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Abstract. Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales.

Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture

values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values as

decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of

(de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated5

in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain

delay. The main approach involves the application of a distributed lag non-linear model (DLNM) to simultaneously represent

both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from

a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of

(de)coupled soil moisture values to be quantified. Results provide new insights on the decoupled range as its occurrence among10

the sites investigated is not limited to dry conditions.

1 Introduction

Although recent decades have seen great advances in remote sensing applications for mapping surface soil moisture (Jackson,

1993; Njoku et al., 2003; Mohanty et al., 2017), most hydrological studies that make use of soil moisture data require integrated

values over a certain soil depth (Brocca et al., 2017). Extrapolation of surface soil moisture from remote sensing techniques to15

depths beyond the sensor’s capacity (up to 5 cm) is not a trivial task given the spatio-temporal variability of soil moisture. The

vertical distribution of soil moisture, which determines integrated soil moisture content over a soil column, is rarely uniform

as more pronounced dynamics are expected closer to the surface compared to deeper in the soil (Hupet and Vanclooster,

2002). Currently, information derived from remote sensing are assimilated into hydrological models to obtain integrated soil

moisture values (Houser et al., 1998; Das et al., 2008). However, Kumar et al. (2009) stressed that it is important to assess20

vertical variability, especially the strength of coupling between surface and subsurface soil moisture for improvement of data

assimilation results. Analyses of vertical soil moisture distributions also have important implications for modeling studies, as

they could be used for calibration or validation of model parameters (De Lannoy et al., 2006).
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The amount of soil moisture at any given time is controlled by factors operating a different time scales. While prevailing

atmospheric conditions directly affect surface layers and control the temporal dynamics of soil moisture (Albertson and Mon-

taldo, 2003; Koster et al., 2004), it is the downward movement of water from the surface that dictates the amount of subsurface

soil moisture at a given time (Belmans et al., 1983; Rodriguez-Iturbe et al., 1999). Flow rates to the subsurface are driven by

hydraulic properties, which are in turn controlled by physical soil characteristics such as texture, bulk density, and structure.5

Relative to changes in atmospheric conditions, soil physical properties change over longer timescales. Vegetation further mod-

ifies vertical soil moisture distribution by root water uptake (Yu et al., 2007) and by changing soil structure (Angers and Caron,

1998).

Given the variability along a soil column, during which conditions do surface soil moisture reflect subsurface soil moisture?

Several studies have investigated this relation to address the correspondence between surface and subsurface soil moisture.10

One of the earliest studies is by Capehart and Carlson (1997) wherein they compared modeling outputs with remote sensing

measurements. Using very shallow depths of 5 mm and 5 cm, they referred to decoupling as the deviation from a linear

correlation between these depths due to variable drying rates. Further assessment of decoupling from model-generated time

series soil moisture data have been investigated using cross-correlation values (Martinez et al., 2008; Mahmood et al., 2012;

Ford et al., 2014). High correlation to the subsurface was obtained using lagged values of surface soil moisture. However,15

cross-correlation is limited to providing a single value throughout the range of soil moisture encountered per lag. Furthermore,

cross-correlation generally aims to evaluate the strength of lagged linear dependence between two variables (Shumway and

Stoffer, 2010). However, lagged dependence between surface and subsurface soil moisture may not be linear given that non-

linear processes determine water flow along the soil profile. Using in situ field measurements, Wilson et al. (2003) investigated

spatial surface (0-6 cm) and subsurface (0-30 cm) soil moisture distribution by calculating statistical metrics and by means of a20

variogram. Decoupling between the two depths was observed which they suggested to be influenced by vegetation, especially

root density at surface soil. Their results were also affected by the dry soil moisture range and emphasized the importance of

distinguishing between surface and total soil moisture for future applications of remote sensing to atmospheric studies.

Based on previous studies, the term decoupling refers to a weak dependence between soil moisture contents at the surface

and subsurface. Recognition of decoupling is important, however most studies have been limited to providing qualitative char-25

acterization of conditions when decoupling occurs (e.g. dry period). Only Capehart and Carlson (1997) identified a mid-range

soil moisture (∼0.3 cm3cm-3) when the surface and very near surface begin to decouple. Their results, however, are limited to

a thin layer of the soil column. In this paper, our main objective is to quantitatively identify a range of surface soil moisture

values that is decoupled from the subsurface. Furthermore, we consider depths greater than those investigated by Capehart and

Carlson (1997). The ability to quantify (de)coupled surface and subsurface soil moisture contents will contribute to more ef-30

fective estimation of depth-integrated soil moisture data using remote sensing methods and improved data assimilation results

in hydrological models.

