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Dear Editor,  
 
We are pleased to send you the revised version of our manuscript. We made significant modifications 
to our initial work to account for comments and suggestions from both reviewers. They allowed 
strengthening the analysis we presented in the former manuscript version. They also allowed 
improving the pedagogical content of the paper. 
 
As mentioned to both reviewers, the analog/regression approach we present here could be used for 
either forecasting, reconstruction or simulation in a future climate. We did not select any given 
application context for the present paper. Depending on the definitive intended use of SCAMP, some 
specific issues would obviously apply, calling for specific focused analyses and developments.  These 
context specific issues are not considered here. Our main objectives are indeed to present the 
principles of the two-stage analog/regression approach for the context of small scale precipitation 
prediction, to assess its predictive power for both precipitation occurrence probability and amount, and 
to give some insight on its adaptive behavior and thus on the temporal variability of the downscaling 
link.  
 
The main modifications of the manuscript are the following: 
 

• We made the introduction more focused. We added a number of relevant references to recent 
works on statistical downscaling models. We have clarified the objective of our work (and 
especially the intended use of SCAMP), and the novelty of the approach.  

• We fully rewrote some sections / paragraphs. For instance, the issue of the predictor selection 
is now considered in the “data” section only. A concise outline of SCAMP is given in the first 
part of section 3. The analog stage is described before the regression stage and the 
description of the backup model follows. The process for the selection of atmospheric analogs, 
the way the GLM parameters are estimated is clarified. The “discussion” is more focused on 
the adaptability / variability of the large-to-small scale downscaling relationship.  

• We provide in a “Supplementary Material” a new figure (map over France of the probability of 
dry days) which allows explaining part of the results described in the manuscript.  

• In the conclusion we mention additional issues and perspectives to be considered in future 
works (possible dependence of the results to the dataset used for the analysis and especially 
to the quality of the predictors, robustness of the adaptive downscaling link, possible 
extensions of the model for the prediction of precipitation fields). 

• We finally made extensive editorial changes and reformulated some sentences that were 
sometimes clumsy and/or not clear.  

• Note that we did not make any changes to figure 2 and figure 10 as suggested by the 
reviewers as the readability was not improved.  

 
In addition to the new version of the manuscript, the revised manuscript using track changes has been 
attached. Changes are only highlighted for the major changes listed above, not for editorial changes. 
With all these elements, we really hope that you will be convinced by the value of our work and that it 
will be considered suitable for publication in a forthcoming issue of your journal. 
 
Best regards, 
B.Hingray  



Final response to Anonymous Referee #1 

 

We thank the referee for this thorough review and for the numerous constructive suggestions that 
we will consider for incorporation in the modified manuscript. 

We made significant modifications to our initial work to account for comments and suggestions 
from both reviewers. They allowed strengthening the analysis we presented in the former 
manuscript version. They also allowed improving the pedagogical content of the paper. A 
summary of those changes are given in the cover letter to the editor.  

The detailed response to the comments of Referee #1 and the changes made accordingly to the 
manuscript are given below.  

In addition to the new version of the manuscript, the revised manuscript using track changes has 
been attached. Changes are only highlighted for the major changes listed above, not for editorial 
changes. 

 

1 Topic and general comments  

1.1 Topic The paper presents a new two-stage hybrid perfect prognosis SDM called SCAMP. SCAMP 

was applied to a large number of grid points in France and was proven to be adaptive to different 

weather types and seasons which is illustrated nicely with visually appealing figures. The method 

seems very interesting given the issues encountered with some other very popular downscaling- or 

bias correction methods (e.g. lack of variance for pure transfer functions or physical inconsistency that 

easily occurs with quantile mapping and related techniques). There are a couple of issues though that 

I think should be addressed before publication. Some of them might be just a matter of clarification, 

but some might be more fundamental depending on the intended use of the method. These issues are 

outlined in the following.   

1.2 What is the intended use of the method? In the introduction you mention regional climate studies 

of present, past and future climate as well as numerical weather prediction (NWP) but without being 

very clear for which of these cases SCAMP is actually made for. Given that you downscale from 1.125 

degree resolution to a 8km grid I suppose that SCAMP is not designed to do NWP, given that the 

ECMWF global deterministic model runs at 9km resolution and most national weather services in 

Europe operationally run limited area models at 1- 2km resolution and limited area ensembles at 2-

10km resolution. If however that is the intended use, please explain in which context and for which 

users you think it could be useful. What made me doubting that SCAMP is intended for regional 

climate studies, is the use of the word “prediction” throughout the paper. If the intended use are 

regional climate studies, I would recommend to either use “simulation” rather than “prediction” or to 

precisely define what “prediction” means in this context. The same applies to section 3.4.  

