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Reply to Anne Van Loon 

General comments 

Firstly, the authors need to explain why a regional assessment of headwater drying is needed. What is 

the benefit of Figure 11 over Figure 5? The patterns of drying are the same, so Figure 5 would be 

sufficient to indicate hotspots of drying within France and temporal variability in drying. 

We modified lines 88-94 to better explain that one of our objective is a temporal extrapolation of the 

daily drying probability (eg Fig 11) in regions, based on discrete observations (~5/years, raw data in 

Fig 5). 

********************************************************************************** 

Secondly, the paper is focused on France. This in itself is not a problem, since the methodology and 

results are interesting and useful beyond France, but the author fail to put their findings in a broader 

perspective in the discussion. Literature on IRES research from outside France should be discussed and 

the authors should clarify what is new and interesting about this work from an international 

perspective. On p.19 l.443-452, the authors mention how their results are consistent with previous 

studies, which is great, but they should additionally point out what their study adds. If this is not 

done, the study would be better placed in a Journal like Journal of Hydrology – Regional Studies. 

The authors agree with this remark. We modified the text (lines 465-481 and lines 544-551) to better 

explain the international relevance of our results. 

********************************************************************************** 

 Thirdly, I would like the authors to help the reader more in understanding the methodology. Figure 3 

is helpful, but in the manuscript it is not always clear which data was used for what. Especially when 

explaining the equations on page 9 and 10, the authors could be clearer on which dataset was used, 

which time period. Also in the Results section it should be clarified when they are referring to 

calibration results, validation with POD data, or validation with the year 2017. For example, the first 

paragraph of Section 3.2.3 is quite confusing, because it discusses the performance of the models in 

the calibration period, which was already discussed in Section 3.2.1. Table 2 should be explained 

better; how is it different or similar to the information presented in Figures 7&8? Also, in the first 

paragraph of Section 3.3.2 the authors state that “the simulated RPoD fit well to RPoDONDE” (l.349), 

but wasn’t that already discussed in Section 3.2.1 (Figure 7&8)? 

We modified the section 2.6 to better explain our methodology. The table 2 has been revised. 

We modified the Section 3.2.3 to focus on the annual performance of each model in the revised 

manuscript.  

********************************************************************************** 
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Fourthly, it is unclear whether natural and/or human-influenced sites are selected in this study. In 
Section 2.4, the authors mention that the “observed discharges were not or only slightly altered by 
human actions” (p.7 l.164), but they do not specify whether the other datasets, i.e. groundwater 
levels, ONDE and POD observations, are near-natural too. This is important, as the authors mention in 
the discussion, “the basins are subject of intense agriculture with important water withdrawals during 
summer. Abstractions greatly reduce the water availability in rivers and in aquifers which are no 
longer able to support the low water levels and lead to increased flow intermittence. The responses of 
biological communities to artificial flow intermittence is still poorly understood compared to natural 
IRES.” (p.19 l.435-439) If near-natural and human-influenced data are mixed in the predictions, it will 
be very difficult to understand the reasons for the regional patterns in drying and the statements 
about the highest drying occurring in sedimentary plains due to the low elevation gradient and 
dependence on rainfall might be flawed. 
 

We modified the discussion (lines 487 to lines 499).  

********************************************************************************* 

And finally, it is unclear why two statistical models are used throughout the paper. If they are equally 

suitable from a theoretical perspective, two (or more) models could be used for testing, but then the 

best model should be used to simulate the final results. 

We modified the discussion (lines 517 to lines 522).  

********************************************************************************** 

Specific comments: 

The regional probability of drying needs to be explained. In Section 2.6 the authors only mention that 

RPoD is calculated, but they never explain how this variable is calculated exactly. 

We added the definition of RPoD in section 2.2.  

********************************************************************************** 

The weighted average of the non-exceedance frequencies (F) needs to be explained better. According 

to the Discussion section discharge and groundwater levels are combined (l.411-412), but this is not 

explained clearly enough in the Methods section (l.202-203). How are these non-exceedance 

frequencies of groundwater and discharge averaged since they have such different shapes and ranges 

(see Figure 3). And what do the authors mean with “with respect to the relative proportions of 

gauging stations and piezometers” (l.203-204)? 

We provided the details to better explain F in the section 2.6. 

********************************************************************************** 

The authors conclude that “both models seem able to predict RPoD out of the calibration period” (l. 

330-331), but do a NSE of 0.4 and 0.5 warrant such a statement? 

This section (section 3.2.3) has been modified and the revised manuscript presents NSEs for the 2017 

validation year. Table 2 has been modified and presents these additional results. Figure 10 has been 
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modified and shows the dispersion between predicted RPoD and drying observed at ONDE sites in 

the scatter plot during the validation year 2017 (Fig. 10a and 10b) in comparison with the year 2012 

which obtains the better NSE during calibration period (Fig. 10c and 10d).  

********************************************************************************** 

A significant part of the Conclusion section discusses future work. Is that relevant for this manuscript? 

I would suggest leaving those paragraphs out as they distract from the main message of this paper. 

The authors have shortened this part of the conclusion. 

********************************************************************************** 

Textual comments: 

All your corrections/suggestions have been taken into account. We also took into account the remark 

about the concept of RPoD which will be better detailed and we will present the equation to 

compute the values of RPoDONDE (Eq. 1; Page 6, L140-145). This formula can also be applied to derive 

the values of RPoDPOC (Page 7, L168-170). 
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Reply to Catherine Sefton 

Specific comments 

Given the small number of observations at each site, the claim that the ONDE dataset offers more 

accurate assessment of inter-annual variability than the gauging station network (L376-377) needs 

further justification. Conversely, the claim that the dataset makes it possible to capture drying events 

at the regional scale (L381-382) would benefit from stressing the monitoring of both upstream and 

downstream drying – uniquely each with national extent – in your approach. 

 ********************************************************************************** 

The presentation of summer-only status data as “% drying” needs qualification, as it suggests 

assumptions about the status in the rest of the year. In particular, clarification would be helpful in line 

242, when the context implies it means the number of sites with at least one drying each year (as in 

line 241), rather than the % of all observations at all sites (as in Fig 4).  

We modified these sentences in the revised paper (Lines 271-275 and Lines 443-447).  

********************************************************************************** 

The technique of constructing mean non-exceedance frequency from river flows and groundwater 

level is attractive and robust. However, its limitation in this regional approach of failing to capture the 

effect of local rainfall should be commented upon, especially given the dominance of rainfall-driven 

intermittency stated in section 3.3.2. 

This is discussed in the revised paper (Lines 475-481). 

********************************************************************************** 

The frequency of drying from gauging station data needs to be defined (line 272). Context suggests it 

is flow permanence (dry days or dry months per time period), but frequency in intermittent rivers and 

ephemeral streams can also mean dry spells per time period, and it also needs to be clear and 

justified whether it’s calculated from daily means or monthly means.  

We revised this section (Lines 304-306). 

********************************************************************************** 

In section 3.2.1., the difference in performance between the two explanatory hydrological datasets is 

attributed to the difference in the number of gauging stations and piezometers. The pattern in Figure 

8 is not as clear as the text suggests, and it would be good to comment also on the assumption of 

stationarity and how it might vary between HER2-HR combinations. Similarly, historical 

reconstructions make assumptions about stationarity that need to be acknowledged.  

We revised the description of the applications (Lines 237-244). 

********************************************************************************* 
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The conclusion is a good summary of the results but would benefit from contextual comment, both 

with respect to the stated objective of this paper and more broadly on the contribution being made to 

the field. 

We modified the conclusion in the revised paper in order to highlight the contribution of our study 

(Lines 544-551). 

********************************************************************************** 

Textual and Figure corrections: 

Figure 3, step 1  : It is unclear why HR1, 4 and 6 are shown as types of monitoring site, when section 
2.1 has defined them as types of hydrological regime. 
 
We clarified this aspect on a revised Figure 3. 
 
Figure 10: This would benefit from additional plots for a year that has good NSE, as the text is 
comparing years as well as model performance. 
 
We added additional plots of the year 2012 which obtain the better NSE during the calibration period 
and we added observations vs. predictions of the full year 2017 in a revised Figure 10. The section 
3.2.3 and the Table 2 have been revised in order to present these new results. 
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Abstract 7 

Headwater streams represent a substantial proportion of river systems and many of them have 8 

intermittent flows due to their upstream position in the network. These intermittent rivers and 9 

ephemeral streams have recently seen a marked increase in interest, especially to assess the impact 10 

of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and 11 

time) field observations of flow intermittence help to extrapolate over time the daily probability of 12 

drying (defined at the regional scale). Two empirical models based on linear or logistic regressions 13 

have been developed to predict the daily probability of intermittence at the regional scale across 14 

France. Explanatory variables were derived from available daily discharge and groundwater level data 15 

of a dense gauging/piezometer network, and models were calibrated using discrete series of field 16 

observations of flow intermittence. The robustness of the models was tested using (1) an 17 

independent, dense regional data set of intermittence observations, (2) observations of the year 18 

2017 excluded from the calibration. The resulting models were used to extrapolate the daily regional 19 

probability of drying in France: (i) over the period 2011-2017 to identify the regions most affected by 20 

flow intermittence; (ii) over the period 1989-2017, using a reduced input dataset, to analyze 21 

temporal variability of flow intermittence at the national level. The two empirical regression models 22 

performed equally well between 2011 and 2017. The accuracy of predictions depended on the 23 

number of continuous gauging/piezometer stations and intermittence observations available to 24 
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calibrate the regressions. Regions with the highest performance were located in sedimentary plains, 25 

where the monitoring network was dense and where the regional probability of drying was the 26 

highest. Conversely, worst performances were obtained in mountainous regions. Finally, temporal 27 

projections (1989-2016) suggested highest probabilities of intermittence (> 35%) in 1989-1991, 2003 28 

and 2005. A high density of intermittence observations improved the information provided by 29 

gauging stations and piezometers to extrapolate the temporal variability of intermittent rivers and 30 

ephemeral streams.  31 

Keywords: Intermittent rivers, headwater streams, flow regime, discrete observations, regional scale 32 