We utilized in situ time series datasets at depths of 5 cm and 40 cm to represent surface and subsurface, respectively.

Values outside the decoupled range are considered coupled since soil moisture is inherently bounded up a maximum value

equal to soil’s porosity. The investigation of (de)coupling is based on the idea that surface conditions will be reflected at the35
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subsurface after a certain delay indicating strong coupling between the two zones, and vice versa. More focus is given to the

decoupled soil moisture range since it has greater implications for extrapolation of surface soil moisture values to deeper soil

layers. We applied statistical methods to identify conditions of decoupling with no prior assumptions on the type of functional

relation between surface and subsurface. As an exploratory step, we first assessed the dependence without considering lags

using regression and residuals analysis. The main approach for assessing decoupling was application of distributed lag non-5

linear models (Gasparrini et al., 2010) to incorporate both the lag structure and the functional relation between surface and

subsurface soil moisture. Applications of distributed lag models to econometrics and environmental epidemiology have been

well documented (Almon, 1965; Zanobetti et al., 2002; Bhaskaran et al., 2013; Wu et al., 2013). However, their application to

hydrological studies have rarely been explored.

INSERT Fig.1 here10

2 Description of datasets and study sites

Four time series datasets from the Twente soil moisture and temperature monitoring network (Dente et al., 2011) were used in

this study (fig.1). Datasets from 2014-2016 are available with only short periods of missing data. The stations are located in

agricultural fields with sensors installed at 5 cm, 10 cm, 20 cm, and 40 cm depths. To investigate decoupling, only the 5 cm

and 40 cm depths were considered because the largest possible distance was desired. Each station consists of EC-TM ECH2O15

capacitance probes (Decagon Devices, Inc., USA) that logged soil moisture data every 15 minutes. A calibration procedure

using gravimetric measurements was applied prior to analysis (Dente et al., 2011).

Land cover in the area varies from corn in one field (SM05), to grass in two fields (SM05 and SM13), to a forest area

(SM20). Values at 40 cm capture the root zone of vegetation for each site. In reality, rooting depths vary and depend on species

composition, climate, and plant growth rate. However, the depth considered would still allow for approximation of root zone20

conditions. The landscape is characterized by flat to slightly sloping terrain. It is important to note that SM20 is located at the

eastern foot of a small hilly terrain. Throughout the study period, either land cover remained unchanged or the same crop was

planted. The soil types for the stations range from coarse sandy soils to weakly silty soils (Wosten et al., 2013). A summary of

the land cover and relevant characteristics of the stations are summarized in Table 1.

Soil moisture values were averaged into daily values to match the available daily rainfall data from the Dutch national25

weather service (KNMI). For SM13 and SM20, there are some missing data from the beginning of 2014. The datasets from

SM13 begins on April 25, 2014 while SM20 begins on May 2, 2015 (fig.2).

INSERT Fig.2 here

INSERT Table 1 here
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3 Methods

3.1 Regression and residuals analysis

As an exploratory step, the dependence between surface and subsurface soil moisture was initially visualized using scatterplots.

Conditional means for every 0.01 cm3cm-3 interval and vertical bars representing ± standard deviation were added to show

changes in vertical variability across the soil moisture range. Longer standard deviation bars indicate higher vertical variability5

(fig.3, left). We referred to vertical variability as the uneveness or irregularity in the soil moisture distribution within a certain

depth of interest along the vertical profile, in this case up to depths of 40 cm. For the rest of this paper, variability will refer

to vertical soil moisture variability, unless otherwise stated. The plotted points were colored per month to show any impacts of

seasonality. The effect of rainfall was included by adjusting the sizes of the points proportional to rainfall intensity measured

from the nearest KNMI stations. For the overall measure of dependence, Spearman’s rank correlation coefficient Rs was10

computed for every pair of ranked values in the time series. This was chosen as the assumption of linear dependence was not

made.

A flexible non-parametric locally weighted regression function (commonly called a loess function, Cleveland and Devlin

(1988)) was fitted along the soil moisture range. This was used to explore and identify trends across the soil moisture range.

A linear regression was also fitted only for comparison. Residuals were analyzed further for variability not captured by the15

fitted function (fig.3, right). The residuals variance for every 0.1 cm3cm-3 interval as well as the resulting cumulative residuals

variance were analyzed to examine variability across the range. The degree of variability was related to the slope of the

cumulative variance line, with steep slopes indicating high variability. In addition, a significant change in variance between

two points was indicated by a significant change in the slope of the line. The soil moisture value where a significant change

in slope occurred was marked by θc, this divides the soil moisture range into two groups. The group with a steeper slope20

was interpreted as the decoupled range, and vice versa. Since the measured variance is sensitive to sample size, a correlation

coefficient was calculated to determine if there was significant dependence between the two variables. Residuals variance were

first normalized from 0-1 because of the varying soil moisture range encountered at each station.

