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Abstract 6 

Headwater streams represent a substantial proportion of river systems and many of them have 7 

intermittent flows due to their upstream position in the network. These intermittent rivers and 8 

ephemeral streams have recently seen a marked increase in interest, especially to assess the impact 9 

of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and 10 

time) field observations of flow intermittence help to extrapolate over time the daily probability of 11 

drying (defined at the regional scale). Two empirical models based on linear or logistic regressions 12 

have been developed to predict the daily probability of intermittence at the regional scale across 13 

France. Explanatory variables were derived from available daily discharge and groundwater level data 14 

of a dense gauging/piezometer network, and models were calibrated using discrete series of field 15 

observations of flow intermittence. The robustness of the models was tested using (1) an 16 

independent, dense regional data set of intermittence observations, (2) observations of the year 17 

2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional 18 

probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by 19 

flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyze 20 

temporal variability of flow intermittence at the national level. The two empirical regression models 21 

performed equally well between 2011 and 2017. The accuracy of predictions depended on the 22 

number of continuous gauging/piezometer stations and intermittence observations available to 23 

calibrate the regressions. Regions with the highest performance were located in sedimentary plains, 24 
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where the monitoring network was dense and where the regional probability of drying was the 25 

highest. Conversely, worst performances were obtained in mountainous regions. Finally, temporal 26 

projections (1989-2016) suggested highest probabilities of intermittence (> 35%) in 1989-1991, 2003 27 

and 2005. A high density of intermittence observations improved the information provided by 28 

gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and 29 

ephemeral streams.  30 

Keywords: Intermittent rivers, headwater streams, flow regime, discrete observations, regional scale 31 

1. Introduction 32 

Headwater streams represent a substantial proportion of river systems (Leopold et al., 1964; Nadeau 33 

and Rains, 2007; Benstead and Leigh, 2012). From an ecological point of view, headwater catchments 34 

are at the interface between terrestrial and aquatic ecosystems and they often harbour a unique 35 

biodiversity with a very high spatial turn-over (Meyer et al., 2007; Clarke et al., 2008; Finn et al., 36 

2011). Their contribution to the functioning of hydrographic networks is essential: sediment flows, 37 

inputs of particulate organic matter and nutrients, refugia/colonization, sources for aquatic 38 

organisms (Meyer et al., 2007; Finn et al., 2011). 39 

Headwater streams are generally naturally prone to flow intermittence, i.e. streams which stop  40 

flowing  or dry up at some point in time and space, mainly due to their upstream position in the 41 

network and their high reactivity to natural or human disturbances (Benda et al., 2005; Datry et al., 42 

2014b). These waterways which cease flow and/or dry are referred to as intermittent rivers and 43 

ephemeral streams (IRES). The geographic extent of IRES is poorly documented due to mapping 44 

limitations (digital elevation models, satellite images, aerial photos) and because of their size and 45 

their location (Leopold et al., 1994; Nadeau and Rains, 2007; Benstead and Leigh, 2012; Fritz et al., 46 

2013). However the proportion of IRES in hydrological networks can be very large: for example, they 47 

represent 60% of the length of rivers in the United States (Nadeau and Rains, 2007) and are 48 
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considered to represent probably more than 50% of the global hydrological network (Larned et al., 49 

2010; Datry et al., 2014b). Considering only gauging stations with continuous records may lead to 50 

severe underestimation of their regional extent (Snelder et al., 2013; De Girolamo et al., 2015; Eng et 51 

al., 2016).  52 

Recently, IRESs have seen a marked increase in interest stimulated by the challenges of water 53 

management facing the global change context (water scarcity issues, climate change impact, etc.) 54 

(Acuña et al., 2014; Datry et al., 2016b). Studies have characterized the hydrological functioning of 55 

IRES (Gallart et al., 2012; Costigan et al., 2016; Sarremejane et al., 2017) to assess the effects of flow 56 

intermittence on aquatic ecosystems (Larned et al., 2010; Datry et al., 2016b; Leigh et al., 2016; Leigh 57 

and Datry, 2017). IRES have been altered due to human actions (abstraction, hill dams, low-water 58 

support, pollution, etc.) despite their high and unique biodiversity (Datry et al., 2014; Garcia et al., 59 

2017a). In addition, some perennial streams are becoming intermittent due to global change, water 60 

abstraction or river damming (Skoulikidis, 2009) and the extent of IRES may increase in the future 61 

(Döll and Schmied, 2012; Jaeger et al., 2014; Pumo et al., 2016; Garcia et al., 2017b; De Girolamo et 62 

al., 2017).  63 

A better hydrological understanding of IRES is now essential and an improved management requires 64 

knowing both the spatial extent and arrangement of IRES within the river network (Boulton, 2014; 65 

Acuña et al., 2017). Efforts have been made to estimate the spatial distribution of IRES at the 66 

catchment scale (Skoulikidis et al., 2011; Datry et al., 2016a), at the regional scale (Gómez et al., 67 

2005) and at the national scale (Snelder et al., 2013). In France, Snelder et al. (2013) suggested a 68 

classification of IRES regimes and spatialized their distribution. Based on an analysis of the 69 

continuous gauging network, they showed that the proportion of IRES accounted for 20 to 39% of the 70 

hydrographic network. The accuracy of the obtained map is highly dependent on the density of the 71 

flow monitoring network. The installation of additional gauging stations is expensive and headwaters 72 

systems may be difficult to monitor due to active geomorphology processes or to difficult access. 73 
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As a promising tool to advance the mapping of IRES, citizen science creates opportunities to 74 

overcome the lack of hydrological data and contributes to densify the flow state observation network 75 

(Turner and Richter, 2011; Buytaert et al., 2014; Datry et al., 2016b) and could be used for 76 

hydrological model calibration (van Meerveld et al., 2017). In France, Datry et al. (2016a) used such 77 

data to describe the spatiotemporal dynamics of aquatic and terrestrial habitats within five river 78 

catchments located in the western part of France. They showed that processes resulting in flow 79 

intermittence were complex at a fine scale and could vary substantially among nearby catchments. 80 

However, these data were only available in a few catchments, limiting any attempt to map large-81 

scale patterns of flow intermittence in river networks. Since this first attempt, new sources of 82 

observational data have become available in France thanks to the ONDE network (Observatoire 83 

National des Etiages, https://onde.eaufrance.fr). This unique network in Europe provides frequent 84 

discrete field observations (five inspections per year) of the flow intermittence across more than 3 85 