1. Introduction 33 

Headwater streams represent a substantial proportion of river systems (Leopold et al., 1964; Nadeau 34 

and Rains, 2007; Benstead and Leigh, 2012). From an ecological point of view, headwater catchments 35 

are at the interface between terrestrial and aquatic ecosystems and they often harbour a unique 36 

biodiversity with a very high spatial turn-over (Meyer et al., 2007; Clarke et al., 2008; Finn et al., 37 

2011). Their contribution to the functioning of hydrographic networks is essential: sediment flows, 38 

inputs of particulate organic matter and nutrients, refugia/colonization, sources for aquatic 39 

organisms (Meyer et al., 2007; Finn et al., 2011). 40 

Headwater streams are generally naturally prone to flow intermittence, i.e. streams which stop  41 

flowing  or dry up at some point in time and space, mainly due to their upstream position in the 42 

network and their high reactivity to natural or human disturbances (Benda et al., 2005; Datry et al., 43 

2014b). These waterways which cease flow and/or dry are referred to as intermittent rivers and 44 

ephemeral streams (IRES). The geographic extent of IRES is poorly documented due to mapping 45 

limitations (digital elevation models, satellite images, aerial photos) and because of their size and 46 

their location (Leopold et al., 1994; Nadeau and Rains, 2007; Benstead and Leigh, 2012; Fritz et al., 47 

2013). However the proportion of IRES in hydrological networks can be very large: for example, they 48 
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represent 60% of the length of rivers in the United States (Nadeau and Rains, 2007) and are 49 

considered to represent probably more than 50% of the global hydrological network (Larned et al., 50 

2010; Datry et al., 2014b). Considering only gauging stations with continuous records may lead to 51 

severe underestimation of their regional extent (Snelder et al., 2013; De Girolamo et al., 2015; Eng et 52 

al., 2016).  53 

Recently, IRESs have seen a marked increase in interest stimulated by the challenges of water 54 

management facing the global change context (water scarcity issues, climate change impact, etc.) 55 

(Acuña et al., 2014; Datry et al., 2016b). Studies have characterized the hydrological functioning of 56 

IRES (Gallart et al., 2012; Costigan et al., 2016; Sarremejane et al., 2017) to assess the effects of flow 57 

intermittence on aquatic ecosystems (Larned et al., 2010; Datry et al., 2016b; Leigh et al., 2016; Leigh 58 

and Datry, 2017). IRES have been altered due to human actions (abstraction, hill dams, low-water 59 

support, pollution, etc.) despite their high and unique biodiversity (Datry et al., 2014; Garcia et al., 60 

2017a). In addition, some perennial streams are becoming intermittent due to global change, water 61 

abstraction or river damming (Skoulikidis, 2009) and the extent of IRES may increase in the future 62 

(Döll and Schmied, 2012; Jaeger et al., 2014; Pumo et al., 2016; Garcia et al., 2017b; De Girolamo et 63 

al., 2017).  64 

A better hydrological understanding of IRES is now essential and an improved management requires 65 

knowing both the spatial extent and arrangement of IRES within the river network (Boulton, 2014; 66 

Acuña et al., 2017). Efforts have been made to estimate the spatial distribution of IRES at the 67 

catchment scale (Skoulikidis et al., 2011; Datry et al., 2016a), at the regional scale (Gómez et al., 68 

2005) and at the national scale (Snelder et al., 2013). In France, Snelder et al. (2013) suggested a 69 

classification of IRES regimes and spatialized their distribution. Based on an analysis of the 70 

continuous gauging network, they showed that the proportion of IRES accounted for 20 to 39% of the 71 

hydrographic network. The accuracy of the obtained map is highly dependent on the density of the 72 
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flow monitoring network. The installation of additional gauging stations is expensive and headwaters 73 

systems may be difficult to monitor due to active geomorphology processes or to difficult access. 74 

As a promising tool to advance the mapping of IRES, citizen science creates opportunities to 75 

overcome the lack of hydrological data and lead to densify the flow state observation network 76 

(Turner and Richter, 2011; Buytaert et al., 2014; Datry et al., 2016b) and could be used for 77 

hydrological model calibration (van Meerveld et al., 2017). In France, Datry et al. (2016a) used such 78 

data to describe the spatiotemporal dynamics of aquatic and terrestrial habitats within five river 79 

catchments located in the western part of France. They showed that processes resulting in flow 80 

intermittence were complex at a fine scale and could vary substantially among nearby catchments. 81 

However, these data were only available in a few catchments, limiting any attempt to map large-82 

scale patterns of flow intermittence in river networks. Since this first attempt, new sources of 83 

observational data have become available in France thanks to the ONDE network (Observatoire 84 

National des Etiages, https://onde.eaufrance.fr). This unique network in Europe provides frequent 85 

discrete field observations (five inspections per year) of the flow intermittence across more than 3 86 

300 sites throughout France and located mostly in headwater areas. 87 

However discrete observations of intermittence do not provide any information on the persistence of 88 

dry conditions between two consecutive dates of observation. The rewetting-drying events could 89 

have significant impacts on communities whose survival is conditioned by the duration/frequency of 90 

drying. The duration of drying is of importance for ecologists, as one key driver of the composition 91 

and persistence of aquatic species (Vardakas et al., 2017; Kelso and Entrekin, 2018, Vadher et al., 92 

2018). Temporal extrapolations of river flow regime are thus necessary to summarize the different 93 

facets of flow intermittence at various time scales, from daily to inter-annual.  94 

The main objective of this paper is to use discrete (in space and time) field observations of flow 95 

intermittence to extrapolate over time the daily probability of drying (averaged at the regional scale). 96 

We first carried out a quantitative analysis of the ONDE network data in order to characterise the 97 
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information that they contribute in comparison with the data resulting from the conventional 98 

hydrological monitoring. Then, we developed two empirical models based on linear or logistic 99 

regressions to convert discontinuous series of flow intermittence observation from ONDE into 100 

continuous daily probability of drying, defined at the regional scale across France. Explanatory 101 

variables were derived from available continuous daily discharge and groundwater level data of a 102 

dense gauging/piezometer network, and models were calibrated using the ONDE discrete 103 

observations. The robustness of the models was tested using (1) an independent, dense regional data 104 

set of intermittence observations and (2) observations of the year 2017 excluded from the 105 

calibration. Finally, resulting models were used to extrapolate the regional probability of drying in 106 

France: (i) over the period 2012-2017 to identify the regions most affected by flow intermittence; (ii) 107 

over the period 1989-2017, using a reduced input dataset, to analyze temporal variability of flow 108 

intermittence at the national level.   109 

2. Material and Methods 110 

2.1. Study area 111 

The study area is continental France and Corsica (550 000 km²). France is located in a temperate zone 112 

characterized by a variety of climates due to the influences of the Atlantic Ocean, the Mediterranean 113 

Sea and mountain areas. 114 

We defined regions as combinations of "level-2 Hydro-EcoRegions" (HER2) and classes of 115 

hydrological regimes (HR). Hydro-EcoRegion (HER) corresponds to a typology developed for river 116 

management in accordance with the European Water Framework Directive. The Hydro-EcoRegion  117 

classification includes 22 "level-1 Hydro-EcoRegions " (HER1) based on geology, topography and 118 

climate, and considered as the primary determinants of the functioning of water ecosystems 119 

(Wasson et al., 2002). HER2 correspond to a finer classification accounting for stream size. HER2 have 120 

a mean drainage area of 5 000 km² (between 100 and 27 000 km²). The hydrological regimes classes  121 
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(HR) were identified by reference to the work carried out by (Sauquet et al., 2008) where it was 122 

possible to distinguish rainfall-fed regimes, transition and snowmelt-fed river flow regimes. Overall, 123 

we used 280 regions (that is, HER2-HR combinations) with a mean drainage area of 1 400 km² 124 

(between 4 and 20 000 km²). 125 

2.2. ONDE dataset discrete national flow-state observations 126 

The ONDE network was set up in 2012 by the French Biodiversity Agency (AFB, formerly ONEMA) 127 

with the aim of constituting a perennial network recording summer low flow levels and used to 128 

anticipate and manage water crisis during severe drought events (Nowak and Durozoi, 2012).  129 

There are 3 300 ONDE sites distributed throughout France (Fig. 1). ONDE sites are located on 130 

headwater streams with a Strahler order strictly less than 5 and balanced across HER2 regions to take 131 

into account the representativeness of the hydrological contexts (Nowak and Durozoi, 2012). The 132 

ONDE network is stable over time. Observations are made monthly (around the 25th) by trained AFB 133 

staff, between April and September, every year since 2012. One of the statuses is assigned at each 134 

observation among “visible flow”, “no visible flow” and “dried out”. Here, we consider two 135 

intermittency statuses: “Flowing” when there is visible flow across the channel (“visible flow”) and 136 

“Drying” when the channel is entirely devoid of surface water (“dried out”) or when there is still 137 

water in the river bed but without visible flow (disconnected pools, lentic systems) (“no visible 138 

flow”). The proportion of drying sites determined on the basis of the ONDE network for each HER2-139 

HR combination is considered as a good estimate of the daily Regional Probability of Drying 140 