Results of the exploratory methods were considered a posteriori knowledge for analysis of lagged dependence and interpre-

tation of results.25

INSERT Fig.3 here

3.2 Analysis of Lagged Dependence

3.2.1 Cross correlation

Since decoupling is based on the strength of lagged dependence, the existence of lag between surface and subsurface soil mois-

ture values was first determined. Cross-correlation is known to be a quick and easy method to apply for this objective. Lagged30

values of surface soil moisture were correlated with instantaneous values at the subsurface. A maximum cross-correlation at

negative lags indicated that surface soil moisture is leading subsurface soil moisture, and vice versa (Shumway and Stoffer,
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2010). A 10-day lag was deemed long enough to show the presence of lag-lead relations in the time series since the maximum

correlation occurred within this period.

3.2.2 Distributed lag non-linear model

We incorporated delayed or lagged effects in evaluating the relation between surface and subsurface values, and eventually in

determining the (de)coupled values. It should be emphasized that the analysis was primarily focused on examining the trends5

and relation between surface and subsurface soil moisture. Moreover, it was not intended to replace other existing models for

estimating soil moisture or examining its patterns.

A distributed lag non-linear model (DLNM) developed by Gasparrini et al. (2010) was applied to the 5 cm and 40 cm time

series datasets at the study sites. Briefly, the model is capable of simultaneously representing both functional the dependence

and delayed response between exposure and response values. We considered surface soil moisture as the exposure values that10

produced delayed effects to the response values at the subsurface. A non-linear model was selected in order to capture the non-

linear dynamics of flow and transport along the soil profile (Mohanty and Skaggs, 2001; Kim and Barros, 2002). Furthermore,

DLNM offered enough flexibility to model a variety of dependencies in the time series dataset by selecting a suitable basis

function. As an analogy, a DLNM is to a linear time series model (e.g. autoregressive model) just as a generalized linear model

is to a linear model, as can be seen in Eq. 1.15

In assessing lagged dependence, event scale patterns were of interest rather than large scale trends within the time series

(Wilson et al., 2004). This required seasonal patterns to be addressed prior to applying the DLNM. This was done by fitting a

loess function to the time series and then subtracting it from the original soil moisture values (Cleveland et al., 1990). Removal

of seasonality was further justified by the scatterplot results (see Section 4.1). The influence of seasonality on the vertical soil

moisture variability is indicated by clustering of observation points occurring within the same months (fig.4). De-seasonalized20

soil moisture values were used for identifying (de)coupled soil moisture conditions.

For consistency in modeling, the range of surface soil moisture values used was from 0-0.50 cm3cm-3. This was based

on the highest surface soil moisture value encountered among the four sites. A lag value of up to 30 days was considered

long enough to investigate delayed effects. This period also approximated the recurrence of heavy rainfall within the study

sites. A spline function was the basis function chosen to represent the functional dependence and delayed effects as it offered25

flexibility to capture non-linearities. In addition, contributions from daily rainfall data were used to incorporate current and

past meteorological conditions. This was applied as a covariate and was represented with an additional basis function. We

only considered delayed effects in vertical flow as lateral movement is deemed negligible in a flat to slightly sloping terrain

(Table.1). The analysis was performed in R software using dlnm (Gasparrini, 2011) and mgcv (Wood, 2006a) packages.

The following section concisely describes the mathematical formulation of a DLNM. However, the reader may choose to30

skip this section as the general description of the methods applied have already been given in the text above. For a more detailed

explanation, readers are referred to Gasparrini et al. (2010) and Gasparrini et al. (2017).
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To more formally describe a DLNM, let us first consider a general time series model, where outcomes Yt with t= 1, · · · ,n
can be described by:

g(µt) = α+

J∑
j=1

sj(xtj ;βj)+

K∑
k=1

γkutk (1)

where µ≡ E(Y ), assumed to be derived from a Poisson distribution, and g is a monotonic link function. The functions sj

denote relationships between the variables xj and vector parameters βj . Other uk variables with predictors are included in5

coefficients γk to specify their related effects. The relation between x and g(µ) is represented by s(x) through a basis function.

