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Responses to Comment of Referee #1 

The paper presents a three-dimensional semi-analytical solution that simulates flow in an unconfined 

aquifer as well as groundwater recharge.  

Analytical solutions for solving the Richards equation are limited in the literature because, as these 

authors underline, the analytical solutions don’t exist in most cases. However, this semi-analytical solution 

is identical to the one proposed by Tartakovsky and Neuman (2007), Mishra and Neuman (2010), Mishra 

and Neuman (2011), the authors could have cited their work in the introduction lines 25-26 (page 2), although, 

Mishra’s solution was applied to pumping test. Authors should highlight the differences between their 

analytical solution and those proposed by Mishra et al., if there is any differences.  

Response: Thanks for the comment. The difference between our solution and theirs is that we consider 

groundwater recharge problems for a localized recharge from the ground surface as a plane source to the 

aquifer while they study pumping drawdown problems for an extraction well treated as a line sink in the 

aquifer. In addition, the governing equations (GEs) describing flow in both saturated and unsaturated zones 

in our study are three-dimensional expressed in Cartesian coordinates while their flow equations for saturated 

and unsaturated zones are two-dimensional written in cylindrical coordinates. In addition, our solution was 

derived by applying the Fourier cosine transform to the GEs, but theirs was developed based on the Hankel 

transform. Therefore, both solutions are completely different in mathematical forms. We added the following 

sentences in the revised manuscript:  

“Such a coupled flow model has been proposed to investigate pumping drawdown problems by several 

articles (e.g., Mathias and Bulter, 2006; Tartakovsky and Neuman, 2007; Mishra and Neuman, 2010; Mishra 

and Neuman, 2011). They treated an extraction well as a line sink in the aquifer while we consider the 

localized recharge as a plane source to the aquifer. The coupled flow model in their studies is 2D written in 

cylindrical coordinates while that in ours is 3D expressed in Cartesian coordinates. In addition, their solutions 

are obtained by the Hankel transform, but ours is based on the Fourier cosine transform. The present work 

aims to investigate the spatiotemporal distribution of the hydraulic head due to localized recharge from the 

ground surface.” (lines 27 − 33, page 2) 

 

It is certainly common in hydrogeological modeling to consider recharge as an input to 

hydrodynamics models of aquifers. However, several studies have been dedicated to calculate recharge in 

the literature, these models are both empirical or conceptual (Sophocleous et Perkins 2000; Facchi et al. 2004; 

Markstrom et al. 2008) and physical solving the Richards equation ( Twarakavi et al. 2008; Thoms et al. 

2006; Shen et Phanikumar 2010; Kuznetsov et al. 2012; Zhu et al. 2012). On contrary to what the authors 

stated in lines 9-10 (page 1), to be clear, they may have to add in the case of an analytical solution. Also, it 

is well known that the consideration of the unsaturated zone in the modeling of the recharge is important, 
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unlike pumping. The recharge reflects the amount of water that comes from the precipitation and reaches the 

water table, this amount of water flow through the entire unsaturated zone. While in the case of pumping, 

water is directly extract from the saturated zone and several models neglect the contribution of the 

unsaturated zone located above. Hence the effects of the unsaturated zone in the case of pumping are 

discussed in the literature. I don’t believe that studying the effect of the unsaturated zone in case of recharge 

will be something new, neither their analytical solution, since this one was already applied to pumping test. 

Also, the effects of Gardner parameters on the unsaturated zone flow have been discussed in (Mishra and 

Neuman 2011).  

Response: The sentence in the abstract of the original manuscript (lines 9 − 10, page 1) “Up to now, little 

attention has been given to the effect of unsaturated flow on the hydraulic head within the aquifer due to 

recharge.” is changed as: “Little attention has been given to the development of analytical solutions to a 

coupled unsaturated-saturated flow model due to localized recharge up to now.” 

Although many studies have investigated unsaturated flow for groundwater recharge, our work has the 

following three novelties: 

1. Our semi-analytical solution is indeed a new one that has not been seen in the literature. We develop the 

solution because it can serve as a preliminary design tool for the development of water resources 

management or groundwater remediation plan or a primary mean for testing and benchmarking numerical 

codes. 

2. Analyses of quantitative results are presented based on the present solution and absolutely not found in 

the literature. The results demonstrate that the present solution is capable of exploring the insight into 

how the unsaturated flow affects the recharge efficiency and head distributions in the saturated zone. 

Please refer to the next response for details. 

3. Sensitivity analysis assesses the response of the hydraulic head in the unsaturated zone to the change in 

each of the hydraulic parameters, especially the parameter associated with unsaturated flow. Please refer 

to the fourth conclusion in section 4 of the original manuscript. 

 

The paper is not well written, the English must be significantly improved. Mathematical equations 

aren’t well written and test cases (and results) are not well described. Moreover, the first three conclusions 

drawn are not original. I don’t recommend publication of this article.  

Response: This manuscript will be edited by a colleague who is good at English writing. The first three 

conclusions given below illustrate quantitative results which are new findings and absolutely not seen 

elsewhere. The first conclusion quantifies the validity of neglecting the effect of unsaturated flow on the 

hydraulic head in the underlying aquifer. Existing analytical solutions neglecting unsaturated flow give 

accurate predictions only when the quantitative conditions (i.e., 𝑎𝑏 ≥ 10 and 𝑏/𝐵 ≤ 0.1) are satisfied (e.g., 
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Chang and Yeh, 2007; Illas et al., 2008; Bansal and Teloglou, 2013). Otherwise, significant deviations may 

happen to their predictions. The second and third ones propose a quantitative condition (i.e., 𝑏̅ < 0.05 or 

𝛼 > 20) that causes almost all amount of localized recharge reaches the aquifer.  

 

1. The effect of unsaturated flow on the hydraulic head in the aquifer is ignorable when the product of the 

unsaturated exponent (a) and initial unsaturated thickness (𝑏) is greater than 10 (i.e., 𝑎𝑏 ≥ 10) and the 

unsaturated thickness is less than 10 % of the initial aquifer thickness (B) (i.e., 𝑏/𝐵 ≤ 0.1). Otherwise, 

the effect should be considered to avoid large deviations in calculating the head in the aquifer. Existing 

models considering only saturated flow can predict accurate results only when these two inequalities are 

satisfied.  

2. The recharge efficiency initially equals zero, increases with time, and finally approaches a constant value 

(below or equal to unity) depending on the values of 𝛼 (= aB) and 𝑏̅ (= b/B). 

3. The ultimate recharge efficiency approaches unity when 𝑏̅ < 0.05 or 𝛼 > 20 but less than 90 % when 

𝑏̅ > 0.1 and 𝛼 < 10. In other words, the surface source supplies more recharge water to the aquifer if 

the unsaturated zone has a large 𝛼 and/or a small 𝑏̅. 
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Responses to Comment of Referee #2 

The manuscript presents a 3D coupled (semi-)analytical model that simulates flow in both the 

unsaturated and saturated zones with localized recharge on the ground surface. The authors used a 

simplified model for flow through the unsaturated zone based on the linearized Richards  ́equation. 

The resulting system of linear partial differential equation is then solved using the Laplace transform 

to eliminate the time derivative and the double Fourier transform which convert the original system of 

PDEs to a system of ordinary differential equation. They obtained the expressions of the heads in the 

unsaturated and saturated zones in terms of infinite double integrals. The final solution is presented in 

the Laplace domain and then numerical inversion of Laplace transform is required to get the solution 

in the time space.   

The manuscript overall is well written and clear but it could be improved. The technique used is 

standard (Laplace transform coupled with cosine Fourier transform) for such kind of coupled problems, 

but I think the work addressed is very interesting and the topic, in my opinion, is appropriate for HESS. 

The consideration of the unsaturated zone in the modeling of recharge is important and to the best of 

my knowledge this subject has never been addressed analytically. Although coupled 

unsaturated/saturated flow model have been already addressed analytically in the framework of 

pumping tests (see for instance, Mathias and Bulter (2006), Mishra and Neuman (2010, 2011), 

Tartakovsky and Neuman (2007)), the mathematical model presented here is different (3D cartesian). 

In think this work can be considered as new contribution.   

Response: Thanks for the comment. 

 

I have however two comments that merits to be mentioned and discussed in a revised version of the 

manuscript:   

1. The authors should mention the above cited works and discuss how they differ from their present 

work.   

Response: Thanks for the suggestion. We added the following sentences in the revised manuscript to 

address the differences between our work and theirs: 

“Such a coupled flow model has been proposed to investigate pumping drawdown problems by several 

articles (e.g., Mathias and Bulter, 2006; Tartakovsky and Neuman, 2007; Mishra and Neuman, 2010; 

Mishra and Neuman, 2011). They treated an extraction well as a line sink in the aquifer while we 

consider the localized recharge as a plane source to the aquifer. The coupled flow model in their studies 

is 2D written in cylindrical coordinates while that in ours is 3D expressed in Cartesian coordinates. In 

addition, their solutions are obtained by the Hankel transform, but ours is based on the Fourier cosine 
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transform. The present work aims to investigate the spatiotemporal distribution of the hydraulic head 

due to localized recharge from the ground surface.” (lines 27 − 33, page 2) 

 

2. In section 3.4, the authors compare the proposed analytical solution to a finite element numerical 

solution obtained from the NDsolve function of Mathematica. They used the linearized system of 

equations (1)-(11) in the numerical solver. This is good to show the correctness of the analytical 

solution. However, It would be interesting to perform a comparison between a numerical solution 

based on the original "nonlinear" Richards  ́equation to investigate the effect of linearization on the 

head distribution in the unsaturated and saturated zones. This may affects also the general results of 

the manuscripts. I think, it would not need too much efforts to include the nonlinear Richards  ́equation 

in the NDsolve function of Mathematica.    