300 sites throughout France and located mostly in headwater areas. 86 

However discrete observations of intermittence do not provide any information on the persistence of 87 

dry conditions between two consecutive dates of observation. The rewetting-drying events could 88 

have significant impacts on communities whose survival is conditioned by the duration/frequency of 89 

drying. The duration of drying is of importance for ecologists, as one key driver for the composition 90 

and persistence of aquatic species (Vardakas et al., 2017; Kelso and Entrekin, 2018, Vadher et al., 91 

2018). Temporal extrapolations of river flow regime are thus necessary to summarize the different 92 

facets of flow intermittence at various time scales, from daily to inter-annual.  93 

The main objective of this paper is to use discrete (in space and time) field observations of flow 94 

intermittence to extrapolate over time the daily probability of drying (averaged at the regional scale). 95 

We first carried out a quantitative analysis of the ONDE network data in order to characterise the 96 

information that they contribute in comparison with the data resulting from the conventional 97 

hydrological monitoring. Then, we developed two empirical models based on linear or logistic 98 
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regressions to convert discontinuous series of flow intermittence observation from ONDE into 99 

continuous daily probability of drying, defined at the regional scale across France. Explanatory 100 

variables were derived from available continuous daily discharge and groundwater level data of a 101 

dense gauging/piezometer network, and models were calibrated using the ONDE discrete 102 

observations. The robustness of the models was tested using (1) an independent, dense regional data 103 

set of intermittence observations and (2) observations of the year 2017 excluded from the 104 

calibration. Finally, resulting models were used to extrapolate the regional probability of drying in 105 

France: (i) over the period 2012-2017 to identify the regions most affected by flow intermittence; (ii) 106 

over the period 1989-2017, using a reduced input dataset, to analyze temporal variability of flow 107 

intermittence at the national level.   108 

2. Material and Methods 109 

2.1. Study area 110 

The study area is continental France and Corsica (550 000 km²). France is located in a temperate zone 111 

characterized by a variety of climates due to the influences of the Atlantic Ocean, the Mediterranean 112 

Sea and mountain areas. 113 

We defined regions as combinations of "level-2 Hydro-EcoRegions" (HER2) and classes of 114 

hydrological regimes (HR). Hydro-EcoRegion (HER) corresponds to a typology developed for river 115 

management in accordance with the European Water Framework Directive. The Hydro-EcoRegion  116 

classification includes 22 "level-1 Hydro-EcoRegions " (HER1) based on geology, topography and 117 

climate, and considered as the primary determinants of the functioning of water ecosystems 118 

(Wasson et al., 2002). HER2 correspond to a finer classification accounting for stream size. HER2 have 119 

a mean drainage area of 5 000 km² (between 100 and 27 000 km²). The hydrological regimes classes  120 

(HR) were identified by reference to the work carried out by (Sauquet et al., 2008) where it was 121 

possible to distinguish rainfall-fed regimes, transition and snowmelt-fed river flow regimes. Overall, 122 
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we used 280 regions (that is, HER2-HR combinations) with a mean drainage area of 1 400 km² 123 

(between 4 and 20 000 km²). 124 

2.2. ONDE dataset discrete national flow-state observations 125 

The ONDE network was set up in 2012 by the French Biodiversity Agency (AFB, formerly ONEMA) 126 

with the aim of constituting a perennial network recording summer low flow levels and used to 127 

anticipate and manage water crisis during severe drought events (Nowak and Durozoi, 2012).  128 

There are 3 300 ONDE sites distributed throughout France (Fig. 1). ONDE sites are located on 129 

headwater streams with a Strahler order strictly less than 5 and balanced across HER2 regions to take 130 

into account the representativeness of the hydrological contexts (Nowak and Durozoi, 2012). The 131 

ONDE network is stable over time. Observations are made monthly (around the 25th) by trained AFB 132 

staff, between April and September, every year since 2012. One of the statuses is assigned at each 133 

observation among “visible flow”, “no visible flow” and “dried out”. Here, we consider two 134 

intermittency statuses: “Flowing” when there is visible flow across the channel (“visible flow”) and 135 

“Drying” when the channel is entirely devoid of surface water (“dried out”) or when there is still 136 

water in the river bed but without visible flow (disconnected pools, lentic systems) (“no visible 137 

flow”). The proportion of drying sites determined on the basis of the ONDE network for each HER2-138 

HR combination is considered as a good estimate of the daily Regional Probability of Drying 139 

(RPoDONDE) of streams with a Strahler order less than 5. Observed values of RPoDonde are calculated as 140 

follows: 141 

𝑅𝑃𝑜𝐷𝑂𝑁𝐷𝐸(𝑑) =
(𝑁𝑑𝑟𝑦𝑖𝑛𝑔)𝐻𝐸𝑅2−𝐻𝑅

(𝑁𝑓𝑙𝑜𝑤𝑖𝑛𝑔+𝑁𝑑𝑟𝑦𝑖𝑛𝑔)𝐻𝐸𝑅2−𝐻𝑅
    (1) 142 

where d denotes the observation date of the ONDE network, Ndrying and Nflowing are the number 143 

of drying and of flowing statuses observed at ONDE sites located in a same HER2-HR combination at 144 

the observation date d, respectively. 145 
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Figure 2 illustrates the complementary nature of the ONDE network to the already existing French 146 

river flow monitoring network HYDRO (http://www.hydro.eaufrance.fr). The ONDE sites and a set of 147 

1 600 gauging stations available in the HYDRO database have been projected on the river network 148 

RHT (Theoretical Hydrographic Network; Pella et al., 2012) and the drainage area and the elevation 149 

have been estimated. A large part of ONDE sites are located on small headwater streams with 70% of 150 

the sites with a drainage area of less than 50 km² while most of the gauging stations record flows of 151 

catchments of medium size (between 100 and 500 km²). Only four stations display a drainage area of 152 

more than 1 000 km². The distributions of elevation of the two databases look similar. The ONDE 153 

sites are mostly located on rivers with an elevation below 200 m (75% of sites). The ONDE sites are 154 

sparse at high elevations (95 sites located above 1 000 m). This bias is likely due to access difficulties 155 

in mountainous areas. 156 

2.3. POC dataset: a denser regional dataset used for independent 157 

validation 158 

A spatially denser citizen science dataset of flow-state observations in western France (Poitou-159 

Charente region) (http://atlas.observatoire-environnement.org) has been used as validation dataset 160 

to test the robustness of our models calibrated with the ONDE dataset. The POC monitoring (2011-161 

2013) covered more than 4 000 km of river length across 20 catchments. Each river was entirely 162 

surveyed every 1st and 15th of each month between June and October, resulting in eight observations 163 

per year. Four intermittency statuses were available in the POC dataset (Datry et al. 2016a) but to 164 

allow comparisons with the ONDE network, we pooled the two “Flowing” and “Low Flow” POC 165 

statuses into a single “Flowing” status and the two "No flow" and "Dry" statuses into the "Drying" 166 

status. This dataset is available as maps with flow states assigned to the inspected streams. Values of 167 