The complexity of this estimated relationship depends on the type basis function chosen and its dimensions. In the presence of

delayed effects, the outcome Y at any time t is explained by the past exposures xt−l with l as the lag representing the elapsed

time between exposure and response. The final goal of a DLNM is to simultaneously describe the dependency along both the

predictor space and lag dimension. This is achieved by selecting two sets of basis functions that are combined to obtain the10

cross-basis functions (Gasparrini et al., 2010).

Within the DLNM framework, a response Yt at time t= 1 is based on lagged occurrences of predictor xt, which is repre-

sented by vector qt = [xt−l0 ; · · · ;xt−L]
T . The minimum and maximum lags are given by l0 and LT , respectively. The function

represents dependence through:

s(q, t) = s(xt,t−l0 , · · · ,xt−L) =

L∑
l=l0

f ·w(xt−L, l) (2)15

where f ·w(xt−L, l) represents the exposure-lag-response function, which is composed of two marginal functions: the exposure-

response function f(x) and lag-response function w(l) in the space of the lag. Parameterization of f and w is achieved

by application of the known basis functions to the vectors qt and l. The result can be expressed as matrices R and C with

dimensions (L− l0 +1)× vx and (L− l0 +1)× vl, respectively.

The cross basis function s and parameterized coefficients η are given by:20

s(xt,t−l0 , · · · ,xt−L;η) = (1TL−l0+1
At)η =wT

t η (3)

The values of w are derived from At, which is computed from the row-wise Kronecker product between matrices R and C.

The dependence is expressed through w and parameters η. The cross-basis function represents the integral of s(x,t) over the

interval [l0,L], summing the contributions from the exposure history. The estimated dependence to specific exposure values is
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determined by prediction of β̂, called lag coefficients. The estimated β̂ and covariance matrix V (β̂) is given by:

β̂ =Axη̂ (4)

V (β̂) =AxV (η̂)AT
x (5)

A further extension to DLNM is the application of penalties for smoothness of the lag structure and shrinkage of lag coef-

ficients to null at very high lags. These penalties were applied in the analysis using a second-order difference (Wood, 2006b)5

and varying ridge penalties (Obermeier et al., 2015; Gasparrini et al., 2017), respectively. Application of penalties was based

on the assumption that, at higher lags, the lag coefficients become smaller and approach the null value.

3.3 Evaluating (de)coupled soil moisture values

Application of a DLNM resulted in the estimation of parameter β̂ for each surface soil moisture value (Eq. 4 and 5). This indi-

cated the strength of dependence between surface and subsurface soil moisture. Higher β̂ values indicated stronger dependence10

or coupling between the two. Hence, we referred to β̂ as the relative influence of surface soil moisture on subsurface values.

4 Results

4.1 Regression and Residuals analysis

The overall dependence between surface and subsurface given by the Spearman’s rank coefficient (Rs) range from 0.746 to

0.866 (fig.4). However, even with a high overall dependence, variability is not uniform across the soil moisture range (fig.4).15

Except for SM13, increased variability is observed towards drier soil moisture values. Furthermore, the degree of variability

also differs among the four sites. The most pronounced variability is observed at SM13 and the least at SM05. Clustering

of observation points occurring within the same months indicate that seasonality dictates soil moisture values and impacts

soil moisture variability. Rainfall events measured on the same day do not show a clear effect on surface and subsurface soil

moisture dependence. Observations with higher rainfall intensities appear scattered in the plots (fig.4). In addition, the said20

observation points do not necessarily fall along the fitted functions or at the wet soil moisture region of the scatterplots. As lag

is not considered, the impact of rainfall on variability is not fully captured in the scatterplots alone.

INSERT Fig.4 here

INSERT Fig.5 here

Assessment of the regression fit quality was performed by comparison using residual standard errors (RSE). The results for25

both linear and loess functions show highly similar values (fig.4). This indicates that, in this case, a linear function captures

the relation between surface and subsurface values. Nevertheless, the more flexible loess function was preferred for further

residuals analysis because of its slightly better model fit and, using only visual inspection of fig.4, it more closely approximates

the calculated conditional mean.

