h−1 and 277 mm h−1. The minimum precipitation rates were be-426

tween 0.014 and 0.020 mm h−1, with no differences between devices. The427

absolute maximum precipitation rates measured during the experiment de-428

pended on the disdrometer type, with Thies being the ones recording the429

highest values.430

As mentioned in section 2.1, only the common minutes were selected from431

the complete dataset, defined as those having high quality data and detection432

of rainfall particles in each of the four disdrometers. This led to a total of433

46,636 records, corresponding to 11,659 minutes belonging to 157 rainfall434

episodes.435

[TABLE 3]436

When considering only the records for which data of the four disdrometers437

existed, the total accumulated precipitation as measured by the disdrome-438

ters internal software was 244.9 mm (T1), 254.5 mm (T2), 220.4 mm (P1),439

and 228.1 mm (P2). This values were slightly different to those calculated440

from the PSVD data, which were slightly lower at 240.1 mm (T1), 253.0 mm441

(T2), 218.6 mm (P1), and 222.0 mm (P2). A graphical comparison of the442

cumulative time series for the computed and internal precipitation is pro-443

vided in Figure 2. Some discrepancies in total precipitation were therefore444

found between the devices, with the two Thies LPM devices recording more445

precipitation than the Parsivel ones. Between locations, mast 2 tended to446

record larger precipitation in both devices, although the magnitude of this447

difference was much lower than the difference between disdrometer types.448

Differences were also found with respect to cumulative kinetic energy, for449

which larger values were also found for Thies (2100 and 2101 J m−2 mm−1)450

than for Parsivel (1749 and 1829). This corresponds to values obtained from451

the PSVD data, since Thies disdrometers do not calculate the kinetic energy452

internally. Unlike with P , for E there were important differences between453

19



the values measured by the Parsivel2 disdrometers (2100 and 2181) and those454

calculated from the PSVD, reported above.455

This result suggests that differences between devices could be done, to456

a certain extent at least, to Thies LPM devices being more sensitive in the457

lower range of the PSVD spectrum, although this hypothesis requires further458

analysis, as done in the following sections.459

3.1. Example events460

Two events, representative of low and high precipitation intensity rates,461

were selected to illustrate the differences between disdrometer outputs. Time462

series of some bulk variables are shown in Figures 3 and 4. In both events,463

Thies devices consistently reported higher rainfall intensitity and cumulative464

precipitation. This is related to a larger number of rain particles detected, as465

shown by the number density (which factors out the different rain intensities).466

There were differences, too, in the median particle size, which was much467

larger in the Parsivel devices. Interestingly, it seems that these differences468

(larger number of drops in Thies, but larger mean size in Parsivel) somehow469

cancelled out for radar reflectivity and kinetic energy, which depend both on470

the number of drops, their size and velocity.471

These differences were most evident in the high intensity event, and were472

also higher if no corrections for unlikely drops and effective sampling area473

were performed (Supplementary material, Figures A.1 and A.2).474

[FIGURES 3 and 4]475

The PSVD plots (Figures 5 and 6), depicting the number of drops de-476

tected for each combination of drop size and velocity classes during the event477

by each disdrometer, help explain the differences found. A first and evident478
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difference is that Thies disdrometers had a much wider distribution of the479

PSVD spectra than Parsivel ones. The terminal velocity of raindrops as a480

function of their size according to Beard (1978), also depicted in the figure,481

was used to filter out unlikely combinations of size and velocity. Combina-482

tions which differ by more than 50% with the theoretical fall velocity are483

represented in the figure with a 50% transparency. Although a majority of484

particles were found to lie in a region close to the theoretical line, Thies de-485

vices had a much larger number of particles far from the theoretical model,486

both in the high and low intensity events. Particularly, a large number of very487

small particles at much higher velocities than expected was very prominent,488

as were the drops with a large diameter but a fairly low velocity. Typically,489

the first case (small, fast raindrops) are attributed to edge events (partial490

recognition or larger drops falling in the edge of the laser beam), or splashed491

particles, while the second case are interpreted as double detections (two or492

more simultaneous drops). Both effects tend to increase with the precipita-493

tion intensity, as the anomalous events become more frequent.494

The frequency of anomalous raindrops was much lower in the Parsivel495

output, for which the vast majority of cases fell within the theoretical model496

limits. This can be attributed to a number of facts. From pure geometrical497

considerations, a larger prevalence of edge events can be expected from Thies,498

since its laser beam has a reduced width (20 mm) with respect to Parsivel499

(30 mm), so the proportion of edge events with respect to the number of500

particles detected is higher. Other reasons such as a larger proneness to501

splashing or differences in the internal processing of the data (that, as stated502

by the manufacturers, includes some filtering of anomalous data), may also503

help explain this differences.504

Finally, and interestingly, an underestimation of drop velocities with re-505

spect to the theoretical model could be found in Parsivel devices, most no-506

tably in the high intensity event and for particles larger than 1 mm.507
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A formal analysis of these differences, considering the whole data set, is508

