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Abstract. Impairment of water quality by organic micropollutants such as pesticides, pharmaceuticals or household 10 

chemicals is a problem in many catchments worldwide. These chemicals originate from different urban and agricultural 

usages and are transferred to surface waters from point or diffuse sources by a number of transport pathways. The 

quantification of this form of pollution in streams is challenging and especially demanding for diffuse pollution due to the 

high spatio-temporal concentration dynamics, which requires large sampling and analytical efforts to obtain representative 

data on the actual water quality. 15 

 

Models can also be used to predict information to which degree streams are affected by these pollutants. However, spatially 

distributed modeling of water quality is challenging for a number of reasons. Key issues are the lack of such models that 

incorporate both urban and agricultural sources of organic micropollutants, the large number of parameters to be estimated 

for many available water quality models, and the difficulty to transfer parameter estimates from calibration sites to areas 20 

where predictions are needed.   

 

To overcome these difficulties, we used the parsimonious iWaQa model that simulates herbicide transport from agricultural 

fields and diffuse biocide losses from urban areas (mainly façades and roof materials) and tested its predictive capabilities in 

the Rhine River basin. The model only requires between one and eight global model parameters per compound that need to 25 

be calibrated. Most of the data requirements relate to spatially distributed land use and comprehensive time series of 

precipitation, air temperature and spatial data on discharge.  

 

The model was calibrated with data sets from three different small catchments (0.5 – 24.6 km2) for three agricultural 

herbicides (isoproturon, S-metolachlor, terbuthylazine) and two urban biocides (carbendazim, diuron). Subsequently, it was 30 

validated for different years on 12 catchments of much larger size (31 – 160’000 km2) without any modification. For most 

compound-catchment combinations, the model predictions revealed a satisfactory correlation (median r2: 0.5) with the 

observations and the peak concentrations mostly predicted within a factor of two to four (median: 2.1 fold difference for 

herbicides and 3.2 for biocides respectively). The seasonality of the peak concentration was also well simulated, the 

predictions of the actual timing of peak concentrations however, was generally poor.  35 

 

Limited spatio-temporal data, first on the use of the selected pesticides and second on their concentrations in the river 

network, restrict the possibilities to scrutinise model performance. Nevertheless, the results strongly suggest that input data 

and model structure are major sources of predictive uncertainty. The latter is for example seen in background concentrations 

that are systematically overestimated in certain regions, which is most probably linked to the modelled coupling of 40 

background concentrations to land use intensity.  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-628
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 November 2017
c© Author(s) 2017. CC BY 4.0 License.



2 
 

 

Despite these limitations the findings indicate that key drivers and processes are reasonably well approximated by the model 

and that such a simple model that includes land use as a proxy for compound use, weather data for the timing of herbicide 

applications and discharge or precipitation as drivers for transport is sufficient to predict timing and level of peak 

concentrations within a factor of two to three in a spatially distributed manner at the scale of large river basins. 5 

1 Introduction 

Mankind uses thousands of synthetic chemicals for many different purposes in households, industries or agriculture 

(Schwarzenbach et al., 2006;Bernhardt et al., 2017). Many of these compounds reach water bodies during some stage of their 

life cycle. Accordingly, the impairment of water quality caused by substances such as pharmaceuticals, household chemicals 

or pesticides is a problem of many catchments worldwide. From an ecological point of view, pesticides are often of special 10 

concern because they have been designed to harm a wide range of organisms. 

 

Pesticides are used for different purposes. In agriculture they are used to protect crops from weeds, pests or diseases. 

However, the same compounds may be also used to fight unwanted organisms on materials such as roofs, façades or ships. 

Depending on where pesticides are used, they may reach water bodies via different path ways. Although pesticides may be 15 

ecotoxicologically relevant chemicals even in treated waste water discharged from point sources (Munz et al., 2017;Müller et 

al., 2002) diffuse pollution is often dominant for these compounds (Moschet et al., 2014). The quantification of this form of 

pollution in streams is challenging due to the high spatio-temporal concentration dynamics, which requires large sampling 

and analytical efforts (e.g., Wittmer et al., 2010;Leu et al., 2004b). 

 20 

As a consequence, the water quality status of many water bodies is not quantified sufficiently for properly addressing 

management and research questions that require a proper understanding about spatio-temporal patterns of pesticides 

occurring in streams. There may be deficits with regard to the spatial or temporal coverage of data as well as coverage of all 

chemicals of interest (Moschet et al., 2014). 

Spatially (semi-)distributed models can potentially fill such gaps and have been developed and used for decades to do so 25 

(Borah and Bera, 2004). Some of these models (e.g., SWAT (Arnold et al., 2011), GREAT-ER or MONERIS (Berlekamp et 

al., 2007)) have been widely used, many others have been developed and used in specific research contexts (e.g, ZIN-

AgriTra (Gassmann et al., 2013) One of the challenges related to modelling diffuse pesticide losses is the necessity to cover 

all relevant sources and flow paths. Many models for example, do not simulate urban and agricultural processes with the 

same level of detail. This may pose a serious problem in regions that are characterized by a mixed land use of urban and 30 

agricultural areas such as in many parts of densely populated Central Europe. 

 

Models differ widely in the degree to which they aim to represent explicitly the relevant processes. On the one hand, so-

called physically based models try to describe them with equations in such a way that the model parameters should have a 

real physical, chemical, or biological meaning independent of the model application with the goal to provide causal system 35 

understanding (Bossel, 1994;Beck, 1987). Generally, running such highly parameterized models comes with a huge data 

demand, and – as this demand usually cannot be covered – many model parameters cannot be estimated from independent 

observations. In the end, this leads to either the use of potentially unrealistic parameter values or calibration, the latter facing 

the problem that many of the parameter values cannot be properly identified possibly inducing large uncertainties during a 

validation or prediction phase (Beck, 1987;Brun et al., 2001).    40 
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On the other hand, more conceptual, parsimonious models try to cope with the lack of (spatially distributed) data by 

dramatically reducing the number of parameters. This comes at the cost that model parameters may lose their direct physical 

or chemical interpretation. Such parsimonious models basically assume that essential aspects of the response of a complex 

(real) system can be represented by some rather simple mathematical descriptions that incorporate the effects of major 

external drivers, such as precipitation. Such types of models are frequently used in hydrology for simulating discharge (e.g., 5 

Beven and Kirkby, 1979), there are also applications to water quality simulations (Hahn et al., 2013;Jackson-Blake et al., 

2017) but only few models for simulating pesticide transport to surface waters (Honti et al., 2017).  

 

Here we present a model that covers major urban and agricultural sources for pesticides in streams that can be applied to 

large water basins, provides high spatial and temporal resolution and is still parsimonious. It is similar to the iWaQa model 10 

approach in (see e.g., Honti et al., 2017) but adapted for large basins by including an explicit routing component. It differs 

from many other model concepts in that it does not include a rainfall-runoff module but links agricultural pesticide losses to 

measured discharge and urban biocide losses directly to precipitation. 

 

Specifically, the paper has the following objectives: 15 

 

1. Description of the model concepts and their implementation. 

2. Calibration of the model on selected small catchments and selected pesticides representing agricultural herbicides 

and urban biocides  

3. Evaluating the performance of the calibrated model with blind predictions on a large set of validation catchments. 20 

This step includes a pronounced spatial upscaling of the model by three to four orders of magnitude.  

 

We have used the Rhine basin as a case study to investigate these questions. 

2 Study area 

The study is carried out in the Rhine basin upstream of the gauging station Emmerich am Rhein (Germany; see Fig. 1). We 25 

limited the analysis to this part of the basin because the model structure does not cover complex, strongly managed flow 

regimes as prevalent in the Dutch part of the basin. Even with these restrictions, the study area is one of the largest drainage 

basins in Europe with an area of 160’000 km2 covering land of eight countries, mainly from Switzerland, Germany, France 

and Luxembourg. The total length of the river network is 63’080 km and is divided into more than 30’000 catchments 

according to the CCM River and Catchment database for Europe, version 2 (CCM2) from Vogt et al. (2007).  30 

Altitude ranges from above 4200 m.a.s.l. in the Bernese Alps in the south to 17 m.a.s.l. at Emmerich in the north. 