7



Figure 5 shows the residual plots with lines of the cumulative residuals variance. The change in slope of the line is a feature

consistent for all sites regardless of the magnitude of residual variance. The changes in variability are more clearly observed

from the residuals than from the standard deviation bars in the scatterplots. The change in slope at θc is highlighted by the

vertical dashed line. The Decoupled soil moisture range corresponds to the section of cumulative residuals variance line with

a steeper slope. Specifically, the range of decoupled surface soil moisture values (in cm3cm-3) is 0.08-0.21 for SM05, 0.12-5

0.27 for SM09, 0.30-0.39 for SM13, and 0.08-0.12 for SM20. Except for SM13, the decoupled values are within the dry

to intermediate soil moisture range. The cumulative residuals variance line for SM13 appears to increase exponentially with

increasing surface soil moisture. This differs from the other three sites which show a distinct decrease in slope at increasing soil

moisture values. For SM20, a second point is identified with a change in slope. The flat line starting from 0.24-0.28 cm3cm-3

indicates there is still lowered variance at the very wet soil moisture range.10

The correlation between normalized variance and sample size yielded a value of -0.24 (fig.6). This low correlation magnitude

confirms that the variance obtained for the soil surface moisture intervals was not strongly influenced by the sample size used.

INSERT Fig.6 here

INSERT Fig.7 here

4.2 Cross-correlation15

Figure 7 shows cross-correlation values at the four sites. Maximum correlation occurs at -1 to -2 days lag, except at SM20.

This translates to a 1-2 day lead of surface soil moisture values. For SM20, the maximum correlation occurs at positive lags.

Correlation values from lag = 0 to lag = 10 are almost equal at SM20. Although this indicates leading subsurface values, it

does not eliminate the possibility of having a lag between surface and subsurface values (see Section 5.2). Other factors may

play a role in having leading subsurface values in the cross-correlation plots. Hence, SM20 was still analyzed for decoupling20

using DLNM.

4.3 Distributed lag model

Figure 8 shows the overall β̂ for each surface soil moisture value with 5% and 95% confidence intervals in shaded gray

regions. In order to identify a range that is decoupled, a threshold value (β̂c) must be specified. This value is comparable to the

intermediate soil moisture θc identified from Section 4.1. The values of θc provided a suitable guide for identifying a threshold25

common to all four sites (Table 2). The corresponding β̂ values obtained at θc were very close to 1, therefore, setting the

threshold β̂c = 1 seemed a reasonable choice. This was preferred over the exact β̂ at each θc since the latter was defined using

exploratory methods at lag = 0. Using the chosen β̂c = 1, surface soil moisture values with β̂ < 1 are considered decoupled

while those with β̂ ≥ 1 are coupled.

Based on β̂c, the identified decoupled values are generally in the dry to intermediate soil moisture range (fig.8), except30

for SM13 where decouple values are at the wet range. Table 2 shows the decoupled values identified based on the selected

β̂c. The behavior and trends of β̂ also differ for each station. For instance, at SM05 and SM09, there is a general increase
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in β̂ from dry towards wet surface soil moisture values. SM20 also shows increasing β̂ over a limited soil moisture range

(0.1−0.25 cm3cm-3). Outside this range, the estimated β̂ values for SM20 were less than one and have very broad confidence

intervals. Recall that the range used for DLNM was only for uniformity among the four study sites. The lack of or very few

observations for very dry or very wet soil moisture conditions led to wider confidence intervals not only for SM20 but also for

the other three sites. Compared to the three sites, the estimated β̂ values for SM13 show decreasing values towards the wet5

soil moisture range ( > 0.3 cm3cm-3). From the intermediate to dry soil moisture conditions, the values fluctuate around the

designated β̂c.

INSERT Fig.8 here

INSERT Table 2 here

5 Discussion10

5.1 Decoupled soil moisture values

Regression and residuals analyses show that there is an inherent vertical variability between surface and subsurface soil mois-

ture values based on the lack of 1:1 correspondence between the two (fig.4). This inherent variability is also not uniform as

higher variability is observed at certain soil moisture ranges. The cumulative residual variance plots (fig.5) clearly indicate the

soil moisture values where vertical variability starts to become consistently larger. The increase in variability further translates15

to weak lagged dependence which we observe as low β̂ values from DLNM. The increase in vertical variability and weakening

of lagged dependence is what we considered as decoupling between the surface and subsurface soil moisture.

Both residuals analysis and DLNM were successful in identifying a decoupled soil moisture range and there is good agree-

ment between the results from both. Three out of four sites show decoupled values in the dry to intermediate soil moisture

range (fig.5 and Table 2). These results agree with the known range where decoupling is expected (Capehart and Carlson,20

1997; Hirschi et al., 2014; Wilson et al., 2003). For SM05 and SM09, the intermediate soil moisture value, θc that marks when

decoupling begins (Table 2) is close to that identified by Capehart and Carlson (1997). They obtained a value of 0.3 cm3cm-3 as

the point below which decoupling begins. However, results for SM13 do not conform to the traditional concept of decoupling.

This result is significant as it implies that decoupling may occur at any value and is not confined to dry soil moisture range.