(RPoDONDE) of streams with a Strahler order less than 5. Observed values of RPoDonde are calculated as 141 

follows: 142 

𝑅𝑃𝑜𝐷𝑂𝑁𝐷𝐸(𝑑) =
(𝑁𝑑𝑟𝑦𝑖𝑛𝑔)𝐻𝐸𝑅2−𝐻𝑅

(𝑁𝑓𝑙𝑜𝑤𝑖𝑛𝑔+𝑁𝑑𝑟𝑦𝑖𝑛𝑔)𝐻𝐸𝑅2−𝐻𝑅
    (1) 143 

where d denotes the observation date of the ONDE network, Ndrying and Nflowing are the number 144 

of drying and of flowing statuses observed at ONDE sites located in a same HER2-HR combination at 145 

the observation date d, respectively. 146 
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Figure 2 illustrates the complementary nature of the ONDE network to the already existing French 147 

river flow monitoring network HYDRO (http://www.hydro.eaufrance.fr). The ONDE sites and a set of 148 

1 600 gauging stations available in the HYDRO database have been projected on the river network 149 

RHT (Theoretical Hydrographic Network; ; Pella et al., 2012) and the drainage area and the elevation 150 

have been estimated. A large part of ONDE sites are located on small headwater streams with 70% of 151 

the sites with a drainage area of less than 50 km² while most of the gauging stations record flows of 152 

catchment of medium size (between 100 and 500 km²). Only four stations display a drainage area of 153 

more than 1 000 km². The distributions of elevation of the two databases look similar. The ONDE 154 

sites are mostly located on rivers with an elevation below 200 m (75% of sites). The ONDE sites are 155 

sparse at high elevations (95 sites located above 1 000 m). This bias is likely due to access difficulties 156 

in mountainous areas. 157 

2.3. POC dataset: a denser regional dataset used for independent 158 

validation 159 

A spatially denser citizen science dataset of flow-state observations in western France (Poitou-160 

Charente region) (http://atlas.observatoire-environnement.org) has been used as validation dataset 161 

to test the robustness of our models calibrated with the ONDE dataset. The POC monitoring (2011-162 

2013) covered more than 4 000 km of river length across 20 catchments. Each river was entirely 163 

surveyed every 1st and 15th of each month between June and October, resulting in eight observations 164 

per year. Four intermittency statuses were available in the POC dataset (Datry et al. 2016a) but to 165 

allow comparisons with the ONDE network, we pooled the two “Flowing” and “Low Flow” POC 166 

statuses into a single “Flowing” status and the two "No flow" and "Dry" statuses into the "Drying" 167 

status. This dataset is available as maps with flow states assigned to the inspected streams. Values of 168 

RPoD at each POC observation date is calculated in the same way as RPoDONDE. Thus RPoDPOC is given 169 

by the ratio between the number of drying and the total number of observations at each inspected 170 

streams located in a same HER2-HR.    171 
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2.4. Explanatory discharge dataset 172 

Two discharge datasets (continuous daily time series) were used as explanatory variables of discrete 173 

intermittence observations, with the objective of extrapolating the intermittence frequency over 174 

time. The two datasets included time series of daily discharge extracted from the French River 175 

discharge monitoring network ("HYDRO database", http://www.hydro.eaufrance.fr/): (i) the 2011-176 

2017 dataset with full records available between the 01/01/2011 and 31/06/2017; (ii) the 1989-2017 177 

dataset concerning a reduced number of gauging stations and providing daily discharges between 178 

the 01/01/1989 and 31/06/2017. According to the hydrometric services in charge of the selected 179 

gauging stations, high quality of measurements was ensured and observed discharges were not or 180 

only slightly altered by human actions. 181 

The 2011-2017 dataset was composed of 1 600 gauging stations distributed across France. Each 182 

stream where a HYDRO gauging station is located has been defined as IRES or perennial. Several 183 

definitions of IRES can be found in the literature (Huxter and van Meerveld, 2012, Eng et al., 2016; 184 

Reynolds et al., 2015). In this study, we considered stations as intermittent when five consecutive 185 

days with discharge less than 1 liter per second has been observed during the period of record.  186 

The 1989-2017 dataset consisted of 630 gauging stations selected with less than 5% of missing data 187 

(continuous or not) during the period 1989-2017. This dataset has been thereafter used to estimate 188 

the proportion of drying before the creation of the ONDE network.  189 

2.5. Explanatory groundwater level dataset 190 

Because groundwater resources influence stream intermittence, we used available time series of the 191 

daily groundwater level available in the ADES database (http://www.ades.eaufrance.fr) at sites 192 

identified as involved in groundwater/surface water exchanges (Brugeron et al., 2012). Similarly to 193 

the discharge data, two sets of groundwater level data with records available over the two periods 194 

2011-2017 and 1989-2017 have been selected. The level of alteration of groundwater levels by water 195 

withdrawal is unknown because no information is available at this scale. 196 
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The 2011-2017 dataset was composed by 750 piezometers with daily groundwater level data with 197 

less than 5% of missing data (continuous or not). The selection of 1989-2017 dataset was not easy 198 

because few groundwater level measurements were available in the database before 2000. For 199 

example, only five piezometers met the tolerance limit on missing values considered for the 1989-200 

2017 discharge dataset. In order to extend the dataset and because groundwater levels were less 201 

variable than stream discharges, the proportion of permitted gaps was fixed to 20% between 1989 202 

and 2017. This led us to select 150 piezometers. Thereafter, when the missing data period was less 203 

than 10 days, groundwater levels were reconstructed by linear interpolation in order to reduce the 204 

proportion of missing values to less than 5% for the 150 piezometers selected. 205 

2.6. Statistical modeling of regional probability of drying 206 

The parametric modeling strategy was based on 5 main steps (Fig. 3). The first step consisted in 207 

selecting all ONDE sites, gauging stations and piezometers located in a same HER2-HR combination. 208 

When the total number of gauging stations and piezometers was less than 5 for a HER2-HR 209 

combination, we merged the HER2-HR combination with a neighboring one located in the same 210 

HER1. This was done for 20 of the 280 regions. The second step consisted in calculating the RPoDONDE 211 

for each observation date (5 per year) and for all selected ONDE sites. In a third step, a flow duration 212 

curve was determined for each selected HYDRO gauging station. The average non-exceedance 213 

frequency of the observed discharge at gauging stations was averaged for the date of observation (d) 214 

at ONDE sites and the 5 days preceding the observation. The lag of six days accounted for the fact 215 

that ONDE survey dates in a region could differ by 5 days, and accounted for the inertia of physical 216 

processes (e.g. storage capacity); it was chosen after a few trials. The same operation was carried out 217 

with selected piezometers. Finally the hydrological conditions are described by the average (across 218 

stations) F of the non-exceedance frequencies of discharge (Fq) and groundwater levels (Fgw) with 219 

respect to the relative proportions of gauging stations and piezometers: 220 

F(d) =
∑ 𝐹𝑞𝑖
𝑖=𝑁𝑞
𝑖=1 +∑ 𝐹𝑔𝑤𝑗

𝑗=𝑁𝑔𝑤
𝑗=1

(𝑁𝑞+𝑁𝑔𝑤)      (2) 221 
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Where Fqi denotes the average non-exceedance frequency of discharge at the gauging station i 222 

calculated between d and d-5; Fgwj the average non-exceedance frequency of groundwater levels at 223 

the piezometer j calculated between d and d-5; Nq the number of gauging stations selected in a 224 

HER2-HR combination and Ngw the number of selected piezometers selected in the HER2-HR 225 

combination. The fourth step consisted in estimating the RPoDONDE as a function of F. Two types of 226 

regression were fitted for each HER2-HR combination across France:  227 

a truncated logarithmic linear regression (LLR), with two parameters α1 and β1: 228 

RPoD𝐿𝐿𝑅(𝑑) = {
min⁡(1; 𝛼1 × ln(𝐹(𝑑)) + 𝛽1)⁡𝑤ℎ𝑒𝑛⁡𝐹 < 𝐹0

0⁡𝑤ℎ𝑒𝑛⁡𝐹 ≥ 𝐹0
              (3) 229 

F0 was fixed as the value of non-exceedance frequencies of discharge and groundwater levels at 230 

which no more drying was observed across the ONDE network (RPoDONDE = 0).  231 

a logistic regression (LR), with two parameters α2 and β2: 232 

𝐿𝑜𝑔𝑖𝑡(RPoD𝐿𝑅(𝑑)) = 𝑙𝑛 (
RPoD𝐿𝑅(𝑑)

1−RPoD𝐿𝑅(𝑑)
) = 𝛼2 × 𝐹(𝑑) + 𝛽2                 (4) 233 

LR is a multivariate analysis method well known for its relevance in binary classification issues (Lee, 234 

2005).  The RPoDLR was then calculated as following Eq. 5: 235 

RPoD𝐿𝑅(𝑑) =
exp⁡(𝛼2+𝛽2𝐹(𝑑))

1+exp⁡(𝛼2+𝛽2𝐹(𝑑))
         (5) 236 

Models were calibrated against observation available during the same period, 2012-2016, leaving out 237 

the year 2017 for an independent validation test. However, for the continuous temporal 238 

extrapolations (one over 2011-2017, the other 1989-2017), two models were built with different 239 

piezometers and gauging stations selected as explanatory variables (see section 2.4 and 2.5). Thus 240 

there are two set of regressions parameters specific to each dataset for both LLR and LR models 241 

leading to different prediction of RPoD.  242 
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Finally, in a fifth step, a daily regional probability of drying (RPoD) could be predicted for each HER2-243 

HR combination with both models following analytical formulas (Eq. 3 and Eq. 5).  244 

2.7. Model robustness: validation using independent data sets 245 

We used (1) the POC independent data and (2) the 2017 ONDE year to test the robustness of the LLR 246 

and LR model to predict the intermittence frequency (1) in space and (2) over time. Note than when 247 

predicting on the POC datasets, a new model was calibrated using only ONDE sites located out of 248 

POC streams. 249 

For both datasets (POC and ONDE 2017), the relative performance of the LLR and LR models was 250 

compared in multiple ways using both the 2011-2017 and the 1989-2017 datasets. The performance 251 

of each model was evaluated by the Nash-Sutcliffe efficiency criterion (NSE) (Nash and Sutcliffe, 252 

