Supplementary information

A Water balance model flux formulations

A.1 Parameter symbols, units, and descriptions

Symbol	Unit	Description
h _{sf}	L	Surface elevation relative to mean sea level
h	L	Groundwater level relative to mean sea level
Sp	L	Surface water level outside catchment relative to mean sea level
S	L	Surface water level relative to mean sea level
p	L	Field surface water level relative to mean sea level
t	Т	Time
Р	L ³	Precipitation
Е	L ³	Reference evaporation (Makkink)
fp	-	Evaporation reduction factor, specified per month
f _{pc}	-	Evapotranspiration reduction factor, specified per month
A _l	L ²	Surface area land
A _w	L ²	Surface area water
F _{si}	L	Fixed seepage or infiltration (lower boundary)flux
Kv	LT ⁻¹	Subsurface conductivity of peat/clay cover layer
d	L	Thickness of cover layer
h _d	L	Water pressure lower boundary (below peat/clay cover layer)
ϕ	-	Porosity
g	LT ⁻²	Accelleration of gravity (≈9,8 m/s ²)
т	-	Discharge coëfficiënt
b	L	Width of weir
SG	L ³	Storage in groundwater domain
SG _{ex}	L ³	Storage in groundwater domain excluding inundation flux (FLg)
SL	L ³	Storage in field surface domain
SL _{ex}	L ³	Storage in field surface domain excluding inundation flux (FLg)
SS	L ³	Storage in surface water domain
SS _{ex}	L ³	Storage in surface water domain excluding inlet and outlet (FSin en

		FS _{out})
f _l	-	Fraction of groundwater volume that exfiltrates to surface water per unit difference between groundwater and surface water level
f _r	-	Fraction of surface water volume that infiltrates to groundwater per unit difference between surface water and groundwater level
f _i	-	Fraction of groundwater volume that inundates to the field surface per unit difference between groundwater and field surface water level
f _{of}		Fraction of field storage volume that flows to surface water (via overland flow) per unit difference between field surface water level and field surface elevation.
f _{b_in}	-	Fraction of surface water volume that infiltrates (leaks) from outside the catchment to the groundwater storage per unit difference between surface water level outside the catchment and the groundwater level within the catchment
f _{b_uit}		Fraction of groundwater volume that exfiltrates (leaks) to surface water outside the catchment per unit difference between the groundwater level within the catchment and the surface water level outside the catchment.
S _{min}	L	Minimum surface water level relative to mean sea level (start inlet)
S _{max}	L	Maximum surface water level relative to mean sea level (start outlet)
FS _{outmax}	L	Maximum pumping capacity for outlet

A.2 Fluxes groundwater domain

In (positive) or out (negative) fluxes

FG _{PE}	Flux to and from groundwater through precipitation and evapotransipration
FG _{ri}	Exchange between groundwater domain and deep groundwater through seepage (r) or
	infiltration (i)
FG _{leak}	Exchange between groundwater domain and surroundings (leakage through catchment
	boundaries)

In fluxes

FG	Flux to groundwater from field storage (infiltration from ponds)
FGs	Flux to groundwater from surface water (surface water infiltration)

Out fluxes

FS_g	Flux to surface water from groundwater (exfiltration)
FL_g	Flux to field storage from groundwater (inundation from groundwater)

Formulas:

FG_{PE} Flux to and from groundwater through precipitation and evapotransipration

$$\begin{split} &If: (h_{(t-1)} < h_{sf}) \\ &Then: \{FG_{PE} = (P_{(t)} - E_{(t)} \cdot f_{PC}) \cdot A_{t}\} \\ &Else: \{If: (p_{(t-1)} - h_{sf} < -(P_{(t)} - E_{(t)} \cdot f_{P})) \\ &Then: \{FG_{PE} = ((P_{(t)} - E_{(t)} \cdot f_{P}) - (h_{sf} - p_{(t-1)})) \cdot f_{PC} \cdot A_{t}\} \\ &Else: \{FG_{PE} = 0\} \\ &\} \\ \} \end{split}$$

FG_{ri} Exchange between groundwater domain and deep groundwater through seepage (r) or infiltration (i)

Seepage (positive) / infitration (negative):

Choice between fixed flux or fixed head boundary.

- For fixed flux $FG_{i} = F_{i} \cdot A_{i}$

- For fixed head:

$$FG_{i} = K_{v} \cdot \frac{h_{d} - h_{(i-1)}}{d} \cdot A_{i}$$

FG _{leak}	Exchange between groundwater domain and surroundings (leakage through catchment boundaries)
$FG_{leak} =$	

 $If(h_{(t-1)} > h_{p})$ $Then: (s_{p} - h_{(t-1)}) \cdot f_{b_{-uit}} \cdot \phi \cdot A_{t}$ $Else: (s_{p} - h_{(t-1)}) \cdot f_{b_{-in}} \cdot A_{t}$