Accordingly, the hydrological regime varies strongly across the basin. Discharge regime in the southern part of the basin is 

largely influenced by snow accumulation and melt. As a consequence, most southern rivers are of pluvio-nival type with low 

water periods during winter and flood events occurring mainly in summer. In contrast, sub-basins further north (Neckar, 

Main, Moselle, Ruhr, etc) are characterized by a pluvial regime with winter floods and low water levels in summer. 35 

Similarly, temperature regimes show important differences, which may be reflected in shifts in phenology of crops and 

hence in application periods of agricultural pesticides. 

 

The basin is densely populated (290 inhabitants km-2 in the study area) with strong regional differences. Arable cropping is 

an important land use in large parts of the basin. More details on specific crops and their spatial distribution are presented in 40 

the Supplementary Material (Fig. S3).  
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The Rhine River is heavily used by hydropower plants upstream of Iffezheim along the main channel and main tributaries. 

However, the effects on travel times is rather moderate on the streams of interest and was neglected during the routing 

calculations. 

 5 

3 Model description 

3.1 Spatial discretization and model structure 

The river basin is discretized into subcatchments based on the CCM2 database. To reduce the number of subcatchments and 

ensure a reasonable minimum size, CCM2 catchments smaller than 2 km2 were merged with the next downstream catchment. 

The resulting 18’240 subcatchments with an average area of 8.8 km2 are the primary computational units of the model. 10 

Further details on the spatial representation are provided in Appendix A2 of the Supplementary Material. 

The model consists of two principal components. The first component – the substance transfer module – simulates the 

transfer of the pesticides from their point of use (e.g., the fields to which herbicides are applied) to the outlet of each 

subcatchment. The second component – the routing module – links the contribution of all subcatchments, and represents the 

in-stream transport and fate processes of the chemicals. 15 

We assume that subcatchments are laterally disconnected from each other, and therefore simulations of the substance transfer 

module can be run separately for each subcatchment. Subsequently, the routing module integrates all outputs of the 

substance transfer module by processing subcatchments from up- to downstream. 

For the routing, the main river (and optionally also tributaries) is split into river segments (see Appendix A2, Fig. S2). Each 

segment receives input from upstream and lateral directions as well.  20 

 

3.2 Substance transfer module 

This module consists of several independent parts that describe the transfer of chemicals from the different pesticide sources 

in the catchment. In particular, it consists of the iWaQa model describing substance transfer for herbicides (Section 3.2.1) 

and another for biocides (Section 3.2.2). These models treat subcatchments as spatially lumped units. The models are very 25 

parsimonious such that they only require one to eight empirical, yet global model parameters per simulated chemical (Table 

1). All other model inputs consist of (generally) available statistical data on chemical consumption, spatial data on land use 

and hydro-climatic time-series. 

. 

3.2.1 Substance transfer for herbicides 30 

This section describes first the system of the herbicide model and subsequently the input and output of the system. 

This model consists of two spatially lumped storage terms representing the dissolved and sorbed fractions of the total 

herbicide mass ܯሺݐሻ [g] in the topsoil layer of agricultural fields in the subcatchment. The first storage is the mass dissolved 

in the pore water ܯ௪ሺݐሻ [g] being instantly available for release to the river. The other represents mass adsorbed to the soil 

matrix ܯ௦ሺݐሻ [g] and is unavailable for immediate release.  35 
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The exchange between the two storages is described by two kinetic rate parameters: sorption to the soil matrix is described 

with the transfer rate  ݇௪ି௦ [d
-1] and the reverse flux with ݇௦ି௪ [d-1], respectively. Both stocks degrade according to first-

order kinetics with decay rate ݇ௗ [d-1].  

The mass balance and the two first-order differential equation describing the change in stock of herbicide masses in the 

system are given by: 5 

 

ሻݐሺܯ ൌ ሻݐ௪ሺܯ    ሻ           (1)ݐ௦ሺܯ

ௗெೢ

ௗ௧
ൌ ρ ∙ ሶܯ	 ሺݐሻ െ ݇௪ି௦ ∙ ሻݐ௪ሺܯ  ݇௦ି௪ ∙ ሻݐ௦ሺܯ െ ݇ௗ ∙ ௪ܯ െ   ௗ     (2)ܮ

ௗெೞ

ௗ௧
ൌ ሺ1 െ ρሻ ∙ ሶܯ ሺݐሻ െ ݇௦ି௪ ∙ ሻݐ௦ሺܯ  ݇௪ି௦ ∙ ሻݐ௪ሺܯ െ ݇ௗ ∙   ௦      (3)ܯ

 10 

where ܯሶ ሺݐሻ [g d-1] the mass rate applied in the catchment during the application period and ߩ [–] represent the fraction of 

the applied mass that is immediately available for transport. The output ܮௗ [g d-1] is the herbicide load released from 

the current application at the outlet of the subcatchment. 

 

Input: 15 

Crop development and hence also the timing of herbicide applications is strongly controlled by temperature conditions in 

any particular year. As application dates are generally unknown, a temperature sum models is used to simulate crop growth 

and the related herbicide applications, which is linked to specific growth stages of the crops. In particular, we assume that 

application of herbicides starts when the daily temperature sum at a given location reaches a crop-specific temperature 

threshold (Honti et al., 2017). Daily mean values of temperature are summed up ሺ ௦ܶ௨ሺݐሻሻ, though a restart is forced after 20 

freezing days. Once the objective temperature ܶ is reached, 1/14 of the total application mass is applied on each following 

rain-free day until the total application mass is depleted. Herewith the selection of a universal application date is avoided and 

the method accounts for regional climatic differences. 

 

Output: 

The concept to describe the transfer of the applied herbicides from the fields to the river is based on the empirical 25 

observation that herbicide concentrations increase with flow during discharge events during the application period (Leu et 

al., 2010). Mechanistically this can be explained by the occurrence of fast transport processes (with high herbicide 

concentrations) such as surface runoff and fast subsurface flow through drainage systems or macropores (Leu et al., 2004a) 

during discharge events. Hence the concentration (C [g m-3]) in the river is described – in a first approximation – as 

proportional to the discharge ܳሺݐሻ [m3 d-1] in the case of a recent application on the fields; the load [g d-1] increases 30 

quadratically with discharge:  

 

ሻݐௗሺܥ ൌ ሻݐሺߙ ∙ ܳሺݐሻ          (4)  

ሻݐௗሺܮ ൌ ሻݐሺܥ ∙ ܳሺݐሻ ൌ ሻݐሺߙ ∙ ܳሺݐሻଶ         (5)  

 35 

where α [g d m-6] is the proportionality coefficient relating the magnitude of the discharge to the released loads. 

The proportionality coefficient depends on ܯ௪ሺݐሻ, the mass dissolved in the pore water and instantly available for release: 

 

ሻݐሺߙ ൌ ߝ ∙   ሻ      (6)ݐ௪ሺܯ

 40 
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where ε [d m-6] becomes a catchment-independent, empirical loss factor that needs calibration for each chemical (see sec. 

4.2). 

 

Certain herbicides are present in significant concentration outside of the application period too (see for example (Leu et al., 

2004a)). Therefore, we added a constant background concentration (ܥ	[g m-3]) to the substance transfer model. This step 5 

was essential to ensure a proper calibration of the model. By doing so we implicitly assume a constant concentration of 

herbicides independent of the application period, representing e.g. other, not seasonal sources or a general presence in the 

baseflow due to the long-term persistence of pesticides in groundwater. Thus, the total released load of the system becomes: 

 

ሻݐ௦ሺܮ ൌ ሻݐሺܥ ∙ ܳሺݐሻ  ߝ ∙ ሻݐ௪ሺܯ ∙ ܳሺݐሻଶ        (7)  10 

 

3.2.2 Substance transfer for biocides 

Biocides are applied in the urban settlement on façades, flat roofs, basement seals and underground parking lots. Due to the 

potential year-round application and the long-term protection purpose of biocides, it is assumed that the stock in the urban 

settlement is constant over time (Wittmer et al., 2010).  15 

The leaching of biocides in urban areas is a complex process and several studies provide quantitative information on loss 

rates, dynamics and driving factors (Jungnickel et al., 2008;Burkhardt et al., 2008;Wittmer et al., 2011). The process is 

mainly driven by precipitation when water flows over the treated surfaces and it was observed that concentration patterns of 

urban compounds follow the rainfall pattern more than the river discharge (Wittmer et al., 2010). Therefore, the current 

model simplifies the processes by assuming the release being proportional to precipitation and instantaneous transport to the 20 

rivers. The following equation thus describes the resulting modelled load ܮௗሺݐሻ [g d-1] to the rivers: 

 

ሻݐௗሺܮ ൌ ܯ ∙ ߚ ∙ ܲሺݐሻ          (8)  

 

With ܯ [g] the total mass present in the catchment within the model period, ߚ [m-1] the substance-specific loss rate (to be 25 

calibrated, see below), ܲሺݐሻ the precipitation [m d-1]. 