presented in the following section.509

[FIGURE 5 and 6]510

3.2. Integrated variables, minute scale511

When the whole dataset was analysed, differences between disdrometers512

were also evident, as shown by the exploratory kernel density plots (Figure513

7). This was further confirmed by the Gamma GLMM analysis (Table 4).514

The coefficients reported in the Table for the fixed effects correspond to βT515

and βP when µ is set to zero in equation 8, and can be interpreted as the516

mean values of the response variables for each disdrometer type, when other517

factors (the mast, in this case) are accounted for. The table includes also the518

p-values corresponding to these coefficients, as well as the residual and mast519

standard deviation (σ and σm(i), respectively).520

[FIGURE 7 and TABLE 4]521

The analysis yielded significant differences between disdrometer types for522

all the response variables analysed, while the random effect (the mast) had523

a negligible effect as shown by its small variance with respect to the random524

error (residual). There were substantial differences in the number of particles525

detected, NP , and in the PSVD percentiles. Thus, Thies disdrometers had526

a lower coefficient for NP (230 vs 194), indicating a tendency to detect a527

higher number of particles (an increase of circa 20%). Thies also had much528

lower coefficients for D10 and D50 (0.59 vs 0.74 for the median drop size,529

i.e. a decrease of circa 20%), as well as for V10 and V50 (2.4 vs 2.9, i.e. an530

18% difference). The magnitude of the difference was lower for the highest531

percentiles (D90 and V90 ), where Thies even had a higher coefficient for532

velocity, indicating a larger spread of velocities compared to Parsivel.533
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These differences in the number of particles and in the PSVD were trans-534

lated to the bulk variables, which also showed significant differences in all535

cases. The magnitude of the effect, i.e. the mean differences between the two536

disdrometer types, were high for the particle density (21,600 vs 15,920, a 36%537

increment) and kinetic energy (11.09 vs 9.66, i.e. a 15% difference), while538

they were smaller (albeit significant) for R and Z (12% and 7% difference,539

respectively).540

The differences found in the PSVD percentiles allows for a better un-541

derstanding of the differences in the integrated variables, since the particle542

size and velocity have contrasting effects on R, ND, Z, and E. In general,543

a higher number of particles implies increasing values of all these variables,544

which favours Thies devices since it tended to detect a higher number of par-545

ticles. The particle size, on the other hand, has a similar effect of increasing546

all the variables for which it is relevant (R, Z and E). Since the particle547

size was in general higher in Parsivel devices, this effect partially cancels out548

the effect of the increasing number of particles. Particle velocity, which was549

in general higher in Parsivel (except for the largest drops), has a positive550

effect in E, but a negative effect on Z, which further explains the differences551

found. The particle density (ND), finally, is not affected by the drop size and552

is negatively affected by fall velocity, and that the reason why this variable553

showed the highest difference between both disdrometers.554

3.3. Integrated variables, event scale555

Although one of the benefits of the optical disdrometers is their ability556

to provide large amounts of information at very fine temporal scales (as one-557

minute data analysed here), very frequently these data data are aggregated558

over larger time periods or rainfall events for practical issues. For instance,559

it is typical the computation of kinetic energy totals for rainfall events, for560

instance for soil erosion applications. When considering the same variables561

at the event level, looking at the mean and maximum values over the event,562
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similar results were found (Figure 8 and Table 5).563

[FIGURE 8 and TABLE 5]564

Again, significant fixed effects were found for all response variables, while565

the random effect was marginal in all cases. The average number of particles566

during the events was much larger for Thies, and the median drop size and567

velocity was lower. There were also differences, although of smaller size, in568

the rest of integrated variables.569

3.4. Effect of PSVD data correction570

The effect that the data correction scheme may have on the integrated571

variables merits some analysis, since it modifies the PSVD distribution. Here572

we applied a filter that consisted on eliminated the unlikely drops, which was573

aimed at eliminating edge events and double detections, while a correction574

for the sensing area as a function of the drop size was applied to compensate575

the loss of mass. The results showed in the previous sections were all based576

on the corrected data, but in order to determine the effect of this correction577

on the computed variables, the analysis was replicated without applying the578

filtering and the correction.579

The results are shown in the Supplementary material, in Table A.1 and580

Figure 7. A comparison with the results shown in the previous section re-581

veals the same general pattern, but with stronger effects. For instance, the582

coefficient for the number of particles NP was 62% higher in Thies than in583

Parsivel. Interestingly, the effect of the correction on the particle size per-584

centiles had a different sign on Thies, for which D50 increased from 0.53585

(without correction) to 0.60 (with correction), while on Parsivel it decreased586

from 0.80 to 0.74. For the median particle velocity (V 50), the coefficient re-587

mained very similar before and after correction for Thies, while for Parsivel588
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it increased from 2.88 to 3.09 (7%). The relative magnitude of the differences589