RPoD at each POC observation date is calculated in the same way as RPoDONDE. Thus RPoDPOC is given 168 

by the ratio between the number of drying statuses and the total number of observations at each 169 

inspected streams located in a same HER2-HR.    170 
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2.4. Explanatory discharge dataset 171 

Two discharge datasets (continuous daily time series) were used as explanatory variables of discrete 172 

intermittence observations, with the objective of extrapolating the intermittence frequency over 173 

time. The two datasets included time series of daily discharge extracted from the French River 174 

discharge monitoring network ("HYDRO database", http://www.hydro.eaufrance.fr/): (i) the 2011-175 

2017 dataset with full records available between the 01/01/2011 and 31/06/2017; (ii) the 1989-2017 176 

dataset concerning a reduced number of gauging stations and providing daily discharges between 177 

the 01/01/1989 and 31/06/2017. According to the hydrometric services in charge of the selected 178 

gauging stations, high quality of measurements was ensured and observed discharges were not or 179 

only slightly altered by human actions. 180 

The 2011-2017 dataset was composed of 1 600 gauging stations distributed across France. Each 181 

stream where a HYDRO gauging station is located has been defined as IRES or perennial. Several 182 

definitions of IRES can be found in the literature (Huxter and van Meerveld, 2012, Eng et al., 2016; 183 

Reynolds et al., 2015). In this study, we considered stations as intermittent when five consecutive 184 

days with discharge less than 1 liter per second has been observed during the period of record.  185 

The 1989-2017 dataset consisted of 630 gauging stations selected with less than 5% of missing data 186 

(continuous or not) during the period 1989-2017. This dataset has been thereafter used to estimate 187 

the regional probability of drying before the creation of the ONDE network.  188 

2.5. Explanatory groundwater level dataset 189 

Because groundwater resources influence stream intermittence, we used available time series of the 190 

daily groundwater level available in the ADES database (http://www.ades.eaufrance.fr) at sites 191 

identified as involved in groundwater/surface water exchanges (Brugeron et al., 2012). Similarly to 192 

the discharge data, two sets of groundwater level data with records available over the two periods 193 

2011-2017 and 1989-2017 have been selected. The level of alteration of groundwater levels by water 194 

withdrawal is unknown because no information is available at this scale. 195 
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The 2011-2017 dataset was composed by 750 piezometers with daily groundwater level data with 196 

less than 5% of missing data (continuous or not). The selection of 1989-2017 dataset was not easy 197 

because few groundwater level measurements were available in the database before 2000. For 198 

example, only five piezometers met the tolerance limit on missing values considered for the 1989-199 

2017 discharge dataset. In order to extend the dataset and because groundwater levels were less 200 

variable than stream discharges, the proportion of permitted gaps was fixed to 20% between 1989 201 

and 2017. This led us to select 150 piezometers. Thereafter, when the missing data period was less 202 

than 10 days, groundwater levels were reconstructed by linear interpolation in order to reduce the 203 

proportion of missing values to less than 5% for the 150 piezometers selected. 204 

2.6. Statistical modeling of regional probability of drying 205 

The parametric modeling strategy was based on 5 main steps (Fig. 3). The first step consisted in 206 

selecting all ONDE sites, gauging stations and piezometers located in a same HER2-HR combination. 207 

When the total number of gauging stations and piezometers was less than 5 for a HER2-HR 208 

combination, we merged the HER2-HR combination with a neighboring one located in the same 209 

HER1. This was done for 20 of the 280 regions. The second step consisted in calculating the RPoDONDE 210 

for each observation date (5 per year) and for all selected ONDE sites. In a third step, a flow duration 211 

curve was determined for each selected HYDRO gauging station. The average non-exceedance 212 

frequency of the observed discharge at gauging stations was averaged for the date of observation (d) 213 

at ONDE sites and the 5 days preceding the observation. The lag of six days accounted for the fact 214 

that ONDE survey dates in a region could differ by 5 days, and accounted for the inertia of physical 215 

processes (e.g. storage capacity). The same operation was carried out with selected piezometers. 216 

Finally the hydrological conditions are described by the average (across stations) F of the non-217 

exceedance frequencies of discharge (Fq) and groundwater levels (Fgw) with respect to the relative 218 

proportions of gauging stations and piezometers: 219 

F(d) =
∑ 𝐹𝑞𝑖
𝑖=𝑁𝑞
𝑖=1 +∑ 𝐹𝑔𝑤𝑗

𝑗=𝑁𝑔𝑤
𝑗=1

(𝑁𝑞+𝑁𝑔𝑤)      (2) 220 
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Where Fqi denotes the average non-exceedance frequency of discharge at the gauging station i 221 

calculated between d and d-5; Fgwj the average non-exceedance frequency of groundwater levels at 222 

the piezometer j calculated between d and d-5; Nq the number of gauging stations selected in a 223 

HER2-HR combination and Ngw the number of selected piezometers selected in the HER2-HR 224 

combination. The fourth step consisted in estimating the RPoDONDE as a function of F. Two types of 225 

regression were fitted for each HER2-HR combination across France:  226 

a truncated logarithmic linear regression (LLR), with two parameters α1 and β1: 227 

RPoD𝐿𝐿𝑅(𝑑) = {
min(1; 𝛼1 × ln(𝐹(𝑑)) + 𝛽1)𝑤ℎ𝑒𝑛𝐹 < 𝐹0

0𝑤ℎ𝑒𝑛𝐹 ≥ 𝐹0
              (3) 228 

F0 was fixed as the value of non-exceedance frequencies of discharge and groundwater levels at 229 

which no more drying status was observed across the ONDE network (RPoDONDE = 0).  230 

a logistic regression (LR), with two parameters α2 and β2: 231 

𝐿𝑜𝑔𝑖𝑡(RPoD𝐿𝑅(𝑑)) = 𝑙𝑛 (
RPoD𝐿𝑅(𝑑)

1−RPoD𝐿𝑅(𝑑)
) = 𝛼2 × 𝐹(𝑑) + 𝛽2                 (4) 232 

LR is a multivariate analysis method well known for its relevance in binary classification issues (Lee, 233 

2005).  The RPoDLR was then calculated as following Eq. 5: 234 

RPoD𝐿𝑅(𝑑) =
exp(𝛼2+𝛽2𝐹(𝑑))