1970): 253 
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
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



              (6) 254 

where RPoDONDEi is the average proportion of drying over the ONDE sites located in the HER2-HR 255 

combination at the ith observation date, RPoDpri is the predicted regional probability of drying at the 256 

ith observation date, ONDEiRPoD  is the mean of RPoDONDEi over the period and N is the total number 257 

of observations in the ONDE network for each HER2-HR combination. 258 

2.8. Model prediction 259 

Both models have been calibrated over the period 2012-2016 and were then applied in a 5th step to 260 

predict the daily RPoD in France (Fig. 3). The RPoD was firstly predicted over the period 2012-2016 in 261 

order to identify the most affected regions by flow intermittence using the 2011-2017 datasets. The 262 

second application concerned the extrapolation of RPoD in France over a longer period using the 263 

1989-2017 dataset to analyze the temporal variability of flow intermittence at the national level. It 264 
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should be noted that model predictions only concern streams with a Strahler order lower than 5 due 265 

to the ONDE sites location. 266 

3. Results 267 

3.1. Quantitative analysis 268 

3.1.1. Inter-annual intermittence according to the raw discrete ONDE network 269 

A total of 1 127 ONDE sites have recorded at least one drying during the period 2012-2016 270 

representing 35% of the 3 300 ONDE sites. From the ONDE database the proportion of drying at the 271 

country scale was computed as the total number of drying over France divided by the total number 272 

of ONDE observations available during the same year (Fig. 4a). Between 2012 and 2016, the most 273 

critical year is 2012 with 15% of drying followed by 2016 (14%) and 2015 (14%) (Fig. 4a). The years 274 

2013 and 2014 are less affected with only 6% of drying observed (Fig. 4a).  275 

Dryings mainly occur between July and September but the evolution of the month’s proportion of 276 

drying can differ between years (Fig. 4b). In more detail, water levels in 2012 decrease in August 277 

when the proportion of drying is 27% and the situation lasts until the end of September with 25% of 278 

drying (Fig. 4b). In 2013, the drying proportion is lower than in 2012 but follows the same pattern 279 

with an increase at the end of July (3%) and reaching 9% in August and in September. In 2014, the 280 

first peak of drying (5%) is reached early in June. Then, the drying proportion decreases in July (3%) 281 

and increases slightly in August 4% and reaching 7% in September. In 2015, the critical period occurs 282 

at the end of July with 19% of drying and the proportion of drying decreases slightly at the end of 283 

August (17%) until it reaches 9% in September. Finally, in 2016, the situation is gradually deteriorates 284 

every month, reaching 20% of drying in August, and 28% in September.  285 

Between 2012 and 2016, a proportion of drying higher than 50% is recorded on 93 ONDE sites and 286 

their spatial distribution is very patchy at the France scale (black and dark grey dots, Fig. 5a). There 287 

are only 158 ONDE sites with at least one drying every year and a variability of drying locations can 288 
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be observed across years. The south-east of France is heavily affected by rivers drying where drying 289 

proportion can exceed 75% annually (black dots, Fig. 5b-5f). The north-western part of France is less 290 

affected, although many ONDE sites show a drying proportion observed above 50% in 2014 and 2016 291 

(Fig. 5d and 5f). Northeastern France is rather affected in 2012, 2014 and 2015 where several ONDE 292 

sites have more than 75% of drying (Fig. 5b, 5d and 5e). The south-west France is particularly 293 

affected in 2012 and 2015 (Fig. 5b and 5e).  294 

3.1.2. Comparison of flow intermittence between the raw ONDE and HYDRO datasets 295 

The HYDRO dataset includes 90 gauging stations located on streams considered as IRES, which 296 

represents only 5.6% of the 1 600 gauging stations against 35% for ONDE sites. At the national scale, 297 

the number of IRES seems underrepresented in the south-western, central, northeastern part of 298 

France and Corsica in comparison with sites experiencing drying in the ONDE network (Fig. 6). 299 

The number of gauging stations with at least one drying (discharge < 1 l/s) observed between May 300 

and September varies between 79 in 2012 and 47 in 2014 (Table 1). The lowest numbers of gauging 301 

stations with drying are observed in the years 2013 and 2014 while the highest numbers are related 302 

to the years 2012, 2015 and 2016. This finding is consistent with the analysis of the ONDE network 303 

(Fig. 5a, d). The frequency of drying, corresponding to the ratio between the number of dry days and 304 

the total number of days between the 1st May and the 30th September (153 days), in contrast, is quite 305 

constant over the years (30%). The number of gauging stations with drying over more than 50% of 306 

the time varies little between wet years (14 in 2013) and dry years (21 in 2015) unlike ONDE 307 

observations, suggesting a significant temporal variability in the frequency of drying between dry and 308 

wet years (Fig. 5). 309 

3.2. Validation of the predicted regional probability of drying 310 

3.2.1. Regression results 311 

LLR and LR models, calibrated over the period 2012-2016, perform well with the 2011-2017 dataset 312 

with a mean NSE of 0.8 with LR model against 0.7 with LLR model (Fig. 7a and b). With the LR model, 313 
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50% of the HER2-HR combinations obtain a NSE greater than 0.8, representing a coverage of 65% of 314 

the French territory, while 33% of HER2-HR combinations display a NSE higher than 0.8 (50% of 315 

France coverage) with the LLR model. Regions with the highest performances are located in 316 

sedimentary plains, in the south-east of France and in the Pyrenees Mountains. Conversely, the 317 

worst performances are obtained in the mountainous regions of Alps as well as in the Massif Central. 318 

In these regions the size of the HER2 is rather small and the number of ONDE sites, gauging stations 319 

and piezometers per HER2-HR combinations are certainly too few to derive reliable relations. Despite 320 

pooling, estimating RPoD remains impossible for 9 HER2-HR combinations (4.5% of France coverage) 321 

because the number of ONDE sites, gauging stations and piezometers sites is insufficient (less than 5) 322 

to perform the regression analysis. 323 

The performance level is lower when the 1989-2017 dataset is used in models: the mean NSE with 324 

the LR and LLR models is 0.7 and 0.6, respectively (Fig. 7c and d).  325 

The LR and LLR models lead to similar performance range. However, the LR model outperforms the 326 

LLR model in terms of number of HER2-HR combinations with NSE greater than 0.8 (Fig. 7c and d). 327 

The performance is sensitive to the dataset. As expected, the best results are obtained with the 328 

denser network. A decrease in NSE by more than 0.2 is identified for 5% of the French territory when 329 

the 1989-2017 dataset is used (black areas; Fig. 7e and f). The regions with the most degraded values 330 

of NSE are small HER2-HR combinations located in eastern France (Fig. 7e and f). 331 

The decrease in performance is mainly due to the difference in number of gauging stations and 332 

piezometers between the two datasets (Fig. 8). The most degraded NSEs correspond to HER2-HR 333 

combinations where the number of gauging stations and piezometers considered in regressions is 334 

the most reduced, i.e. with a loss higher than 50% of stations (black and dark grey dots; Fig 8a and b). 335 

However, the decrease in performance remains low (difference in NSE is below 0.1 for 75% and 64% 336 

of HER2-HR combinations with LLR and LR model, respectively). 337 
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3.2.2. Comparison to the POC database 338 

The observed proportion of drying RPoDPOC is rather well simulated by both LLR and LR models with 339 

the 2011-2017 explanatory dataset (NSE > 0.7 except for the year 2011, Fig. 9). In addition, the 340 

models are able to capture small fluctuations of RPoDPOC during the summer period. The best results 341 

during the year 2011 are obtained with the LLR model (black curve; Fig. 9) and the LR model 342 

overestimates RPoDPOC by 3% (dashed grey curve; Fig. 9). In 2012, the decline in water levels is more 343 

gradual than in 2011 and a marked peak is reached in September with 40% of RPoDPOC (Fig. 9). This 344 

pattern is well reproduced by both models with a good fit to all observation points (Fig. 9). The year 345 

2013 is less affected by drying occurrence and the maximum RPoDPOC does not exceed 20% (Fig. 9). 346 

Curves of both models fit to observations well until the end of August. Note that the LR model is 347 

slightly closer to the observations around the peak in September compared to the LLR model. 348 

However the LR model overestimates the RPoDPOC at the end of September and in October. 349 

When the 1989-2017 dataset is used as explanatory variables, the simulations of RPoD are weakly 350 

degraded with both models (Fig. 9d, e, f). However the simulated pattern is similar to the observed 351 

one. The LLR model outperforms the LR model during the three years of validation with the 1989-352 

2017 dataset (black curve; Fig. 9d, e, f). 353 

3.2.3. Temporal patterns assessment of models between 2012 and 2017 354 

During the calibration period, the LLR and LR models tend to better simulate the RPoD during dry 355 

years 2012 and 2016 (NSE = 0.8 with LLR and LR models; Tab. 2) than during wet years (e.g. 2014 with 356 

NSE < 0.7). The NSEs are lower during the months of May and June when few drying events are 357 

observed while NSEs are much better during the driest months of August and September. 358 

During the validation year of 2017, both models obtain a similar performance over the year 359 

independent of datasets (NSE = 0.7).  360 

Monthly NSEs in 2017 follow the same trend as monthly NSEs of the calibration period with lower 361 

NSEs in May (NSEs < 0.4) and June (NSEs = 0.5) and higher NSEs in July, August and September (NSEs 362 
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= 0.6) with both models independent of datasets. Figure 10 shows the dispersion between predicted 363 

RPoD and drying observed at ONDE sites in the scatter plot during the validation year 2017 (Fig. 10a 364 

and 10b) in comparison with the year 2012 which obtains the better NSE during calibration period 365 