The vegetation type at each site exerts some influence on the soil moisture variability and the resulting (de)coupled values.25

First, the vegetation type affects how much ground surface is directly exposed to atmospheric conditions. Forested areas and

grass fields are almost fully covered by vegetation compared to a corn field where the crops are organized in equidistant rows.

Vegetation or canopy cover will determine how atmospheric conditions affect the soil moisture values. For instance, the amount

of intercepted precipitation and evaporation are both dependent on vegetation cover. This in turn will have direct impacts to

the surface soil moisture dynamics at each of the sites. For comparison, the variability given by the standard deviation bars30

in fig.4 and variance in fig.5 at the cornfield (SM09) is higher compared to that of the grass field (SM05) or the forested area

(SM20). In addition, the forested area (SM20) has the smallest range of soil moisture values among the four sites. This may be
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due to the large intercepted rainfall by the forest canopy. Root water uptake (RWU) is another way by which vegetation affects

soil moisture variability. RWU can have significant influence on the subsurface dynamics. The influence of RWU may vary for

different vegetation types as it can be exerted over a range of depths, leading to differences in the resulting (de)coupled values.

Among the four sites, the subsurface trends observed for the 40 cm values at SM13 show consistently high values, which

can be more pronounced during winter months. This resulted in decoupling during wet soil moisture conditions fig.8. This5

trend is different from the other three sites which only show a slight increase in the subsurface values. Further inspection of

the time series data at SM13 reveals no sudden disturbance in the signal which could be attributed to errors in the sensor.

Field investigation confirmed an increase in silt content at 40 cm compared to the upper layers. The increase in silt content

promotes a decrease of hydraulic conductivity over depth that results in a slower vertical flow towards deeper layers. The

presence of burrowing and hibernating animals was also observed at the site during winter. These create macropores which10

eventually alter the hydraulic properties of the soil (Kodešová et al., 2006; Beven and Germann, 2013). We infer that, at the

measurement domain of the sensor, these burrows or macropores facilitated faster vertical flow to the subsurface. Alternatively,

if the burrows produced voids around the measurement domain, this would result in lowered soil moisture or data gaps due

to the loss of sensor to soil media contact. However, there were no gaps observed that coincided with the burrowing animals’

period of hibernation. During precipitation events, soil moisture flowing from upper layers arrived more rapidly at 40 cm depths15

due to the presence of macropores. There it accumulated and flowed more slowly to deeper layers because of the low hydraulic

conductivity promoted by the increase in silt content. The overall effect of these factors was the pronounced increase in soil

moisture values at 40 cm compared to those at 5 cm during winter periods as observed from the time series dataset fig.2.

Site-specific characteristics at each station control the magnitude of variability as well as the range at which decoupling is

observed. However, the occurrence of decoupling is independent of the magnitude of variability since it was observed from20

SM05 where variability is least up to SM13 where it is greatest. The methods applied in this study only identify conditions

when decoupling occurs but do not explicitly determine its controls. Identification of controls for decoupling requires a separate

analysis where mechanistic models or statistical approaches can be applied.

5.2 Assessing the use of lagged dependence for identifying decoupled conditions

To assess the applicability of the methods applied, we further discuss their strengths and weaknesses. We also present oppor-25

tunities for further studies as well as foreseen limitations for other sites.

Strengths: The residuals analysis and DLNM methods allow quantification of a range of soil moisture values where decou-

pling occurs. This provides further extension to previous studies where decoupling is only described qualitatively. As seen

from the results at the four sites, decoupling can occur at any soil moisture value, and is not confined to dry periods or ranges.

Furthermore, by making no initial assumptions on data distributions and the type of functional relation and lag structure, the30

methods applied were considered robust. Non-linear functions were applied as they conform to the nonlinearity of water flow

in the unsaturated zone. They can also handle a variety of bivariate dependence, even in cases where the relation is linear, as

shown by the highly similar fit of the loess and linear functions in Section.4.1.
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Weaknesses: The first aspect that needs to be further investigated is the selected β̂c value for identifying the decoupled soil

moisture range. Although the selection in this study was based on trends identified from time series datasets, the methods

applied should be tested further using other datasets to confirm the suitability of β̂c = 1 for other depths and soil types. The

choice of βc is crucial as it dictates which soil moisture values are expected to be decoupled. For instance, at the sites where

decoupling occurs during dry conditions, a higher βc value would enlarge the decoupled range. A similar effect would be5

expected for the site with decoupling during wet conditions. However, a lower βc value could result to decoupling only during

extreme soil moisture conditions (e.g very wet or very dry).