 

3.2 Routing module 

Load aggregation 

Concentrations of micropollutants at the outlet of any catchment composed of several subcatchments are predicted by 30 

aggregating the loads from the output of the substance transfer module and division by the actual total discharge. The 

approach considers the local availability of sources and the spatial distinctions of the driving factors (discharge or 

precipitation). However, instantaneous aggregation assumes no in-stream losses, such as degradation, sedimentation or 

diffusion taking place during the transport. Furthermore, it implies that the temporal resolution should be larger than the 

longest travel time of a component during a rain or discharge event. Otherwise the concentration dynamics are affected.  35 

A special situation is given by the presence of the large pre-alpine lakes (Lake Constance, Lake Lucerne etc.) in the river 

network. Because of the long water residence time in these water bodies (months to years), the concentration dynamics in the 

lake outlet are strongly dampened and differ substantially from other river sections. To account for these different dynamics, 

we simulated the input into each of these lakes separately by the substance transfer module. We assumed complete mixing 
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into one year of discharge and used the resulting concentration as a constant value in the river water flow out of the 

respective lakes. The load varied accordingly with discharge from the lake. A different case was Lake Biel, which was not 

treated as a mixing reactor because of the short spatial distance between the inflow and the outflow of the river Aare. 

Routing with AQUASIM 

In larger river basins the effects of travel time, dispersion and degradation during pollutant transport in the river system 5 

become more important. The assumption of instant arrival of pollutants at the outlet within daily time steps does not hold 

true anymore and hydraulic routing becomes indispensable.  

To that end the load output from the substance transfer module was used as input into the program AQUASIM (Reichert, 

1994) that was used for describing the transport and fate processes within the main rivers. Flow was described with the 

kinematic wave approximation of the St. Venant equations. Transformation and sedimentation through sorption was 10 

neglected because the model compounds are sufficiently stable and show only weak sorption (see also Honti et al. (in 

preparation)). . 

 

4 Methods 

4.1 Model input data 15 

4.1.1 Discharge, precipitation and temperature 

Hourly discharge data was obtained for 1033 stations from federal and national agencies (see Appendix A4, Table S4) to 

derive two kinds of discharge time series for all subcatchments. The first, termed local runoff, refers to surface and 

subsurface runoff originating from the specific subcatchment and is used in the substance transfer module for herbicides. The 

other is the streamflow at the outlet of a subcatchment required in the routing module to calculate the concentrations of 20 

catchments or as input to AQUASIM. For headwater subcatchments without any further upstream connections, the local 

runoff is identical to the streamflow. 

 

Time series of local runoff are derived from the records of gauging stations measuring rivers with a Strahler stream order 

(Strahler, 1957) less than five. Using gauging stations at larger rivers would not accurately reproduce the high temporal 25 

variations of the local runoff. The recorded discharge is allocated to the subcatchments upstream according to the drainage 

area ratio method (Hirsch, 1979). Unfortunately, many subcatchments remain ungauged hereby. On one hand this method 

does not provide time series for subcatchments downstream of the stream gauges with Strahler order larger than four, on the 

other hand numerous ungauged tributaries join the river network downstream of the selected stream gauges. In both cases a 

nearby reference stations (with Strahler order < 5) is selected and the area ratio method is applied to calculate local runoff. 30 

Selection of the reference stations is based on the map-correlation method from Archfield and Vogel. (2010) calculating the 

correlation between stream gauges and choosing the station with the most correlated discharge at the considered catchment. 

 

The stream flow time series for all subcatchments were deduced in a similar way. Upstream of stream gauges with Strahler 

less than five, the discharge is allocated according to the drainage area ratio and accumulated towards downstream. The 35 

discharge of any stream gauge is passed on to the downstream subcatchments and accumulated with the streamflow of 

converging tributaries. Likewise to the local runoff, the streamflow for ungauged tributaries is adapted from reference 

stations selected with the map-correlation method. 
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Hourly precipitation data for the study area is available for Switzerland from MeteoSwiss CombiPrecip (Sideris et al., 2014) 

and for the rest of the Rhine basin from RADOLAN (Bartels et al., 2004), a product of the German Meteorological Office 

(DWD). Both are raster datasets (with a spatial resolution of 1 km2) computed using geostatistical combination of radar 

sensing and rain gauge measurements. Small temporal gaps in the precipitation data or uncovered parts in the French region 

were filled with data from the nearest available rain gauge. Additional data from rain gauges is available for Luxembourg 5 

and France. By intersecting the raster cells with the subcatchments, the most accurate conversion was achieved with the area-

weighted mean of the overlapping grid cells within a subcatchment.  

 

Raster temperature data with daily mean values are retrieved from MeteoSwiss TabsD (Begert et al., 2003) with a spatial 

resolution of 0.02 deg (~2.3x1.6km) and from the European dataset termed E-OBS (Haylock et al., 2008) with a coarser 10 

resolution of 0.25 deg (~27.8x18.8km). Both datasets are spatial interpolations of monitoring stations.  

Given that the Swiss temperature dataset has a finer grid size than the average area of the subcatchments (8.8 km2), it 

allowed for estimating reliable mean temperatures for all subcatchments in Switzerland. The grid size of the E-OBS 

temperature data was significantly larger than the average subcatchments. The spatial resolution of the E-OBS temperature 

data set was therefore refined using a Digital Elevation Model with a grid size of 1 km2  (the DEM was obtained from the 15 

GMES RDA project, EEA, 2013). In particular, the deviation between the altitude of the DEM cells and the E-OBS cells was 

calculated. These deviations were multiplied with a temperature lapse rate of -6.5 °C/km and added to the temperature values 

of the E-OBS cells. Thus a gridded temperature model with a resolution of 1 km2 was obtained.  

4.1.2 Land use data 

Herbicides are applied on specific crops, therefore detailed, spatially distributed agricultural land use data were required. The 20 

dataset “Agricultural Landuse2000” from the JRC AFOLU project (Leip et al., 2007) classifies agricultural land use into 30 

crops and for a grid with a resolution of 1 km2 by combining remote sensing with statistical information of the agricultural 

production. 

This European dataset on agricultural land use does not cover Switzerland. In order to have a dataset with the same crop 

categories and a similar spatial resolution, a harmonized dataset was created from the Land Use Statistics of Switzerland 25 

(Swiss Federal Statistical Office FSO, 2012) and the census of agricultural enterprises (Swiss Federal Statistical Office FSO, 

2011). The cultivation areas of 60 listed crops reported in each municipality in the census were distributed on the grid cells 

of the Land Use Statistics belonging to the 3 agricultural land use classes, leading to an average fraction of cultivated area of 

crop l per grid cell in community k: 

 30 

ܹ
ሺሻ ൌ

ೖ
ሺሻ

ீೖ
ሺሻ            (9)  

 

W୩
ሺ୪ሻ [–] is the average fraction of crop l being cultivated in a single grid cell belonging to community k. The  a୩

ሺ୪ሻ [ha] is the 

cultivation area of crop l (reported in the census) in municipality k, G୩
ሺ୲୭୲ሻ [ha] is the sum of the area of all agricultural grid 

cells in community k. The 60 crop categories of the census are merged to the 30 categories from the European “Agricultural 35 

Landuse2000”, thus a consistent database is accomplished with a comparable approach of distributing statistically reported 

areas to spatial land use data. 