(Fig. 10c and 10d). The NSEs obtained in 2017 are 0.72 with the LLR model and 0.68 with the LR 366 

model against 0.83 and 0.81 in 2012, respectively. The performance is slightly lower in 2017 but 367 

remains acceptable with NSEs close to 0.7 and both models seem able to predict RPoD out of the 368 

calibration period. 369 

3.3. Application of regional models 370 

3.3.1. Modeling of intermittencies severity between 2012 and 2016 371 

Both models have been applied using the 2011-2017 dataset. Figure 11 displays the maximum 372 

number of consecutive days (DRPoD>20%) with RPoD higher than 20% simulated by both LLR and LR 373 

models. The most affected regions are located in the south-east of France and in the sedimentary 374 

plains which are consistent with the spatial pattern obtained from the ONDE observations (Fig. 5). 375 

The most impacted year followed the same hierarchy: the year 2012 is the most critical year with 376 

30% of France displaying DRPoD>20% higher than 60 days followed by the year 2015 (20% of France with 377 

DRPoD>20% > 60 days) and 2016 (15% of France with DRPoD>20% > 60 days) (Fig. 11). The years 2013 and 378 

2014 are weakly affected with 5% and 6% of the France with DRPoD>20% higher than 60 days, 379 

respectively.  380 

The LR model tends to simulate shorter periods of drying, particularly in HER2-HR combinations 381 

located in the South-East France in 2013 and 2014 (Fig. 11). However, there is an overall agreement 382 

between RPoD simulated by both models in terms of spatial and temporal extent of dry streams.  383 

3.3.2. Reconstitution of historical regional probability of drying 384 

The trend temporal patterns of RPoD predicted by the two models, considering the 1989-2017 385 

dataset, look similar between 1989 and 2016 and the simulated RPoD fit well to RPoDONDE (Fig. 12).  386 
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The proportion of drying is highly variable over the total simulation period, with alternating dry (1989 387 

to 1991, 2003 to 2006, 2009 to 2012) and wet (1994 to 1995, 2000 to 2002; 2013 to 2014) phases. In 388 

spite of interannual variability, peaks of RPoD occur regularly between August and September, 389 

whether in dry years or wet years. This finding is consistent with the preeminence of rainfall fed river 390 

flow regime with low flows in summer, in France. 391 

The highest values of RPoDs (above 35% over France) are observed in 1989, 1990, 1991, 2003 and 392 

2005 (black curve, Fig. 12a and b). The RPoDs simulated during these dry years are out of the range 393 

of the observed values over the calibration period (2012-2016). Estimations are thus uncertain. 394 

However, the high values of RPoD are consistent with observations reported in previous studies (e.g. 395 

Larue and Giret, 2004; Snelder et al., 2013; Caillouet et al., 2017). Conversely, the years less affected 396 

by drying are simulated in 1994, 2001 and 2014 with an average RPoD below 15% throughout the 397 

year (black curve, Figs. 12a and b).  398 

Results obtained with the LLR model are more contrasted in terms of extreme values than those 399 

obtained with the LR model (Fig. 12b).  400 

4. Discussion 401 

ONDE network complementarity with conventional flow monitoring network 402 

The analysis of the ONDE observations shows that the proportion of rivers undergoing drying is 403 

significantly higher (35%) than that observed with the conventional monitoring (HYDRO database, 404 

8%). This proportion although related to a short period of records 2012 and 2016 is consistent with 405 

the percentage of 39% of river segments classified as intermittent by Snelder at al. (2013). This 406 

analysis confirms the under-representation of IRES in the French HYDRO database, and probably 407 

others in other countries (flow are often uncontrolled in IRES). Without gauging stations located on 408 

headwaters, Snelder et al. (2013) were unable to predict IRES in eastern France (see Fig. 9, pp. 2694). 409 

The high density of ONDE sites makes it possible to improve the detection of drying and lead to 410 
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better understand the spatial distribution of IRES located at the upstream extent of the hydrographic 411 

network. The ONDE network encompasses various hydrological conditions which provides a more 412 

accurate assessment of inter-annual variability, differentiating between dry years (2012, 2015 and 413 

2016) and wet years (2013, 2014) with clearly few drying occurrences.  414 

The validation of the LR and LLR models against the spatially dense POC database also demonstrates 415 

the spatial representativeness of the ONDE network. Thanks to the qualitative information provided 416 

and to models such as statistical models developed here, it is now possible to capture drying event at 417 

the regional scale.  418 

The ONDE sites are located on small headwater streams which can be very reactive to external 419 

disturbances (rainfall deficit, change in air temperature, increase in water withdrawals, etc.) and by 420 

nature are more likely to be IRES. The gauging stations available in the HYDRO database are located 421 

on larger streams and their hydrologic response to changes in external factors (environmental or 422 

human) is slower and drying occurred with greater inertia under temperate climate. Their uneven 423 

distribution across France does not allow to accurately characterize the inter-annual variability of 424 

drying development. Overall, the ONDE network provides very complementary information to 425 

conventional flow monitoring, leading to a better understanding of the processes of drying in 426 

upstream catchments. 427 

Dependency on spatial gauging networks density  428 

The performance obtained with the LR and LLR models is slightly better with the 2011-2017 dataset 429 

(mean NSE = 0.75) than those obtained with the 1989-2017 dataset (mean NSE > 0.65), whose 430 

network is less dense. HER2-HR combinations are the most degraded where the number of 431 

monitoring stations is the most decreased between the two datasets. The accuracy of the predictions 432 

is dependent on the number of gauging stations, ONDE sites and piezometers available to calibrate 433 

the regressions. Highest NSEs are obtained in western sedimentary plains and southeastern of France 434 

where a significant number of streams have dryings regardless of years (Fig. 5). The dominant river 435 
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flow regime in these regions is mainly influenced by precipitation and the lowest water levels are 436 

reached in August and September, which corresponds to the monitoring period of the ONDE 437 

database. They benefit from a dense monitoring network (gauging stations, ONDE sites, 438 

piezometers), which allows a better representation of the hydrological functioning of streams 439 

located within the same HER2. Conversely, performance was poor in mountainous areas such as in 440 

the Alps or the Massif Central (NSE < 0.4) where river flow regimes are diversified combining rainfall 441 

and snowmelt influences. By construction, the area of HER2-HR combination in mountains is 442 

reduced, which leads to a limited number of monitoring stations, certainly not sufficient to fit the 443 

models. Moreover, the observation period for ONDE sites was limited between May and September 444 

and dryings can be missed, particularly for streams influenced by snow or ice melting with potential 445 

drying periods in winter. In regions potentially concerned by drying events out of the May-September 446 

period, the actual ONDE monitoring strategy needs to be adapted to provide reliable temporal 447 

observations and extrapolations of drying frequencies. 448 

We have chosen to average the non-exceedance frequencies of flows and groundwater levels in 449 

order to increase the monitoring network. If models had been calibrated using only gauging stations, 450 

performance will have been globally similar, or slightly better, in some HER2-HR combinations 451 

(Fig. 13). Therefore, we could not validate the real gain of using groundwater level data in addition to 452 

discharge data. This is certainly due to the dominant proportion of the gauging stations compared to 453 

the piezometers. Indeed, in the 2011-2017 dataset, the proportion of gauging stations is greater than 454 

75% for more than 70% of HER2-HR combinations whereas the proportion of piezometers exceeds 455 

70% in only 5% of HER2-HR combinations. Groundwater level data thus have small weight in 456 

regressions for this dataset. However, in the 1989-2017 dataset, the proportion of piezometer is 457 

greater than 70% in more than 30% of HER2-HR combinations. The presence of piezometers 458 

increases the density of the monitoring network in HER2-HR combinations with few available gauging 459 

stations. Thanks to groundwater level data, RPoD can be predicted on more HER2-HR combinations. 460 
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Interest in reconstructing the dynamic regional probability of drying  461 

Spatio-temporal simulation of the probability of drying is crucial for advancing our understanding of 462 

IRES ecology and management. Some aquatic species can persist in dry reach for a few days, weeks 463 

or months, while some are highly sensitive to desiccation (Datry, 2012; Storey and Quinn, 2013; 464 

Stubbington and Datry, 2013). Estimating the total duration of days with drying at the reach scale is 465 

therefore needed to understand biological patterns in river networks (Kelso and Entrekin, 2018). To 466 

our knowledge, no study has proposed to reconstruct daily flow states time series of headwater 467 

streams at the country scale as France (> 500 000 km²) using discrete observations in time and space. 468 

In the literature, studies at national scale remain focused on the detection and the mapping of IRES 469 

because these rivers are historically poorly investigated and their proportion in existing hydrographic 470 

networks remains inaccurate or misunderstood (Nadeau and Rains, 2007; Snelder et al., 2013). 471 

Recently, several studies proposed alternative methodologies in order to estimate metrics in 472 

ungauged IRES (Gallart et al., 2016) or to predict daily streamflow in river basin experiencing flow 473 

intermittence (De Girolamo et al., 2017b) but remain applicable at local scale.  474 

This study provides a first regional approach to use discrete data obtained from regular observations. 475 

The average non-exceedance frequency is a global hydrological statistic that only captures the 476 

hydrological conditions at the regional scale in modelling the RPoD. For rainfall-driven river flow 477 

regime, the effect of rainfall events on flow intermittence at the HER2-HR scale is probably indirectly 478 

reflected by the daily discharge and groundwater levels used to calculate the average non-479 

exceedance frequency. However, when more observation data are available, it is likely that including 480 

more detailed descriptors of rainfall events and local geology could improve our approach without. In 481 

France, based on the 2011-2017 dataset, both models suggest highest values of RPoD along the 482 