between Thies and Parsivel disdrometers was 88% for ND, 12% for R, 15%590

for E and 7% for Z, i.e. much higher than after filtering and correction for591

ND but similar for the other three variables.592

3.5. Effect of rainfall intensity593

Data were divided by intensity ranges in order to test if the effect of594

the disdrometer type changed with different rain intensities. As the rainfall595

intensity increases, it is expected to find more and bigger drops, which may596

in turn modify the differences found between disdrometer types. Data were597

thus divided in three intensity groups: low intensity (from 0.1 mm h−1 up to598

2 mm h−1), medium intensity (from 2 mmh−1 up to 10 mm h−1) and high599

intensity (more than 10 mm h−1). Model coefficients for the three intensity600

ranges are given in Table 6, and kernel density plots can be found in the601

Supplementary material (Figures A.4, A.5 and A.6).602

[TABLE 6]603

The same effects described above were found at different rainfall inten-604

sities. The magnitude of the effects, however, tended to increase with the605

intensity. Thus, the relative difference between the coefficients of NP ranged606

between 7% (146 vs 136) for low rainfall intensity, 27% for medium intensity607

and 65 % for high intensity, while the median particle size ranged between608

16%, 28% and 200%. Equally large were the relative differences between the609

coefficients of ND , which varied between 33%, 67% and up to 292%, while for610

the remaining variables the increase of the effect with the rainfall intensity611

was less pronounced.612
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4. Discussion613

Optical disdrometers are commercially affordable sensors able to provide614

a thorough description of precipitation, and they are being increasingly used615

by national weather services as present weather sensors and even rain gauges616

requiring low maintenance. Besides their use in operational networks, optical617

disdrometers provide information on precipitation drop spectra that has ap-618

plications in different fields, and they are being increasingly used in research.619

Thies Clima LPM and OTT Parsivel2 are among the most common, state-620

of-the-art, optical disdrometers. Despite being based on the same functioning621

principle and having similar characteristics in terms of sensibility and range622

of particle detection, there are substantial differences between them that623

may affect differently their records. We have stressed the differences in the624

higher and (more important) lower particle size detection ranges of the two625

devices, with Thies having a lower detection threshold that may induce bias626

in the records of the two disdrometer types. Filtering the PSVD matrix627

to a common detection range, as done here, allows for a fair comparison628

between the outputs of the disdrometers, and should be recommended for629

any study that aims at presenting general results. However, as we have seen630

here, despite applying the same detection thresholds to the data outputted631

by the two disdrometers, significant differences were found both at the level632

of PSVD spectra (particle size and velocity percentiles) and on the bulk633

variables (PSVD moments).634

There are a number of factors that may help explain the differences found.635

Geometrical differences between the laser beams are highly relevant, since636

they greatly influence the probability of bias-inducing effects such as edge637

events (‘margin fallers’) and double detections. A larger sampling area, for638

instance, implies a higher chance of double detections. At this respect, the639

larger sampling area of Parsivel (54 cm2) over Thies devices (45.6 cm2 on av-640

erage) implies that Parsivel disdrometer should be more affected by double641
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detections. Double detections, i.e. time-overlapping drops, may be sensed642

just as one single drop (hence causing a loss of mass which may translate643

to a reduced precipitation record); or as a much larger drop at an unusu-644

ally low velocity. Since these unusual particles are often discarded from the645

PSVD matrix, this may result in another source of mass loss, which may or646

not be partially solved by the sampling area correction (more on this later).647

Although this would require further research, for instance with the help of648

numerical simulations as in the work by Raasch and Umhauer (1984), we649

suspect that the tendency towards a lower number of particles detected and650

lower precipitation amounts found on Parsivel devices may have a relation-651

ship with this effect.652

But geometrical effects are not restricted to this. Since the effective sam-653

pling area of optical disdrometers depends on the particle size, not only the654

total area but also the width of the laser beam plays an important role as a655

source of bias. In particular, the proportion of edge events (i.e. particles that656

are sensed only partially due to falling at the edge of the laser beam) over657

the total number of particle detections of the same diameter class is inversely658

proportional to the width of the beam. The smaller width of the laser beam659

on Thies (20 mm) over Parsivel (30 mm) plays against the former, which660

should be more prone to be affected by edge events. This becomes more661

relevant for the higher particle bins. For 5 mm particles, for instance, the ef-662

fective witdth gets reduced to 15 mm for Thies, i.e. a reduction of 25%, while663

for Parsivel this reduction amounts to 16.6%. Edge events result in partially664

sensed particles, implying a mass loss and an over-estimation of fall velocity.665

The high prevalence of over-accelerated, small particles in the PSVD spectra666

of Thies disdrometers may be related to this effect, although again further667

analysis is required in order to confirm this hypothesis. At this respect, the668

Thies manufacturer checks and reports on each device the deviations due to669

fabrication tolerances from the theoretical geometrical properties of the laser670

beam, whereas this information is not given for Parsivel.671
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In order to overcome this problems, we applied a correction scheme which672

is similar to the ones found in other studies (e.g. Löffler-Mang and Joss, 2000;673