A widely used argument for the development of statistical downscaling models (SDMs) is that 
they allow producing local scale weather scenarios. We obviously agree that high resolution 
ensembles are operationally available from most national weather services. SCAMP would not be 
of any interest in respect to this point.  

As mentioned in the manuscript, another important argument for the development/use of SDMs is 
that the outputs of GCM and/or NWP models are generally 1) biased and, from a statistical point 
of view, 2) not reliable (the ensembles are often underdispersive – see for instance Leutbecher 
and Palmer, 2008). In a number of cases however, impact studies require unbiased and reliable 
meteorological scenarios. This is for instance a critical requirement for hydrological impact 
studies as a result of the strong linearities in the hydrological response of river basins to 
meteorological forcings.  



In the present work, we did not select a given context for the application of SCAMP. SCAMP 
could be used for either forecasting, reconstruction or simulation. We will precise this in the new 
manuscript version. Some specific requirements would apply for each context. For instance, the 
temporal transferability of the model in a modified climate context would be required for the 
development of climate projections. The quality of large scale predictors would have to be 
checked for reconstructions over the XXth century or for climate prediction (as often reported, 
thermodynamic predictors are of lower quality than dynamic ones – see questions + responses #5 
and #6 below).  

We have precised what the word “prediction” means in this context.  

We find this word more suited than “simulation” because this latter suggests that times series of 
precipitation are produced. This is here not the case (although some postprocessing generation 
process could be used for this but this is out of the scope of the present work) as we issue for each 
day the statistical distribution of precipitation amount (thus a probabilistic prediction). 

Leutbecher, M, and T N. Palmer (2008).  Ensemble forecasting. Journal of Computational 
physics, 227:3515-3539. 

  

1.3 Manuscript organization and conciseness  

1. The introduction is to my mind rather long and could be written more concisely. In addition it should 

contain some more precise statement on the intended use of SCAMP (see section 1.2).  

We have adapted the introduction as suggested and clarify the intended use of SCAMP. 

2. I don’t understand why the description of the analog stage (stage 1, section 3.2 and 3.3) comes 

after the description of the GLM stage (stage 2, section 3.1). In my view this should be reversed. The 

first part of section 3 (page 5) should contain a concise outline of SCAMP. There is a start at page 5 

line 10-12 that should be completed with one or two sentences on the backup model.  

We thank the referee for these suggestions. We have completed the outline of SCAMP and we will 
describe the analog stage before the GLM one as suggested.  

3. The last paragraph of section 3.2 could go in a tightened section 3.3 as well (The AM as benchmark 

and backup model). Its last two sentences are already a very concise summary of section 3.3.  

The Analog Model can be indeed presented as a benchmark and backup model.  

We have merged the last paragraph of section 3.2 with section 3.3 as suggested.  

4. I wonder about sections 2 and 4.1 as well: I found it somewhat difficult to figure out which potential 

predictors were actually used during the first read. There are a few things said in section 2, during 

section 3 things are quite vague (concerning predictors) and only in section 4.1 things became more 

clear. If you consider 4.1 to be a central result of the study the information in this subsection should be 

split into a “methods part” right after or included in section 2 and a “results part” remaining in section 4. 

If this is not the case I’d suggest to entirely include section 4.1 after or into section 2, but rewritten 

(together with section 2 from the fourth paragraph on, page 4 line 17 et seq.) in a much more concise 

manner. For example saying first what you used in the end and then concisely explain why. I think this 

would allow to be more specific and to use more precise wording in section 3. With a more clear 

structure lengthy transitions, such as the page 5 last sentence or page 11 lines 4-6, might not be 

necessary any more.  

We thank the referee for these different suggestions. As suggested we have included section 4.1 
into section 2 and modified the text and transitions consequently. This makes indeed the paper 
more clear. 



1.4 Language issues. Please check your paper thoroughly for language/grammar issues during the 

revision, especially  

1. tenses • stick to simple past for things you did avoid future tense for things you finally did, otherwise 

it induces unnecessary doubt. 2. reduce the use of modal verbs (may, could etc.) where possible in 

order to be more precise and quantitative.  

3. prepositions  

4. word order in the context of adjectives and adverbs  

5. remove superfluous adverbs for more clarity  

6. add missing definite articles  

7. mind French to English translation pitfalls  

See the technical correction section for examples.  

We have carefully checked for these different issues. Thank you for these recommendations.  

 

2 Specific comments  

1. Is SCAMP an abbreviation for something? (I’m just curious)  

In a previous work (Raynaud et al. (2016), we first worked on a multivariate Analog version, for 
multivariate prediction (precipitation, temperature and radiation). SCAMP is the abbreviation 
defined in this previous work and stands for Sequential Constructive atmospheric Analogs for 
Multivariate weather Prediction. We kept this abbreviation for the present work even if we are in 
a monovariate configuration. This has been clarified.  