Mediterranean coast (DRPoD>20% > 100 days each year). Rivers in this region are subject to a 483 

predominantly pluvial regime (Class 7; Sauquet et al., 2008), i.e. hot and dry summers follow by 484 

intense rainfall events in autumn, leading to high flows in November (Skoulikidis et al., 2017b). The 485 
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catchments in this region are small and particularly reactive to environmental changes, making them 486 

highly sensitive to flow intermittence. Rivers located in the sedimentary plain in western France are 487 

also very impacted by flow intermittence. The regime is also influenced by precipitation and for the 488 

basins subject to intense agriculture significant water abstractions during summer in this region 489 

reduce water availability in rivers and in aquifers which are no longer able to support the low water 490 

levels and which lead to increased flow intermittence. Regarding alteration issues in our datasets, we 491 

do not have access to the exact location and the volumes of water withdrawal for irrigation 492 

purposes. However, due to their upstream location, water availability is expected to be low, which 493 

may limit potential withdrawals and as consequence flow alteration at ONDE sites. The alteration of 494 

groundwater levels is unknown because no information is available. However, in sedimentary plains 495 

where agricultural crops dominate the landscape, we are not sure that no human action affects low 496 

flows. It is important to note that the responses of biological communities to artificial flow 497 

intermittence is still poorly understood compared to natural IRES (Datry et al., 2014b, Skoulikidis et 498 

al., 2017a).  499 

Validity of historical regional probability of drying during severe low-flow period 500 

The second application aimed at reconstructing historical RPoD over the period 1989-2016. Both 501 

models suggest highest values of mean RPoD (> 35%) in 1989-1991, 2003 and 2005. During these dry 502 

years, predicted values of RPoD result from extrapolation but are consistent with published studies 503 

(Mérillon and Chaperon, 1990, Moreau, 2004). For example, Mérillon (1992) estimated that for the 504 

whole of France, 11 000 km of rivers were dried at the end of summers of 1989 and 1990. Caillouet 505 

et al (2016) found that the low-flow event observed in 1989-1990 was particularly severe in terms of 506 

duration and affected 95% of France. Snelder et al. (2013) showed from 628 gauging stations that the 507 

years 1989-1991, 2003 and 2005 had witnessed particularly high values of duration and frequency of 508 

drying. They found that regions with the highest probability of drying were located along the 509 

Mediterranean and Atlantic coasts, which is consistent with ONDE observations and with our results.  510 
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Both models suggest the same sequence of dry and wet years. However the application of the LLR 511 

model lead to less contrasted RPoD than the LR model (Fig. 12). 512 

To illustrate these differences, the RPoD has been simulated by both models with an extreme F of 1% 513 

(Fig. 14). The RPoDLLR is significantly higher and exceeds 80% in 30% of the study area against only 5% 514 

of the area with the RPoDLR. On the other hand, models simulate low RPoD in HER2-HR combinations 515 

where the RPoDONDE is very low between 2012-2016, even when F was 1% because this situation 516 

never occurred during the calibration period (Fig. 14). The logistic function of the LR model takes an 517 

S-shape which induced a decrease of the slope of the curve toward extreme values observed during 518 

the calibration period (2012-2016). The truncated logarithmic function of the LLR model is not 519 

bounded and RPoD can reach 100% during extreme low flow events by extrapolation. Since the 520 

ONDE network monitoring period does not include a period with drought as severe as in the 1990s, it 521 

is not currently possible to appreciate the relative performance of the two models. Refining 522 

extrapolated values requires additional information on headwater collected during more severe 523 

droughts than those observed during the last five years and then gives support to the pursuit of the 524 

ONDE network.  525 

5. Conclusion 526 

This paper investigates the spatial and temporal dynamics of the regional probability of drying (RPoD) 527 

of headwater streams by taking benefit from qualitative and discontinuous data provided by the 528 

ONDE network. Two models based on linear or logistic regressions have been developed and 529 

succeeded to reconstruct the temporal dynamics of RPoD. They are based on a strong relationship 530 

between the non-exceedance frequencies of discharges and groundwater levels as a function of the 531 

proportion of drying observed at ONDE sites per HER2-HR combination. LLR and LR models show 532 

similar performance and perform well between 2011 and 2017. The accuracy of predictions is 533 

dependent on the number of gauging stations, ONDE sites and piezometers available to calibrate the 534 

regressions. Regions with the highest performance are located in the sedimentary plains, where the 535 
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monitoring network is dense and where the RPoD is the highest. Conversely, the worst performances 536 

are obtained in the mountainous regions. Finally, both models have been used to reconstruct 537 

historical RPoD between 1989 and 2016 and suggest highest values of mean RPoD (> 35%) in 1989-538 

1991, 2003 and 2005. This is consistent with other published studies but the high density of ONDE 539 

sites makes it possible to improve the detection of drying and lead to better capturing of the spatial 540 

distribution of IRES located at the upstream extent of the hydrographic network. Moreover, the 541 

duration of drying is of importance for ecologists and the prediction of a daily RPoD provides one key 542 

driver of the composition and persistence of aquatic species. 543 

From a methodological point of view, our method relating discrete drying observation obtained by 544 

citizen science networks to continuous daily gauging data seems robust across the highly diverse 545 

(climate and topography) regions of France, and provides good predictions in an independent region 546 

excluded from the calibration process (PoC). These two results suggest a potential application of our 547 

approach in other countries. Citizen science creates opportunities to overcome the lack of 548 

hydrological data and lead to densify the flow state observation network (Turner and Richter, 2011; 549 

Buytaert et al., 2014) and remains less expensive than the installation of additional gauging stations 550 

to survey flow intermittence. The next step will be to use this regional approach to simulate the 551 

RPoD in future periods by taking into account effects of climate change through predicted discharge 552 

and groundwater level data. This would allow quantification of the evolution of the probability of 553 

drying between the current period and the different climate projections provided by the latest IPCC 554 

Report (IPCC 2014a, 2014b) and would assist decision makers in defining protocols for restoring flows 555 

with appropriate measures to preserve aquatic ecosystems (Woelfle-Erskine, 2017).  556 

Secondly, further work is needed to develop an approach capable of reconstructing the drying 557 

dynamics locally by differentiating each stream. Our approach remains spatially valid to estimate 558 

RPoDs at the scale of HER2-HR combinations but does not allow characterizing the variability of the 559 

probability of drying occurrence between nearby streams within these regions. Statistical tools such 560 
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as neural networks (Breiman, 2001) have shown good ability to assess both the occurrence and 561 

extent of perennial and temporary segments (González-Ferreras and Barquín, 2017) and could be 562 

investigated as an alternative method to reconstruct locally the temporal variability of drying. 563 

6. Acknowledgment 564 

The authors wish to thank A. van Loon and C. Sefton for their valuable comments, suggestions and 565 

positive feedback on the manuscript. The research project was partly funded by the French Agency 566 

for Biodiversity (AFB, formerly ONEMA). This study is based upon works from COST Action CA15113 567 

(SMIRES, Science and Management of Intermittent Rivers and Ephemeral Streams, www.smires.eu), 568 

supported by COST (European Cooperation in Science and Technology).  569 



25 
 

7. References 570 

Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., McGregor, G., Sabater, S., 571 
Tockner, K. and Palmer, M. A.: Why should we care about temporary waterways?, Science, 572 
343(6175), 1080–1081, 2014. 573 

Acuña, V., Hunter, M. and Ruhí, A.: Managing temporary streams and rivers as unique rather than 574 
second-class ecosystems, Biological Conservation, 211, 12–19, doi:10.1016/j.biocon.2016.12.025, 575 
2017. 576 

Benda, L., Hassan, M. A., Church, M. and May, C. L.: Geomorphology Of Steepland Headwaters: The 577 
Transition From Hillslopes To Channels1, Journal of the American Water Resources Association, 578 
41(4), 835, 2005. 579 

Benstead, J. P. and Leigh, D. S.: An expanded role for river networks, Nature Geoscience, 5(10), 678–580 
679, 2012. 581 

Boulton, A. J.: Conservation of ephemeral streams and their ecosystem services: what are we 582 
missing?: Editorial, Aquatic Conservation: Marine and Freshwater Ecosystems, 24(6), 733–738, 583 
doi:10.1002/aqc.2537, 2014. 584 

Breiman, L.: Random forests, Machine learning, 45(1), 5–32, 2001. 585 

Brugeron, A., Allier, D., Klinka, T.: Approche exploratoire des liens entre référentiels hydrogéologique 586 
et hydrographique : Premières identifications des piézomètres potentiellement représentatifs d’une 587 
relation nappe/rivière et contribution à leur valorisation. Rapport final BRGM/RP-61047-FR. 241 p, 588 
2012. 589 

Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De Bi??vre, B., Bhusal, 590 
J., Clark, J., Dewulf, A., Foggin, M., Hannah, D. M., Hergarten, C., Isaeva, A., Karpouzoglou, T., 591 
Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., Tilahun, S., Van Hecken, G. and Zhumanova, M.: 592 
Citizen science in hydrology and water resources: opportunities for knowledge generation, 593 
ecosystem service management, and sustainable development, Frontiers in Earth Science, 2, 594 
doi:10.3389/feart.2014.00026, 2014. 595 

Clarke, A., Mac Nally, R., Bond, N. and Lake, P. S.: Macroinvertebrate diversity in headwater streams: 596 
a review, Freshwater Biology, 53(9), 1707–1721, doi:10.1111/j.1365-2427.2008.02041.x, 2008. 597 

Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M. and Goebel, P. C.: Understanding controls on 598 
flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology 599 
and land cover: Integrating Science to Understand Flow Intermittence, Ecohydrology, 9(7), 1141–600 
1153, doi:10.1002/eco.1712, 2016. 601 

Datry, T.: Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: 602 
effects of duration of dry events: River drying and temporary river invertebrates, Freshwater Biology, 603 
57(3), 563–574, doi:10.1111/j.1365-2427.2011.02725.x, 2012. 604 

Datry, T., Larned, S. T., Fritz, K. M., Bogan, M. T., Wood, P. J., Meyer, E. I. and Santos, A. N.: Broad-605 
scale patterns of invertebrate richness and community composition in temporary rivers: effects of 606 
flow intermittence, Ecography, 37(1), 94–104, doi:10.1111/j.1600-0587.2013.00287.x, 2014a. 607 