The original nonlinear Richards  ́equation writes as follows (Kroszynski and Dagan, 1975)                                                           

𝐾𝑥
𝜕

𝜕𝑥
(𝐾(𝜙)

𝜕𝜙

𝜕𝑥
) + 𝐾𝑦

𝜕

𝜕𝑦
(𝐾(𝜙)

𝜕𝜙

𝜕𝑦
) + 𝐾𝑧

𝜕

𝜕𝑧
(𝐾(𝜙)

𝜕𝜙

𝜕𝑧
) = 𝐶(𝜙)

𝜕𝜙

𝜕𝑡
 

with 𝐾(𝜙) = 𝑒𝜅(𝜙−𝜙𝑎) and 𝐶(𝜙) = 𝑆𝑦𝜅𝑒
𝜅(𝜙−𝜙𝑎)  

Response: Thanks for the suggestion. In recent days, we try very hard to solve the nonlinear Richards’ 

equation (NRE) in our unsaturated-saturated coupled flow model using the NDSolve function of 

Mathematica. The associated computation consumes tremendous computing time in each computer 

run. The outputs, however, fail to yield reasonable results although we had tried a variety of measures 

to solve the NRE using fine grids, small time step, and different built-in options of the NDSolve 

function. A great deal of study has examined the accuracy of the linearized Richards’ equation (LRE) 

(e.g., Kroszynski and Dagan, 1975; Tartakovsky and Neuman, 2007; Mishra and Neuman, 2010; Liang 

et al., 2017). Kroszynski and Dagan (1975) and Mishra and Neuman (2010), for example, achieved 

good agreement on aquifer drawdown estimated from an analytical solution based on the LRE and a 

numerical solution based on the NRE. Liang et al. (2017) also achieved agreement on the hydraulic 

head predicted by analytical and numerical solutions based on the LRE and the NRE, respectively. 

We, therefore, add the following sentences in the revised manuscript: 

“It is noteworthy that numerous attempts had been made by scholars to examine the accuracy of the 

linearized version of Richards’ equation (e.g., Kroszynski and Dagan, 1975; Mishra and Neuman, 

2010; Liang et al., 2017). They also revealed that the linearized equation causes insignificant deviation 

on model predictions.” (lines 8 − 10, page 13) 
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Responses to Comment of Editor 

The reviewer 2 raises an important issue concerning the effects of linearization and suggested you to 

compare your analytical solution with a 3D numerical model. Without this comparison, the impact of 

your contribution will probably be quite low. Therefore, please provide these numerical simulations. 

Instead of Mathematica, use existing software that solves the 3D Richards equation like FEFLOW or 

HYFROGEOSPHERE among others. 

Response: Recently, we tried hard to develop numerical solutions using either the built-in function 

NDSolve in Mathematica or the software 3DFEMWATER. Unfortunately, both computer software 

failed to yield convergent results in solving Richards’ equation for the localized recharge problems. 

We then use the implicit finite difference method to build a new code of Mathematica to solve Richards’ 

equation. The details and its results are described in new sections 2.6 and 3.4 of the revised manuscript 

and also given below. The numerical results indicate that the linearization works well, according with 

the conclusions made by several studies (e.g., Kroszynski and Dagan, 1975; Mishra and Neuman, 

2010; Liang et al., 2017). 

 

Sections 2.6 and 3.4 in the revised manuscript 

Note: The nonlinear and linear versions of Richards’ equation with the Gardner constitutive model, 

Eqs. (5) and (6), in the revised manuscript are respectively expressed as 

𝐾𝑥
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  (5) 

and 
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2.6 Finite difference solution 

An iterative algorithm based on an implicit finite difference approximation to Eq. (5) is developed 

to solve the nonlinear unsaturated-saturated flow model. Figure 2 shows the finite difference grids in 

the simulation domain of 0 ≤ x ≤ 500 m, 0 ≤ y ≤ 500 m, and -20 m ≤ z ≤ 10 m discretized by a non-

uniform grid with small grid sizes near the recharge area of 0 ≤ x ≤ 50 m and 0 ≤ y ≤ 50 m and large 

grid sizes away from that area. The domain falls in the first quadrant due to symmetrical flow to x-

axis and y-axis. The saturated thickness is 20 m and the unsaturated thickness is 10 m. All the 

boundaries except the recharge region are therefore under the no-flow condition. Equation (5) is 

approximated as 
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𝑚 )             (43a) 

∆𝑋 = ∆𝑥𝑤∆𝑥𝑒(∆𝑥𝑤 + ∆𝑥𝑒)/2            (43b) 

∆𝑌 = ∆𝑦𝑠∆𝑦𝑛(∆𝑦𝑠 + ∆𝑦𝑛)/2             (43c) 

where 𝜙𝑖,𝑗,𝑘
𝑚  is the hydraulic head in the unsaturated zone at a nodal point (i, j, k); superscript m 

represents one time step earlier than the present time denoted as superscript m+1; ∆𝑥𝑤, ∆𝑥𝑒, ∆𝑦𝑛 

and ∆𝑦𝑠 are grid sizes beside a nodal point (i, j, k) in the west, east, north and south, respectively; ∆𝑧 

is the grid size in z-axis ; ∆𝑡 is the time step. Note that Eq. (43) reduces to the discretized expression 

of Eq. (6) when the quadratic terms are neglected. Similarly, Eq. (1) is approximated as 
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where ℎ𝑖,𝑗,𝑘
𝑚  is the hydraulic head in the saturated zone at a nodal point (i, j, k). The initial condition 

for each nodal point is expressed as 

𝜙𝑖,𝑗,𝑘
1 = ℎ𝑖,𝑗,𝑘

1 = 0 at each (i, j, k)            (45) 

The no-flow condition specified at the outer boundaries shown in Fig. 2a and the bottom can be written 

as 

𝜙𝑖−1,𝑗,𝑘
𝑚+1 = 𝜙𝑖+1,𝑗,𝑘

𝑚+1  and ℎ𝑖−1,𝑗,𝑘
𝑚+1 = ℎ𝑖+1,𝑗,𝑘

𝑚+1  at 𝑖 = 1, 𝑛𝑥       (46) 
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𝑚+1  at 𝑘 = 1             (48) 

where 𝑛𝑥  and 𝑛𝑦  are the total number of grids in x- and y-axes, respectively. The top boundary 

condition is approximated as 

{
𝜙𝑖,𝑗,𝑘−1

𝑚+1 = 𝜙𝑖,𝑗,𝑘+1
𝑚+1    outside the recharge area

𝐾𝑧𝑒−𝑎𝑏

∆𝑧
(𝜙𝑖,𝑗,𝑘+1

𝑚+1 − 𝜙𝑖,𝑗,𝑘
𝑚+1) = 𝐼   inside the recharge area

 at 𝑘 = 𝑛𝑧     (49) 

where 𝑛𝑧 is the total number of grids in z-axis. The grid sizes ∆𝑥𝑤, ∆𝑥𝑒, ∆𝑦𝑠, and ∆𝑦𝑛 are all 5 m 

inside the recharge area while outside the area they gradually increase according to the formula: 

∆𝑥𝑒 = 1.2∆𝑥𝑤  and ∆𝑦𝑛 = 1.2∆𝑦𝑠  starting from ∆𝑥𝑤 = ∆𝑦𝑠 = 5 m  and ∆𝑥𝑒 = ∆𝑦𝑛 = 1.2 ×

5 m = 6 m. Note that the largest grid size is set equal to 25 m for good accuracy in solution prediction. 

The grid size ∆𝑧 is set to 0.1 m and the time step ∆𝑡 is chosen as 0.1 day for the period of 0~2.5 

days and 0.25 day for 2.5~100 days. The total number of the nodal points is 327,789. The values of 
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the hydraulic parameters are shown in Table 1.  

The head solution to the nonlinear model of Eqs. (43) – (49) is obtained by an iteration method. 

Initially, the quadratic terms in Eq. (43) are assumed as 𝐾𝑥𝑔𝑥
(𝑛−1)

𝐺𝑥
(𝑛)

+ 𝐾𝑦𝑔𝑦
(𝑛−1)

𝐺𝑦
(𝑛)

+

𝐾𝑧𝑔𝑧
(𝑛−1)

𝐺𝑧
(𝑛)

 with 

𝐺𝑥
(𝑛)

= ∆𝑥𝑤𝜙𝑖+1,𝑗,𝑘
𝑚+1,(𝑛)

− (∆𝑥𝑤 + ∆𝑥𝑒)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛)

+ ∆𝑥𝑒𝜙𝑖−1,𝑗,𝑘
𝑚+1,(𝑛)

      (50a) 

𝐺𝑦
(𝑛)

= ∆𝑦𝑠𝜙𝑖,𝑗+1,𝑘
𝑚+1,(𝑛)

− (∆𝑦𝑠 + ∆𝑦𝑛)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛)

+ ∆𝑦𝑛𝜙𝑖,𝑗−1,𝑘
𝑚+1,(𝑛)

      (50b) 

𝐺𝑧
(𝑛)

= (𝜙𝑖,𝑗,𝑘+1
𝑚+1,(𝑛)

− 𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛)

)/∆𝑧            (50c) 

𝑔𝑥
(𝑛−1)

= ∆𝑥𝑤𝜙𝑖+1,𝑗,𝑘
𝑚+1,(𝑛−1)

− (∆𝑥𝑤 + ∆𝑥𝑒)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

+ ∆𝑥𝑒𝜙𝑖−1,𝑗,𝑘
𝑚+1,(𝑛−1)

    (50d) 

𝑔𝑦
(𝑛−1)

= ∆𝑦𝑠𝜙𝑖,𝑗+1,𝑘
𝑚+1,(𝑛−1)

− (∆𝑦𝑠 + ∆𝑦𝑛)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

+ ∆𝑦𝑛𝜙𝑖,𝑗−1,𝑘
𝑚+1,(𝑛−1)

     (50e) 

𝑔𝑧
(𝑛−1)

= (𝜙𝑖,𝑗,𝑘+1
𝑚+1,(𝑛−1)

− 𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

)/∆𝑧          (50f) 

where superscript (n) represents the n-th iteration and gradients 𝑔𝑥
(𝑛−1)

, 𝑔𝑦
(𝑛−1)

 and 𝑔𝑧
(𝑛−1)

 cause a 

linearized Eq. (43) because they are known head values from the previous iteration. At the first time 

step (i.e., 𝑡 = ∆𝑡, m = 2), the first iteration solves a system of Eqs. (44) – (49) and the linearized Eq. 