 

Land cover of housing and settlements is available with vector based maps, where every building is precisely represented by 

a polygon and in some cases with knowledge about its height. 40 
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‐ France:  Institute géographique nationale (IGN) BD TOPO® (with height) 

‐ Germany: Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (ADV) ALKIS® 

‐ Luxembourg: Administration du Cadastre et de la Topographie (ACT) BD-L-TC 

‐ Switzerland: Federal Office of Topography (swisstopo) swissTLM 3D (with height) 

 5 

Façade surfaces are calculated by multiplying the contours of buildings with their height where available (CH, FR). For the 

other countries (DE, LU) the façade areas within a subcatchment are estimated from the footprints areas and the population. 

Footprint and façade follow a linear relation, whereas the relationship between population Npop [–] and façade Afac [m2] 

appear to be polynomial . With the Swiss data the following regression was obtained: 

 10 

ܣ ൌ 1.55 ∙ ௧ܣ  1.45 ∙ 10ହ ∙ ܰ  6.20 ∙ 10ିସ ∙ ൫ ܰ൯
.ସଽ

      (10)  

 

This regression was validated with the French data achieving reasonable results and finally used to calculate the façade areas 

in Germany and Luxembourg (see Supplementary Information, Appendix A6, Fig. S5).  

4.1.3 Model compounds, use and sale data  15 

Five model compounds (see Tab. S1) have been selected for this study: three agricultural herbicides (isoproturon (IPU), S-

metolachlor (MEC), terbuthylazine (TBA)) and two (dual use) biocide (carbendazim (CBZ), diuron (DIU)). The biocides are 

mainly used in urban environments to protect materials. They may also have some agricultural use in some regions of the 

basin (e.g., in Switzerland) but the usage is of minor relevance and is neglected here. 

Use and consumption data for the chemicals are not available in a spatially distributed manner. To provide input for all 20 

spatial model units, we proceeded in two steps. First, we obtained statistical data on use/consumption data for regions or 

countries. Subsequently, we downscaled these statistical data based on land use or population.  

 

Annual sales data of herbicides were available from the countries Switzerland (Agroscope ZA-AUI, (Spycher and Daniel, 

2013)), Germany (Federal Office of Consumer Protection and Food Safety, (Federal Office of Consumer Protection & Food 25 

Safety BVL 2008 - 2012)) and the French regions Alsace (Office national de l’eau et des milieux aquatique, (Office national 

de l’eau et des milieux aquatique ONEMA, 2014)) and Lorraine (Groupe Régional d'Action contre la Pollution 

Phytosanitaires des Eaux Lorraine, (Groupe Régional d'Action contre la Pollution Phytosanitaires des Eaux Lorraine 

GRAPPE Lorraine, 2005)) for the years 2008-2012 (except the study for Lorraine was only issued for 2005). The spatial 

coverage area of the statistics varied strongly ranging from 357’300 km2 for Germany to 8'330 km2 for Alsace. The Swiss 30 

dataset only provided coarse ranges of substance sold per year from which the mean values were used. 

Only one source for the use and sale of biocides was at hand. The survey of Burkhardt & Dietschwiler (2013) investigated 

the consumption rates in Switzerland of various biocides in antifouling paints, masonry and wood protection agents. The use 

rates have been applied to the entire study area. 

 35 

The mass distributed on the agricultural fields respectively applied on houses of each catchment was estimated by 

downscaling regional or national sales data ܯሶ ௧௧  [g d-1] with the ratio of the local application area (area within a 

subcatchment) ܣ [ha] to the total application area ܣ௧௧ [ha] (total area within the considered sales study): 

 

ሶܯ  ൌ 	
ೌ


ሶܯ ௧௧            (11)  40 
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The application area was distinct for use classes and substances. For herbicides it was the sum of possibly treated agricultural 

land use areas, more specifically the crops for which a substance is authorized and primarily used. Biocides were applied on 

façades of a building. The sum of the respective building surface composes the application area. 

4.2 Calibration of the catchment model 5 

4.2.1 Calibration sites  

To calibrate the model, data from field studies was used that provided simultaneously data on application amounts of 

substances as well as on losses to the rivers. Such studies are rare and we used the following studies situated in the 

northeastern part of Switzerland. The sampling campaigns from Gomides Freitas et al. (2008) and Doppler et al. (2012) 

measured herbicide concentrations at the small-scale agricultural catchments Summerau and Ossingen, respectively, after a 10 

controlled herbicide application. Wittmer et al. (2010) monitored the mass and dates of herbicide applications in a slightly 

larger catchment Mönchaltorf (25 km2) with mixed land use. The biocide application was estimated with product and 

statistical information. Subsequently the losses from the catchments were measured at the outlet of the catchment. 

 

4.2.2 Calibration procedure  15 

The substance-specific parameter sets for herbicides ߠௗ ൌ ሼߝ, ,ܥ ρ, ݇௪ି௦, ݇௦ି௪, ݇ௗ, ܶሽ and for biocides 

ௗߠ ൌ ሼߚሽ cannot be measured and require calibration. Parameter ܶ regulating the timing of herbicide application was 

only calibrated in the case of Mönchaltorf where regular application occurred at the farmers’ chosen timing. At Ossingen and 

Summerau the application was experimentally controlled and therefore a calibration of ܶ would be meaningless. 

The model parameters were calibrated using a Bayesian inference approach. The likelihood function accounted for the 20 

parameter uncertainty and the structural model errors. For herbicides model errors were assumed to deviate stronger during 

the application season. Therefore an error-scaling function was added depending on the substance input to the system and a 

driver imitating the approximate substance application to the fields. The additional parameters to calibrate resulting from the 

error-scaling function were ߠௗ, ൌ ሼߤ,   theߪ ሽ where  is a scaling factor for the substance input andߪ

calibrated standard deviation of the total model error. For the biocides the error variance was assumed to have no 25 

seasonality. 

Measured peak concentrations of herbicides in the calibration studies occurring before the monitored application period were 

excluded from the calibration procedure as they represent accidental spills or runoff from hard surfaces. As such events are 

not represented in the model, including them would have spoiled the identification of model parameters. 

The likelihood function used in this study is based on the assumption that Box-Cox transformed time series of concentration 30 

data ܥ lead to independent and identically distributed normal errors. The likelihood function is as follows: 

 

ሻߠ|௦ܥሺ ൌ ൬
ଵ

ඥଶమ
൰
ே

ݔ݁ ൬െ
ଵ

ଶఙమ
∑ ቀ݃൫ܥ௦,൯ െ ݃൫ܥௗ,൯ቁ

ଶ
ே
ୀଵ ൰∏

ୢ൫್ೞ,൯

ୢ
ே
ୀଵ     (13)  

 

where ߪଶ is the error variance, ܰ is the total number of observations in all subcatchments,  ܥ௦ and ܥௗ	are the observed 35 

and the modelled concentrations for the data point ݅. The transformation ݃ሺ∙ሻ is the Box-Cox transformation used to remove 

the heteroscedasticity of the residuals: 
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݃ሺܥሻ ൌ
ഊିଵ

ఒ
            (14)  

 

The parameter λ was set to 0.3. 

The Jacobian of the transformation 
ୢሺ್ೞሻ

ୢ
ൌ ∏ ௦,ܥ

ሺఒିଵሻ
ୀଵ  was required to compensate the distortion of the likelihood by 

using the transformed variables. 5 

 

4.2.3 Prior distributions  

Priors for the substance-specific loss rates were estimated based on reported information in the calibration studies (see 

Appendix A8, Table S4). Estimation for the substance-specific ߝ of the herbicide model is based on the reported loss rates 

from the studies. Neglecting background concentrations the time-averaged concentration ̅ܥ during the main loss period from 10 

  ௗ is given according to Eq. 4 asݐ  toݐ

 

పపௗതതതതതതതതതതതതܥ ൌ
ఌ

ሺ௧ି௧బሻ
ൈ  ሻݐ௪ሺܯ ൈ ܳሺݐሻ݀ݐ

௧
௧బ

:         (15)  

 

Based on measurements, ̅ܥ can also be expressed as:  15 

 

పపௗതതതതതതതതതതതതܥ ൌ
ெሶ ೌ	ൈ	∆ఛൈ	ೞೠ

 ொሺ௧ሻௗ௧

బ

          (16)  

 

where ܯሶ   is the average application rate in the catchment, ∆߬  is the duration of the application period, ݈ݎ௦௧௨ௗ௬  is the 

empirically observed loss rate from the study . From Eq. 14 and 15, it follows that ߝ can be approximating as: 20 

 

ߝ ൌ
ெሶ ೌ	ൈ	∆ఛൈ	ೞೠ

 ொሺ௧ሻௗ௧

బ

	ൈ	 ெೢሺ௧ሻൈொሺ௧ሻௗ௧

బ

ൎ
ெሶ ೌ	ൈ	∆ఛൈ	ೞೠ

ሺ௧ି௧బሻ	ൈ	ெೢതതതതത	ൈሺொതሻమ
       (17)  

 

where തܳ is the mean discharge during this period, and ܯ௪തതതത is the mean calculated using the known application pattern and a 

first-order approximation for the sorption and decay.  25 

Priors for the substance-specific loss rates of the biocide model was the total loss rate reported in Wittmer et al. (2010) 

divided by the yearly sum of precipitation. Having multiple study catchments or ranges of loss rates allowed to calculate a 

distribution of the priors for ߝ and β. 