FG₁ Flux to groundwater from field storage (infiltration from ponds)

$$\begin{split} If: (h_{(t-1)} < h_{s}) AND(p_{(t-1)} > h_{s}) \\ Then: \{ If: (p_{(t-1)} - h_{s}) < (h_{s} - h_{(t-1)}) \cdot \phi + FL_{PE} \cdot A_{l}^{-1} \\ Then: \{ FG_{l} = (p_{(t-1)} - h_{s}) \cdot A_{l} + FL_{PE} \cdot A_{l} \} \\ Else: \{ FG_{l} = (h_{s} - h_{(t-1)}) \cdot A_{l} \cdot \phi \} \\ \} \\ Else: \{ FG_{l} = 0 \} \end{split}$$

 $\begin{aligned} If: (s_{(r-1)} < h_{(r-1)}) \\ Then: \{FG_s = 0\} \\ Else: \{IF: (s_{(r-1)} - h_{(r-1)}) \cdot f_r \cdot A_w > (s_{(r-1)} - h_{(r-1)}) \cdot \phi \cdot A_r \\ Then: \{FG_s = (s_{(r-1)} - h_{(r-1)}) \cdot \phi \cdot A_r \} \\ Else: \{FG_s = (s_{(r-1)} - h_{(r-1)}) \cdot f_r \cdot A_w \} \\ \} \end{aligned}$

FS_q Flux to surface water from groundwater (exfiltration)

 $If: (s_{(t-1)} > h_{(t-1)})$ Then: {FS_g = 0} Else: { FS_g = (s_{(t-1)} - h_{(t-1)}) \cdot f_t \cdot \phi \cdot A_t }

Storage change in groundwater domain excluding inundation flux: $\partial SG_{ex} = FG_{PE} + FG_{ri} + FG_{leak} + FG_s + FG_l - FS_s$

FLgFlux to field storage from groundwater (inundation from groundwater)If : $(h_{(I-1)} + \partial SG_{ex} \cdot A_l^{-1} \cdot \phi^{-1} < h_{sf})$ Then: $\{FL_g = 0\}$ Else : $\{FL_g = (h_{(I-1)} + \partial SG_{ex} \cdot A_l^{-1} \cdot \phi^{-1} - h_{sf}) \cdot f_i \cdot A_l \cdot \phi\}$ Storage change in groundwater domain:2 calculations possible $\partial SG = FG_{pE} + FG_{ri} + FG_{leak} + FG_s + FG_l - FS_s - FL_s = \partial SG_{ex} - FL_g$ $\partial SG = (h_{(I)} \cdot A_l \cdot \phi) - (h_{(I-1)} \cdot A_l \cdot \phi)$

Groundwater level:

 $\partial h = (\partial SG \cdot A_t^{-1}) \cdot \phi^{-1}$ $If : (h_{(t-1)} + \partial h > h_{sf})$ $Then : \{h = h_{sf}\}$ $Else : \{h_t = h_{(t-1)} + \partial h\}$

A.3 Fluxes field storage domain

In (positive) or out (negative) fluxes

FL_{pe} Flux to and from field storage through precipitation and evapotransipration

In fluxes

FL_q	Flux to field storage from groundwater (inundation from groundwater)
FLs	Flux to field storage from surface water (inundation from surface water)

Out fluxes

FSI	Flux to surface water from field storage (overland flow)
FGI	Flux to groundwater from field storage (infiltration from ponds)

Formulas:

FLqFlux to field storage from groundwater (inundation from groundwater)See formulas groundwater domain

See formulas groundwater domain

Storage change in field surface domain excluding inundation flux: $\partial SL_{ex} = FL_{re} + FL_g - FS_l - FG_l$

FLsFlux to field storage from surface water (inundation from surface water)If: $(s_{(t-1)} + (FS_{pe} + FS_{ri} + FS_g + FS_l - FG_s) \cdot A_w^{-1} < p_{(t-1)} + \partial SL_{ex} \cdot A_l^{-1})$ Then: $\{FL_s = 0\}$ Else: $\{(FL_s = s_{(t-1)} + (FS_{pe} + FS_{ri} + FS_g + FS_l - FG_s) \cdot A_w^{-1} - (p_{(t-1)} + \partial SL_{ex} \cdot A_l^{-1}) \cdot (A_l \cdot (A_l + A_w)^{-1}) \cdot A_l\}$

Storage change in field surface domain:

 $\frac{2 \text{ calculations possible}}{\partial SL = FL_{_{PE}} + FL_{_{g}} + FL_{_{s}} - FS_{_{l}} - FG_{_{l}} = \partial SL_{_{ex}} + FL_{_{s}}}{\partial SL = (p_{_{(I)}} \cdot A_{_{l}}) - (p_{_{(I-1)}} \cdot A_{_{l}})}$

Field surface water level:

 $\partial p = \partial SL \cdot A_{l}^{-1}$ $p_{t} = p_{(t-1)} + \partial p$

A.4 Fluxes surface water domain

In (positive) or out (negative) fluxes

FS_{PE}	Flux to and from surface water through precipitation and evapotransipration
FS _{ri}	Exchange between surface water domain and deep groundwater through seepage (r) or
	infiltration (i)