Raynaud, D., Hingray, B., Zin, I., Anquetin, S., Debionne, S., Vautard, R. 2016. Atmospheric 
analogs for physically consistent scenarii of surface weather in Europe and Maghreb. Int. J. 
Climatology. doi :10.1002/joc.4844. 

2. In the introduction (first paragraph) SDM and post-processing are used synonymously. Are they? 

And if yes, in which context?  

SDM and post-processing are sometimes rather synonymous for instance when SDM are used to 
produce local weather scenarios from GCM output data (their ability to do some bias correction 
is an important feature here as mentioned previously). We agree that this is not always the case. 
Other applications of SDM are possible as those mentioned in the second paragraph of the 
introduction (weather generation, climate change attribution…).  

We have removed this paragraph. There no more possible confusion. 

3. some references seem slightly out of context. For example:  

Those reference issues have been fixed. 

4. Page 3 line 24-26: The last sentence of the paragraph is unclear. Please rewrite.  

Our point is that the type of model used in the work of Ibarra-Berastegi et al. (2011) is not really 
optimal. A linear regression model is indeed not suited to the non-gaussian nature of 
precipitation amounts. The approach of Ibarra-Berastegi et al. (2011) would thus benefit from 
using a model suited to precipitation. We have reformulated the sentence. 

5. Do you think that the selected predictors may depend on the data set used, or its resolution? Please 

comment.  



Different studies have shown that the predictors depend on the predictand. For precipitation, 
predictors can differ from one location to the other (e.g. Cavazos and Hewitson, 2005; Timbal et 
al., 2009; Chardon et al., 2014). They are also not necessary the same for precipitation, radiation 
or other surface weather variables (e.g. Raynaud et al. 2016). We could also expect that the 
predictors depend on the dataset used, for the atmospheric reanalyses especially. To our 
knowledge this analysis has not been carried out yet. Some dependence to the resolution is also 
probably to expect. A higher resolution would definitively allow for a better description of the 
shapes of geopotential fields. It would also allow for a more relevant simulation of 
thermodynamic processes. It would likely lead in turn to have higher quality variables for some 
quantity such as air instability (as mentioned in the following question). The quality of simulation 
does however not only depend on the resolution of reanalyses but also on the quality of the model 
and of the observed data available for assimilation. We could thus expect that data with higher 
resolution do not necessary always lead to better quality predictions.  

These issues are obviously very interesting and would be worth specific analyses in the future.  

A comment has been introduced in the perspectives of the modified manuscript.  

6. Page 4 line 20: How meaningful are quantities describing instability at 1.125 degrees resolution? 

and related, if the aim is to do downscaling of climate model outputs or reconstructions how well are 

the instability and humidity variables simulated by these models, and could the quality of this 

simulations be an issue for SCAMP? Please comment.  

We agree that atmospheric variables describing instability do not give a very good picture of 
instability when available atmospheric variables are at 1.125° resolution. To our opinion 
however, they can have some predictive power as a “proxy” of the instability.  

The quality of such predictors in climate model outputs or reconstruction is obviously an issue. 
When applied in a reconstruction context for the whole XXth century, we indeed found that the 
added value of such predictors was much smaller than when applied with the recent reanalyses 
available for the last decades. A comment has been added in the discussion on this issue.  

7. Page 4 line 20: Be more specific on the predictors used. For example by referring to table 1 here.  

Thank you for the suggestion. We have precised the text as suggested. 

8. Figure 1: The caption text is unclear. What is highlighted in black? Is there a reason to use 

“quantity” and not “amount”? (Same for figures 2 and 9, page 11 line 32, page 13 lines 3, 21,25 and 

26, page 15 line 2, page 22 line 6)  

We now use “amount” for the whole manuscript. 

In figure 1, we use equation 1 to decompose FAM(y) into two parts. We highlight in black the 
contribution of the empirical cdf of the non-zero precipitation amount to the overall cdf. As 
expressed in equation 1, this last pdf is “weighted” by the probability of occurrence of 
probability.  We have reformulated the caption of Figure 1 to make it clearer. 

9. Page 5: I’d suggest to add “SCAMP” to the section title of section 3.  

This has been done. 

10. Page 7 line 6: What does “+12h and +24h UTC” refer to? are this lead times? but then UTC is 

strange, because time differences don’t have a time zone. Or does it refer to the time of the day? But if 

so, for which hour is the simulation?  

The text has been clarified according to your suggestion. 

11. Section 3.2: What is the archive length used for the analog model?  

The archive length is 1982-2001 is now clarified  



12. Section 3.2: Which period was used for the optimization of the predictor domains? Is it the same 

as for the simulation in this work? What are the implications?   

The period used for the optimization of the predictor domains is 1982-2001. The period is thus 
the same as the period of the predictions. The prediction skill of SCAMP presented in our 
manuscript may therefore be slightly overestimated. 