1+exp(𝛼2+𝛽2𝐹(𝑑))
         (5) 235 

Models were calibrated against observations available during the same period, 2012-2016, leaving 236 

out the year 2017 for an independent validation test. However, for the continuous temporal 237 

extrapolations (one over 2011-2017, the other 1989-2017), two models were built with different 238 

piezometers and gauging stations selected as explanatory variables (see section 2.4 and 2.5). Thus 239 

there are two sets of regressions parameters specific to each dataset for both LLR and LR models 240 

leading to different prediction of RPoD.  241 
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Finally, in a fifth step, a daily regional probability of drying (RPoD) could be predicted for each HER2-242 

HR combination with both models following analytical formulas (Eq. 3 and Eq. 5).  243 

2.7. Model robustness: validation using independent data sets 244 

We used (1) the POC independent data and (2) the 2017 ONDE year to test the robustness of the LLR 245 

and LR model to predict the intermittence frequency (1) in space and (2) over time. Note that when 246 

predicting on the POC datasets, a new model was calibrated using only ONDE sites located out of 247 

POC streams. 248 

For both datasets (POC and ONDE 2017), the relative performance of the LLR and LR models was 249 

compared in multiple ways using both the 2011-2017 and the 1989-2017 datasets. The performance 250 

of each model was evaluated by the Nash-Sutcliffe efficiency criterion (NSE) (Nash and Sutcliffe, 251 

1970): 252 
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              (6) 253 

where RPoDONDEi is the average proportion of drying statuses over the ONDE sites located in the 254 

HER2-HR combination at the ith observation date, RPoDpri is the predicted regional probability of 255 

drying at the ith observation date, ONDEiRPoD  is the mean of RPoDONDEi over the period and N is the 256 

total number of observations in the ONDE network for each HER2-HR combination. 257 

2.8. Model prediction 258 

Both models have been calibrated over the period 2012-2016 and were then applied in a 5th step to 259 

predict the daily RPoD in France (Fig. 3). The RPoD was firstly predicted over the period 2012-2016 in 260 

order to identify the most affected regions by flow intermittence using the 2011-2017 datasets. The 261 

second application concerned the extrapolation of RPoD in France over a longer period using the 262 

1989-2017 dataset to analyze the temporal variability of flow intermittence at the national level. It 263 
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should be noted that model predictions only concern streams with a Strahler order lower than 5 due 264 

to the ONDE sites location. 265 

3. Results 266 

3.1. Quantitative analysis 267 

3.1.1. Inter-annual intermittence according to the raw discrete ONDE network 268 

A total of 1 127 ONDE sites have recorded at least one drying event during the period 2012-2016 269 

representing 35% of the 3 300 ONDE sites. From the ONDE database the probability of drying at the 270 

country scale was computed as the total number of drying statuses over France divided by the total 271 

number of ONDE observations available during statuses the same year (Fig. 4a). Between 2012 and 272 

2016, the most critical year is 2012 with 15% of drying statuses followed by 2016 (14%) and 2015 273 

(14%) (Fig. 4a). The years 2013 and 2014 are less affected with only 6% of drying statuses observed 274 

(Fig. 4a).  275 

Drying events mainly occur between July and September but the evolution of the month’s proportion 276 

of drying can differ between years (Fig. 4b). In more detail, water levels in 2012 decrease in August 277 

when the proportion of drying is 27% and the situation lasts until the end of September with 25% of 278 

drying (Fig. 4b). In 2013, the proportion of drying is lower than in 2012 but follows the same pattern 279 

with an increase at the end of July (3%) and reaching 9% in August and in September. In 2014, the 280 

first peak of drying (5%) is reached early in June. Then, the proportion of drying decreases in July 281 

(3%) and increases slightly in August 4% and reaching 7% in September. In 2015, the critical period 282 

occurs at the end of July with 19% of drying statuses and the proportion of drying decreases slightly 283 

at the end of August (17%) until it reaches 9% in September. Finally, in 2016, the situation is 284 

gradually deteriorates every month, reaching 20% of drying statuses in August, and 28% in 285 

September.  286 
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Between 2012 and 2016, a proportion of drying higher than 50% is recorded on 93 ONDE sites and 287 

their spatial distribution is very patchy at the France scale (black and dark grey dots, Fig. 5a). There 288 

are only 158 ONDE sites with at least one drying event every year and a variability of drying locations 289 

can be observed across years. The south-east of France is heavily affected by rivers drying where the 290 

proportion of drying can exceed 75% annually (black dots, Fig. 5b-5f). The north-western part of 291 

France is less affected, although many ONDE sites show a proportion of drying observed above 50% 292 

in 2014 and 2016 (Fig. 5d and 5f). Northeastern France is rather affected in 2012, 2014 and 2015 293 

where several ONDE sites have more than 75% of drying statuses (Fig. 5b, 5d and 5e). The south-west 294 

France is particularly affected in 2012 and 2015 (Fig. 5b and 5e).  295 

3.1.2. Comparison of flow intermittence between the raw ONDE and HYDRO datasets 296 

The HYDRO dataset includes 90 gauging stations located on streams considered as IRES, which 297 

represents only 5.6% of the 1 600 gauging stations against 35% for ONDE sites. At the national scale, 298 

the number of IRES seems underrepresented in the south-western, central, northeastern part of 299 

France and Corsica in comparison with sites experiencing drying in the ONDE network (Fig. 6). 300 

The number of gauging stations with at least one drying event (discharge < 1 l/s) observed between 301 

May and September varies between 79 in 2012 and 47 in 2014 (Table 1). The lowest numbers of 302 

gauging stations with drying events are observed in the years 2013 and 2014 while the highest 303 

numbers are related to the years 2012, 2015 and 2016. This finding is consistent with the analysis of 304 

the ONDE network (Fig. 5a, d). The frequency of drying, corresponding to the ratio between the 305 

number of dry days and the total number of days between the 1st May and the 30th September (153 306 

days), in contrast, is quite constant over the years (30%). The number of gauging stations with 307 

drying event over more than 50% of the time varies little between wet years (14 in 2013) and dry 308 

years (21 in 2015) unlike ONDE observations, suggesting a significant temporal variability in the 309 

frequency of drying between dry and wet years (Fig. 5). 310 
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3.2. Validation of the predicted regional probability of drying 311 

3.2.1. Regression results 312 

LLR and LR models, calibrated over the period 2012-2016, perform well with the 2011-2017 dataset 313 

with a mean NSE of 0.8 with LR model against 0.7 with LLR model (Fig. 7a and b). With the LR model, 314 

50% of the HER2-HR combinations obtain a NSE greater than 0.8, representing a coverage of 65% of 315 

the French territory, while 33% of HER2-HR combinations display a NSE higher than 0.8 (50% of 316 