(43) with 𝑔𝑥
(0)

= 𝑔𝑦
(0)

= 𝑔𝑧
(0)

= 1 and obtains the numerical solution of 𝜙𝑖,𝑗,𝑘
2,(1)

 at each nodal point. 

The second iteration obtains 𝜙𝑖,𝑗,𝑘
2,(2)

 with updated values of 𝑔𝑥
(1)

, 𝑔𝑦
(1)

 and 𝑔𝑧
(1)

 from the previous 

result of 𝜙𝑖,𝑗,𝑘
2,(1)

. Repeat this iteration process for n ≥ 3 until the convergence condition of 

|𝜙𝑖,𝑗,𝑘
2,(𝑛)

− 𝜙𝑖,𝑗,𝑘
2,(𝑛−1)

| < 10−4 at each nodal point in the unsaturated zone is satisfied. The last result of 

𝜙𝑖,𝑗,𝑘
2,(𝑛)

 is therefore the head solution to the nonlinear model. Similarly, the iteration process is applied 

to obtain 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

 for m ≥ 3 at the other time steps (i.e., 𝑡 = 2∆𝑡, 3∆𝑡,…) with the convergence 

condition |𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

− 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛−1)

| < 10−4. Note that the first iteration at each time step calculates 𝑔𝑥
(0)

, 

𝑔𝑦
(0)

 and 𝑔𝑧
(0)

 using 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

 obtained at the previous time step. 
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Figure 2. Schematic diagram of finite difference grids (a) top view and (b) cross-sectional view. 

 

3.4 Validation of present solution 

The finite difference solution to the unsaturated-saturated flow model based on the nonlinear and 

linearized versions of Richards’ equation, Eqs. (5) and (6), has been developed and described in Sect. 

2.6. It is used to validate the present solution. Figure 7 demonstrates temporal head distributions 

observed at (25 m, 0, 5 m) and (25 m, 0, -10 m) under the recharge area and at (94.65 m, 0, 5 m) and 

(94.65 m, 0, -10 m) beside the area. The figure displays good agreement on the predicted head 

distributions from both the solutions. It is noteworthy that numerous attempts had been made by 

scholars to examine the accuracy of the linearized version of Richards’ equation (e.g., Kroszynski and 

Dagan, 1975; Mishra and Neuman, 2010; Liang et al., 2017). They also revealed that the linearized 

equation causes insignificant deviation on model predictions. We therefore conclude that the present 

solution is correctly developed and fairly predicts the hydraulic head for the unsaturated-saturated 

flow induced by localized recharge. 
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Figure 7. Temporal distributions of the hydraulic head predicted by the present solution and the finite 

difference solution based on Richards’ equation, Eq. (5), and its linearized version, Eq. (6), observed 

at (25 m, 0, 5 m) and (25 m, 0, -10 m) under the recharge area and at (94.65 m, 0, 5 m) and (94.65 m, 

0, -10 m) beside the area. 
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Abstract. In the process of groundwater recharge, surface water usually enters an aquifer by passing an overlying unsaturated 

zone. Little attention has been given to the development of analytical solutions to a coupled unsaturated-saturated flow model 

due to localized recharge up to now. This paper develops a mathematical model to depict three-dimensional transient 10 

unsaturated-saturated flow in an unconfined aquifer with localized recharge on the ground surface. The model contains 

Richards’ equation for unsaturated flow, a flow equation for saturated formation, and the Gardner constitutive model describing 

the behavior of unsaturated soil properties. Both flow equations are coupled through the continuity conditions of the head and 

flux at the water table. The semi-analytical solution to the coupled flow model is derived by the methods of Laplace transform 

and Fourier cosine transform. A sensitivity analysis is performed to explore the head response to the change in each of the 15 

aquifer parameters. A quantitative tool is presented to assess the recharge efficiency signifying the percentage of the water 

from the recharge to the aquifer. We found that the effect of unsaturated flow on the saturated hydraulic head is negligible if 

two criteria associated with the unsaturated soil properties and initial aquifer thickness are satisfied. The head distributions 

predicted from the present solution match well with those from finite difference simulations. The predictions of the present 

solution also agree well with the observed data from a field experiment at an artificial recharge pond in Fresno County, 20 

California. 

1 Introduction 

Understanding the effect of water flow due to recharge from a surface water body such as precipitation, lake, or artificial pond 

on the groundwater flow system is important in water resource planning and management (e.g., Wang et al., 2010; Siltecho et 

al., 2015; Yang et al., 2015; Scudeler et al., 2016; Shi et al., 2016). The subsurface soil formation may be divided to unsaturated 25 

and saturated zones depending on the water saturation in void spaces of the soils. In the recharge process, the surface water 

may infiltrate and flow through the unsaturated zone and then arrives at the water table of the saturated zone (i.e., aquifers). 

Chang et al. (2016) reviewed analytical solutions describing the spatiotemporal distributions of groundwater mounds caused 

by localized recharge on the ground surface. They classified 17 solutions in a tabular form with flow dimensions as well as six 
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headings of references, aquifer domain, aquifer boundary conditions, recharge region, recharge rate, and remarks. However, 

those solutions they reviewed all neglect the process of infiltration in the unsaturated zone and assume that the surface water 

directly recharges the saturated zone. 

Solving Richards’ equation (Richards, 1931) analytically for unsaturated flow is tricky owing to its nonlinearity. Gardner 

(1958) presented a model to express the relative hydraulic conductivity as an exponential function of the pressure head in 5 

unsaturated soils. Analytical methods for developing the solution to Richards’ equation mostly rely on the use of linearization 

based on Gardner’s model. Many articles used such an approach to study flow in an unsaturated zone with infiltration from a 

variety of surface water bodies (see, e.g., Huang and Wu, 2012; Wu et al., 2013; Wang and Li, 2015). Those articles neglected 

the presence of underlying aquifer and treated its water table as the lower boundary with a condition of constant pressure head 

(e.g., Huang and Wu, 2012) or water content (e.g., Chen et al., 2001b). For 1D downward flow, Srivastava and Yeh (1991) 10 

discussed distributions of the pressure head and water content in two distinct unsaturated soil layers with a constant surface 

flux. Chen et al. (2001a) examined the water content in an unsaturated medium with an arbitrary time-varying surface flux, by 

extending Warrick’s (1975) solution for a flux consisting of step functions of time. Later, Wu et al. (2012) did a similar work 

to Srivastava and Yeh (1991) but additionally considered the deformation of the two-layer soils caused by the change of the 

pore-water pressure in the soils due to the surface flux. For 2D flow in a vertical plane, Batu (1980) analyzed steady-state flow 15 

net affected by an array of strip surface sources with two different infiltration rates. Protopapas and Bras (1991) focused on 

the transient pressure head due to a uniform strip source with a finite width and infinite length on the ground surface. For 3D 

flow, Chen et al. (2001b) investigated the water content induced by a surface source with an arbitrary spatiotemporal infiltration 

rate. Tracy (2007) studied the pressure head distribution in a cuboid soil sample with localized recharge over a rectangular 

area on the top. The sides of the sample are under either the Dirichlet or no-flow boundary condition. 20 

Abovementioned solutions are applicable to either the case of saturated flow in aquifers recharged directly by surface water or 

the case of unsaturated flow due to surface water infiltration. So far little has been known about the combination of saturated 

and unsaturated flows that represents a typical process of recharge to the aquifer. This paper aims at developing a mathematical 

model for describing 3D transient unsaturated-saturated flow in an unconfined aquifer with localized recharge. Richards’ 

equation along with Gardner’s model is adopted to delineate unsaturated flow between the ground surface and the water table. 25 

The 3D groundwater flow equation is employed to depict saturated flow in the aquifer. Richards’ equation is coupled with the 

saturated flow equation via the continuity conditions of the head and flux at the water table. Such a coupled flow model has 

been proposed to investigate pumping drawdown problems by several articles (e.g., Mathias and Bulter, 2006; Tartakovsky 

and Neuman, 2007; Mishra and Neuman, 2010; Mishra and Neuman, 2011). They treated an extraction well as a line sink in 

the aquifer while we consider the localized recharge as a plane source to the aquifer. The coupled flow model in their studies 30 

is 2D written in cylindrical coordinates while that in ours is 3D expressed in Cartesian coordinates. In addition, their solutions 

are obtained by the Hankel transform, but ours is based on the Fourier cosine transform. The present work aims to investigate 

the spatiotemporal distribution of the hydraulic head due to localized recharge from the ground surface. The semi-analytical 

solution for the hydraulic head is obtained by the Laplace transform and the Fourier cosine transform. A finite difference 



3 

 

solution is built to check the correctness of the present solution. The effect of the unsaturated zone on the head in the saturated 

aquifer is explored by the present solution. The water quantity from the localized recharge to the aquifer is analyzed. The 

sensitivity analysis is executed to examine the head response to the variation in each of the aquifer parameters. Application of 

the present solution to a field experiment of artificial recharge is also provided. 

2 Methodology 5 

2.1 Mathematical model 

Consider an unconfined aquifer system with localized recharge over a rectangular area on the ground surface of the system. 

The origin of the Cartesian coordinate system locates at the center of the recharge area as illustrated in Fig. 1a. The area has a 

size of 2l by 2w on x-y plane. The shortest distance between an observation point (x, y) and a point (xe, ye) on the edge of the 

area is defined as 𝑑 = min(√(𝑥 − 𝑥𝑒)
2 + (𝑦 − 𝑦𝑒)

2). The initial water table separates the unsaturated and saturated zones as 10 

shown in Fig. 1b and is chosen as the reference datum of the coordinate system. The initial thicknesses of the unsaturated and 

saturated zones prior to the recharge are denoted as b and B, respectively. 

The mathematical model for the aquifer system comprises two simultaneous equations for unsaturated and saturated flows. 