To assess the influence of the optimization period, we could have followed a leave-one-out 
approach, where for instance, the best analogy domain would have been identified from all years 
except that of the current prediction day. This would have required much larger computing 
resource than those already used for the work presented in the manuscript. The process used for 
the optimization of the analogy domain is indeed rather long (as mentioned in the manuscript, it 
is first iterative where different spatial domains of increasing size and considered in turn. The 
identification of the best analogs days for a given analogy domain is also rather time consuming 
as a result of the similarity criterion used to compare days). It had also to be applied successively 
for the 8,981 grid cells of France. This optimization plus the re-estimation for each prediction 
day of the different regression models considered in the regression stage of SCAMP already 
required the use of the Grenoble University High Performance Computing centre CIMENT 
(https://ciment.ujf-grenoble.fr/wiki-pub/index.php/). A leave-one-out approach would have 
required too many computing resource and was thus not applied here. 

We agree that the optimal domain may depend on the period used for the optimization of the 
method. We however expect that the domains would be rather similar when obtained from 
different periods and that their influence on the main results we present in our work would be 
limited. In a recent work carried out with an Analog Model similar to AM25, we have actually 
shown that slightly different domains may lead to identify – for a given prediction day, rather 
different sets of analog dates. We have however also shown that this does not lead to a significant 
difference in the prediction skill (Chardon et al., 2014). For the context of the present manuscript, 
an interesting work would be to explore if analogs from different but similar analogy domains 
would influence the choice of the predictors in the regression stage and/or also if the coefficients 
of the regression would change. This could contribute to assess the robustness of the approach.  

This perspective work is now mentioned in the discussion. 

13. Section 3.3 first line: Please specify briefly what the significance conditions are.  

We used the 5% significance level for each predictor. This information has been added in the new 
version of the paper.  

14. Section 3.1: are there discrete values drawn from the Gamma distribution for the final prediction? 

And if so, how?  

We aim to model the distribution of precipitation amount, its day dependency, and to further use 
this distribution as probabilistic prediction. For any given prediction day, we do thus not draw 
some realization from the distribution.  

15. Page 9: I think it is a good thing to look at the skill with respect to climatology as you do, especially 

for comparison with other studies or methods, but you could have used the AM25 benchmark as P_ as 

well, right? Would that be equivalent to your _BSS or _CRPSS? If not, what is the difference and 

which one should be preferred under which circumstances?  

Yes, we could have chosen the AM25 model as reference for the evaluation of the combined 
model. We have preferred to use the climatological reference as this allows for normalized scores 
which can be compared, as mentioned by the referee, with those obtained in other studies.  

We compared the combined approach and the AM25 model with gains in skill scores estimated 
for both approach with respect to the climatology. Such gains, given in terms of BSS or CRPSS 
percentage points, are also widely used to compare different prediction models. They thus present 
the advantage to be rather easy to interpret.  



16. In section 4.1 you describe several steps of restrictions applied in terms of the candidate predictors 

for the sake of robustness and clarity of the article. I appreciate these goals, but at present the 

description is a bit confusing and it remains unclear which of these restrictions are a feature of SCAMP 

and would be kept for a general application of SCAMP and which ones aren’t and what would be the 

potential impact on robustness and skill.  

The issue of predictor restrictions is an interesting point which was not easy to tackle. The main 
goal of those restrictions was indeed to improve the clarity of the article. The manuscript does 
thus not present a definitive configuration of SCAMP but more a proof of concept for an adaptive 
model which could use a much larger set of potential predictors, when relevant.  

The impact of fewer restrictions on the robustness of the method is potentially an important issue 
and would be worth a detailed analysis. This is now suggested as a perspective of the work.  

17. Page 13 line 8: The phrase is very unclear. Please rewrite.  

The phrase has been modified 

18. Page 13 second paragraph: What exactly causes the GLM to “fail” in the southeast for the 

occurrence? Are there not enough wet analogues to estimate the occurrence probability or does it fail 

the significance test for the parameters? please comment.  

We agree that the text of the second paragraph of p. 13 is somehow confusing. As mentioned in 
the paragraph, the GLM which models the occurrence does actually almost never fail, even in the 
southeast. From the sum of the frequencies obtained for the two cases “case 2” and “case 4” of 
Figure 5, we can see that, whatever the region, the GLM which models the occurrence is indeed 
activated most of the time (more than 97% of the days) (remember that case 2 corresponds to 
(Success of  GLM  modeling the occurrence + Failure of  GLM modeling the quantity); case 4 
corresponds to (Success of GLM modeling the occurrence + Success of  GLM modeling the 
quantity). Consequently, and whatever the region, the situation where AM25 is used as backup 
for the prediction of the occurrence probability is very rare (see the sum of the frequencies 
obtained for case 1 and case 3).  