France coverage) with the LLR model. Regions with the highest performances are located in 317 

sedimentary plains, in the south-east of France and in the Pyrenees Mountains. Conversely, the 318 

worst performances are obtained in the mountainous regions of Alps as well as in the Massif Central. 319 

In these regions the size of the HER2 is rather small and the number of ONDE sites, gauging stations 320 

and piezometers per HER2-HR combinations are certainly too few to derive reliable relations. Despite 321 

pooling, estimating RPoD remains impossible for 9 HER2-HR combinations (4.5% of France coverage) 322 

because the number of ONDE sites, gauging stations and piezometers sites is insufficient (less than 5) 323 

to perform the regression analysis. 324 

The performance level is lower when the 1989-2017 dataset is used in models: the mean NSE with 325 

the LR and LLR models is 0.7 and 0.6, respectively (Fig. 7c and d).  326 

The LR and LLR models lead to similar performance range. However, the LR model outperforms the 327 

LLR model in terms of number of HER2-HR combinations with NSE greater than 0.8 (Fig. 7c and d). 328 

The performance is sensitive to the dataset. As expected, the best results are obtained with the 329 

denser network. A decrease in NSE by more than 0.2 is identified for 5% of the French territory when 330 

the 1989-2017 dataset is used (black areas; Fig. 7e and f). The regions with the most degraded values 331 

of NSE are small HER2-HR combinations located in eastern France (Fig. 7e and f). 332 

The decrease in performance is mainly due to the difference in number of gauging stations and 333 

piezometers between the two datasets (Fig. 8). The most degraded NSEs correspond to HER2-HR 334 
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combinations where the number of gauging stations and piezometers considered in regressions is 335 

the most reduced, i.e. with a loss higher than 50% of stations (black and dark grey dots; Fig 8a and b). 336 

However, the decrease in performance remains low (difference in NSE is below 0.1 for 75% and 64% 337 

of HER2-HR combinations with LLR and LR model, respectively). 338 

3.2.2. Comparison to the POC database 339 

The observed proportion of drying RPoDPOC is rather well simulated by both LLR and LR models with 340 

the 2011-2017 explanatory dataset (NSE > 0.7 except for the year 2011, Fig. 9). In addition, the 341 

models are able to capture small fluctuations of RPoDPOC during the summer period. The best results 342 

during the year 2011 are obtained with the LLR model (black curve; Fig. 9) and the LR model 343 

overestimates RPoDPOC by 3% (dashed grey curve; Fig. 9). In 2012, the decline in water levels is more 344 

gradual than in 2011 and a marked peak is reached in September with 40% of RPoDPOC (Fig. 9). This 345 

pattern is well reproduced by both models with a good fit to all observation points (Fig. 9). The year 346 

2013 is less affected by drying occurrence and the maximum RPoDPOC does not exceed 20% (Fig. 9). 347 

Curves of both models fit to observations well until the end of August. Note that the LR model is 348 

slightly closer to the observations around the peak in September compared to the LLR model. 349 

However the LR model overestimates the RPoDPOC at the end of September and in October. 350 

When the 1989-2017 dataset is used as explanatory variables, the simulations of RPoD are weakly 351 

degraded with both models (Fig. 9d, e, f). However the simulated pattern is similar to the observed 352 

one. The LLR model outperforms the LR model during the three years of validation with the 1989-353 

2017 dataset (black curve; Fig. 9d, e, f). 354 

3.2.3. Temporal patterns assessment of models between 2012 and 2017 355 

During the calibration period, the LLR and LR models tend to better simulate the RPoD during dry 356 

years 2012 and 2016 (NSE = 0.8 with LLR and LR models; Tab. 2) than during wet years (e.g. 2014 with 357 

NSE < 0.7). The NSEs are lower during the months of May and June when few drying events are 358 

observed while NSEs are much better during the driest months of August and September. 359 
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During the validation year of 2017, both models obtain a similar performance over the year 360 

independent of datasets (NSE = 0.7).  361 

Monthly NSEs in 2017 follow the same trend as monthly NSEs of the calibration period with lower 362 

NSEs in May (NSEs < 0.4) and June (NSEs = 0.5) and higher NSEs in July, August and September (NSEs 363 

= 0.6) with both models independent of datasets. Figure 10 shows the dispersion between predicted 364 

RPoD and drying statuses observed at ONDE sites in the scatter plot during the validation year 2017 365 

(Fig. 10a and 10b) in comparison with the year 2012 which obtains the better NSE during calibration 366 

period (Fig. 10c and 10d). The NSEs obtained in 2017 are 0.72 with the LLR model and 0.68 with the 367 

LR model against 0.83 and 0.81 in 2012, respectively. The performance is slightly lower in 2017 but 368 

remains acceptable with NSEs close to 0.7 and both models seem able to predict RPoD out of the 369 

calibration period. 370 

3.3. Application of regional models 371 

3.3.1. Modeling of intermittencies severity between 2012 and 2016 372 

Both models have been applied using the 2011-2017 dataset. Figure 11 displays the maximum 373 

number of consecutive days (DRPoD>20%) with RPoD higher than 20% simulated by both LLR and LR 374 

models. The most affected regions are located in the south-east of France and in the sedimentary 375 

plains which are consistent with the spatial pattern obtained from the ONDE observations (Fig. 5). 376 

The most impacted year followed the same hierarchy: the year 2012 is the most critical year with 377 

30% of France displaying DRPoD>20% higher than 60 days followed by the year 2015 (20% of France with 378 

DRPoD>20% > 60 days) and 2016 (15% of France with DRPoD>20% > 60 days) (Fig. 11). The years 2013 and 379 

2014 are weakly affected with 5% and 6% of the France with DRPoD>20% higher than 60 days, 380 

respectively.  381 
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The LR model tends to simulate shorter periods of drying, particularly in HER2-HR combinations 382 

located in the South-East France in 2013 and 2014 (Fig. 11). However, there is an overall agreement 383 

between RPoD simulated by both models in terms of spatial and temporal extent of dry streams.  384 

3.3.2. Reconstitution of historical regional probability of drying 385 

The trend temporal patterns of RPoD predicted by the two models, considering the 1989-2017 386 

dataset, look similar between 1989 and 2016 and the simulated RPoD fit well to RPoDONDE (Fig. 12).  387 

The proportion of drying is highly variable over the total simulation period, with alternating dry (1989 388 

to 1991, 2003 to 2006, 2009 to 2012) and wet (1994 to 1995, 2000 to 2002; 2013 to 2014) phases. In 389 

spite of interannual variability, peaks of RPoD occur regularly between August and September, 390 

whether in dry years or wet years. This finding is consistent with the preeminence of rainfall fed river 391 

flow regime with low flows in summer, in France. 392 

The highest values of RPoDs (above 35% over France) are observed in 1989, 1990, 1991, 2003 and 393 