In fluxes

FS_g	Flux to surface water from groundwater (exfiltration)
FS _I	Flux to surface water from field surface (overland flow)
FS _{in}	Flux from regional water system to surface water (inlet)

Out fluxes

FGs	Flux to groundwater from surface water (surface water infiltration)
FLs	Flux to field surface from surface water (inundation from surface water)
FSout	Flux from surface water to regional water system via outlet
FS _{leak}	Flux from surface water to regional water system via leakage

Formulas:

FS_{PF}	Flux to and from surface water through precipitation and evapotransipration
- / L	

$$FS_{P} = P_{(t)} \cdot A_{W}$$

$$FS_{E} = E_{(t)} \cdot f_{p} \cdot A_{w}$$

$$FS_{PE} = (P_{(t)} - E_{(t)} \cdot f_p) \cdot A_w = FS_P - FS_E$$

FS _{ri}	Exchange between surface water domain and deep groundwater through seepage (r) or
	infiltration (i)

Seepage (positive) / infitration (negative):

Choice between fixed flux or fixed head boundary. - For fixed flux:

- For fixed fi

$$FS_{r} = F_{r} \cdot A_{r}$$

$$FS_i = F_i \cdot A_w$$

 $FS_{ri} = FS_r + FS_i$

- For fixed head:

Infiltration:

$$IF: K_{v} \cdot \frac{h_{d} - s_{(i-1)}}{d} \cdot A_{w} > 0$$

Then: {FS_i = 0}
Else: {FS_i = K_{v} \cdot \frac{h_{d} - s_{(i-1)}}{d} \cdot A_{w}}

Seepage:

$$IF: K_{v} \cdot \frac{h_{d} - s_{(t-1)}}{d} \cdot A_{w} < 0$$

Then: {FS_i = 0}
Else: {FS_i = K_v \cdot \frac{h_{d}}{d} \cdot A_{w}}

 FS_g Flux to surface water from groundwater (exfiltration)

See formulas groundwater domain

FS₁Flux to surface water from field surface (overland flow)See formulas field surface domain

*FG*_s Flux to groundwater from surface water (surface water infiltration) See formulas groundwater domain

*FL*_s Flux to field surface from surface water (inundation from surface water) See formulas field surface domain

Storage change in surface water domain excluding inlet and outlet: $\partial SS_{ex} = FS_{pe} + FS_{r} + FS_{g} + FS_{l} - FG_{s} - FL_{s}$

FS_{in} Flux from regional water system to surface water (inlet
If :
$$(s_{o,v} + \partial SS_{o,v} \cdot A_{o,v}^{-1} > S_{min})$$

$$Then: \{FS_{in} = 0\}$$

$$Else: \{IF: (S_{\min} - S_{(i-1)}) \cdot A_{w} - \partial SS_{ex} > FS_{inmax}$$

$$Then: \{FS_{in} = FS_{inmax}\}$$

$$Else: \{FS_{in} = (S_{\min} - S_{(i-1)}) \cdot A_{w} - \partial SS_{ex}\}$$

$$\}$$

FS _{out}	Flux from surface water to regional water system via outlet
FS _{leak}	Flux from surface water to regional water system via leakage

Three options::

1. No outlet and no leakage $FS_{out} = 0$

 $FS_{leak} = 0$

2. Outlet via pumping station and no leakage:

$$\begin{split} If: (s_{(t-1)} + \partial SS_{ex} \cdot A_{w}^{-1} < S_{\max}) \\ Then: \{FS_{out} = 0\} \\ Else: \{If: (s_{(t-1)} - S_{\max}) \cdot A_{w} + \partial SS_{ex} > FS_{outmax} \\ Then: \{FS_{out} = FS_{outmax}\} \\ Else: \{FS_{out} = (s_{(t-1)} - S_{\max}) \cdot A_{w} + \partial SS_{ex}\} \\ \} \end{split}$$

 $FS_{leak} = 0$

3. Outlet via a weir, part of which can be attributed to leakage:

$$If: (s_{(t-1)} < S_{\max})$$

Then: {FS_{out} = 0}
Else: { FS_{out} = ($\frac{2}{3} \cdot \sqrt{(\frac{2}{3} \cdot g)} \cdot m \cdot b \cdot (s_{(t-1)} - S_{\max})^{1.5}$ }

Storage change in surface water domain:

 $F_{in} = FS_{PE} + FS_{ri} + FS_{g} + FS_{l} + FS_{in}$ $F_{out} = FG_{s} + FL_{s} + FS_{out} + FS_{leak}$ $\partial SS = F_{in} - F_{out}$

Surface water level:

 $\partial z = \partial SS \cdot A_w^{-1}$

B Water balance model performance

Water balance model performance on simulating the surface water levels (a), groundwater levels (b), and chloride concentrations (c) for all studied polders.

Botshol

Groene Jonker

Loenderveen Oost

Middelpolder

Muyeveld

Nieuwe Keverdijkse polder north

Nieuwe Keverdijkse polder south

Ronde Hoep

Westbroekse Zodden