Nevertheless, Figure 5 indeed highlights a very specific behavior in the southeast when compared 
to the remaining of France. Case 2 is activated much more often in this region (increase of  30% 
percentage point) than elsewhere  and, in a symmetric way, Case 4 is activated much less often 
than elsewhere  (decrease of  30% percentage points).  

The reason underlying this result is to be related to the much higher proportion of dry days in 
southeast as illustrated in figure R1a below. For a number of predictions days, the number of 
analog days that are wet is indeed to be small in the southeast. This is obviously not a difficulty 
for the estimation of the GLM modeling the occurrence. This is conversely likely one for the 
estimation of the GLM modeling the quantity. For days for which the number of wet analogs is 
small, the size of the dataset available to fit the GLM modeling the quantity can be too small to 
allow for a fit with significant parameters. This very likely explains the spatial disparities in both 
graphs “Case 2” and “Case 4” of Figure 5.  

In our work, a GLM (GLM modeling the occurrence or GLM modeling the quantity) was said to 
fail for a given prediction day when the significance test failed for the parameters. The link of 
these failures with the number of wet/dry analog days is not as direct as we could have presented 
it in the text. It is however strongly suggested from Figure R1a and from what is described in the 
different graphs of Figure 6.  

The whole section has been rewritten for clarification. The figure of Pdry is now given in a 
supplementary material 



 

Figure R1a : Probability of a dry days over the 1982-2001 period (percentage of days which are 
dry). 

 

19. Page 15 line 2-3: The predictor set optimized for the whole of France? I thought they were 

optimized for each grid cell and time step. Is this only for this experiment or in general? This is 

confusing and will hopefully get more clear with a restructured version of sections 2 and 4.1.  

We agree that the text is somehow confusing. For the sake of clarity, a single set of potential 
predictors was used for all grid points of France (see section 4.1). The most interesting set may 
be however rather different from one region to the other. This is a possible reason for which we 
obtain no gain in southern France when we activate the quantity model.  

This has been clarified with the restructured version of the manuscript. 

20. Page 16 line 20: Please quantify which proportion of days you would consider as “reasonable”.  

We had actually not in mind to suggest a “reasonable” proportion of days, which could be used 
to retain a reduced number of regression sets. Considering a reduced number of regression sets 
would obviously allow for reducing the computational time required for the model 
identification/evaluation.  

As mentioned in the next sentence of the manuscript, this may however limits the possibility to 
achieve a better prediction for some (rare) events which would activate very unusal predictors. 
This is what is highlighted with some of the graphs in the discussion section.  

This has been clarified in the revised manuscript version. 

21. Looking at figure 9, I wonder if the high frequency of the AM25 model in the south-east might be 

related to the Gamma distribution being a suboptimal approximation of the precipitation amount 

distribution in this region. Did you test this?  

Thank you very much for this input.  

To our opinion, the main reason is very likely the much larger number of dry days in the 
Southeastern region, as already discussed in our response to comment 18 and figure R1a. 
(consider that the sum of frequency for case 1 and 2 in figure 5) exactly corresponds to what is 
shown in figure 9 for the selection frequency obtained for the backup model (structure 16)).  

This now mentioned in the manuscript. 



Of course, the choice of a same distribution model for the whole country is also an issue. The 
distribution of non-zero precipitation amounts is indeed rather different in the southeast region 
than that of the other regions of France. The main reason is the existence of much more frequent 
and intense heavy precipitations in southeastern France (this is the reason why a lot of works 
have focused in the last decades on precipitation extremes in southeastern France). This is 
suggested with the much higher Coefficient of Variation of daily precipitation in this region (cf. 
figure R1b below).  

 

Figure R1b. Variation coefficient of daily precipitation  

The gamma distribution is obviously flexible and widely used in the hydro-meteorology literature 
to model strictly positive precipitation. It may be however not optimal in this specific context and 
a distribution with a heavy tail would be probably more appropriate (e.g. the extended GPD 
distribution introduced by Naveau et al., 2016). This may improve the prediction but this may 
also lead to estimation difficulties as a more complex distribution would require more data for a 
robust fit. Here, the number of data is voluntarily limited to the number of analog dates 
considered for the fit. A more flexible model (with more parameters) would require considering 
more analog dates. This may be detrimental for the prediction skill as poorer analogs would be 
integrated in the set of dates used for the estimation of the regression. Another possibility would 
be to fit a more flexible model with the same number of analog dates than in the present case. 
Due to the estimation problems mentioned above, this would however likely lead to a much more 
frequent use of the backup analog prediction model in our case.  

 22. Why is figure 10 a line chart? There is no order in the WPs, is there? I’d recommend to transform 
this in a series of bar charts (one for each WP). This would further avoid all the colors and line types 
and thus solve the issue with the invisible (probably yellow) dotted line for R700+H+Occ-1 in a) and 
R700+T700+W700 in b).  