2005 (black curve, Fig. 12a and b). The RPoDs simulated during these dry years are out of the range 394 

of the observed values over the calibration period (2012-2016). Estimations are thus uncertain. 395 

However, the high values of RPoD are consistent with observations reported in previous studies (e.g. 396 

Larue and Giret, 2004; Snelder et al., 2013; Caillouet et al., 2017). Conversely, the years less affected 397 

by drying are simulated in 1994, 2001 and 2014 with an average RPoD below 15% throughout the 398 

year (black curve, Figs. 12a and b).  399 

Results obtained with the LLR model are more contrasted in terms of extreme values than those 400 

obtained with the LR model (Fig. 12b).  401 

4. Discussion 402 

ONDE network complementarity with conventional flow monitoring network 403 
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The analysis of the ONDE observations shows that the proportion of rivers undergoing drying is 404 

significantly higher (35%) than that observed with the conventional monitoring (HYDRO database, 405 

8%). This proportion although related to a short period of records 2012 and 2016 is consistent with 406 

the percentage of 39% of river segments classified as intermittent by Snelder at al. (2013). This 407 

analysis confirms the under-representation of IRES in the French HYDRO database, and probably 408 

others in other countries (flow are often uncontrolled in IRES). Without gauging stations located on 409 

headwaters, Snelder et al. (2013) were unable to predict IRES in eastern France (see Fig. 9, pp. 2694). 410 

The high density of ONDE sites makes it possible to improve the detection of drying events and lead 411 

to better understand the spatial distribution of IRES located at the upstream extent of the 412 

hydrographic network. The ONDE network encompasses various hydrological conditions which 413 

provides a more accurate assessment of inter-annual variability, differentiating between dry years 414 

(2012, 2015 and 2016) and wet years (2013, 2014) with clearly few drying occurrences.  415 

The validation of the LR and LLR models against the spatially dense POC database also demonstrates 416 

the spatial representativeness of the ONDE network. Thanks to the qualitative information provided 417 

and to models such as statistical models developed here, it is now possible to capture drying event at 418 

the regional scale.  419 

The ONDE sites are located on small headwater streams which can be very reactive to external 420 

disturbances (rainfall deficit, change in air temperature, increase in water withdrawals, etc.) and by 421 

nature are more likely to be IRES. The gauging stations available in the HYDRO database are located 422 

on larger streams and their hydrologic response to changes in external factors (environmental or 423 

human) is slower and drying occurred with greater inertia under temperate climate. Their uneven 424 

distribution across France does not allow to accurately characterize the inter-annual variability of 425 

drying development. Overall, the ONDE network provides very complementary information to 426 

conventional flow monitoring, leading to a better understanding of the processes of drying in 427 

upstream catchments. 428 
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Dependency on spatial gauging networks density  429 

The performance obtained with the LR and LLR models is slightly better with the 2011-2017 dataset 430 

(mean NSE = 0.75) than those obtained with the 1989-2017 dataset (mean NSE > 0.65), whose 431 

network is less dense. HER2-HR combinations are the most degraded where the number of 432 

monitoring stations is the most decreased between the two datasets. The accuracy of the predictions 433 

is dependent on the number of gauging stations, ONDE sites and piezometers available to calibrate 434 

the regressions. Highest NSEs are obtained in western sedimentary plains and southeastern of France 435 

where a significant number of streams have dryings regardless of years (Fig. 5). The dominant river 436 

flow regime in these regions is mainly influenced by precipitation and the lowest water levels are 437 

reached in August and September, which corresponds to the monitoring period of the ONDE 438 

database. They benefit from a dense monitoring network (gauging stations, ONDE sites, 439 

piezometers), which allows a better representation of the hydrological functioning of streams 440 

located within the same HER2. Conversely, performance was poor in mountainous areas such as in 441 

the Alps or the Massif Central (NSE < 0.4) where river flow regimes are diversified combining rainfall 442 

and snowmelt influences. By construction, the area of HER2-HR combination in mountains is 443 

reduced, which leads to a limited number of monitoring stations, certainly not sufficient to fit the 444 

models. Moreover, the observation period for ONDE sites was limited between May and September 445 

and dryings can be missed, particularly for streams influenced by snow or ice melting with potential 446 

drying periods in winter. In regions potentially concerned by drying events out of the May-September 447 

period, the actual ONDE monitoring strategy needs to be adapted to provide reliable temporal 448 

observations and extrapolations of drying frequencies. 449 

We have chosen to average the non-exceedance frequencies of flows and groundwater levels in 450 

order to increase the monitoring network. If models had been calibrated using only gauging stations, 451 

performance will have been globally similar, or slightly better, in some HER2-HR combinations 452 

(Fig. 13). Therefore, we could not validate the real gain of using groundwater level data in addition to 453 
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discharge data. This is certainly due to the dominant proportion of the gauging stations compared to 454 

the piezometers. Indeed, in the 2011-2017 dataset, the proportion of gauging stations is greater than 455 

75% for more than 70% of HER2-HR combinations whereas the proportion of piezometers exceeds 456 

70% in only 5% of HER2-HR combinations. Groundwater level data thus have small weight in 457 

regressions for this dataset. However, in the 1989-2017 dataset, the proportion of piezometer is 458 

greater than 70% in more than 30% of HER2-HR combinations. The presence of piezometers 459 

increases the density of the monitoring network in HER2-HR combinations with few available gauging 460 

stations. Thanks to groundwater level data, RPoD can be predicted on more HER2-HR combinations. 461 

Interest in reconstructing the dynamic regional probability of drying  462 

Spatio-temporal simulation of the probability of drying is crucial for advancing our understanding of 463 

IRES ecology and management. Some aquatic species can persist in a dry reach for a few days, weeks 464 

or months, while some are highly sensitive to desiccation (Datry, 2012; Storey and Quinn, 2013; 465 

Stubbington and Datry, 2013). Estimating the total duration of days with drying at the reach scale is 466 

therefore needed to understand biological patterns in river networks (Kelso and Entrekin, 2018). To 467 

our knowledge, no study has proposed to reconstruct daily flow states time series of headwater 468 

streams at the country scale as France (> 500 000 km²) using discrete observations in time and space. 469 

In the literature, studies at national scale remain focused on the detection and the mapping of IRES 470 

because these rivers are historically poorly investigated and their proportion in existing hydrographic 471 

networks remains inaccurate or misunderstood (Nadeau and Rains, 2007; Snelder et al., 2013). 472 