The equation for saturated flow in homogeneous and anisotropic aquifers is expressed as 

𝐾𝑥
𝜕2ℎ

𝜕𝑥2
+ 𝐾𝑦

𝜕2ℎ

𝜕𝑦2
+ 𝐾𝑧

𝜕2ℎ

𝜕𝑧2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
 for −𝐵 ≤ 𝑧 ≤ 0     (1) 15 

where h(x, y, z, t) is the hydraulic head in the saturated zone; t is elapsed time since recharge began; Kx, Ky, and Kz are 

respectively the saturated hydraulic conductivities in x-, y-, and z-directions; Ss is the specific storage. Richards’ equation for 

unsaturated flow is expressed as (Richards, 1931) 

𝐾𝑥
𝜕

𝜕𝑥
[𝑘𝑟(𝜙)

𝜕𝜙

𝜕𝑥
] + 𝐾𝑦

𝜕

𝜕𝑦
[𝑘𝑟(𝜙)

𝜕𝜙

𝜕𝑦
] + 𝐾𝑧

𝜕

𝜕𝑧
[𝑘𝑟(𝜙)

𝜕𝜙

𝜕𝑧
] = 𝐶(𝜙)

𝜕𝜙

𝜕𝑡
     (2) 

where ϕ(x, y, z, t) is the hydraulic head in the unsaturated zone. The relative hydraulic conductivity kr(ϕ) and specific moisture 20 

capacity C(ϕ) are defined by the Gardner constitutive model (Gardner, 1958) as 

𝑘𝑟(𝜙) = 𝑒𝑎(𝜙−𝑧)     (3) 

and 

𝐶(𝜙) = 𝑎𝑆𝑦𝑒
𝑎(𝜙−𝑧)      (4) 

where Sy is the specific yield and a is the unsaturated exponent related to the pore-size distribution of a medium ranging from 25 

0.2 to 5 m-1 (Philip, 1969). Substituting Eqs. (3) and (4) into Eq. (2) leads to 
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𝐾𝑥
𝜕2𝜙

𝜕𝑥2
+ 𝐾𝑦

𝜕2𝜙

𝜕𝑦2
+ 𝐾𝑧

𝜕2𝜙

𝜕𝑧2
− 𝑎𝐾𝑧

𝜕𝜙

𝜕𝑧
+ 𝑎 [𝐾𝑥 (

𝜕𝜙

𝜕𝑥
)
2

+ 𝐾𝑦 (
𝜕𝜙

𝜕𝑦
)
2

+ 𝐾𝑧 (
𝜕𝜙

𝜕𝑧
)
2

] = 𝑎𝑆𝑦
𝜕𝜙

𝜕𝑡
      (5) 

It is essentially nonlinear and difficultly solved by analytical methods. Kroszynski and Dagan (1975) employed the approach 

of perturbation expansion to simplify Richards’ equation as a first-order linearized equation and developed an approximate 

solution for unsaturated-saturated flow induced by well pumping. The approach is extensively used in many studies on 

unsaturated-saturated flow (e.g., Mathias and Butler, 2006; Tartakovsky and Neuman, 2007; Mishra et al., 2012; Liang et al., 5 

2017a). The linearized version of Richards’ equation is written as 

𝐾𝑥
𝜕2𝜙

𝜕𝑥2
+ 𝐾𝑦

𝜕2𝜙

𝜕𝑦2
+ 𝐾𝑧

𝜕2𝜙

𝜕𝑧2
− 𝑎𝐾𝑧

𝜕𝜙

𝜕𝑧
= 𝑎𝑆𝑦

𝜕𝜙

𝜕𝑡
 for 0 ≤ 𝑧 ≤ 𝑏    (6) 

The initial conditions for those two zones are 

𝜙 = ℎ = 0 at 𝑡 = 0.                (7) 

Because of symmetry of the recharge area along the x and y axes, the first quadrant (i.e., x ≥ 0 and y ≥ 0) of the flow domain 10 

is considered. Thus, all the horizontal outer boundaries are specified as the no-flow condition expressed as 

∂𝜙

∂𝐱
=

𝜕ℎ

𝜕𝐱
= 0 at 𝐱 = 0               (8) 

lim
𝐱→∞

𝜕𝜙

𝜕𝐱
= lim

𝐱→∞

𝜕ℎ

𝜕𝐱
= 0               (9) 

where 𝐱 ∈ (𝑥, 𝑦). The top boundary condition for the recharge area is denoted as 

𝐾𝑧𝑒
−𝑎𝑧 𝜕𝜙

𝜕𝑧
= 𝐼[H(𝑥) − H(𝑥 − 𝑙)][H(𝑦) − H(𝑦 − 𝑤)] at 𝑧 = 𝑏    (10) 15 

where I is a constant recharge rate and H( ) is the Heaviside step function. Note that Eq. (10) can be written as 

𝐾𝑧 exp(−𝑎𝑧) 𝜕𝜙/𝜕𝑧 = 𝐼 inside the recharge area 0 ≤ 𝑥 ≤ 𝑙 and 0 ≤ 𝑦 ≤ 𝑤 and denoted as 𝜕𝜙/𝜕𝑧 = 0 outside that area. 

The impermeable boundary condition at the aquifer bottom is written as 

𝜕ℎ

𝜕𝑧
= 0 at 𝑧 = −𝐵.               (11) 

The two continuity requirements of the hydraulic head and flux at the water table are expressed, respectively, as 20 

𝜙 = ℎ at 𝑧 = 0                 (12) 

and 

𝜕𝜙

𝜕𝑧
=

𝜕ℎ

𝜕𝑧
 at 𝑧 = 0.               (13) 

The continuity conditions are valid when the water table change is less than 50 % of the initial saturated aquifer thickness, 

which is certified by a Hele-Shaw experiment (Marino, 1967). 25 
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Define the dimensionless variables and parameters as follows 

ℎ̅ =
ℎ

𝐵
, 𝜙̅ =

𝜙

𝐵
, 𝑥̅ =

𝑥

𝑑
, 𝑦̅ =

𝑦

𝑑
, 𝑧̅ =

𝑧

𝐵
, 𝑡̅ =

𝐾𝑥𝑡

𝑆𝑠𝑑
2 , 𝑙
̅ =

𝑙

𝑑
, 𝑤̅ =

𝑤

𝑑
, 𝑏̅ =

𝑏

𝐵
, 𝜅𝑧 =

𝐾𝑧𝑑
2

𝐾𝑥𝐵
2 , 𝜅𝑦 =

𝐾𝑦

𝐾𝑥
, 𝛼 = 𝑎𝛣, 𝜎 =

𝑆𝑦

𝑆𝑠𝐵
, 𝜉 =

𝐼

𝐾𝑧
 (14) 

where the overbar represents a dimensionless variable or parameter. According to Eq. (14), the unsaturated-saturated flow 

model is rewritten as  

𝜕2𝜙̅

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2𝜙̅

𝜕𝑦̅2
+ 𝜅𝑧

𝜕2𝜙̅

𝜕𝑧̅2
− 𝛼𝜅𝑧

𝜕𝜙̅

𝜕𝑧̅
= 𝛼𝜎

𝜕𝜙̅

𝜕𝑡̅
 for 0 ≤ 𝑧̅ ≤ 𝑏̅    (15) 5 

𝜕2ℎ̅

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2ℎ̅

𝜕𝑦̅2
+ 𝜅𝑧

𝜕2ℎ̅

𝜕𝑧̅2
=

𝜕ℎ̅

𝜕𝑡̅
 for −1 ≤ 𝑧̅ ≤ 0     (16) 

𝜙̅ = ℎ̅ = 0 at 𝑡̅ = 0     (17) 

𝜕𝜙̅

𝜕𝐱̅
=

𝜕ℎ̅

𝜕𝐱̅
= 0 at 𝐱̅ = 0     (18) 

lim
𝐱̅→∞

𝜕𝜙̅

𝜕𝐱̅
= lim

𝐱̅→∞

𝜕ℎ̅

𝜕𝐱̅
= 0     (19) 

exp(−𝛼𝑧)̅
𝜕𝜙̅

𝜕𝑧̅
= 𝜉[H(𝑥̅) − H(𝑥̅ − 𝑙)̅][H(𝑦̅) − H(𝑦̅ − 𝑤̅)] at 𝑧̅ = 𝑏̅    (20) 10 

𝜕ℎ̅

𝜕𝑧̅
= 0 at 𝑧̅ = −1                (21) 

𝜙̅ = ℎ̅ at 𝑧̅ = 0                 (22) 

𝜕𝜙̅

𝜕𝑧̅
=

𝜕ℎ̅

𝜕𝑧̅
 at 𝑧̅ = 0               (23) 

where 𝐱̅ ∈ (𝑥̅, 𝑦̅). 

2.2 Laplace domain solution 15 

The unsaturated-saturated flow model composed of Eqs. (15) − (23) is solved by the methods of Laplace and Fourier cosine 

transforms. The Laplace transform is defined as 

𝑓 = ∫ 𝑓̅exp(−𝑝𝑡̅)d
∞

0
𝑡̅                (24) 

with the property that 

∫
𝜕𝑓̅

𝜕𝑡̅̅ ̅
exp(−𝑝𝑡̅)d

∞

0
𝑡̅ = 𝑝𝑓 − 𝑓̅|𝑡̅=0              (25) 20 
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where 𝑓 ∈ (𝜙̃, ℎ̃) represents the dimensionless hydraulic head in the Laplace domain, p is the Laplace transform parameter, 

𝑓̅ ∈ (𝜙̅, ℎ̅), and 𝑓̅|𝑡̅=0 = 0 is from Eq. (17). Using Eqs. (24) and (25) converts 𝜙̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) into 𝜙̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝), ∂𝜙̅/ ∂𝑡̅ into 

𝑝𝜙̃, ℎ̅(𝑥̅, 𝑦̅, 𝑧,̅ 𝑡̅) into ℎ̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝), ∂ℎ̅/ ∂𝑡̅ into 𝑝ℎ̃, and 𝜉 into 𝜉/𝑝. The model then becomes 

𝜕2𝜙̃

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2𝜙̃

𝜕𝑦̅2
+ 𝜅𝑧

𝜕2𝜙̃

𝜕𝑧̅2
− 𝛼𝜅𝑧

𝜕𝜙̃

𝜕𝑧̅
= 𝛼𝜎𝑝𝜙̃    (26) 

and 5 

𝜕2ℎ̃

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2ℎ̃

𝜕𝑦̅2
+ 𝜅𝑧

𝜕2ℎ̃

𝜕𝑧̅2
= 𝑝ℎ̃      (27) 

subject to the transformed boundary conditions of lim
𝐱̅→0,∞

𝜕𝜙̃/𝜕𝐱̅ = lim
𝐱̅→0,∞

𝜕ℎ̃/𝜕𝐱̅ = 0 with 𝐱̅ ∈ (𝑥̅, 𝑦̅), exp(−𝛼𝑧̅) 𝜕𝜙̃/𝜕𝑧̅ =

(𝜉/𝑝)[H(𝑥̅) − H(𝑥̅ − 𝑙)̅][H(𝑦̅) − H(𝑦̅ − 𝑤̅)] at 𝑧̅ = 𝑏̅, and 𝜕ℎ̃/𝜕𝑧̅ = 0 at 𝑧̅ = −1. Moreover, the transformed continuity 

conditions are 𝜙̃ = ℎ̃ and 𝜕𝜙̃/𝜕𝑧̅ = 𝜕ℎ̃/𝜕𝑧 ̅ at 𝑧̅ = 0. 