We agree that a series of bar charts would have been more relevant. We tested this representation 
but this made the figure less clear. We thus kept the initial representation.  

23. Depending on the intended use of SCAMP, the temporal structure of the simulated precipitation 

might be relevant. I suppose that a detailed analysis of the representation of the annual cycle, the 

autocorrelation and the interannual variability in both SCAMP and AM25 is beyond the scope of the 

present paper, especially since this is not straight forward for probabilistic simulations, and you might 



have a look at this in future work, but could you make a statement on the overall variance of the 

SCAMP simulations as compared to the benchmark and the observations? Typically analog models 

reproduce the observed variance quite well while deterministic regression models suffer from reduced 

variance. Since SCAMP is a hybrid model it would be interesting to know which characteristics it 

“inherits”.  

In a context where time series have to be simulated, additional criteria would be actually relevant 
to evaluate / compare the different modelling approaches; they should especially include as 
mentioned by the referee, the ability to reproduce the observed variance of precipitation from 
daily to interannual time scales.  

Those additional evaluation criteria would obviously depend on the final application of the 
model. This has been mentioned in the conclusion.  

Deterministic regression models are indeed known to underestimate the variance of daily 
precipitation. However, scenarios obtained with deterministic regression models disregard the 
variance of the residuals in the regression. However, regression models can be also used in a 
stochastic simulation framework, where a random variable is drawn from the statistical 
distribution associated to the regression. In Mezghani and Hingray (2009) for instance, such a 
generation process was used, to first identify if the prediction day was wet or dry (based on a 
random variable compared to the occurrence probability obtained from a first occurrence model) 
and to next generate some precipitation amount (based on a random realization within the 
gamma distribution used to model the distribution of precipitation amount in case of a wet day). 
The observed variance of daily precipitation was well reproduced.  

If time series would have to be simulated with SCAMP, a similar stochastic generation process 
would be followed for the regression stage. We thus would expect that the variance of observed 
daily precipitation would be rather well reproduced as in Mezghani and Hingray (2009). The 
regression stage is also not expected to increase the variance that would be obtained for the 
benchmark analog (in a configuration where one of the k-nearest analogs is randomly sorted 
each day and used as weather scenario for the day). This is one of the preliminary results we 
obtained for a similar work we currently develop in western Switzerland. 

24. page 22 lines 16-20: This part is not clear, please rewrite.  

We have reformulated this paragraph. 

25. page 22 lines 28-32: I don’t understand what “classically” means in this part. please use some 

more precise wording.  

The word “often” is indeed more suited there.  

26. page 22 line 35: This sentence is not clear to me. In what sense is the set of days homogeneous?  

The days are homogeneous with respect to their large-scale atmospheric circulation 
configuration. We have clarified this.  

27. page 23 line 2: The sentence is not clear to me. Which context? and who leaves room for 

improvement?  

The context we wanted to refer is that of very specific meteorological configurations that may be 
observed from time to time and for which the usual predictors are sub-optimal. The 
analog/regression approach presented here is expected to allow for the identification of better 
suited predictors and thus for an improved prediction skill for the prediction day under 
consideration.  

We have modified the paragraph. 

28. Is SCAMP transferable to other regions or countries? To what extent? Under which circumstances 

would it be necessary/unnecessary to redo the predictor selection? Please comment.  



SCAMP is indeed transferable to other regions. We will add a comment on this in the discussion. 
The development of SCAMP for another context would obviously first require the identification of 
the best predictor set. In a number of previous studies, the most relevant predictors to be used for 
statistical downscaling are indeed found to be region dependent (e.g. Cavazos and Hewitson, 
2005; Timbal et al., 2009; Chardon et al., 2014). Similar conclusions have likely to be expected 
for SCAMP also. Part of these conclusions may also result from the occurrence frequency of 
weather regimes observed for the different regions. They can actually vary a lot from one region 
to the other. In such a case, the best predictors identified for a given region could partly be a 
result of the fact that the weather situations for which they are more relevant are more frequently 
observed for that region. This issue would be worth future investigations.  

29. It would be helpful to mark or highlight the predictors that were preselected for the occurrence and 

amount models respectively in table 1.  

Thank you for the suggestion. This has been done 

 

3 Technical corrections  

We thank the reviewer for the very careful reading of the paper and for all the technical 
corrections pointed out here.  

The text has been corrected accordingly.  
  



Final response to Anonymous Referee #2 

 

We thank the referee for this thorough review and for the numerous constructive suggestions that 
we will consider for incorporation in the modified manuscript. 

We made significant modifications to our initial work to account for comments and suggestions 
from both reviewers. They allowed strengthening the analysis we presented in the former 
manuscript version. They also allowed improving the pedagogical content of the paper. A 
summary of those changes are given in the cover letter to the editor.  