Another aspect to further examine is the use of cross-correlation for confirming the presence of leading surface soil moisture

values. Results from SM20 show maximum correlation at positive lags which indicate leading subsurface values (fig.7). The

weakness of using cross-correlation as a test for the presence of lag can be two-fold. First, cross-correlation can also capture10

the effect of subsurface dynamics such as groundwater influence and lateral flow. We infer that in SM20, subsurface dynamics

dominates and masks the lag relation sought. An additional covariate representing subsurface dynamics was not included in

the DLNM analysis since a dominant downward vertical flow was assumed. This assumption was based on the flat slopes

encountered at SM20 (Table 1). Therefore, the occurrence of subsurface lateral flow or groundwater influence pose limitations

to the applicability of DLNM for assessing decoupling. Second, cross-correlation is limited to evaluating linear lagged depen-15

dence and in incorporating non-linear lagged dependence can make the test more robust. Equivalent methods exist (e.g. mutual

information content (Qiu et al., 2014)) but they are much more computationally demanding when the goal is simply to check

for the existence of lag-lead relation.

Opportunities: In relation to utilizing remote sensing techniques, our results imply that the accuracy of estimating subsurface

values from surface soil moisture can be greatly affected by vertical coupling. Lower variability and hence lower uncertainties20

are expected in the coupled soil moisture range. Assessment of decoupling can be used in combination with modeling studies

as a preliminary method to determine the range where variability is expected to be higher. Furthermore, it can be helpful

in assessing whether simulation results capture the variabilities observed in both the coupled and decoupled ranges. Taking

decoupling into account can also assist in evaluating the necessity of complex models for simulating vertical soil moisture

content.25

For data assimilation (DA) applications, (de)coupling methods can be used for cross-comparison of the vertical coupling

derived from DA model outputs with those observed from long term in situ measurements. This can aid in examining the

adequacy of the assumed inherent connection between surface and subsurface values. As Kumar et al. (2009) pointed out, land

surface models vary in their representation of the strength of this connection (e.g. weak or strong connection) which contributes

the degree in which modeling results are improved. They also suggested that strong coupling is a more robust choice unless30

independent information suggests that a more decoupled surface-subsurface representation is more realistic. In this aspect,

the analysis applied in this study could be a valuable tool in determining which type of surface-subsurface coupling is the

more optimal choice. Furthermore, the assumed connection strength is adopted for the whole range of soil moisture values.

The results of our analysis show that at any given site, decoupling will occur regardless of degree of soil moisture variability.
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A variable coupling strength could be adopted based on the soil moisture range where decoupling is likely to occur as an

alternative to the single value for the whole range.

INSERT Fig.9 here

Although the study focused on vertically discrete values, the results are also applicable for depth-average values commonly

used in remote sensing and DA applications. This requires that the vertically discrete values adequately capture the overall5

dynamics within zone being investigated. In such a case, we infer that the translation to depth-averaged values would result

in (de)coupled values that are close, but not identical, to the values obtained when only comparing two discrete depths. As

an illustration, we calculated the depth-average values using all the available measurements at each site (i.e. 5, 10, 20 and 40

cm depth) following the formula from Qiu et al. (2014). Figure 9 (left) reveals highly similar dynamics for both discrete and

depth-average values. Therefore, it can be expected that the results from a regression and DLNM analyses using depth-average10

values would be highly similar to the original results in fig.5 and fig.8. However, if the vertically discrete values insufficiently

represent the subsurface dynamics, larger deviations in the resulting decoupled values can be expected.

Limitations: In this study, only meteorological factors were incorporated in the DLNM analysis since vertical movement

was assumed to be the dominant flow mechanism. However, the subsurface can also be influenced by lateral movement or

groundwater by capillary rise. In such scenarios, decoupling will not be limited to changes in surface conditions. For this,15

SM20 provides an excellent example. This station is located at the foot of a small hill (fig.2) where the occurrence of lateral

subsurface movement is highly probable. This shows that although the analysis would be limited to smaller scales, or even

a single point, recognition of regional setting is important for interpretation of results. In addition, subsurface dynamics can

also be affected by capillary rise in areas with shallow groundwater. For future applications, the effect of both capillary rise

and lateral movements to subsurface dynamics should be assessed and included in the DLNM analysis, but caution should be20

exercised when interpreting the results. Assessment of decoupling with DLNM is deemed more applicable to areas where the

subsurface has insignificant groundwater influence and where vertical downward movement is the dominant flow mechanism.