Battaglia et al., 2010; Raupach and Berne, 2015). The scheme consists on674

two parts: the first implies removing highly unlikely particle counts, i.e. those675

with velocities that are far from the theoretical fall velocity corresponding to676

their size. These unlikely particles are most possibly caused by edge events677

and double detections, so they are removed from the PSVD data. This causes678

a loss of mass, and this loss of mass is uneven since it increases with the par-679

ticle size (due to the geometric effect explained above), so the second part of680

the scheme consists on correcting the effective sampling area used in calculat-681

ing the bulk variable from the PSVD (equation 7). The correction, however,682

is not guaranteed to restitute all the mass loss, and careful calibration is683

required in order to match the filtering of unlikely particles (which depends684

on the threshold used for particle removal) with the effective area correction.685

Here we used a threshold corresponding with a difference higher than 50%686

with respect to the theoretical fall velocity matched to a factor or 1/2 of the687

drop diameter for the area correction, but other combinations are possible.688

Again, numerical simulation should help in determining the best correction689

parameters, which in turn should consider the different beam geometries.690

Our results showed differences between the two disdrometer types, which691

were not totally removed by the correction scheme (although they were par-692

tially diminished with respected to the un-corrected records). Differences in693

the in the internal treatment of the data by the two devices, which is not pub-694

lic, may also help explain this differences. Both manufacturers indicate that695

some treatment of unlikely detections is performed internally, but very little696

detail is given. From the examination of the raw PSVD matrices, it seems697

that the correction applied by Thies, if any, is very subtle, while the output698

of Parsivel seems to be much more affected by corrections. The technical lit-699

erature, also, gives more detail in the case of the Parsivel, for which at least700

a correction for the effective sampling area is reported (Löffler-Mang and701

Joss, 2000). The exact nature of these corrections, however, is not known, or702
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even if they are applied to the integrated variables only, or also to the PSVD703

data. This uncertainty makes it difficult to implement an effective correction704

scheme that makes the outputs of the two disdrometer comparable.705

The external structure of the devices also plays an important role and706

may lead to incorrect drop detections due to turbulence (see, for instance,707

Constantinescu et al. 2007, for a review of turbulence induced errors on708

pluviometers) and splashing (particles intercepted by the enclosure of the709

devices which break and splash away in smaller but accelerated drops, see710

Kathiravelu et al., 2016). It seems that the Thies disdrometer is more prone711

to having splashed drops interfering with the laser beam, since it contains712

larger flat surfaces susceptible of splashing particles in the direction of the713

sensor. The Parsivel units, on the other hand, do not have flat surfaces714

and include a splash protection shield that seems to effectively reduce the715

risk of splashing. These morphological differences may also affect differently716

in case of wind, since the turbulences generated may be very different on717

both devices, and may also be a cause of systematic bias between the two718

disdrometers. A future study using high speed video and a wind-tunnel setup719

could help examine the occurrence and magnitude of these effects, which are720

poorly quantified up to now.721

Finally, we also detected a tendency towards underestimating the velocity722

of falling particles in the case of the Parsivel units, especially in the range723

between 1 and 3 mm. This have been shown previously, and according to724

Tokay et al. (2014) this issue is known to the Parsivel manufacturer who725

mentioned that it is in process of being fixed. However, at least the units726

tested, still suffered from the same problem. Underestimation of the fall727

velocity may have a substantial influence on the bulk variables computed728

from the PSVD data, since the velocity intervenes in several of the equations.729

Systematic underestimation of fall velocity has an effect of increasing ND730

and Z, while it decreases E.731
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Differences in the number of particles detected, and biases in the estima-732

tion of particle size and velocity, result in complex biases in the integrated733

variables. This is due to the different effect that these factors have on their734

computation, since depending on the case there are linear or inverse relation-735

ships involved. This stressed the relevance of not only an unbiased estimation736

of the PSVD by the disdrometers, but also of any filtering and correction737

scheme applied to the PSVD data during post-processing.738

5. Conclusions739

The two types of disdrometer analysed showed different PSVD spectra for740

the same rainfall events, while the differences between two devices of the same741

type were much smaller and compatible with random differences. In particu-742

lar, Thies devices recorded a much larger number of drops than Parsivel2, but743

also a much larger spread of the PSVD spectra, with a significant amount of744

drops with unexpected combinations of size and velocity, most notably small745

drops with excessively high velocities, compatible with edge events (‘margin746

fallers’). Parsivel2 devices, on the contrary, recorded less drops and a PSVD747

spectra which was much closer to the theoretical model. They also had a748

tendency towards underestimating drop velocity with respect to both Thies749

and a theoretical fall model.750

Differences in the PSVD spectra resulted in significant discrepancies be-751

tween both disdrometers in all bulk precipitation parameters such as rain752

intensity and amount, particle density, radar reflectivity, or kinetic energy.753