The detailed response to the comments of Referee #1 and the changes made accordingly to the 
manuscript are given below.  

In addition to the new version of the manuscript, the revised manuscript using track changes has 
been attached. Changes are only highlighted for the major changes listed above, not for editorial 
changes. 

## Big Picture 

1. The authors present and explore a methodology to simulate precipitation intensities. Yet, neither 
time series and/or spatial fields of simulated precipitation intensities are shown nor compared to 
observations (in a probabilistic manner as the title might suggest). While the methodology might 
be beautiful, I think this is the biggest missing thing in this paper. I am not a specialist in analog 
methods. I did my best to understand what is done here. Ideally my potential failings help to detect 
shortcomings in the paper and lead to improvements. Besides the analog part, I tried to help with 
general statistical hydrological comments. 

The downscaling model first aims to issue probabilistic predictions of local precipitation at any 
given grid point of the SAFRAN grid. This prediction results in a probabilistic distribution 
function for each prediction day for each grid point. A times series representation, where 
(probabilistic) simulations and observations are compared, is thus not really convenient. The 
evaluation is here done with the CRPSS, which is frequently used for the evaluation of 
probabilistic predictions in a framework where we have to compare one value (the observation) 
with a whole distribution.  

We also agree that the prediction of precipitation fields is an important issue. It was not in the 
scope of our work but further work should consider this issue.  

A paragraph has been added in the conclusion on this point. 

### "Hybrid" Approach 

2. The authors want to predict a variable (e.g., precipitation) for a given day (say, for the example of 
this review, May 30th 2018) at a given location (within France). Then they look at all 30-Mays in 
the past when precipitation amounts were recorded. Where exactly do the authors look? at the 
closest measurement station? Is an interpolation performed? What kind of spatial dependence 
between observations (and simulated values) is assumed / considered?  

In the present work, we want to predict local precipitation only. We do not thus need any 
assumption on the spatial dependence between stations.  

For each prediction target location (each target grid box), we only use precipitation data that 
were estimated within the SAFRAN reanalysis system at this exact location. Note that the 
SAFRAN reanalysis give an estimate of daily precipitation at each location from the closest 
measurement stations and from some information on the weather type for each day. To date, 
these SAFRAN estimates provide the only high resolution reanalysis of local precipitation over 



France for the 60 past years. We consider these estimates as pseudo-observations. This is now 
clarified. 

3. On p22 l1ff you write that "the predictors and regression coefficients of the regression models vary 
from one day to the other? – How much do they vary? And how much do they vary in 
neighbouring cells? Is there some kind of relationship between the variations in neighbouring 
cells? Can you show this? 

Thank you for this very interesting point. We actually did not estimate these day-to-day 
variations. We will change this formulation for “the predictors and regression coefficients of the 
regression models can thus vary from one day to the other”. We have actually an indirect 
estimation of the variation in the predictors with the different sampling frequencies obtained for 
the different weather types. If not straightforward, a more formal / direct evaluation would be 
probably worth.  

We agree that the regional consistency of the predictors is another very interesting issue. An 
evaluation of this consistency is indeed expected inform on the robustness of the downscaling 
relationship. From the results shown in the manuscript, we have a partial idea of this with the 
rather high spatial coherency of the selection frequency obtained for each regression structure 
considered in our work. This is illustrated in Figures 8, 9 and 11. In Figure 11, this coherency is 
also shown to be high (even if with different spatial patterns) for different weather types.  

This spatial coherency is also suggested from other analyses not shown in the manuscript. Figure 
R2a below presents the percentage of time (over the 20 years used for the analysis) where the 
regression structure selected for a given location is the same than the regression structure used 
for a reference location. As illustrated, this percentage of time with same structures - varies from 
35% to more than 50% in the close neighborhood of the reference location. Some regional 
consistency is also found for the regression coefficient obtained for the predictors. We find that 
the spatial pattern of this consistency depends on the weather situation. This is illustrated in 
Figure R2b below for the regression coefficient estimated for W in the regression structure no 4. 

 



 
Figure R2a: Percentage of time (over the 20 years used for the analysis) where the regression structure 
selected for a given location is the same than that used for a reference location (the reference location is 
indicated with the blue dot in each figure). Results are shown for 16 different reference locations.  



 

Figure R2b: Spatial distribution of the mean regression coefficients obtained for the predictor W and the 
regression structure n°4. Results are presented for the different seasons and for the 8 weather types 
considered in this work.  

4. What if the observed time-series is not stationary? Are there any checks performed? Is stationarity 
assumed? How strong of an assumption is it? 

No hypothesis of stationarity is assumed in the present work. The time series of precipitation can 
be non-stationary. In such a case, this non-stationarity would be expected to be reproduced as a 
result for instance of a change in frequency of weather types or as a result of a non-stationarity 
(i.e. temporal evolution) in some of the predictor variables.  