Datry, T., Larned, S. T. and Tockner, K.: Intermittent Rivers: A Challenge for Freshwater Ecology, 608 
BioScience, 64(3), 229–235, doi:10.1093/biosci/bit027, 2014b. 609 



26 
 

Datry, T., Pella, H., Leigh, C., Bonada, N. and Hugueny, B.: A landscape approach to advance 610 
intermittent river ecology, Freshwater Biology, 61(8), 1200–1213, doi:10.1111/fwb.12645, 2016a. 611 

Datry, T., Fritz, K. and Leigh, C.: Challenges, developments and perspectives in intermittent river 612 
ecology, Freshwater Biology, 61(8), 1171–1180, doi:10.1111/fwb.12789, 2016b. 613 

De Girolamo, A. M., Lo Porto, A., Pappagallo, G., Tzoraki, O. and Gallart, F.: The Hydrological Status 614 
Concept: Application at a Temporary River (Candelaro, Italy): EVALUATING HYDROLOGICAL STATUS 615 
IN TEMPORARY RIVERS, River Research and Applications, 31(7), 892–903, doi:10.1002/rra.2786, 616 
2015. 617 

De Girolamo, A. M., Bouraoui, F., Buffagni, A., Pappagallo, G. and Lo Porto, A.: Hydrology under 618 
climate change in a temporary river system: Potential impact on water balance and flow regime, 619 
River Research and Applications, doi:10.1002/rra.3165, 2017a. 620 

De Girolamo, A. M., Barca, E., Pappagallo, G. and Lo Porto, A.: Simulating ecologically relevant 621 
hydrological indicators in a temporary river system, Agricultural Water Management, 180, 194–204, 622 
doi:10.1016/j.agwat.2016.05.034, 2017b. 623 

Döll, P. and Schmied, H. M.: How is the impact of climate change on river flow regimes related to the 624 
impact on mean annual runoff? A global-scale analysis, Environmental Research Letters, 7(1), 625 
014037, doi:10.1088/1748-9326/7/1/014037, 2012. 626 

Eng, K., Wolock, D. M. and Dettinger, M. D.: Sensitivity of Intermittent Streams to Climate Variations 627 
in the USA: Sensitivity of Intermittent Streams, River Research and Applications, 32(5), 885–895, 628 
doi:10.1002/rra.2939, 2016. 629 

Finn, D. S., Bonada, N., M?rria, C. and Hughes, J. M.: Small but mighty: headwaters are vital to stream 630 
network biodiversity at two levels of organization, Journal of the North American Benthological 631 
Society, 30(4), 963–980, doi:10.1899/11-012.1, 2011. 632 

Fritz, K. M., Hagenbuch, E., D’Amico, E., Reif, M., Wigington, P. J., Leibowitz, S. G., Comeleo, R. L., 633 
Ebersole, J. L. and Nadeau, T.-L.: Comparing the Extent and Permanence of Headwater Streams From 634 
Two Field Surveys to Values From Hydrographic Databases and Maps, JAWRA Journal of the 635 
American Water Resources Association, 49(4), 867–882, doi:10.1111/jawr.12040, 2013. 636 

Gallart, F., Prat, N., García-Roger, E. M., Latron, J., Rieradevall, M., Llorens, P., Barberá, G. G., Brito, 637 
D., De Girolamo, A. M., Lo Porto, A., Buffagni, A., Erba, S., Neves, R., Nikolaidis, N. P., Perrin, J. L., 638 
Querner, E. P., Quiñonero, J. M., Tournoud, M. G., Tzoraki, O., Skoulikidis, N., Gómez, R., Sánchez-639 
Montoya, M. M. and Froebrich, J.: A novel approach to analysing the regimes of temporary streams 640 
in relation to their controls on the composition and structure of aquatic biota, Hydrology and Earth 641 
System Sciences, 16(9), 3165–3182, doi:10.5194/hess-16-3165-2012, 2012. 642 

Gallart, F., Llorens, P., Latron, J., Cid, N., Rieradevall, M. and Prat, N.: Validating alternative 643 
methodologies to estimate the regime of temporary rivers when flow data are unavailable, Science 644 
of The Total Environment, 565, 1001–1010, doi:10.1016/j.scitotenv.2016.05.116, 2016. 645 

Garcia, C., Gibbins, C. N., Pardo, I. and Batalla, R. J.: Long term flow change threatens invertebrate 646 
diversity in temporary streams: Evidence from an island, Science of The Total Environment, 580, 647 
1453–1459, doi:10.1016/j.scitotenv.2016.12.119, 2017a. 648 



27 
 

Garcia, C., Amengual, A., Homar, V. and Zamora, A.: Losing water in temporary streams on a 649 
Mediterranean island: Effects of climate and land-cover changes, Global and Planetary Change, 148, 650 
139–152, doi:10.1016/j.gloplacha.2016.11.010, 2017b. 651 

Gómez, R., Hurtado, I., Suárez, M. L. and Vidal-Abarca, M. R.: Ramblas in south-east Spain: 652 
threatened and valuable ecosystems, Aquatic Conservation 15, 387–402, doi:10.1002/aqc.680, 2005. 653 

González-Ferreras, A. M. and Barquín, J.: Mapping the temporary and perennial character of whole 654 
river networks: MAPPING FLOW PERMANENCE IN RIVER NETWORK, Water Resources Research, 655 
doi:10.1002/2017WR020390, 2017. 656 

Huxter, E. H. H. and (Ilja) van Meerveld, H. J.: Intermittent and Perennial Streamflow Regime 657 
Characteristics in the Okanagan, Canadian Water Resources Journal / Revue canadienne des 658 
ressources hydriques, 37(4), 391–414, doi:10.4296/cwrj2012-910, 2012. 659 

Jaeger, K. L., Olden, J. D. and Pelland, N. A.: Climate change poised to threaten hydrologic 660 
connectivity and endemic fishes in dryland streams, Proceedings of the National Academy of 661 
Sciences, 111(38), 13894–13899, doi:10.1073/pnas.1320890111, 2014. 662 

Kelso, J. E. and Entrekin, S. A.: Intermittent and perennial macroinvertebrate communities had similar 663 
richness but differed in species trait composition depending on flow duration, Hydrobiologia, 807(1), 664 
189–206, doi:10.1007/s10750-017-3393-y, 2018. 665 

Larned, S. T., Datry, T., Arscott, D. B. and Tockner, K.: Emerging concepts in temporary-river ecology, 666 
Freshwater Biology, 55(4), 717–738, doi:10.1111/j.1365-2427.2009.02322.x, 2010. 667 

Lee, S.: Application of logistic regression model and its validation for landslide susceptibility mapping 668 
using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477–1491, 669 
doi:10.1080/01431160412331331012, 2005. 670 

Leigh, C. and Datry, T.: Drying as a primary hydrological determinant of biodiversity in river systems: 671 
a broad-scale analysis, Ecography, 40(4), 487–499, doi:10.1111/ecog.02230, 2017. 672 

Leigh, C., Boulton, A. J., Courtwright, J. L., Fritz, K., May, C. L., Walker, R. H. and Datry, T.: Ecological 673 
research and management of intermittent rivers: an historical review and future directions, 674 
Freshwater Biology, 61(8), 1181–1199, doi:10.1111/fwb.12646, 2016. 675 

Leopold, L. B.: A View of the River. Harvard University Press, Cambridge, Massachusetts, USA, 1994. 676 

Leopold, L. B., Wolman, M. G. and Miller, J. P.: Fluvial Processes in Geomorphology. Dover 677 
Publications, New York, USA, 1964. 678 

Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S. and Leonard, N. E.: The 679 
Contribution of Headwater Streams to Biodiversity in River Networks1: The Contribution of 680 
Headwater Streams to Biodiversity in River Networks, JAWRA Journal of the American Water 681 
Resources Association, 43(1), 86–103, doi:10.1111/j.1752-1688.2007.00008.x, 2007. 682 

Nadeau, T.-L. and Rains, M. C.: Hydrological Connectivity Between Headwater Streams and 683 
Downstream Waters: How Science Can Inform Policy1: Hydrological Connectivity Between 684 
Headwater Streams and Downstream Waters: How Science Can Inform Policy, JAWRA Journal of the 685 
American Water Resources Association, 43(1), 118–133, doi:10.1111/j.1752-1688.2007.00010.x, 686 
2007. 687 



28 
 

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion 688 
of principles, Journal of Hydrology, 10(3), 282–290, doi:10.1016/0022-1694(70)90255-6, 1970. 689 

Nowak, C. and Durozoi, B.: Observatoire National Des Etiages, Note technique, ONEMA., 2012. 690 

Pella, H., Lejot, J., Lamouroux, N. and Snelder, T.: Le réseau hydrographique théorique (RHT) français 691 
et ses attributs environnementaux, Géomorphologie: relief, processus, environnement, 18(3), 317–692 
336, 2012. 693 

Pumo, D., Caracciolo, D., Viola, F. and Noto, L. V.: Climate change effects on the hydrological regime 694 
of small non-perennial river basins, Science of The Total Environment, 542, 76–92, 695 
doi:10.1016/j.scitotenv.2015.10.109, 2016. 696 

Reynolds, L. V., Shafroth, P. B. and LeRoy Poff, N.: Modeled intermittency risk for small streams in the 697 
Upper Colorado River Basin under climate change, Journal of Hydrology, 523, 768–780, 698 
doi:10.1016/j.jhydrol.2015.02.025, 2015. 699 

Sarremejane, R., Cañedo-Argüelles, M., Prat, N., Mykrä, H., Muotka, T. and Bonada, N.: Do 700 
metacommunities vary through time? Intermittent rivers as model systems, Journal of Biogeography, 701 
44(12), 2752–2763, doi:10.1111/jbi.13077, 2017. 702 