These differences were found when these variables were computed by the in-754

ternal firmware of the devices, but also when they were computed by us from755

the PSVD data. When the PSVD data were filtered by considering only par-756

ticles with diameters between 0.25 and 8 mm and by removing unlikely drop757

size and velocity pairs, and a correction for the effective sampling area was758

used, the magnitude of the differences was reduced although the tendency759
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remained. In all cases, the differences increased with precipitation intensity,760

as did the variance between devices of the same type, in agreement with the761

expectation and with previous studies.762

The differences found may be explained by hardware or software differ-763

ences. Geometrical differences on the laser beams of the two devices translate764

to different prevalence of bias-inducing effects such as edge events and double765

detections, while differences the external design may also have a large influ-766

ence on the drop splash. The manufacturers of both disdrometers indicate767

that corrections have been implemented to prevent or reduce the magnitude768

of this effects, but the exact procedures are not documented. Different so-769

lutions can be adopted to limit undesired effects, both at the hardware and770

the software level, and inspection of the resulting PVSD spectra during the771

same rainfall events suggests that the level of correction is higher in the case772

of Parsivel than in the case of Thies. Wether these differences are (total or773

partially) due to hardware and design differences, or they are caused by hard-774

ware or software filtering and correction of the PSVD data, is still a question775

with no clear answer. Since some crucial aspects of the internal functioning776

of both devices are hidden from the final user, it is very difficult to design a777

data treatment process that would enable making the records of Thies and778

Parsivel disdrometers compatible and comparable across studies.779
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utin, J.-D., Delahaye, J.-Y., Nikolopoulos, E.I., Ogden, F., Vinson, J.-P.902

(2006). DEVEX-disdrometer evaluation experiment: Basic results and903

implications for hydrologic studies. Adv. Water Resour. 29, 311-325.904

[69] Krajewski W.F., Kruger A., Nespor V.(1998). Experimental and numer-905

ical studies of small-scale rainfall measurements and variability. Water906

Sci. Technol. 37, 131-138.907

[67] Kruger, A., Krajewski, W.F. (2002). Two-dimensional video disdrome-908

ter: A description. J. Atmos. Ocean. Tech. 19, 602-617.909

[71] Lanza, L.G., Vuerich, E. (2012). Non-parametric analysis of one-minute910

rain intensity measurements from the WMO Field Intercomparison. At-911

mos. Res. 103, 52-59.912

[42] Lanza, L.G., Vuerich, E. (2009). The WMO field intercomparison of rain913

intensity gauges. Atmos. Res. 94, 534-543.914

[91] Lanzinger, E., Theel, M. and Windolph, H. (2006) Rainfall amount and915

intensity measured by the Thies laser precipitation monitor WMO Tech-916

nical Conf. on Meteorological and Environmental Instruments and Meth-917

ods of Observation (TECO-2006), Geneva, Switzerland.918

[85] Liao, L., Meneghini, R., Tokay, A. (2014) Uncertainties of GPM DPR919

rain estimates caused by DSD parameterizations. J. Appl. Meteor. Cli-920

matol. 53, 2524-2537.921

36



[84] Lin, M., Lucas, H. C., Shmueli, G. (2013). Too big to fail: Large samples922

and the p-value problem. Information Systems Research 24(4), 906-917.923
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Table 1: Classification or particles according to equi-

volume diameter (D) and fall velocity (V ) bins by dis-

drometer type.

Size bins (mm) Velocity bins (m s−1)

Thies Parsivel Thies Parsivel

0.000–0.125a 0.0–0.1

0.125–0.250 0.125–0.250a 0.0–0.2 0.1–0.2

0.250–0.375 0.250–0.375 0.2–0.4 0.2–0.3

0.375–0.500 0.375–0.500 0.4–0.6 0.3–0.4

0.500–0.750 0.500–0.625 0.6–0.8 0.4–0.5

0.750–1.000 0.625–0.750 0.8–1.0 0.5–0.6

1.000–1.250 0.750–0.875 1.0–1.4 0.6–0.7

1.250–1.500 0.875–1.000 1.4–1.8 0.7–0.8

1.500–1.750 1.000–1.125 1.8–2.2 0.8–0.9

1.750–2.000 1.125–1.250 2.2–2.6 0.9–1.25

2.000–2.500 1.250–1.500 2.6–3.0 1.03–1.2

2.500–3.000 1.500–1.750 3.0–3.4 1.2–1.4

3.000–3.500 1.750–2.000 3.4–4.2 1.4–1.6

3.500–4.000 2.000–2.250 4.2–5.0 1.6–1.8

4.000–4.500 2.250–2.575 5.0–5.8 1.8–2.05

4.500–5.000 2.575–3.000 5.8–6.6 2.05–2.4

5.000–5.500 3.000–3.500 6.6–7.4 2.4–2.8

5.500–6.000 3.500–4.000 7.4–8.2 2.8–3.2

6.000–6.500 4.000–4.500 8.2–9.0 3.2–3.6

6.500–7.000 4.500–5.125 9.0–10.0 3.6–4.1

7.000–7.500 5.125–6.000 > 10.0 4.1–4.8

7.500–8.000 6.000–7.000 4.8–5.6

> 8.000 7.000–8.000 5.6–6.4

8.000–9.000 6.4–7.2

9.000–10.250 7.2–8.2

10.250–12.000 8.2–9.6

12.000–14.000 9.6–11.2

14.000–16.000 11.2–12.8

16.000–18.000 12.8–14.4

18.000–20.000 14.4–16.4

20.000–23.000 16.4–19.2

23.000–26.000 19.2–21.4

a Left empty by the manufacturer.
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Table 2: Disdrometer evaluated variables. M and m stand for maximum and mean,

respectively.