Afterward, one may take the double Fourier cosine transform that provides  10 

𝑓 = ∫ ∫ 𝑓 cos(𝜔1𝑥̅) cos(𝜔2𝑦̅) d𝑥̅d𝑦̅
∞

0

∞

0
             (28) 

and 

∫ ∫ (
𝜕2𝑓̃

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2𝑓̃

𝜕𝑦̅2
) cos(𝜔1𝑥̅) cos(𝜔2𝑦̅) d𝑥̅d𝑦̅

∞

0

∞

0
= −(𝜔1

2 + 𝜅𝑦𝜔2
2)𝑓        (29) 

where 𝑓 ∈ (𝜙̂, ℎ̂) represents the dimensionless hydraulic head in the Fourier domain; 𝜔1  and 𝜔2  are the Fourier cosine 

transform parameters. The transform converts 𝜙̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝)  into 𝜙̂(𝜔1, 𝜔2, 𝑧̅, 𝑝) , ℎ̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝)  into ℎ̂(𝜔1, 𝜔2, 𝑧̅, 𝑝) , 𝜕2𝜙̃/15 

𝜕𝑥̅2  + 𝜅𝑦(𝜕
2𝜙̃/𝜕𝑦̅2) into −(𝜔1

2 + 𝜅𝑦𝜔2
2)𝜙̂, 𝜕2ℎ̃/𝜕𝑥̅2  + 𝜅𝑦(𝜕

2ℎ̃/𝜕𝑦̅2) into −(𝜔1
2 + 𝜅𝑦𝜔2

2)ℎ̂, and (𝜉/𝑝)[H(𝑥̅) − H(𝑥̅ −

𝑙)̅][H(𝑦̅) − H(𝑦̅ − 𝑤̅)] into 𝜉 sin(𝜔1𝑙)̅ sin(𝜔2𝑤̅) /(𝑝𝜔1𝜔2). Equations (26) and (27) hence become ordinary differential 

equations in terms of 𝑧̅ denoted, respectively, as 

𝜅𝑧
𝜕2𝜙̂

𝜕𝑧̅2
− 𝛼𝜅𝑧

𝜕𝜙̂

𝜕𝑧̅
− (𝛼𝜎𝑝 + 𝜔1

2 + 𝜅𝑦𝜔2
2)𝜙̂ = 0            (30) 

and 20 

𝜅𝑧
𝜕2ℎ̂

𝜕𝑧̅2
− (𝑝 + 𝜔1

2 + 𝜅𝑦𝜔2
2)ℎ̂ = 0.              (31) 

Similarly, the transformed boundary conditions are expressed as 

𝜕ℎ̂

𝜕𝑧̅
= 0 at 𝑧̅ = −1                (32) 

and 
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exp(−𝛼𝑧)̅
𝜕𝜙̂

𝜕𝑧̅
= 𝜉 sin(𝜔1𝑙)̅ sin(𝜔2𝑤̅) /(𝑝𝜔1𝜔2) at 𝑧̅ = 𝑏̅.          (33) 

The transformed continuity conditions are written as 

𝜙̂ = ℎ̂ at 𝑧̅ = 0                 (34) 

and 

𝜕𝜙̂

𝜕𝑧̅
=

𝜕ℎ̂

𝜕𝑧̅
 at 𝑧̅ = 0.                (35) 5 

Solving Eqs. (30) and (31) subject to Eqs. (32) − (35) and then taking the inverse Fourier cosine transform leads to the solutions 

in the Laplace domain written as 

𝜙̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝) =
4

𝜋2
∫ ∫ 𝑅𝑒(𝑥̅, 𝑦̅, 𝜔1, 𝜔2)Ω𝜙(𝜔1, 𝜔2, 𝑧,̅ 𝑝)

∞

0

∞

0
d𝜔1d𝜔2 for 0 ≤ 𝑧̅ ≤ 𝑏̅      (36a) 

and 

ℎ̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝) =
4

𝜋2
∫ ∫ 𝑅𝑒(𝑥̅, 𝑦,̅ 𝜔1, 𝜔2)Ωℎ(𝜔1, 𝜔2, 𝑧̅, 𝑝)

∞

0

∞

0
d𝜔1d𝜔2 for −1 ≤ 𝑧̅ ≤ 0      (36b) 10 

with 

Ω𝜙 =
4

𝑝(𝜇1+𝜇2)
exp [

𝛼𝑧̅+(𝛼+𝜆2)𝑏̅

2
][𝜆2 cosh 𝜆1 cosh (

𝜆2𝑧̅

2
) + (2𝜆1 sinh 𝜆1 − 𝛼 cosh 𝜆1) sinh (

𝜆2𝑧̅

2
)]    (36c) 

Ωℎ =
4

𝑝(𝜇1+𝜇2)
𝜆2 exp [

(𝛼+𝜆2)𝑏̅

2
] cosh[(1 + 𝑧̅)𝜆1]            (36d) 

𝑅𝑒 =

{
 
 

 
 𝜉 sin(𝜔1𝑙)̅ sin

(𝜔2𝑤̅) cos(𝜔1𝑥̅) cos(𝜔2𝑦̅) /(𝜔1𝜔2) for 𝜔1 ≠ 0 and 𝜔2 ≠ 0 

𝜉𝑤̅ sin(𝜔1𝑙)̅ cos(𝜔1𝑥̅) /𝜔1 for 𝜔1 ≠ 0 and 𝜔2 = 0

𝜉𝑙 ̅sin(𝜔2𝑤̅) cos(𝜔2𝑦̅) /𝜔2 for 𝜔1 = 0 and 𝜔2 ≠ 0

𝜉𝑤̅𝑙 ̅for 𝜔1 = 0 and 𝜔2 = 0

     (36e) 

𝜇1 = [exp(𝑏̅𝜆2) − 1](𝜆2
2 − 𝛼2) cosh 𝜆1             (36f) 15 

𝜇2 = 2𝜆1[(𝜆2 + 𝛼) exp(𝑏̅𝜆2) + 𝜆2 − 𝛼] sinh 𝜆1           (36g) 

𝜆1 = √(𝑝 + 𝜔1
2 + 𝜅𝑦𝜔2

2)/𝜅𝑧; 𝜆2 = √𝛼2 + 4(𝛼𝜎𝑝 + 𝜔1
2 + 𝜅𝑦𝜔2

2)/𝜅𝑧.        (36h) 

Notice that Eq. (36a) is the solution for unsaturated flow while Eq. (36b) is that for saturated flow. The inverse Laplace 

transform to both solutions may not be tractable. The numerical inversion of Laplace transform proposed by Stehfest (1970) 

is therefore used to obtain time-domain results of the solutions. The double integrals in the solutions can be evaluated 20 

numerically by the Gaussian quadrature (e.g., Gerald and Wheatley, 2004) using the Matlab built-in function dblquad (Gilat 

and Subramaniam, 2007) or the Mathematica built-in function NIntegrate (Wolfram, 1996). 
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2.3 Solution for transient recharge rate 

The present solution can be applied to the problem of time-varying recharge rates based on Duhamel’s integral (Bear, 1979, 

p.158). The dimensionless transient head solution 𝑔̅𝑡  subject to the dimensionless time-varying recharge rate 𝜉𝑡(𝑡̅) can be 

expressed as 

𝑔̅𝑡 = 𝑔̅0 + ∫
𝜕𝜉𝑡(𝜏)

𝜕𝜏
𝑔̅(𝑡̅ − 𝜏) d𝜏

𝑡̅

0
              (37) 5 

where 𝜏  is a dummy variable, 𝑔̅0  denotes 𝜙̅  or ℎ̅  for the initial dimensionless recharge rate 𝜉𝑡(𝑡̅ = 0) , and 𝑔̅(𝑡̅ − 𝜏) 

represents 𝜙̅ or ℎ̅ with 𝑡̅ replaced by 𝑡̅ − 𝜏. If Eq. (37) is not an integrable function, it can be evaluated numerically through 

the discretization method that (Singh, 2005) 

𝑔̅𝑁 = 𝑔̅0 + ∑
Δ𝜉𝑖

Δ𝑡̅
𝐺(𝑁 − 𝑖 + 1)𝑁

𝑖=1               (38a) 

with 10 

Δ𝜉𝑖 = 𝜉𝑖 − 𝜉𝑖−1                 (38b) 

𝐺(𝑀) = ∫ 𝑔̅(𝑀Δ𝑡̅ − 𝜏)𝑑𝜏
Δ𝑡̅

0
               (38c) 

where 𝑔̅𝑁 signifies the dimensionless head solution at 𝑡̅ = Δ𝑡̅ × 𝑁; Δ𝑡̅ is a dimensionless time step; 𝐺(𝑀) is called ramp 

kernel; 𝜉𝑖 and 𝜉𝑖−1 are respectively dimensionless recharge rates at 𝑡̅ = Δ𝑡̅ × 𝑖 and 𝑡̅ = Δ𝑡̅ × (𝑖 − 1). 