Recently, several studies proposed alternative methodologies in order to estimate metrics in 473 

ungauged IRES (Gallart et al., 2016) or to predict daily streamflow in river basin experiencing flow 474 

intermittence (De Girolamo et al., 2017b) but remain applicable at local scale.  475 

This study provides a first regional approach to use discrete data obtained from regular observations. 476 

The average non-exceedance frequency is a global hydrological statistic that only captures the 477 

hydrological conditions at the regional scale in modelling the RPoD. For rainfall-driven river flow 478 
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regimes, the effect of rainfall events on flow intermittence at the HER2-HR scale is probably indirectly 479 

reflected by the daily discharge and groundwater levels used to calculate the average non-480 

exceedance frequency. However, when more observation data are available, it is likely that including 481 

more detailed descriptors of rainfall events and local geology could improve our approach. In France, 482 

based on the 2011-2017 dataset, both models suggest highest values of RPoD along the 483 

Mediterranean coast (DRPoD>20% > 100 days each year). Rivers in this region are subject to a 484 

predominantly pluvial regime (Class 7; Sauquet et al., 2008), i.e. hot and dry summers follow by 485 

intense rainfall events in autumn, leading to high flows in November (Skoulikidis et al., 2017b). The 486 

catchments in this region are small and particularly reactive to environmental changes, making them 487 

highly sensitive to flow intermittence. Rivers located in the sedimentary plain in western France are 488 

also very impacted by flow intermittence. The regime is also influenced by precipitation and for the 489 

basins subject to intense agriculture significant water abstractions during summer in this region 490 

reduce water availability in rivers and in aquifers which are no longer able to support the low water 491 

levels, leading to increased flow intermittence. Regarding alteration issues in our datasets, we do not 492 

have access to the exact location and the volumes of water withdrawal for irrigation purposes. 493 

However, due to their upstream location, water availability is expected to be low, which may limit 494 

potential withdrawals and as a consequence flow alteration at ONDE sites. The alteration of 495 

groundwater levels is unknown because no information is available. However, in sedimentary plains 496 

where agricultural crops dominate the landscape, we are not sure that no human action affects low 497 

flows. It is important to note that the responses of biological communities to artificial flow 498 

intermittence is still poorly understood compared to natural IRES (Datry et al., 2014b, Skoulikidis et 499 

al., 2017a).  500 

Validity of historical regional probability of drying during severe low-flow period 501 

The second application aimed at reconstructing historical RPoD over the period 1989-2016. Both 502 

models suggest highest values of mean RPoD (> 35%) in 1989-1991, 2003 and 2005. During these dry 503 
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years, predicted values of RPoD result from extrapolation but are consistent with published studies 504 

(Mérillon and Chaperon, 1990, Moreau, 2004). For example, Mérillon (1992) estimated that for the 505 

whole of France, 11 000 km of rivers were dried at the end of summers of 1989 and 1990. Caillouet 506 

et al (2016) found that the low-flow event observed in 1989-1990 was particularly severe in terms of 507 

duration and affected 95% of France. Snelder et al. (2013) showed from 628 gauging stations that the 508 

years 1989-1991, 2003 and 2005 had witnessed particularly high values of duration and frequency of 509 

drying events. They found that regions with the highest probability of drying were located along the 510 

Mediterranean and Atlantic coasts, which is consistent with ONDE observations and with our results.  511 

Both models suggest the same sequence of dry and wet years. However the application of the LLR 512 

model lead to less contrasted RPoD than the LR model (Fig. 12). 513 

To illustrate these differences, the RPoD has been simulated by both models with an extreme F of 1% 514 

(Fig. 14). The RPoDLLR is significantly higher and exceeds 80% in 30% of the study area against only 5% 515 

of the area with the RPoDLR. On the other hand, models simulate low RPoD in HER2-HR combinations 516 

where the RPoDONDE is very low between 2012-2016, even when F was 1% because this situation 517 

never occurred during the calibration period (Fig. 14). The logistic function of the LR model takes an 518 

S-shape which induced a decrease of the slope of the curve toward extreme values observed during 519 

the calibration period (2012-2016). The truncated logarithmic function of the LLR model is not 520 

bounded and RPoD can reach 100% during extreme low flow events by extrapolation. Since the 521 

ONDE network monitoring period does not include a period with drought as severe as in the 1990s, it 522 

is not currently possible to assess the relative performance of the two models. Refining extrapolated 523 

values requires additional information on headwater collected during more severe droughts than 524 

those observed during the last five years and then gives support to the pursuit of the ONDE network.  525 
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5. Conclusion 526 

This paper investigates the spatial and temporal dynamics of the regional probability of drying (RPoD) 527 

of headwater streams by taking benefit from qualitative and discontinuous data provided by the 528 

ONDE network. Two models based on linear or logistic regressions have been developed and 529 

succeeded to reconstruct the temporal dynamics of RPoD. They are based on a strong relationship 530 

between the non-exceedance frequencies of discharges and groundwater levels as a function of the 531 

proportion of drying statuses observed at ONDE sites per HER2-HR combination. LLR and LR models 532 

show similar performance and perform well between 2011 and 2017. The accuracy of predictions is 533 

dependent on the number of gauging stations, ONDE sites and piezometers available to calibrate the 534 

regressions. Regions with the highest performance are located in the sedimentary plains, where the 535 

monitoring network is dense and where the RPoD is the highest. Conversely, the worst performances 536 

are obtained in the mountainous regions. Finally, both models have been used to reconstruct 537 

historical RPoD between 1989 and 2016 and suggest highest values of mean RPoD (> 35%) in 1989-538 

1991, 2003 and 2005. This is consistent with other published studies but the high density of ONDE 539 

sites makes it possible to improve the detection of drying events and lead to better capturing of the 540 

spatial distribution of IRES located at the upstream extent of the hydrographic network. Moreover, 541 

the duration of drying is of importance for ecologists and the prediction of a daily RPoD provides one 542 

key driver for the composition and persistence of aquatic species. 543 

From a methodological point of view, our method relating discrete drying observation obtained by 544 

citizen science networks to continuous daily gauging data seems robust across the highly diverse 545 

(climate and topography) regions of France, and provides good predictions in an independent region 546 

excluded from the calibration process (PoC). These two results suggest a potential application of our 547 

approach in other countries. Citizen science creates opportunities to overcome the lack of 548 

hydrological data and contributes to densify the flow state observation network (Turner and Richter, 549 

2011; Buytaert et al., 2014) and remains less expensive than the installation of additional gauging 550 
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stations to survey flow intermittence. The next step will be to use this regional approach to simulate 551 

the RPoD in future periods by taking into account effects of climate change through predicted 552 

discharge and groundwater level data. This would allow quantification of the evolution of the 553 

probability of drying between the current period and the different climate projections provided by 554 

the latest IPCC Report (IPCC 2014a, 2014b) and would assist decision makers in defining protocols for 555 

restoring flows with appropriate measures to preserve aquatic ecosystems (Woelfle-Erskine, 2017).  556 