Variables Units Acronym

Rain rate, mean and max mm h−1 R, Rm, RM

Precipitation accumulated mm P

Number of particles min−1 NP , NPm

Particle density m−3 mm−1 ND , NDm

Radar reflectivity dBZ Z

Kinetic energy J m−2 mm−1 E, Em, EM

10th PSD percentile mm D10

50th PSD percentile mm D50

90th PSD percentile mm D90

Mean PSD mm Dm

10th PVD percentile m s−1 V10

50th PVD percentile m s−1 V50

90th PVD percentile m s−1 V90

Mean PVD mm Vm
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Table 3: Disdrometer data summary. Number of minutes recorded, errors, minutes with

rain (SYNOP codes 61, 63 and 65), and high quality minutes; percentage of records in

each season, and by rain intensity ranges; and maximum rain intensity.

T1 T2 P1 P2

Total minutes 98,861 99,290 92,029 74,608

Error flags 20 33 240 103

Rain minutes 30,359 30,507 25,299 18,376

% rain minutes 30.7 30.7 27.5 24.6

High quality rain minutes 25,357 25,688 23,895 18,376

Common, high quality, rain minutes 11,659 11,659 11,659 11,659

% rain minutes in winter 27.7 27.7 28.7 33.7

% rain minutes in spring 26.6 26.1 25.3 10.9

% rain minutes in summer 11.1 11.1 11.1 11.9

% rain minutes in autumn 34.6 35.2 35.0 43.5

% minutes 0.1-2 mm h−1 84.6 83.6 86.8 85.8

% minutes 2-5 mm h−1 11.9 12.4 10.4 11.1

% minutes 5-10 mm h−1 2.3 2.8 1.9 2.0

% minutes 10-25 mm h−1 0.75 0.8 0.7 0.59

% minutes >25 mm h−1 0.43 0.46 0.3 0.49

Lowest R (mm h−1) 0.018 0.020 0.015 0.014

Highest R (mm h−1) 251 277 170 169
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Table 4: Gamma Generalized Linear Mixed-Effects Model coefficients for one-minute

records (random sample size of N = 1000). Refer to Table 2 for a list of acronyms of

response variables.

Response Fixed effects Random effects

variable Thies Parsivel Mast Residual

coeff p-value coeff p-value std. dev. std. dev.

NP 230.1 <2× 10−16 193.8 <2× 10−16 0.000 0.8719

D10 0.3374 <2× 10−16 0.4772 <2× 10−16 3.614× 10−3 0.1730

D50 0.5956 <2× 10−16 0.7420 <2× 10−16 1.488× 10−3 0.1899

D90 1.012 <2× 10−16 1.026 <2× 10−16 0.000 0.209

V10 1.316 <2× 10−16 1.793 <2× 10−16 1.716× 10−2 0.2097

V50 2.399 <2× 10−16 2.875 <2× 10−16 2.450× 10−2 0.1646

V90 3.818 <2× 10−16 3.608 <2× 10−16 1.200× 10−2 0.1445

R 1.440 1.659× 10−7 1.254 <2× 10−16 2.292× 10−8 1.467

ND 21,600 <2× 10−16 15,920 <2× 10−16 0.000 0.578

Z 24.55 <2× 10−16 23.23 <2× 10−16 0.000 0.2828

E 11.09 <2× 10−16 9.660 <2× 10−16 2.099× 10−8 0.4912

Table 5: Gamma Generalized Linear Mixed-Effects Models coefficients for event totals

(sample size N = 624). Refer to Table 2 for a list of variable acronyms.

Response Fixed effects Random effects

variable Thies Parsivel Mast Residual

coeff p-value coeff p-value std. dev. std. dev.

NP 167.5 <2× 10−16 146.3 <2× 10−16 0.000 0.8463

D10m 0.3448 <2× 10−16 0.4909 <2× 10−16 3.073× 10−3 0.1629

D50m 0.6061 <2× 10−16 0.7560 <2× 10−16 0.000 0.1564

D90m 0.9971 <2× 10−16 1.027 <2× 10−16 0.000 0.1566

V10m 1.351 <2× 10−16 1.826 <2× 10−16 2.027× 10−2 0.2036

V50m 2.465 <2× 10−16 2.876 <2× 10−16 2.607× 10−2 0.1375

V90m 3.791 <2× 10−16 3.597 <2× 10−16 1.907× 10−2 0.1114

Rm 1.051 <2× 10−16 0.9615 <2× 10−16 0.000 1.063

RM 3.351 <2× 10−16 3.430 <2× 10−16 6.788× 10−8 1.584

NDm 20,780 <2× 10−16 15,930 <2× 10−16 9.283× 10−5 0.4714

Em 11.03 <2× 10−16 9.505 <2× 10−16 1.867× 10−7 0.3792

Zm 22.75 <2× 10−16 21.55 <2× 10−16 1.872× 10−7 0.2068
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Table 6: Gamma Generalized Linear Mixed-Effects Model coefficients for minutes with

varying rainfall intensities.