2.4 Recharge efficiency 15 

The percentage of the water from the localized recharge reaching the water table is defined as recharge efficiency (RE) 

(Munevar and Marino, 1999) written as 

𝑅𝐸(𝑡) = 𝐾𝑧 ∫ ∫
𝜕ℎ

𝜕𝑧

∞

0
d𝑥

∞

0
d𝑦/(𝐼 𝑙 𝑤) at 𝑧 = 0            (39) 

where the denominator I × l × w is the volumetric rate of the water entering the aquifer system from the recharge, and the 

double integral is the sum of the infiltration flux at the water table. According to the dimensionless quantities defined in Eq. 20 

(14), Eq. (39) becomes 

𝑅𝐸̃(𝑝) = ∫ ∫
𝜕ℎ̃

𝜕𝑧̅

∞

0
d𝑥̅

∞

0
d𝑦̅/(𝜉 𝑙 ̅𝑤̅) at 𝑧̅ = 0            (40) 

where 𝑅𝐸̃ represents RE in the Laplace domain and ℎ̃ is defined in Eq. (36b). The RE increases from zero to a value equal to 

or below unity. The infiltration process does not affect the water table when RE = 0. On the other hand, the water from the 

surface recharge totally arrives at the aquifer when RE = 1. 25 
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2.5 Sensitivity analysis 

The sensitivity analysis is commonly used to assess the change of the hydraulic head in response to a small change in a 

hydraulic parameter. The normalized sensitivity coefficient based on the present solution is defined as 

𝑆𝑖,𝑡 =
𝜕𝑂

𝜕𝑃𝑖/𝑃𝑖
                  (41) 

where O represents the present solution for the unsaturated or saturated flow and Pi is the i-th parameter. Equation (41) can be 5 

approximated as 

𝑆𝑖,𝑡 =
𝑂(𝑃𝑖+∆𝑃𝑖)−𝑂(𝑃𝑖)

∆𝑃𝑖/𝑃𝑖
                (42) 

where ∆𝑃𝑖 is an increment set to 10−3𝑃𝑖  (Yeh et al., 2008). Note that a large value of |Si,t| indicates that the head is sensitive 

to the change in the target parameter. 

2.6 Finite difference solution 10 

An iterative algorithm based on an implicit finite difference approximation to Eq. (5) is developed to solve the nonlinear 

unsaturated-saturated flow model. Figure 2 shows the finite difference grids in the simulation domain of 0 ≤ x ≤ 500 m, 0 ≤ y 

≤ 500 m, and -20 m ≤ z ≤ 10 m discretized by a non-uniform grid with small grid sizes near the recharge area of 0 ≤ x ≤ 50 m 

and 0 ≤ y ≤ 50 m and large grid sizes away from that area. The domain falls in the first quadrant due to symmetrical flow to x-

axis and y-axis. The saturated thickness is 20 m and the unsaturated thickness is 10 m. All the boundaries except the recharge 15 

region are therefore under the no-flow condition. Equation (5) is approximated as 

𝐾𝑥 (
∆𝑥𝑤

∆𝑋
𝜙𝑖+1,𝑗,𝑘
𝑚+1 −

2

∆𝑥𝑤∆𝑥𝑒
𝜙𝑖,𝑗,𝑘
𝑚+1 +

∆𝑥𝑒

∆𝑋
𝜙𝑖−1,𝑗,𝑘
𝑚+1 ) + 𝐾𝑦 (

∆𝑦𝑠

∆𝑌
𝜙𝑖,𝑗+1,𝑘
𝑚+1 −

2

∆𝑦𝑠∆𝑦𝑛
𝜙𝑖,𝑗,𝑘
𝑚+1 +

∆𝑦𝑛

∆𝑌
𝜙𝑖,𝑗−1,𝑘
𝑚+1 ) +

𝐾𝑧

∆𝑧2
(𝜙𝑖,𝑗,𝑘+1

𝑚+1 − 2𝜙𝑖,𝑗,𝑘
𝑚+1 +

𝜙𝑖,𝑗,𝑘−1
𝑚+1 ) −

𝑎𝐾𝑧

∆𝑧
(𝜙𝑖,𝑗,𝑘+1

𝑚+1 − 𝜙𝑖,𝑗,𝑘
𝑚+1) + 𝑎 [𝐾𝑥(∆𝑥𝑤𝜙𝑖+1,𝑗,𝑘

𝑚+1 − (∆𝑥𝑤 + ∆𝑥𝑒)𝜙𝑖,𝑗,𝑘
𝑚+1 + ∆𝑥𝑒𝜙𝑖−1,𝑗,𝑘

𝑚+1 )
2
+ 𝐾𝑦(∆𝑦𝑠𝜙𝑖,𝑗+1,𝑘

𝑚+1 − (∆𝑦𝑠 +

∆𝑦𝑛)𝜙𝑖,𝑗,𝑘
𝑚+1 + ∆𝑦𝑛𝜙𝑖,𝑗−1,𝑘

𝑚+1 )
2
+

𝐾𝑧

∆𝑧2
(𝜙𝑖,𝑗,𝑘+1

𝑚+1 − 𝜙𝑖,𝑗,𝑘
𝑚+1)

2
] =

𝑎𝑆𝑦

∆𝑡
(𝜙𝑖,𝑗,𝑘

𝑚+1 − 𝜙𝑖,𝑗,𝑘
𝑚 )       (43a) 

∆𝑋 = ∆𝑥𝑤∆𝑥𝑒(∆𝑥𝑤 + ∆𝑥𝑒)/2              (43b) 20 

∆𝑌 = ∆𝑦𝑠∆𝑦𝑛(∆𝑦𝑠 + ∆𝑦𝑛)/2               (43c) 

where 𝜙𝑖,𝑗,𝑘
𝑚  is the hydraulic head in the unsaturated zone at a nodal point (i, j, k); superscript m represents one time step earlier 

than the present time denoted as superscript m+1; ∆𝑥𝑤, ∆𝑥𝑒, ∆𝑦𝑛 and ∆𝑦𝑠 are grid sizes beside a nodal point (i, j, k) in the 

west, east, north and south, respectively; ∆𝑧 is the grid size in z-axis ; ∆𝑡 is the time step. Note that Eq. (43) reduces to the 

discretized expression of Eq. (6) when the quadratic terms are neglected. Similarly, Eq. (1) is approximated as 25 
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𝐾𝑥 (
∆𝑥𝑤

∆𝑋
ℎ𝑖+1,𝑗,𝑘
𝑚+1 −

2

∆𝑥𝑤∆𝑥𝑒
ℎ𝑖,𝑗,𝑘
𝑚+1 +

∆𝑥𝑒

∆𝑋
ℎ𝑖−1,𝑗,𝑘
𝑚+1 ) + 𝐾𝑦 (

∆𝑦𝑠

∆𝑌
ℎ𝑖,𝑗+1,𝑘
𝑚+1 −

2

∆𝑦𝑠∆𝑦𝑛
ℎ𝑖,𝑗,𝑘
𝑚+1 +

∆𝑦𝑛

∆𝑌
ℎ𝑖,𝑗−1,𝑘
𝑚+1 ) +

𝐾𝑧

∆𝑧2
(ℎ𝑖,𝑗,𝑘+1

𝑚+1 − 2ℎ𝑖,𝑗,𝑘
𝑚+1 +

ℎ𝑖,𝑗,𝑘−1
𝑚+1 ) =

𝑆𝑠

∆𝑡
(ℎ𝑖,𝑗,𝑘

𝑚+1 − ℎ𝑖,𝑗,𝑘
𝑚 )               (44) 

where ℎ𝑖,𝑗,𝑘
𝑚  is the hydraulic head in the saturated zone at a nodal point (i, j, k). The initial condition for each nodal point is 

expressed as 

𝜙𝑖,𝑗,𝑘
1 = ℎ𝑖,𝑗,𝑘

1 = 0 at each (i, j, k)              (45) 5 

The no-flow condition specified at the outer boundaries shown in Fig. 2a and the bottom can be written as 

𝜙𝑖−1,𝑗,𝑘
𝑚+1 = 𝜙𝑖+1,𝑗,𝑘

𝑚+1  and ℎ𝑖−1,𝑗,𝑘
𝑚+1 = ℎ𝑖+1,𝑗,𝑘

𝑚+1  at 𝑖 = 1, 𝑛𝑥          (46) 

𝜙𝑖,𝑗−1,𝑘
𝑚+1 = 𝜙𝑖,𝑗+1,𝑘

𝑚+1  and ℎ𝑖,𝑗−1,𝑘
𝑚+1 = ℎ𝑖,𝑗+1,𝑘

𝑚+1  at 𝑗 = 1, 𝑛𝑦          (47) 

ℎ𝑖,𝑗,𝑘−1
𝑚+1 = ℎ𝑖,𝑗,𝑘+1

𝑚+1  at 𝑘 = 1               (48) 

where 𝑛𝑥 and 𝑛𝑦 are the total number of grids in x- and y-axes, respectively. The top boundary condition is approximated as 10 

{
𝜙𝑖,𝑗,𝑘−1
𝑚+1 = 𝜙𝑖,𝑗,𝑘+1

𝑚+1    outside the recharge area

𝐾𝑧𝑒
−𝑎𝑏

∆𝑧
(𝜙𝑖,𝑗,𝑘+1

𝑚+1 − 𝜙𝑖,𝑗,𝑘
𝑚+1) = 𝐼   inside the recharge area

 at 𝑘 = 𝑛𝑧        (49) 

where 𝑛𝑧 is the total number of grids in z-axis. The grid sizes ∆𝑥𝑤 , ∆𝑥𝑒 , ∆𝑦𝑠, and ∆𝑦𝑛 are all 5 m inside the recharge area 

while outside the area they gradually increase according to the formula: ∆𝑥𝑒 = 1.2∆𝑥𝑤  and ∆𝑦𝑛 = 1.2∆𝑦𝑠  starting from 

∆𝑥𝑤 = ∆𝑦𝑠 = 5 m and ∆𝑥𝑒 = ∆𝑦𝑛 = 1.2 × 5 m = 6 m. Note that the largest grid size is set equal to 25 m for good accuracy 

in solution prediction. The grid size ∆𝑧 is set to 0.1 m and the time step ∆𝑡 is chosen as 0.1 day for the period of 0~2.5 days 15 

and 0.25 day for 2.5~100 days. The total number of the nodal points is 327,789. The values of the hydraulic parameters are 

shown in Table 1.  