6 Conclusion

The methods applied in this study allow for investigation of vertical soil moisture variability. More importantly, application of

DLNM allowed for decoupled soil moisture range to be quantitatively identified. The results also reveal that decoupling is not25

confined to dry soil moisture range as implied by previous studies. The reasons for decoupling are manifold and controls for the

dry soil moisture range may differ from those for the wet range. The results of this study have implications for remote sensing

and data assimilation methods, especially for uncertainties related to the use of surface soil moisture to obtain integrated soil

moisture values.
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Figure 3. Schematic diagram using hypothetical soil moisture values to show vertical variability. Left: Scatterplot showing the trend with a
fitted loess function. The variability can be seen using the standard deviation bars. Right: Scatterplot of the residuals from the fitted function.
Soil moisture variability is visible from the variance given by the vertical bars and the cumulative residuals variance given by the black line.
A change in variability at an intermediate soil moisture value is marked by a change in the slope of the cumulative variance line, indicated
by θc
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Figure 4. Scatter plots of 5 cm vs 40 cm soil moisture values at lag = 0. Colors correspond to the months in a year and sizes of points are
proportional to rainfall intensity. Trends along the soil moisture range shown with the fitted loess function (black line). A linear function (red
line) is also fitted for comparison. The overall dependence using Spearman’s rank correlation Rs is given in the upper left corner each plot.
Residual standard errors (RSE) for loess (lo) and linear (lm) fits are also shown.
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Figure 5. Residual variance plots from the fitted loess function. Vertical bars at the bottom of each plot represent the variance for every
0.1 cm3cm-3 interval. The cumulative residual variance (gray line) shows a change in slope at θc, indicated by the vertical black dashed
line. This separates the soil moisture values into a range with higher variance (steeper slope) and another range with lower variance (gentler
slopes). The range with higher variance is considered decoupled, and vice versa.
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Figure 6. Scatterplot of sample size vs. normalized residual variance calculated for each 0.01 cm3cm-3 interval. Colors indicate soil moisture
conditions at each point. The plot of points indicate very weak linear dependence, which is further confirmed by a -0.24 correlation coefficient.

19



0.
60

0.
70

0.
80

SM05 SM09

−10 −5 0 5 10

0.
60

0.
70

0.
80

SM13

−10 −5 0 5 10

SM20

Lag (in Days)

C
or

re
la

tio
n

Figure 7. Cross-correlation plots of soil moisture values. The lagged surface soil moisture values at 5 cm are correlated with subsurface
values at 40 cm. A 1-2 day lead of surface soil moisture is observed, except for SM20. This is indicated by having maximum the correlation
values at lags of -1 to -2 days. At SM20, the maximum correlation occurs at positive lags.

Table 1. Summary of land cover descriptions at each station covering the period of 2014-2016. Soil descriptions and codes are based on
BOFEK 2012 (Wosten et al., 2013). Both the slope and distance to nearest ditch were determined from 5m resolution DEM. Datasets are
from 2016 and were obtained from the publicly available national topographic database of the Netherlands (TOPNL)

Station
No. Land cover BOFEK Soil

description
Slope

(degrees)
Aerial distance to
nearest ditch (m)

SM05 Grass
Loamy sandy soils

with a thick
cultivated layer(317)

2.22 18.97

SM09 Corn
Weakly loamy sand

soils with a thick
cultivated layer(311)

2.70 1.41

SM13 Grass Weak silty soils
(podsols)(304) 1.0 17.09

SM20 Forest Coarse sand
(podsols)(320) 2.30 875.26
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Figure 8. The relative influence of surface soil moisture on subsurface values obtained by summing the predicted β̂ along the 30-day lag.
The threshold value (β̂c) used to identify the decoupled range is indicated by the horizontal line. Surface soil moisture values below β̂c are
considered decoupled. The 5% and 95% confidence intervals of the predicted values are shown as shaded regions.

Table 2. List of surface soil moisture values (SSM in cm3cm-3) obtained from fig.5 and fig.8. SSM at θc in fig.5 were used to determine β̂ in
fig.8. A common threshold β̂c was used for all sites since β̂ are all close to 1. The resulting decoupled SSM values are shown in the fourth
column.

Station
No. SSM at θc β̂ at θc

Decoupled values using threshold
β̂c = 1

SM05 0.21 0.90 <0.24
SM09 0.27 0.97 <0.28
SM13 0.30 1.18 >0.34
SM20 0.12 0.94 0.16>SSM>0.23
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Figure 9. Subsurface soil moisture dynamics for vertically-discrete (40cm) and depth-average value. Left: Time series of soil moisture at
40 cm and depth-averaged values. The dynamics observed for depth-average values are highly similar to those at 40 cm. Right: Scatterplot
showing that these two sets of values are highly correlated.
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