Response Fixed effects Random effects

variable Thies Parsivel Mast Residual

coeff p-value coeff p-value std. dev. std. dev.

Low rainfall intensity (0.1<I<2 mm h−1):

NP 145.8 <2× 10−16 136.1 <2× 10−16 1.132× 10−7 0.7129

D10 0.3481 <2× 10−16 0.4723 <2× 10−16 3.795× 10−3 0.1758

D50 0.5975 <2× 10−16 0.7109 <2× 10−16 3.160× 10−3 0.1765

D90 0.9440 <2× 10−16 0.9503 <2× 10−16 0.000 0.1650

V10 1.365 <2× 10−16 1.762 <2× 10−16 2.189× 10−2 0.2156

V50 2.416 <2× 10−16 2.768 <2× 10−16 2.189× 10−2 0.2156

V90 3.639 <2× 10−16 3.425 <2× 10−16 1.145× 10−2 0.1202

R 0.6675 1.659× 10−7 0.6202 <2× 10−16 0.000 0.6570

ND 24,840 <2× 10−16 18,710 <2× 10−16 9.824× 10−3 0.5478

Z 21.44 <2× 10−16 20.45 <2× 10−16 0.000 0.2281

E 9.434 <2× 10−16 7.953 <2× 10−16 1.113× 10−2 0.4108

Medium rainfall intensity (2<I<10 mm h−1):

NP 519.2 <2× 10−16 408.1 <2× 10−16 3.144× 10−9 0.4014

D10 0.3122 <2× 10−16 0.4944 <2× 10−16 1.681× 10−3 0.1232

D50 0.5936 <2× 10−16 0.8246 <2× 10−16 7.793× 10−4 0.1592

D90 1.525 <2× 10−16 1.772 <2× 10−16 1.203× 10−10 0.1268

V10 1.177 <2× 10−16 1.893 <2× 10−16 8.798× 10−3 0.1666

V50 2.420 <2× 10−16 3.133 <2× 10−16 2.348× 10−2 0.1587

V90 4.488 <2× 10−16 4.147 <2× 10−16 3.325× 10−2 9.908× 10−2

R 4.048 1.659× 10−7 3.596 <2× 10−16 1.145× 10−2 0.1202

ND 13,730 <2× 10−16 8,228 <2× 10−16 6.932× 10−3 0.3899

Z 34.26 <2× 10−16 32.22 <2× 10−16 7.137× 10−3 0.1092

E 15.09 <2× 10−16 13.95 <2× 10−16 7.105× 10−3 0.3521

High rainfall intensities (I>10 mm h−1):

NP 1367.0 <2× 10−16 829.7 <2× 10−16 9.263× 10−9 0.3532

D10 0.287 <2× 10−16 0.5391 <2× 10−16 0.000 0.1866

D50 0.510 <2× 10−16 1.030 <2× 10−16 0.000 0.2777

D90 1.525 <2× 10−16 1.772 <2× 10−16 1.645× 10−2 0.1560

V10 1.015 <2× 10−16 2.047 <2× 10−16 0.000 0.2213

V50 2.012 <2× 10−16 3.529 <2× 10−16 0.000 0.2672

V90 4.992 <2× 10−16 4.467 <2× 10−16 0.000 0.1196

R 15.94 1.659× 10−7 14.33 <2× 10−16 2.374× 10−2 0.2910

ND 10,370 <2× 10−16 3,543 <2× 10−16 0.000 0.428

Z 43.05 <2× 10−16 40.88 <2× 10−16 9.882× 10−3 8.927× 10−2

E 19.84 <2× 10−16 20.81 <2× 10−16 5.844× 10−9 0.3198
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Figure 1: Sampling site with four collocated disdrometers: two Parsivel2 (P1 and P2, with

serial numbers 304555 and 304553); and two Thies (T1 and T2, with serial numbers 0436

and 0655).
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Figure 2: Accumulated precipitation (R, mm) and kinetic energy (E, J m−2 mm−1) during

the two years experiment (only the minutes with data on the four disdrometers are used).
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Figure 3: Time series of disdrometer bulk variables during a high-intensity event (E365,

25/11/2014).
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Figure 4: Time series of disdrometer bulk variables during a low-intensity event (E455,

23/02/2015).
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Figure 5: Particle size and velocity density (PSVD) plots of a high-intensity event (E365,

25/11/2014). The color scale indicates the number of particles for each size and veloc-

ity class (NP). Deviations larger than 50% from the theoretical terminal velocity model

(Beard, 1976; red line) are indicated with a 50% transparency.
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Figure 6: Particle size and velocity density (PSVD) plots of a low-intensity event (E455,

23/02/2015). Legend as in Figure 5.