The head solution to the nonlinear model of Eqs. (43) – (49) is obtained by an iteration method. Initially, the quadratic terms 

in Eq. (43) are assumed as 𝐾𝑥𝑔𝑥
(𝑛−1)

𝐺𝑥
(𝑛)
+ 𝐾𝑦𝑔𝑦

(𝑛−1)
𝐺𝑦
(𝑛)
+ 𝐾𝑧𝑔𝑧

(𝑛−1)
𝐺𝑧
(𝑛)

 with 

𝐺𝑥
(𝑛)
= ∆𝑥𝑤𝜙𝑖+1,𝑗,𝑘

𝑚+1,(𝑛)
− (∆𝑥𝑤 + ∆𝑥𝑒)𝜙𝑖,𝑗,𝑘

𝑚+1,(𝑛)
+ ∆𝑥𝑒𝜙𝑖−1,𝑗,𝑘

𝑚+1,(𝑛)
         (50a) 20 

𝐺𝑦
(𝑛)
= ∆𝑦𝑠𝜙𝑖,𝑗+1,𝑘

𝑚+1,(𝑛)
− (∆𝑦𝑠 + ∆𝑦𝑛)𝜙𝑖,𝑗,𝑘

𝑚+1,(𝑛)
+ ∆𝑦𝑛𝜙𝑖,𝑗−1,𝑘

𝑚+1,(𝑛)
         (50b) 

𝐺𝑧
(𝑛)
= (𝜙𝑖,𝑗,𝑘+1

𝑚+1,(𝑛)
− 𝜙𝑖,𝑗,𝑘

𝑚+1,(𝑛)
)/∆𝑧              (50c) 

𝑔𝑥
(𝑛−1)

= ∆𝑥𝑤𝜙𝑖+1,𝑗,𝑘
𝑚+1,(𝑛−1)

− (∆𝑥𝑤 + ∆𝑥𝑒)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

+ ∆𝑥𝑒𝜙𝑖−1,𝑗,𝑘
𝑚+1,(𝑛−1)

        (50d) 

𝑔𝑦
(𝑛−1)

= ∆𝑦𝑠𝜙𝑖,𝑗+1,𝑘
𝑚+1,(𝑛−1)

− (∆𝑦𝑠 + ∆𝑦𝑛)𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

+ ∆𝑦𝑛𝜙𝑖,𝑗−1,𝑘
𝑚+1,(𝑛−1)

        (50e) 
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𝑔𝑧
(𝑛−1)

= (𝜙𝑖,𝑗,𝑘+1
𝑚+1,(𝑛−1)

− 𝜙𝑖,𝑗,𝑘
𝑚+1,(𝑛−1)

)/∆𝑧             (50f) 

where superscript (n) represents the n-th iteration and gradients 𝑔𝑥
(𝑛−1)

, 𝑔𝑦
(𝑛−1)

 and 𝑔𝑧
(𝑛−1)

 cause a linearized Eq. (43) because 

they are known head values from the previous iteration. At the first time step (i.e., 𝑡 = ∆𝑡, m = 2), the first iteration solves a 

system of Eqs. (44) – (49) and the linearized Eq. (43) with 𝑔𝑥
(0)
= 𝑔𝑦

(0)
= 𝑔𝑧

(0)
= 1 and obtains the numerical solution of 

𝜙𝑖,𝑗,𝑘
2,(1)

 at each nodal point. The second iteration obtains 𝜙𝑖,𝑗,𝑘
2,(2)

 with updated values of 𝑔𝑥
(1)

, 𝑔𝑦
(1)

 and 𝑔𝑧
(1)

 from the previous 5 

result of 𝜙𝑖,𝑗,𝑘
2,(1)

. Repeat this iteration process for n ≥ 3 until the convergence condition of |𝜙𝑖,𝑗,𝑘
2,(𝑛)

− 𝜙𝑖,𝑗,𝑘
2,(𝑛−1)

| < 10−4 at each 

nodal point in the unsaturated zone is satisfied. The last result of 𝜙𝑖,𝑗,𝑘
2,(𝑛)

 is therefore the head solution to the nonlinear model. 

Similarly, the iteration process is applied to obtain 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

 for m ≥ 3 at the other time steps (i.e., 𝑡 = 2∆𝑡, 3∆𝑡,…) with the 

convergence condition |𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

− 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛−1)

| < 10−4. Note that the first iteration at each time step calculates 𝑔𝑥
(0)

, 𝑔𝑦
(0)

 and 

𝑔𝑧
(0)

 using 𝜙𝑖,𝑗,𝑘
𝑚,(𝑛)

 obtained at the previous time step. 10 

3 Results and discussion 

The default values of the parameters and variables used in the calculation of the present solution are listed in Table 1. In Sect. 

3.1, the error arising from neglecting the process of infiltration in the unsaturated zone is examined. In Sect. 3.2, the recharge 

efficiency associated with the properties of the unsaturated zone is investigated. In Sect. 3.3, the sensitivity analysis of the 

hydraulic head in the unsaturated zone in regard to various hydraulic parameters is discussed. In Sect. 3.4, the present solution 15 

is compared with a finite difference solution. In Sect. 3.5, the present solution is applied to a field problem of artificial recharge. 

3.1 Effect of unsaturated flow on head distributions in aquifers 

Here we investigate the difference between the present solution and Chang et al.’s (2016) analytical solution to explore the 

effect of unsaturated flow on the head distributions in the aquifer. Chang et al.’s (2016) solution considers 3D saturated flow 

in an unconfined aquifer with localized recharge but neglects the effect of unsaturated flow. One might expect that the 20 

difference is mainly dominated by the magnitudes of parameters 𝛼  (dimensionless unsaturated exponent) and 𝑏̅ 

(dimensionless unsaturated thickness). Figure 3 displays the predicted temporal head distributions at (𝑥̅, 𝑦̅, 𝑧)̅ = (2, 0, -0.5) 

by their solution and the present solution, Eq. (36b), for different pairs of (𝛼, 𝑏̅) with 𝛼 = 102 or 103 and 𝑏̅ from 10-3 to one. 

Significant difference in ℎ̅ predicted by both solutions can be seen except the cases that (𝛼, 𝑏̅) = (102, 10-1), (103, 10-1), and 

(103, 10-2) shown in the figure. The result indicates that the thickness of the unsaturated zone is less than 10 % of the saturated 25 

aquifer thickness (i.e., 𝑏̅ ≤ 0.1) for obtaining close predictions from both solutions. When 𝑏̅ = 10−2, both solutions disagree 

if 𝛼 = 102 and agree well if 𝛼 = 103, indicating that the magnitude of the product 𝛼𝑏̅ (= 𝑎𝑏) should at least be 10 (i.e., 

𝛼𝑏̅ ≥ 10) for good agreement of both solutions. It is worth noting that both solutions disagree even for a much thinner 
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unsaturated zone as compared with the aquifer (i.e., 𝑏̅ = 10−3) because of 𝛼𝑏̅ < 10. Additionally, the curves for 𝛼 = 10 all 

disaccord with Chang et al.’s (2016) solution, whereas the curves for 𝛼 = 104 match with this solution except two cases that 

(𝛼, 𝑏̅) = (104, 0.5) and (104, 1) (not shown in the figure). Judging from the above, one can recognize the effect of unsaturated 

flow on the predicted head in saturated aquifers is negligible when 𝛼𝑏̅ ≥ 10 and 𝑏̅ ≤ 0.1. A great number of existing 

analytical solutions ignoring unsaturated flow give accurate predictions only when those two inequalities are satisfied (e.g., 5 

Chang and Yeh, 2007; Illas et al., 2008; Bansal and Teloglou, 2013). Otherwise, significant deviations will happen in their 

predictions. 

3.2 Effect of unsaturated flow on recharge efficiency 

The effect of the unsaturated zone on the RE is explored based on the curves of the RE versus 𝑡̅ shown in Fig. 4 plotted using 

Eq. (40) for different pairs of (𝛼, 𝑏̅) = (100, 0.5), (10, 0.5), (1, 0.01), (1, 0.5), and (1, 1). For a given 𝑡̅, the RE increases with 10 

𝛼 for a fixed 𝑏̅ and decreasing 𝑏̅ for a fixed 𝛼. After 𝑡̅ = 106, the RE approaches an ultimate value equalling unity when (𝛼, 

𝑏̅) = (100, 0.5) and (1, 0.01), 0.9 when (𝛼, 𝑏̅) = (10, 0.5), 0.7 when (𝛼, 𝑏̅) = (1, 0.5), and 0.6 when (𝛼, 𝑏̅) = (1, 1). Those 

results imply that the ultimate recharge efficiency (URE) depends on the magnitudes of both 𝛼 and 𝑏̅. Figure 5 illustrates 

contours of the URE at 𝑡̅ = 107 in the ranges of 0.01 ≤ 𝑏̅ ≤ 1 and 1 ≤ 𝛼 ≤ 100. The URE approaches unity when 𝑏̅ <

0.05 or 𝛼 > 20. In contrast, it is below 0.9 and related to a given pair (𝛼, 𝑏̅) when 𝑏̅ > 0.1 and 𝛼 < 10. It is clearly seen 15 

that the RE is great for a large 𝛼 and/or a small 𝑏̅. Those results provide useful information in the estimation of the amount 

of water from the recharge entering the aquifer. Notice that the case of URE < 1 may be due to the problem that unsaturated 

flow is influenced by the water retention capacity and diffusivity in the horizontal direction. 

3.3 Sensitivity analysis for flow in unsaturated zone 

Chang et al. (2016) performed the sensitivity analysis to investigate the sensitivity of the hydraulic head in saturated aquifers 20 

to the change in each of the aquifer parameters. This section focuses on the sensitivity analysis of the head in the unsaturated 

zone. Consider the recharge area of 0 ≤ x ≤ 50 m and 0 ≤ y ≤ 50 m and the observation points A at (0, 0, 5 m) under the area 

and B at (100 m, 0, 5 m) beside the area. Other values of the parameters are given in Table 1. The temporal distribution curves 

of the normalized sensitivity coefficient Si,t predicted by Eq. (42) to each of the parameters a, l, w, Ss, Sy, Kx, Ky, and Kz are 

exhibited in Fig. 6a for point A and Fig. 6b for point B. At a given time, a positive Si,t means that the change in the specific 25 

parameter causes the increase in the head. In contrast, a negative Si,t signifies that the change leads to the head decrease. The 

magnitude of the head remains unchanged when Si,t = 0. Obviously, the parameters l, w, Sy, Kx and Ky are important factors 

affecting the predicted head observed at points A and B, revealing that those parameters should be included in the flow model. 