Sauquet, E., Gottschalk, L. and Krasovskaia, I.: Estimating mean monthly runoff at ungauged 703 
locations: an application to France, Hydrology Research, 39(5–6), 403, doi:10.2166/nh.2008.331, 704 
2008. 705 

Skoulikidis, N. T.: The environmental state of rivers in the Balkans—A review within the DPSIR 706 
framework, Science of The Total Environment, 407(8), 2501–2516, 707 
doi:10.1016/j.scitotenv.2009.01.026, 2009. 708 

Skoulikidis, N. T., Vardakas, L., Karaouzas, I., Economou, A. N., Dimitriou, E. and Zogaris, S.: Assessing 709 
water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece, 710 
Aquatic Sciences, 73(4), 581–597, doi:10.1007/s00027-011-0228-1, 2011. 711 

Skoulikidis, N. T., Vardakas, L., Amaxidis, Y. and Michalopoulos, P.: Biogeochemical processes 712 
controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river 713 
reach, Science of The Total Environment, 575, 378–389, doi:10.1016/j.scitotenv.2016.10.015, 2017a. 714 

Skoulikidis, N. T., Sabater, S., Datry, T., Morais, M. M., Buffagni, A., Dörflinger, G., Zogaris, S., del Mar 715 
Sánchez-Montoya, M., Bonada, N., Kalogianni, E., Rosado, J., Vardakas, L., De Girolamo, A. M. and 716 
Tockner, K.: Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for 717 
research and management, Science of The Total Environment, 577, 1–18, 718 
doi:10.1016/j.scitotenv.2016.10.147, 2017b. 719 

Snelder, T. H., Datry, T., Lamouroux, N., Larned, S. T., Sauquet, E., Pella, H. and Catalogne, C.: 720 
Regionalization of patterns of flow intermittence from gauging station records, Hydrology and Earth 721 
System Sciences, 17(7), 2685–2699, doi:10.5194/hess-17-2685-2013, 2013. 722 

Storey, R. G. and Quinn, J. M.: Survival of aquatic invertebrates in dry bed sediments of intermittent 723 
streams: temperature tolerances and implications for riparian management, Freshwater Science, 724 
32(1), 250–266, doi:10.1899/12-008.1, 2013. 725 



29 
 

Stubbington, R. and Datry, T.: The macroinvertebrate seedbank promotes community persistence in 726 
temporary rivers across climate zones, Freshwater Biology, 58(6), 1202–1220, 727 
doi:10.1111/fwb.12121, 2013. 728 

Turner, D. S. and Richter, H. E.: Wet/Dry Mapping: Using Citizen Scientists to Monitor the Extent of 729 
Perennial Surface Flow in Dryland Regions, Environmental Management, 47(3), 497–505, 730 
doi:10.1007/s00267-010-9607-y, 2011. 731 

Vadher, A. N., Millett, J., Stubbington, R. and Wood, P. J.: Drying duration and stream characteristics 732 
influence macroinvertebrate survivorship within the sediments of a temporary channel and exposed 733 
gravel bars of a connected perennial stream, Hydrobiologia, doi:10.1007/s10750-018-3544-9, 2018. 734 

van Meerveld, H. J. I., Vis, M. J. P. and Seibert, J.: Information content of stream level class data for 735 
hydrological model calibration, Hydrology and Earth System Sciences, 21(9), 4895–4905, 736 
doi:10.5194/hess-21-4895-2017, 2017. 737 

Vardakas, L., Kalogianni, E., Economou, A. N., Koutsikos, N. and Skoulikidis, N. T.: Mass mortalities 738 
and population recovery of an endemic fish assemblage in an intermittent river reach during drying 739 
and rewetting, Fundamental and Applied Limnology / Archiv für Hydrobiologie, 740 
doi:10.1127/fal/2017/1056, 2017. 741 

Wasson, J.-G., Chandesris, A., Pella, H. and Blanc, L.: Typology and reference conditions for surface 742 
water bodies in France: the hydro-ecoregion approach, TemaNord, 566, 37–41, 2002. 743 

Woelfle-Erskine, C.: Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing 744 
Streams: Salmon Creek, CA, USA, Water, 9(3), 217, doi:10.3390/w9030217, 2017. 745 

 746 

  747 



30 
 

 
   Stations with at least one 

drying event 
Stations with drying > 

50% 
Frequency of  

discharge < 1 l/s 

2012 79 19 32.7 

2013 47 14 37.9 

2014 54 15 32.9 

2015 76 21 31.1 

2016 71 19 28.6 

Table 1. Annual statistics on flow intermittence calculated on HYDRO gauging stations between the 748 
1st May and the 30th September 749 
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Table 2. NSE criteria obtained between 2012 and 2017 with the LLR and LR models calibrated over 751 
the period 2012-2016. 752 

  753 

  
2011-2017 dataset 1989-2017 dataset 

  Calibration Valid. Calibration Valid. 

  
2012 2013 2014 2015 2016 2017 2012 2013 2014 2015 2016 2017 

LLR 
model 

May 0.2 0.0 0.5 0.5 0.6 0.4 0.2 0.0 0.3 0.0 0.7 0.2 

June 0.6 0.3 0.8 0.5 0.8 0.5 0.6 0.3 0.5 0.3 0.8 0.5 

July 0.7 0.5 0.6 0.6 0.8 0.7 0.7 0.5 0.5 0.4 0.8 0.6 

August 0.8 0.6 0.7 0.7 0.8 0.6 0.7 0.5 0.5 0.5 0.8 0.6 

Sept. 0.7 0.8 0.6 0.6 0.7 0.6 0.6 0.7 0.5 0.5 0.6 0.6 

May - Sept 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.5 0.6 0.8 0.7 

LR 
model 

May 0.2 0.0 0.5 0.1 0.6 0.3 0.3 0.0 0.3 0.0 0.7 0.2 

June 0.6 0.5 0.8 0.5 0.8 0.4 0.6 0.4 0.5 0.3 0.7 0.4 

July 0.7 0.6 0.5 0.6 0.8 0.6 0.7 0.4 0.5 0.4 0.8 0.6 

August 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.4 0.5 0.4 0.7 0.5 

Sept. 0.6 0.8 0.6 0.7 0.7 0.6 0.5 0.6 0.4 0.5 0.6 0.6 

May - Sept 0.8 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.5 0.6 0.8 0.7 
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 754 

Figure 1. Location of the 3 300 ONDE sites and partition into HER2. 755 

  756 
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 757 

Figure 2. Distribution of the 3 300 ONDE sites and of the 1 600 gauging stations available in the 758 
HYDRO database against: (a) drainage area and (b) elevation. 759 
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 761 
Figure 3. Strategy of parametric modeling (step 1-4) developed to predict (step 5) the regional 762 

probability of drying (RPoD) by HER2-HR combination in France. 763 
  764 
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 765 

Figure 4. (a) Distribution of yearly proportion of drying observed with the ONDE network with the 766 
total yearly number of ONDE observations written in brackets and (b) distribution of proportions of 767 

drying per year and per month. 768 
  769 
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 770 

Figure 5. Distribution of the percentages of drying observed at ONDE sites for the years: (a) 2012-771 
2016, (b) 2012, (c) 2013, (d) 2014, (e) 2015 and (f) 2016. 772 
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 774 

Figure 6. Map of ONDE sites and HYDRO gauging stations having at least one drying. 775 
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 777 

Figure 7. Map of Nash-Sutcliffe criteria (NSE) obtained for each HER2-HR combination between 2012 778 
and 2016 with the 2011-2017 and 1989-2017 datasets according to: (a) and (c) a log-linear regression 779 

(LLR) model; (b) and (d) a logistic regression (LR) model. NSE differences between the 2011-2017 780 
dataset and the 1989-2017 dataset are represented for: (e) LLR model and (f) LR model. 781 
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 783 

Figure 8. NSE calculated for each HER2-HR combination between 2012 and 2016 with the 1989-2017 784 
dataset as a function of NSE calculated with 2011-2017 dataset with respectively: (a) the LLR model 785 

and (b) the LR model. The color of dots represents the proportion of gauging station and piezometers 786 
lost between the 2011-2017 database and the 1989-2017 database: losses < 50% (white); losses 787 

between 50% and 75% (grey); losses > 75% (black). 788 

  789 



40 
 

 790 

Figure 9. Comparison between observed proportion of drying RPoDPOC and RPoD predicted by the LLR 791 
and LR models with the 2011-2017 dataset in: (a) 2011, (b) 2012 (c) 2013 and with the 1989-2017 792 

dataset in: (d) 2011, (e) 2012 (f) 2013. 793 
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 795 

Figure 10. Scatter plot of the predicted RPoD (x axis) and drying observed at ONDE sites (y axis) in 796 
2017 and 2012 simulated with the 2011-2017 dataset by: (a) and (c) the LLR model and (b) and (d) 797 

the LR model. 798 
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 800 

Figure 11. Maximum duration of consecutive days with RPoD higher than 20% simulated with LLR 801 
and LR model. 802 
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 804 

Figure 12. RPoD simulated between 1989 and 2016 the 1989-2017 dataset with: (a) the LR model and 805 
(b) the LLR model. The grey area represents the RPoD between the 90th percentile and the 10th 806 
percentile simulated on HER2-HR combination, the black curve represents the average RPoD 807 

simulated by HER2-HR combination and white dots represent the mean RPoDONDE for each 808 
observation dates. Dates mentioned correspond to the day of the maximum average RPoD simulated 809 

by HER2-HR combination (black curve) of each year. 810 
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 812 

Figure 13. Comparison of NSE obtained with regression including only discharge variable as a 813 
function of NSE obtained with including discharge and groundwater level variables in the 2011-2017 814 

dataset with: (a) LLR model and (b) LR model. 815 
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 817 

Figure 14. Regional probability of drying simulated with F = 1% predicted with: (a) the LLR model and 818 
(b) the LR model. 819 
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