53



ND R Z E

103 104 105 10−1 100 101 101 101 102

0.00

1.00

2.00

0.00

1.00

2.00

0.00

0.20

0.40

0.60

0.80

0.00

0.50

1.00

1.50
Device

T1

T2

P1

P2

D10 D50 D90 Dm

0.5 1.0 0.5 1.0 1.5 2.0 1 2 3 0.5 1.0 1.5 2.0 2.5

0.00

1.00

2.00

3.00

4.00

5.00

0.00

1.00

2.00

0.00

1.00

2.00

3.00

4.00

5.00

0.00

3.00

6.00

9.00 Device

T1

T2

P1

P2

V10 V50 V90 Vm

1 2 3 4 1 2 3 4 5 6 3 5 7 2 3 4 5 6 7

0.00

0.50

1.00

0.00

0.50

1.00

1.50

0.00

0.40

0.80

1.20

0.00

0.50

1.00

1.50 Device

T1

T2

P1

P2

Figure 7: Kernel density plots for one-minute records.

54



Rm Rsd RM NDm

T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2

104

10−1

100

101

10−1

101

10−1

100

Em D10m D50m D90m

T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2

   0.9

   1.2

   1.5

   0.4

   0.6

   0.8

   1.0

   1.2

   0.4

   0.6

   0.8

    10

    20

    30

Zm V10m V50m V90m

T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2 T1 T2 P1 P2
   2.5

   3.0

   3.5

   4.0

   4.5

   5.0

   5.5

   1.5

   2.0

   2.5

   3.0

   3.5

   4.0

     1

     2

     3

    10

    20

    30

    40

Figure 8: Violin plots for events means and maxima. Refer to Table 2 for a list of acronyms

of the variables.

55



Appendix A. Supplementary material1072

0

50

100

150

200

00:00 01:00 02:00 03:00 04:00

R
 (m

m
 h

−1
)

Rain rate

0

10

20

30

40

00:00 01:00 02:00 03:00 04:00

P 
(m

m
)

Cumulative precipitation

103

104

105

00:00 01:00 02:00 03:00 04:00

N
D

 (m
−3

 m
m

−1
)

Number density (for R > 0.1 mm h−1)

0.0

0.5

1.0

1.5

00:00 01:00 02:00 03:00 04:00

D
50

 (m
m

)

Device
T1

T2

P1

P2

Median particle size 

0

20

40

60

00:00 01:00 02:00 03:00 04:00

Z 
(d

B 
m

m
6 

m
−3

)

Radar reflectivity

0

10

20

30

40

00:00 01:00 02:00 03:00 04:00

E 
(J

 m
−2

 m
m

−1
)

Kinetic energy (for R > 0.1 mm h−1)

Figure A.1: Time series of disdrometer bulk variables during a high-intensity event (E365),

with no corrections of the PSVD data.
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Figure A.2: Time series of disdrometer bulk variables during a low-intensity event (E455),

with no corrections of the PSVD data.
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Figure A.3: Kernel density plots for one-minute records, with no corrections of the PSVD

data.
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Figure A.4: Kernel density plots for low rainfall intensities (0.1<I<2 mm h−1).
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Figure A.5: Kernel density plots for medium rainfall intensities (2<I<10 mm h−1).
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Figure A.6: Kernel density plots for high rainfall intensities (I>10 mm h−1).
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Table A.1: Gamma Generalized Linear Mixed-Effects Model coefficients for one-minute

records, with no corrections of the PSVD data (N = 1000).

Variable Fixed effects Random effects

Thies Parsivel Mast Residual

coeff p-value coeff p-value std. dev. std. dev.

NP 311 <2× 10−16 192 <2× 10−16 1.130× 10−8 1.027

D10 0.2409 <2× 10−16 0.5010 <2× 10−16 8.726× 10−4 0.2493

D50 0.5302 <2× 10−16 0.8040 <2× 10−16 0.000 0.2420

D90 1.126 <2× 10−16 1.254 <2× 10−16 0.000 0.2320

V10 1.199 <2× 10−16 1.972 <2× 10−16 3.062× 10−2 0.2420

V50 2.392 <2× 10−16 3.085 <2× 10−16 0.000 0.1760

V90 4.215 <2× 10−16 4.203 <2× 10−16 0.000 0.1641

R 1.326 1.130× 10−4 1.183 8.77× 10−11 0.000 1.660

ND 33,370 <2× 10−16 17,750 <2× 10−16 1.246× 10−7 0.6232

Z 24.00 <2× 10−16 22.45 <2× 10−16 0.000 0.2968

E 10.370 <2× 10−16 8.968 <2× 10−16 0.000 0.4733
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