Secondly, further work is needed to develop an approach capable of reconstructing the drying 557 

dynamics locally by differentiating each stream. Our approach remains spatially valid to estimate 558 

RPoDs at the scale of HER2-HR combinations but does not allow characterizing the variability of 559 

drying occurrence between nearby streams within these regions. From a methodological point of 560 

view, statistical tools such as neural networks (Breiman, 2001) have shown good ability to assess 561 

both the occurrence and extent of perennial and temporary segments (González-Ferreras and 562 

Barquín, 2017) and could be investigated as an alternative method to reconstruct locally the 563 

temporal variability of drying. 564 
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   Stations with at least one 

drying event 
Stations with drying > 

50% 
Frequency of  

discharge < 1 l/s 

2012 79 19 32.7 

2013 47 14 37.9 

2014 54 15 32.9 

2015 76 21 31.1 

2016 71 19 28.6 

Table 1. Annual statistics on flow intermittence calculated on HYDRO gauging stations between the 749 
1st May and the 30th September 750 

  751 
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Table 2. NSE criteria obtained between 2012 and 2017 with the LLR and LR models calibrated over 752 
the period 2012-2016. 753 

  754 

  
2011-2017 dataset 1989-2017 dataset 

  Calibration Valid. Calibration Valid. 

  
2012 2013 2014 2015 2016 2017 2012 2013 2014 2015 2016 2017 

LLR 
model 

May 0.2 0.0 0.5 0.5 0.6 0.4 0.2 0.0 0.3 0.0 0.7 0.2 

June 0.6 0.3 0.8 0.5 0.8 0.5 0.6 0.3 0.5 0.3 0.8 0.5 

July 0.7 0.5 0.6 0.6 0.8 0.7 0.7 0.5 0.5 0.4 0.8 0.6 

August 0.8 0.6 0.7 0.7 0.8 0.6 0.7 0.5 0.5 0.5 0.8 0.6 

Sept. 0.7 0.8 0.6 0.6 0.7 0.6 0.6 0.7 0.5 0.5 0.6 0.6 

May - Sept 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.5 0.6 0.8 0.7 

LR 
model 

May 0.2 0.0 0.5 0.1 0.6 0.3 0.3 0.0 0.3 0.0 0.7 0.2 

June 0.6 0.5 0.8 0.5 0.8 0.4 0.6 0.4 0.5 0.3 0.7 0.4 

July 0.7 0.6 0.5 0.6 0.8 0.6 0.7 0.4 0.5 0.4 0.8 0.6 

August 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.4 0.5 0.4 0.7 0.5 

Sept. 0.6 0.8 0.6 0.7 0.7 0.6 0.5 0.6 0.4 0.5 0.6 0.6 

May - Sept 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.5 0.6 0.8 0.7 
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 755 

Figure 1. Location of the 3 300 ONDE sites and partition into HER2. 756 

  757 
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 758 

Figure 2. Distribution of the 3 300 ONDE sites and of the 1 600 gauging stations available in the 759 
HYDRO database against: (a) drainage area and (b) elevation. 760 
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 762 
Figure 3. Strategy of parametric modeling (step 1-4) developed to predict (step 5) the regional 763 

probability of drying (RPoD) by HER2-HR combination in France. 764 
  765 
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 766 

Figure 4. (a) Distribution of yearly proportion of drying observed with the ONDE network with the 767 
total yearly number of ONDE observations written in brackets and (b) distribution of proportions of 768 

drying per year and per month. 769 
  770 
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 771 

Figure 5. Distribution of the percentages of drying observed at ONDE sites for the years: (a) 2012-772 
2016, (b) 2012, (c) 2013, (d) 2014, (e) 2015 and (f) 2016. 773 
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 775 

Figure 6. Map of ONDE sites and HYDRO gauging stations having at least one drying. 776 
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 778 

Figure 7. Map of Nash-Sutcliffe criteria (NSE) obtained for each HER2-HR combination between 2012 779 
and 2016 with the 2011-2017 and 1989-2017 datasets according to: (a) and (c) a log-linear regression 780 

(LLR) model; (b) and (d) a logistic regression (LR) model. NSE differences between the 2011-2017 781 
dataset and the 1989-2017 dataset are represented for: (e) LLR model and (f) LR model. 782 

 783 
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 784 

Figure 8. NSE calculated for each HER2-HR combination between 2012 and 2016 with the 1989-2017 785 
dataset as a function of NSE calculated with 2011-2017 dataset with respectively: (a) the LLR model 786 

and (b) the LR model. The color of dots represents the proportion of gauging station and piezometers 787 
lost between the 2011-2017 database and the 1989-2017 database: losses < 50% (white); losses 788 

between 50% and 75% (grey); losses > 75% (black). 789 
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 791 

Figure 9. Comparison between observed proportion of drying RPoDPOC and RPoD predicted by the LLR 792 
and LR models with the 2011-2017 dataset in: (a) 2011, (b) 2012 (c) 2013 and with the 1989-2017 793 

dataset in: (d) 2011, (e) 2012 (f) 2013. 794 
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 796 

Figure 10. Scatter plot of the predicted RPoD (x axis) and drying observed at ONDE sites (y axis) in 797 
2017 and 2012 simulated with the 2011-2017 dataset by: (a) and (c) the LLR model and (b) and (d) 798 

the LR model. 799 
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 801 

Figure 11. Maximum duration of consecutive days with RPoD higher than 20% simulated with LLR 802 
and LR model. 803 
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 805 

Figure 12. RPoD simulated between 1989 and 2016 the 1989-2017 dataset with: (a) the LR model and 806 
(b) the LLR model. The grey area represents the RPoD between the 90th percentile and the 10th 807 
percentile simulated on HER2-HR combination, the black curve represents the average RPoD 808 

simulated by HER2-HR combination and white dots represent the mean RPoDONDE for each 809 
observation dates. Dates mentioned correspond to the day of the maximum average RPoD simulated 810 

by HER2-HR combination (black curve) of each year. 811 
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 813 

Figure 13. Comparison of NSE obtained with regression including only discharge variable as a 814 
function of NSE obtained with including discharge and groundwater level variables in the 2011-2017 815 

dataset with: (a) LLR model and (b) LR model. 816 
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 818 

Figure 14. Regional probability of drying simulated with F = 1% predicted with: (a) the LLR model and 819 
(b) the LR model. 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 
 829 
 830 

 831 