Prior distributions for the parameters describing pesticide fate in the soil (ρ, ݇ௗ, ݇௪ି௦, ݇௦ି௪, ݇ௗ) were derived from field 

experiments. The equations are fitted to the Freundlich adsorption isotherms with time-varying sorption coefficients 30 

measured in soil samples (Freitas et al. 2008). 

The maximum of the posterior parameter distribution was found by performing a Nelder-Mead simplex optimization. The 

maximum likelihood parameter set was used as a prior for the Markov chain Monte Carlo (MCMC) simulation using the 

Metropolis algorithm (Gamerman, 1997). The developed posterior parameter distributions were used to predict the parameter 

and model uncertainty. The procedure was repeated for every calibration site separately.  35 
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4.3 Model validation and routing 

Several comprehensive sampling campaigns from the Swiss “National Surface Water Quality Monitoring Program - 

NAWA” (Federal Office for the Environment FOEN, 2013) and data from a continuous monitoring station were selected to 

evaluate the model. 

The first campaign (called SPEZ 2012) comprised five catchments (Fig. 2) ranging from 39 to 105 km2 and have varying 5 

extents of urban and agricultural influences (Appendix A7, Table S3). The measurement campaign was accomplished from 

March to July 2012 with biweekly time-proportional mixed samples (Moschet et al., 2014). 

The second survey was the “National River Monitoring And Survey” termed NADUF, where weekly or biweekly mixed-

samples were taken during 2009 (Stamm et al., 2012). The monitoring sites were in the north-eastern part of Switzerland and 

quantified the concentrations of several organic micropollutants in five nested catchments. These nested catchments have a 10 

large range of size from 74 km2 to 14’718 km2 comprising between 22 and 2554 subcatchments. 

A third validation was conducted with data for 2011 from the continuous measurement program of the International Rhine 

Monitoring Station (IRMS) near Basel. With five probes distributed over the cross-section, daily discharge-proportional 

pollutant levels are evaluated. The upstream area of the Rhine at this point covers almost 36’000 km2 including the sub-

basins Alpine Rhine, Lake Constance, High Rhine and Aare.  15 

 

Modelled hourly concentrations were adapted to the sampling periods of the respective validation surveys. According to the 

aggregation periods of mixed samples in the measurement surveys, the modelled concentrations were averaged over the 

sampling time periods, such that the resulting time series were fully comparable.  

 20 

The issue of routing arises for larger catchments where the transport time is longer and also the processes along the way 

become more significant. For the sites of the NADUF survey the concentrations at the outlets were first modelled with load 

aggregation and in a second step river segments were defined where the routing with AQUASIM was calculated. Thus the 

influence of a physically-based hydraulic routing can be compared to the situation where in-stream transport and processes 

are neglected. 25 

In the case of the IRMS, measuring a large sub-basin of the Rhine, the catchment model is applied for 5950 subcatchments. 

Downstream of the lakes the substance transport was modelled with AQUASIM for the larger rivers (Rhine, Aare; 

Appendix9, Fig. S6). The simplistic approach with load aggregation was applied on this large scale as well.  

4.4 Model predictions within the Rhine basin 

The calibrated model was finally applied to the Rhine and the major tributaries to characterize the pollutant dynamics of 30 

herbicides. These simulations were real predictions without any further adjustments of model parameters. Due to the lack of 

statistical input data of the use of biocides in France and Germany predictions for the Rhine basin were not possible for 

carbendazim and diuron.  

4.5 Technical implementation 

The iWaQa model is written in C++ and the outputs are time series of concentrations, parameter estimations, posterior 35 

parameter distribution from the MCMC or matrices with the concentration predictions with the posterior parameters. Within 

a Python framework, i) the input for the substance transfer module is generated, ii) the substance transfer module runs the 

iWaQa model for the entire Rhine basin and iii) the two routing options are executed (see Appendix A1). Data preparation 

and analysis is effectuated with the programming language R (R Core Team, 2017). 
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All modules are executable individually. Preprocessing succeeds within 30 minutes to sort the hourly input data for all 

18’240 subcatchments of the Rhine basin on an Intel x86 8-core processor. The substance transfer module takes 

approximately an hour to run and sort the output by both, subcatchments and time steps. Run times of the routing options 

differ substantially depending on the size of the considered catchment and the parameterization of AQUASIM. Generally the 

load aggregation is calculated within a few minutes and the simulation of the main tributaries of the Rhine basin with 5 

AQUASIM is completed within 6 hours. 

4.6 Model evaluation 

Besides the likelihood used for parameter calibration, there are many metrics for evaluating model performance of 

hydrological and water quality models (Jachner et al., 2007;Smith and Rose, 1995;Reusser et al., 2009;Moriasi et al., 2007). 

Out of those, we have selected some frequently used statistics (Table 3) that allow for a comparison with other studies. In 10 

addition, we have included some metrics that are more specifically designed to analyse aspects, which are of special 

relevance for this work. These measures include the Geometric Reliability Index of the cumulative distribution of the 

simulated concentrations to see how well the overall concentration level is met or the fold difference between the observed 

and simulated maximum concentration during the simulation period. 

5 Results 15 

5.1 Calibration 

The calibration was carried out for all catchment-compound combinations for which observations are available (see Table 2). 

For the agricultural herbicides this provides several alternative calibration sets.  The final decision of which set to use for 

further predictions was based on the performance in the validation step with the NAWA SPEZ sites (see below). 

For the agricultural herbicides, the calibration resulted in a reasonable simulation of the observed concentration dynamics 20 

(Figure 3, Supplementary Material Fig. S7, S8). The calibrated uncertainty bands also followed the expected seasonal 

patterns: they were large during the application periods and decreased with time. The model, however, poorly captured the 

exact timing of the concentrations as one can see from the low Nash-Sutcliffe (NSE) coefficients (ranging between -0.05 and 

0.62, median = 0.38; see Appendix A13, Table S10). Despite these deviations, the correlations between observations and 

simulations were reasonable (range between 0.30 and 0.85, median = 0.68).  25 

For the biocides, the model predicted a rather uniform distribution of concentration peaks around the year reflecting the 

precipitation patterns. The observations however, suggest a bi-modal seasonal pattern with higher concentrations in spring 

and fall. This pattern resulted in low correlations (r of 0.30 and 0.37; see Appendix A13, Table S10) and poor NSE values (-

0.05 and 0.08).  

 30 

The residuals pointed to systematic deviations between observed and modelled concentrations (Figure 4). The data group 

into two clusters. One of the clusters showed systematic underestimations of the observations, while the other showed the 

opposite. Comparison with the time-series revealed on the one hand that for most compounds, the highest observed 

concentrations peaks were (substantially) underestimated during calibration (see for example metolachlor or terbuthylazin in 

Figure 3). These peak concentrations were underestimated by 13% to 83% (Table 4). On the other hand, the second cluster 35 

of data points indicates that concentrations of some (smaller) events were overestimated. This pattern suggests that the model 

structure did not capture the full dynamic range of the pesticide concentrations. 

Despite these limitations, the concentrations were reasonably well represented by the model. The Geometric Reliability 

Index GRI indicates that the predicted concentrations of the agricultural herbicides were within a range of 1.9 to 2.5 of the 
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observations (Figure 5). When being interested in how well the cumulative concentration distributions are simulated 

(ignoring the timing) these values range between 1.4 and 2.2. As can be seen from Figure 5, the performance for the biocides 

was considerably poorer but the cumulative distribution was also reproduced better that the concentration time series. 