The head at point A is sensitive to the changes in a and Kz but that at point B is insensitive. The result implies that unsaturated 

flow prevails under the recharge area but does not away from the area. In addition, the coefficient Si,t to Ss almost equals zero 30 

over the entire recharge period, indicating that the change in Ss does not affect the predicted head in the unsaturated zone. 
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3.4 Validation of present solution 

The finite difference solution to the unsaturated-saturated flow model based on the nonlinear and linearized versions of 

Richards’ equation, Eqs. (5) and (6), has been developed and described in Sect. 2.6. It is used to validate the present solution. 

Figure 7 demonstrates temporal head distributions observed at (25 m, 0, 5 m) and (25 m, 0, -10 m) under the recharge area and 

at (94.65 m, 0, 5 m) and (94.65 m, 0, -10 m) beside the area. The figure displays good agreement on the predicted head 5 

distributions from both the solutions. It is noteworthy that numerous attempts had been made by scholars to examine the 

accuracy of the linearized version of Richards’ equation (e.g., Kroszynski and Dagan, 1975; Mishra and Neuman, 2010; Liang 

et al., 2017b). They also revealed that the linearized equation causes insignificant deviation on model predictions. We therefore 

conclude that the present solution is correctly developed and fairly predicts the hydraulic head for the unsaturated-saturated 

flow induced by localized recharge. 10 

3.5 Application of present solution to field experiment 

Bianchi and Haskell (1968) executed a field experiment of artificial recharge from two ponds on an alluvial fan in Fresno 

County, California. Pond No. 2 was within a square of 90 m × 90 m on the ground. The average recharge rate of the pond was 

0.107 m d-1. The initial water table was 6.4 m below the ground and 24.384 m over the impervious aquifer bottom. The entire 

recharge period was 10.92 days on record. The values of the aquifer parameters obtained from well test data were Kx = 7.925 15 

m d-1 and Sy = 0.022. There are 19 observation data of the water table rise beneath the center of the pond versus time shown in 

Fig. 7. We apply the least square method using the Mathematica built-in function FindRoot (Wolfram, 1996) to estimate five 

parameters a, Kx = Ky, Kz, Ss, and Sy based on the data and present solution. The estimated values are a = 0.388 m-1, Kx = 5.642 

m d-1, Kz = 1.573 m d-1, Ss = 5×10-5 m-1, and Sy = 0.102 which are all in the reasonable ranges of their parameter values; they 

are 0.2 ≤ a ≤ 5 m-1 (Philip, 1969), 8.64×10-2 ≤ Kx ≤ 864 m d-1, 0.1Kx ≤ Kz ≤ 0.33Kx, 10-5 ≤ Ss B ≤ 10-3, and 0.01 ≤ Sy ≤ 0.3 for 20 

sandy aquifers (Freeze and Cherry, 1979, p. 604). Figure 7 demonstrates 19 observed data of the water table rise, the predictions 

from Glover’s (1960) solution with Kx = 7.925 m d-1 and Sy = 0.022 provided in Bianchi and Haskell (1968), and the present 

solution with the five estimated parameters. The Glover solution was developed by assuming that the flow is radially outward 

from a circular recharge pond with an equivalent area to the square of 90 m × 90 m and the unsaturated flow above water table 

is neglected. The predictions from the present solution agree well with the observed data, but those from Glover’s solution do 25 

not, indicating that the effect of unsaturated flow had better be considered because 𝛼𝑏̅ = 2.48 and 𝑏̅ = 0.26 in this case do 

not satisfy the condition of 𝛼𝑏̅ ≥ 10 and 𝑏̅ ≤ 0.1 concluded in Sect. 3.1. From those discussed above, the present solution 

has been shown to be applicable to a real-world problem for unsaturated-saturated flow due to a recharge pond. 
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4 Concluding remarks 

This study develops a novel mathematical model depicting 3D unsaturated-saturated flow for the process that surface water 

recharge passes through an unsaturated zone and flows down to an unconfined aquifer. The Richards equation is considered 

to delineate unsaturated flow induced by infiltration due to recharge from the ground surface. The Gardner model is used to 

describe the unsaturated soil characteristics. The transient groundwater flow equation is then employed to describe the rise of 5 

the hydraulic head in the aquifer in response to the water flow from the unsaturated zone. Both equations are coupled by the 

continuity equations of the head and flux at the water table. The head solution to the model is derived by means of the Laplace 

transform and Fourier cosine transform. The recharge efficiency defined as the percentage of the water from the recharge down 

to the aquifer is clearly discussed. The sensitivity analysis is performed to investigate the head response to the change in each 

of the hydraulic parameters in the unsaturated zone. The present solution agrees well with the finite difference solution on 10 

predicting the time-varying head for the unsaturated-saturated flow model. In addition, the present solution is applied to study 

the observed data from a field experiment conducted by Bianchi and Haskell (1968). On the basis of the studies obtained from 

the present solution, the following conclusions can be drawn: 

1. The effect of unsaturated flow on the hydraulic head in the aquifer is ignorable when the product of the unsaturated 

exponent (a) and initial unsaturated thickness (𝑏) is greater than 10 (i.e., 𝑎𝑏 ≥ 10) and the unsaturated thickness is less 15 

than 10 % of the initial aquifer thickness (B) (i.e., 𝑏/𝐵 ≤ 0.1). Otherwise, the effect should be considered to avoid large 

deviations in calculating the head in the aquifer. Existing models considering only saturated flow can predict accurate 

results only when these two inequalities are satisfied. 

2. The recharge efficiency initially equals zero, increases with time, and finally approaches a constant value (below or 

equal to unity) depending on the values of 𝛼 (= aB) and 𝑏̅ (= b/B). 20 

3. The ultimate recharge efficiency approaches unity when 𝑏̅ < 0.05 or 𝛼 > 20 but less than 90 % when 𝑏̅ > 0.1 and 

𝛼 < 10. In other words, the surface source supplies more recharge water to the aquifer if the unsaturated zone has a large 

𝛼 and/or a small 𝑏̅. 

4. The results of the sensitivity analysis indicate that the parameter a, l, or w causes positive influence but Sy, Kx, Ky, or Kz 

produces negative impact on the predicted head in the unsaturated zone. The head under the recharge area is sensitive to 25 

the changes in a and Kz but that beside the area is not. Moreover, the head is rather insensitive to the change in Ss. 
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Table 1. Default values of variables and hydraulic parameters. 

Notation Default value (unit) Definition 

a 0.5 m-1 Unsaturated exponent in Gardner’s model for soil characteristics 

(b, B) (10 m, 20 m) Initial thicknesses of unsaturated and saturated zones, respectively 

Co None Specific moisture capacity 

d 50 m Shortest distance between the edge of recharge area and observation point 

h None Hydraulic head in saturated zone 

I 0.1 m d-1 Recharge rate 

ko None Relative hydraulic conductivity 

(Kx, Ky, Kz) (10 m d-1, 10 m d-1, 1 m d-1) Saturated hydraulic conductivity in x, y, and z directions, respectively 

(l, w) 50 m Half of width of recharge area in x and y directions, respectively 

(Ss, Sy) (10-5 m-1, 0.2) Specific storage and specific yield, respectively 

t None Time 

(x, y, z) None Cartesian coordinates 

ϕ None Hydraulic head in unsaturated zone 

(𝑏̅, 𝑙,̅ 𝑤̅) (0.5, 1, 1) (b/B, l/d, w/d) 

(ℎ̅, 𝜙̅, 𝑡̅) None (h/B, ϕ/B, 𝐾𝑥𝑡/(𝑆𝑠𝑑
2)) 

(𝑥̅, 𝑦̅, 𝑧̅) None (x/d, y/d, z/B) 

(α, 𝜅𝑦, 𝜅𝑧) (10, 1, 0.625) (aB, Ky /Kx, 𝐾𝑧𝑑
2/(𝐾𝑥𝐵

2)) 

(𝜉, 𝜎) (0.1, 1000) (I/Kz, 𝑆𝑦/(𝑆𝑠𝐵)) 
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Figure 1: Schematic diagram of unsaturated-saturated flow in an unconfined aquifer system with localized recharge (a) top view 

and (b) cross-sectional view. 
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Figure 2: Schematic diagram of finite difference grids (a) top view and (b) cross-sectional view. 
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Figure 3: Temporal distributios of the dimensionless head in the saturated zone predicted by the present solution and Chang et al.’s 

(2016) solution for different pairs of (𝜶, 𝒃̅) representing the effect of unsaturated flow. 
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Figure 4: Temporal distribution curves of the recharge efficiency (RE) for different pairs of (𝜶, 𝒃̅) representing the effect of 

unsaturated flow. 
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Figure 5: Contours of the ultimate recharge efficiency (URE) plotted at 𝒕̅ = 𝟏𝟎𝟕 for various values of 𝜶 and 𝒃̅. 
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Figure 6: Temporal distribution curves of the normalized sensitivity coefficients for the hydraulic head in unsaturated zone in 

response to the change in each of parameters a, l, w, Ss, Sy, Kx, Ky, and Kz observed at (a) (0, 0, 5 m) under the recharge area and (b) 

(100 m, 0, 5 m) beside the area.  
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Figure 7: Temporal distributions of the hydraulic head predicted by the present solution and the finite difference solution based on 

Richards’ equation, Eq. (5), and its linearized version, Eq. (6), observed at (25 m, 0, 5 m) and (25 m, 0, -10 m) under the recharge 

area and at (94.65 m, 0, 5 m) and (94.65 m, 0, -10 m) beside the area.  
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Figure 8: Comparison of the water table rise predicted by the present solution and Glover’s (1960) solution with field observed data 

given in Bianchi and Haskell (1968). 