Based on the relative RMSE one can compare the calibration performance across sites. Mönchaltdorf and Summerau yielded 

better calibrations for metolachlor and terbuthylazin than the Ossingen data set (Appendix A13, Table S8) The opposite was 5 

true for isoproturon. In the case of Ossingen, a long dry period followed after the isoproturon application resulting in very 

low concentrations without a pronounced peak related to the recent application. This last aspect points to the fact that single 

calibration data sets may represent special situations hampering the predictive power during normal conditions. The 

application of metolachlor and terbuthylazine in Ossingen for example, took place later just before an intensive precipitation 

event. Through direct shortcuts, such as manholes of drainage systems and storm drains, the transfer to the river was 10 

accelerated and very high concentrations have been measured (Doppler et al., 2012). 

 

So far, we have compared the observations to the deterministic model predictions. Comparing the observations to the 

simulations including the prediction uncertainties due to the estimated parameter uncertainty (of the deterministic model) 

and the total predictive uncertainty accounting for input and model structure deficits reveals that the parameter uncertainty 15 

contributes only a small fraction. Taking into consideration all sources of uncertainty leads to uncertainty bands that include 

most of the observations as can be seen from the cumulative concentration distributions depicted in Appendix A12, Figures 

S23, S24.  

 

All calibrated parameters of the deterministic model had priors based on physical reasoning or empirical data, hence the 20 

maximum likelihood values are not expected to deviate strongly. This held true for the decay rate, the loss rates (ε and β), the 

background concentration and the objective temperature. The parameters describing the herbicide (de-)sorption processes 

(initial availability ρ, transfer rates ݇௦ି௪ and ݇௪ି௦) changed considerably. In general, the sorption coefficient values were 

higher and degradation rates smaller than in a priori estimate, meaning that the available mass for release was smaller but 

more persistent. 25 

5.2 Validation 

The different calibrated parameter sets were used to predict the corresponding concentrations for the validations case studies. 

To that end, the model output having a daily resolution was aggregated to the time periods of the real sampling strategies at 

the respective sites. In contrast to the calibration procedure, the validation step included also the simulation of the compound 

input. This included the estimation of the applied amounts and the timing of the applications.  30 

 

For the agricultural herbicides, several calibration data sets were available. All of them were first tested on the NAWA SPEZ 

sites. Based on their performance, one set per compound was used for simulating the larger NADUF and IRMS sites. Based 

on the correlation coefficients and the NSE criterion the parameter sets calibrated at Mönchaltorf for the compounds 

isoproturon and terbuthylazine and the parameter set from Summerau for metolachlor were used for the other catchments 35 

(see Appendix A13, Table S8).  

 

At the IRMS, the validation of the model was partially restricted due to the low concentrations that often remained below the 

limit of quantification (LOQ) of 5 ng/l for metolachlor and terbuthylazine. Nevertheless, concentrations were high enough to 

evaluate the model performance during the application period. 40 
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The quality of the predictions varied between compound use class and the validation catchments. The GRI values 

demonstrate that the agricultural herbicides were simulated better than were the biocides (Figure 5). The distribution of 

observed concentrations was better represented by the model as compared to the actual time series. Interestingly, the model 

performed better in the larger catchments (Figure 5) despite the fact that calibrations were up-scaled to areas that are between 

four and 70’000 time larger than the calibration catchment (Table 2). 5 

 

The quality of the predicted maximum concentrations changed from the calibration to the validation step. While the values 

were systematically underestimated during calibration, this pattern changed substantially for the validation. Depending on 

the site-compound combination, the maximum concentrations were either clearly under- or overestimated (Table 4). 

Irrespective of the sign of the deviation, the fold difference between observed and simulated concentrations mostly ranged 10 

between one and four (Figure 6). However, there were a few cases of extreme deviations because of either the observation of 

a pronounced and very high peak or very low measured values hardly exceeding the observed background. Again, the model 

performed better for the herbicides where for 50% of the predictions (site-compound combinations) the maximum 

concentrations were predicted within a factor of 2.0 deviation from the observations. For the biocides, the value was larger 

(> 3.0). We observed also clear compound-specific patterns such as systematic over-estimation of diuron concentrations (see 15 

e.g., Appendix A12, Figure S28). 

 

As during the calibration step, the Nash-Sutcliffe values were low pointing again to the problem of properly simulating the 

exact timing of concentration peaks (Figure 7). This was very pronounced for the biocides. The correlation coefficients 

provided a mixture picture. For some compounds such as diuron, the correlations coefficient range between 0.29 and 0.68 20 

(median = 0.56) for the NAWA SPEZ and NADUF sites. For others such as carbendazim or isoproturon the correlation was 

very variable especially between the NAWA SPEZ sites (see Appendix A13, Table S10). At the station on the Rhine in 

Basel, the correlations varied between being non-existing to fairly strong (isoproturon: r = 0.84 assuming load aggregation 

across the Rhine basin). 

 25 

Effects of routing 

For the IRMS measuring site, we compared the performance of the simple load aggregation procedure and the explicit 

routing with AQUASIM. Differences between both approaches were moderate. The routing yielded better results because 

some of the pronounced concentrations peaks predicted by load aggregation were substantially smoothed. Therefore, the 

maximum concentrations were overestimated to a lesser degree. The median difference between observed and simulated 30 

maximum concentrations with and without routing were 3.1 and 3.4-fold, respectively (averages: 2.6 and 4.8, respectively). 

The slightly better NSE values also suggest a better performance with an explicit routing. These results provided evidence 

that at the scale of such large basins of 30’000 km2 and beyond the explicit routing makes a relevant difference for pesticides 

studied at a daily resolution.  

5.3 Predictions for the Rhine basin 35 

Based on the findings reported above on the effects on routing, we only report the findings based on AQUASIM for the 

predictions of the main tributaries (Aare, Neckar, Main and Moselle) and the further measuring sites downstream of Basel. 

The total river length for which the routing was explicitly simulated with this module was 1773 km. We focus here on the 

three herbicides (isoproturon, metolachlor and terbuthylazine) because for them a minimum set of observations was 

available.  40 
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The observed isoproturon concentrations revealed the two peaks in spring and fall as measured also at the other locations 

(Figure ). The model predicted the timing of the spring peak very well. Also the absolute concentrations level of the peak 

was simulated well (within 30% of the observation). Concentrations during the summer months were slightly 

underestimated; the fall peak was missed because no application was included in the model (see above). 

The comparison of the simulated chemographs along the Rhine show some slight temporal shifts of the peaks caused by 5 

different application periods. Despite of the size of the basin however, these shifts due to varying phenology were small 

corresponding to a few days only. 

The simulations show very similar patterns for the other two herbicides in the different tributaries (see Appendix A11, 

Figure S22). The time shifts between the different sub-basins were also very small. Unfortunately, these findings cannot be 

tested against observations because the LOQ (10 ng/L and 50 ng/L for metolachlor and terbuthylazine, respectively) were 10 

too high. Nevertheless, the observed peak concentration for metolachlor at Lobith (20 ng/L) was close to the simulated value 

of 15 ng/L. For terbuthylazine, all simulated values at Lobith remained below the LOQ. This demonstrates at least that the 

concentrations were not overestimated. This contrasts with the results at Basel where the model predicted a maximum 

concentration 1.9 times the actual observation. 

In our simulations, we have assumed that the compounds behave like conservative tracers without degradation or sorption 15 

taking place. Although this is not completely true, the travel times through the river network is so short that relevant 

dissipation can be expected to be negligible for the model compound considered in this paper (Honti et al., in preparation).  

6 Discussion 

6.1 Model performance 

We presented here a series of predictions for herbicide and biocide concentrations in streams without any local calibration or 20 

model adaptations. In this sense, the results correspond to predictions in ungauged catchments covering tens of thousands of 

km2 based on calibration catchments covering less than 30 km2 in total. Despite the challenges that go with this task, the 

model validation demonstrated that the concentration levels could be predicted within a factor of two to four for 50 to 75% 

of the predictions. This is comparable to what has been observed for models predicting concentrations of micropollutants 

from points sources (Johnson et al., 2008). The seasonality of the herbicide concentration peaks was well represented too. 25 

Overall, the results suggest that such a parsimonious model can be used as a meaningful screening tool to identify potential 

hotspots in river networks. Models of a similar degree of parsimony have been developed for point source pollution (e.g., Ort 

et al., 2009) but are largely lacking for compounds with rain-driven input dynamics.  

Despite these positive aspects, one has to be clear about the limitations of the model and the resulting predictions. 

Deficiencies are obvious when evaluating the performance metrics. The NSE or correlation coefficients obtained are low 30 

compared to values typically called satisfactory or good for hydrological models. However, our results need to be put into 

the context of comparable water quality studies dealing with diffuse pollution. As pointed out by Pullan et al. (2016) there is 

a lack of studies in this field reporting quantitative performance metrics such as NSE or r values. However, studies that do 

report such values demonstrate that the low NSE or correlation values of our work are in similar ranges of what others have 

described. Table 5 and Figure  summarise a selection of such findings from a number of model applications (e.g., SWAT, 35 

INC-P and others), which are much less parsimonious than the iWaQa model used in this study. This comparison indicates 

that model performance of water quality models achieved so far  is generally considerably lower compared to what purely 

hydrological models can accomplished. 

The fact that a parsimonious model such as the iWaQa model presented here was able to yield meaningful predictions 

suggests that the model concept represents the effects of the major drivers controlling the degree and dynamic of biocide and 40 
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herbicide inputs into streams. It also indicates that these drivers remain constant over considerable spatial areas and that one 

can use findings from small study areas to extrapolate to larger basins as long as the first order controls do not strongly 

change. For the iWaQa model as implemented here this means that the herbicide input for example is mainly triggered by 

discharge events. However, in drier regions it may be possible that point sources play a dominant role (Müller et al., 2002). 

In this case, the model concept had to be complemented to account for this input pathway (see Honti et al., 2017).  5 

The observation that findings from small catchments can be extrapolated to larger areas in a meaningful manner may be 

considered a contradiction to earlier work where important spatial differences between herbicide loss rates within catchments 

were demonstrated (Doppler et al., 2014;Leu et al., 2010). However, the data suggest that spatial heterogeneity at small 

scales is averaged out at larger ones such that it does not dominate the large scale patterns.  

6.2 Model limitations 10 

Despite the positive aspects mentioned above, there are several (major) model limitations one has to be aware of. First, the 

parsimonious and empirical structure of the model requires compound-specific calibration. This generally implies that field 

data is available at the catchment scale with sufficiently well quantified input and output fluxes. 

While this calibration step is also necessary for other (more complex) models there are also model limitations related to the 

model structure. During calibration, we have noticed that the model was not able to fully represent the observed 15 

concentration peaks (see Table 4). This suggests that the model structure misses important processes that control 

concentrations during rainfall events. A possible candidate for such a process is drift deposition on roads and subsequent 

runoff during rainfall (e.g., Lefrancq et al., 2013). Interestingly, this systematic problem during the calibration phase was 

only partially observed during validation. Possibly this was due to the (much) larger scale of the validation catchments that 

average over many temporally independent application events. 20 

Other structural model limitations are too high herbicide background concentrations in some sub-basins, seasonal biocide 

concentration peaks that were not represented by the model or the lack of an isoproturon application in fall. These limitations 

were rather easy to identify but not very easy to solve. The herbicide application in fall for example is much more difficult to 

predict compared to the spring application because it not only depends on a single variable such as the temperature sum over 

the year but it is also influenced by all the climatic variables determining the time of cropping of the previous crop and 25 

potential intercropping. For seasonal biocide patterns, we lack any information about biocide use on buildings that could 

explain the observed seasonality. 

These examples demonstrate that the model limitations are often a mixture between too simplistic model structure and lack 

of input data. This agrees with the findings from the error models. The predictive uncertainty due to poorly identified 

parameters only explain a small fraction of the deviations between observations and the deterministic model predictions in 30 

the calibration phase. The estimated uncertainty for the full error model however, covers most of the data. However, one 

should not overstate this observation because the fraction of uncertainty assigned to different sources depends on how the 

error model was formulated (Honti et al., 2014).  

One could conclude that a more complex model was warranted to overcome such limitations. While this would be definitely 

worth considering one should be aware of the severe limitations that come with the input uncertainty regarding the chemicals 35 

to be modelled. To illustrate this point, we have quantified the spatial and temporal density of input data needed for the 

model (Figure ). Compared to the drivers of the hydrological part such as precipitation the density of data on biocide and 

herbicide input into the system was orders of magnitude lower. While there is hourly precipitation data available on a 1 x 1 
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km2 grid for the entire model domain we could only approximate the herbicide input based on average national sales data. 

For biocides, one had to rely on a single rough estimate per compound for the entire basin. 

Given this level of input uncertainty, it comes as no surprise that the observed concentrations may be substantially over- or 

underestimated in a given subcatchment. The degree of mismatch between observations and simulations was still in a range 

that allowed to use the model as a screening tool for identifying potentially critical catchments in a basin. This was probably 5 

thanks to the widespread use of the selected model compounds. For less frequently used compounds, one can assume that the 

input estimates based on sales statistics would be even more uncertain due to e.g. region-specific application patterns. 

Accordingly, the predictive uncertainty would increase further. 

7 Conclusions 

Our findings suggest that even a very parsimonious model with a maximum of eight global parameters that need to be 10 

calibrated is sufficient to capture the key drivers and processes for diffuse agricultural herbicide and urban biocide losses 

reasonably well such as to predict level of peak concentrations within a factor of 2 to 4. This demonstrates that land use as a 

proxy for compound use, weather data for the timing of herbicide applications and discharge or precipitation as drivers for 

fast transport are first order controls for diffuse pollution for the compounds in our study area. The results further 

demonstrate that impact of these factors can be scaled spatially across at least four orders of magnitude (from < 3 km2 to > 15 

30’000 km2).   

At the same time the results also point to clear model deficiencies such as the simulation of background concentrations or the 

lack of the fall application of certain herbicides. Unfortunately, the analysis of model performance is limited by the lack of 

adequate validation data that have to combine reliable information on timing and amounts of the use of the chemicals and on 

concentrations in the streams. Progress in modelling and in measuring will remain closely coupled in this area and mutually 20 

benefit from each other. 

Finally, it should be recognized that despite using a very parsimonious model, collecting the necessary input data and 

bringing it into a consistent form across a large water basin such as the Rhine is very time consuming. Hence, sharing model 

codes and even more importantly the required data will benefit the scientific community by not having to re-invent the 

wheel. 25 

 

Data and code availability 

The source code and the input data for the models has been placed to GitHub at https://github.com/moserand/crosswater. 
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Figure 1: Map of the Rhine basin. The study area covers the part upstream of Emmerich indicated by the red circle. The different 

colours represent the sub-basins according to the International Commission for the Protection of the Rhine (ICPR) with the an 

additional distinction of the Aare basin in Switzerland. Base data: Vogt et al. (2007); Swisstopo (2007). 
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Figure 2: Calibration and validation catchments in Switzerland. Base data: Vogt et al. (2007); Swisstopo (2007). 
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Figure 3: Examples of the comparison between simulated and observed concentration time series during the calibration step for 

each compound. IPU: isoproturon (Mönchaltdorf), MEC: metolachlor (Summerau), TBA: terbuthylazine (Mönchaltdorf), CBZ: 

carbendazim (Mönchaltdorf), DIU: diuron (Mönchaltdorf). The full set of calibrations is shown in the Supplementary Material 5 

(Fig. S7, S8). 
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Figure 4: Residuals (observed – simulated concentrations) for the model compounds during the calibration step. IPU: isoproturon, 

MEC: metolachlor, TBA: terbuthylazine, CBZ: carbendazim, DIU: diuron. Moe: Mönchaltdorf, summ: Summerau. 
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Figure 5: Overview about the overall predictive power to simulate the concentrations levels during the calibration and validation 

phase as quantified by the geometric reliability index (GRI). A value of 1 (red horizontal line) indicates a perfect match; the larger 

the value the stronger the deviation. C: calibration; V: validation; -T: evaluation of concentration time series; -S: evaluation of 

cumulative concentration distributions (sorted according to size); green: agricultural herbicides; orange: dual use (urban and 5 

agricultural) biocides.  
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Figure 6: Cumulative distribution of the fold difference between observed and simulated concentrations Cmax of all compounds 

during the calibration and validation phase.  
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Figure 7: Violin plots of the Pearson correlation coefficients between simulated and observed concentrations for (H) herbicides 

(green) and (B) biocides (orange) during (C) calibration and for the different (V) validation data sets. 5 

 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-628
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 November 2017
c© Author(s) 2017. CC BY 4.0 License.



29 
 

 

 

Figure 8: Comparison of predicted isoproturon concentrations along the River Rhine for 2011 compared to the observations at the 

measuring site at Lobith.  

 5 
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Figure 9: Comparison of Nash-Sutcliffe efficiencies in this study for herbicides (green) and biocides (orange) during calibration 

(C) and validation (V) with values from the literature for diffuse pollutants (herbicides, different P-forms; sources: see Table 5).  

 5 
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Figure 10: Spatial and temporal density of different input variables. The different colours represent different categories of input 

quality. 
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Tables 

 

Table 1: Global model parameters. 

Abbreviation Name Description Specificity Model part 

 Initially available ߩ

herbicide fraction 

Fraction of the applied herbicide 

mass initially available for transport 

compound deterministic 

݇௪ି௦ Sorption rate Fraction of the dissolved herbicide 

mass getting sorbed to the soil 

matrix per unit of time 

compound Deterministic 

model 

݇௦ି௪ Desorption rate Fraction of the sorbed herbicide 

mass getting desorbed per unit of 

time 

compound Deterministic 

model 

݇ௗ Degradation rate Rate constant of the first order 

degradation  

compound Deterministic 

model 

  Backgroundܥ

concentration 

Constant background concentration, 

proportional to the areal fraction of 

the relevant crop in the 

subcatchments  

compound Deterministic 

model 

߳ Herbicide loss rate Loss rate per unit discharge and 

available herbicide mass 

compound Deterministic 

model 

ܶ Temperature 

objective 

Cumulative temperature sum 

required to start herbicide 

application on a crop  

crop Deterministic 

model 

 Biocide loss rate Loss rate per unit precipitation and ߚ

available biocide mass 

compound Deterministic 

model 

 Scaling factor Factor for scaling the model error ߤ

term proportional to the 

subcatchment-specific herbicide 

input 

compound Error model 

  Standard deviation ofߪ

the error model 

Relative standard deviation of the 

total model error 

compound Error model 

 

  5 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-628
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 November 2017
c© Author(s) 2017. CC BY 4.0 License.



33 
 

Table 2: Characterization of calibration and validation catchments 

  

Catchment/ 

River Abbr. Reference Year 

Area 

[km2] 

agricultural 

land use 

[km2] 

Housing 

footprint 

[km2] population 

Calibration               

Ossingen oss 

Doppler et al. 

2012 2009 1.2 1.1 - - 

Summerau sum Freitas et al. 2008 2003 0.5 0.04 - - 

Mönchaltdorf moe 

Wittmer et al. 

2010 2007 24.6 4.7 0.5 12'000 

Validation               

Furtbach fch NAWA SPEZ 2012 31 14 1.6 31'570 

Limpach lch NAWA SPEZ 2012 74 43 1 7'560 

Mentue mnt NAWA SPEZ 2012 100 42 1 9'300 

Salmsacher 

Aach smr NAWA SPEZ 2012 54 33 1.7 17'326 

Surb srb NAWA SPEZ 2012 68 36 1.4 22'780 

Thur thr NADUF 2009 1'735 873 33 403'028 

Toess tss NADUF 2009 432 175 11 197'032 

Glatt glt NADUF 2009 413 183 20 405'702 

Murg mrg NADUF 2009 212 118 5.3 68'145 

Rhine-

Reckingen rhn NADUF 2009 

14'72

1 5'261 175 2'946'907 

  Rhine-Basel irms IRMS 2010/11 

35'89

9 12'009 503 7'786'398 
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Table 3: Metrics used for quantifying model performance.  

Metric Abbreviation Description 

Nash-Sutcliffe Efficiency NSE 
ܧܵܰ ൌ 1 െ	

∑ ሺ െ ݉ሻଶ

ୀଵ

∑ ሺ െ ሻଶ̅
ୀଵ

 

Pearson correlation 

coefficient 

r 

ݎ ൌ
∑ ሺ െ ሻሺ݉̅ െ ഥ݉ሻ
ୀଵ

ඥ∑ ሺ െ ሻଶ̅
ୀଵ ඥ∑ ሺ݉ െ ഥ݉ሻଶ

ୀଵ

 

Percent bias PBIAS 
ܵܣܫܤܲ ൌ 100 ൈ

∑ ሺ݉ െ ሻ

ୀଵ

∑ 
ୀଵ

 

Relative root mean square 

error 

RRMSE 

ܧܵܯܴܴ ൌ
∑ |݉ െ |

ୀଵ

௦ߪ	݊
 

Geometric Reliability Index 

(cumulative distribution) 

GRI 

(GRI_sorted) 
ܫܴܩ ൌ

1  ට1݊∑ ቀ
݉െ
݉

ቁ
ଶ


ୀଵ

1 െ ට1݊∑ ቀ
݉െ
݉

ቁ
ଶ


ୀଵ

 

Relative difference between 

maximum concentration  

Cmax 

∆ೌೣൌ
௫௦ܥ െ ௫௦ܥ

௫௦ܥ  

Fold difference between 

maximum concentration 

F.diff 

.ܨ ݂݂݀݅ ൌ

ە
ۖ
۔

ۖ
௫ܥۓ

௦ െ ௫௦ܥ

௫௦ܥ ௫௦ܥ  ௫௦ܥ

௫௦ܥ

௫௦ܥ െ ௫௦ܥ ௫௦ܥ ൏ ௫௦ܥ
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Table 4: Over- or underestimation of maximum concentrations (site-compound combinations) in percentage of the observations.  

For the herbicides only the peaks during spring application were considered. IPU: isoproturon, MEC: metolachlor, TBA: 

terbuthylazine, CBZ: carbendazim, DIU: diuron. 

IPU MEC TBA CBZ DIU 

Calibration Mönchaltdorf -13 -51 -53 -62 -66 

Ossingen -71 - -83 - - 

Summerau - -58 - - - 

Validation SPEZ Furtbach 6 -10 431 61 715 

Salmsacher 

Aach 114 17 1898 229 1201 

Surb 123 -53 56 -32 859 

Limpach 103 -14 17 -57 2772 

Mentue 2405 45 43 84 370 

Validation NADUF Thur -9 -47 - -57 91 

Rhine 

Reckingen 22 20 - -65 70 

Murg -42 -61 - -97 221 

Toess -35 -37 - 458 265 

Glatt 92 -45 - 4 789 

Validation IRMS Rhine Basel -67 -60 368 239 931 
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Table 5: Examples of reported Nash-Sutcliffe efficiency values and Pearson correlation coefficients between observations and 

simulations reported for a selection of water quality modeling studies. 

 

Reference Compound C/V NSE r 

(Bannwarth et al., 

2014) 

Atrazin C 

V 

0.92 

0.61 

- 

- 

 Chlorothalonil C 

V 

0.67 

0.28 

- 

- 

 Endosulfan C 

V 

0.86 

0.31 

- 

- 

(Parker et al., 2007) Atrazine C -0.18/-1.03/-3.50† 0.12/0.30/0.64† 

 Metolachlor C -0.84/-3.53/-33.4† 0.14/0.46/0.57† 

 Trifluralin C -30.2/-16.9/-3.2† -0.16/0.35/0.14† 

(Boulange et al., 

2014) 

Mefenacet S 0.65/-9.72/-14.7‡ 0.78/0.87/0.92‡ 

(Holvoet et al., 

2008) 

Atrazine C 0.66 - 

Holvoet 2007 Chloridazon C -0.67# 0.44# 

(Jackson-Blake et 

al., 2015) 

Suspended sediment C 0.16/0.39/0.21/0.02* 0.63/0.83/0.64/0.21* 

 TDP C 0.24/0.04/-0.20/-0.60* 0.83/0.68/-0.05/0.27* 

 Different P forms C 0.06/-0.14/-0.60/-0.42/-

1.15/-4.18/0.19/-0.08/-

0.74/0.08$ 

 

†: values for three different models 
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