An indirect illustration of this is the ability of the method to reproduce the interannual variability 
of annual precipitation (or of seasonal precipitation). This was illustrated by Lafaysse (2011) for 
three different downscaling approaches similar to the present one.  

 
Fig10.1 extracted p122 in Lafaysse(2011). Time series of winter (DJF) and summer (JJA) precipitation 
obtained with an Analog Prediction model (100 scenarios) for the Upper Durance basin in South-Eastern 
France (red = observation, green : median scenario, blue : first analog scenario) 

5. The authors claim that values outside the range of observations can be simulated via 
"extrapolation" (p2 line 20ff.) – some background / assumptions / limitations of this extrapolation 
methodology is required. The previous statement seems contradictory to what is said on p2 lines 
29ff.: 
 

In this paragraph, we wanted to highlight the issue of simulating non observed values. This 
obviously refers to values that are outside the range of observed values (including rare values): 
this is indeed extrapolation. This also refers to all values that are in-between two consecutive 
observed ones. In our context, precipitation is estimated as a function of different predictors. For 
a given prediction day, the statistical model give a prediction which is a kind of interpolation 
from what has been observed in configurations that are close to the configuration of the 
prediction day (in terms of predictors). We have mentioned these two different prediction contexts 
in our initial text but we understand that too much emphasize was given to extrapolation.  

As the development of our model is not justified by this extrapolation issue, we have removed it 
from the manuscript.  

6. The author’s method is able of extrapolation? is there any evidence of the quality of the 
extrapolation? 

The “extrapolation” issue is not more considered in the revised manuscript version (see Q5 
above). 

7. p2 line 28: I am not sure how a linear model can be "extended" to non-Gaussian data. If this is not 
to be a reference to what Maraun et al. (2010) did, but the authors rather claim that their method is 
capable of simulating non-Gaussian data, then there is some more extensive explanation 
required: What kind of non-Gaussian-ness is observed in the data and how can linear models 
mimic this kind of non-Gaussian data? How and where is this non-Gaussianness seen in the data 
and how is the model describing it? 

We agree that these lines are somehow confusing. Generalized Linear Models (GLM) are 
regression models specifically introduced by statisticians to model non-gaussian data (see Nelder 
and Wedderburn, 1972). GLMs are an extension of linear regression models. They represent a 
large family of different statistical models which can all be described within a same theory. They 



were first used by Stern and Coe (1984) for the generation of precipitation. Another important 
application for precipitation was presented by Chandler et Wheater, 2002. The vector 
generalized linear models (VGLM, Yee and Wild 1996), closely related to the class of GLMs, are 
the most general class of linear regression models available. The work of Maraun et al. (2010) is 
just one recent application of VGLMs for the case of precipitation.  

We have simplified this section and remove the mention to VLGMs, which is not necessary here.  

Daily precipitation data are indeed non-gaussian. They are positive, have a mass in zero (the 
probability of null precipitation is strictly positive and high) and have classically a skewed 
distribution for non – zero amounts. To model precipitation, two different GLMs are generally 
used, one for the probability occurrence of precipitation, another for the distribution of non-zero 
precipitation. The occurrence of precipitation is classically modelled with a GLM using a logistic 
link function and a binomial probability distribution. The distribution of non-zero precipitation is 
often modelled with a GLM using a log-link function and a gamma probability distribution. We 
follow this two part modelling approach in our work with these two different GLM 
configurations.  

Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized linear models. Journal of the  Royal 
Statistical Society A 135 (370–384). 

Yee, T.W.,Wild, C.J, 1996.: Vector generalized additive models. J. R. Stat. Soc., B 58, 481–493 ) 

Stern, R.D., Coe, R., 1984. A model-fitting analysis of daily rainfall data. Journal of the Royal 
Statistical Society Series A – Statistics in Society 147, 1–34. 

Chandler, RE; Wheater, HS. 2002.. Analysis of rainfall variability using generalized linear 
models: A case study from the west of Ireland.. Water Resources Research 38(10). 

8. From the abstract it did not become clear to me, what is meant with an _hybrid_("having two kinds 
of components that produce the same or similar results") approach. The title is worded more 
suitably. On the other hand "local" could be confused with "small scale" 

We thank the referee for this comment. The hybrid approach refers to the fact that two different 
methods, often used alone for the prediction, (the analog approach and the regression approach) 
are used in our approach as a combination.  

As suggested, we now use “two-stage analog/regression model” in the abstract and elsewhere. 

We also agree that “small scale” precipitation is more suited in the present context than “local”. 
We have changed it in the manuscript. 

### Setup and Language 

9. At various places within the paper (see comments below) parts of the methodology are explained. 
I suggest that the introduction is reworded and a section of the introduction is established that 
clearly and concisely explains what is done in one paragraph. This should also include an explicit 
statement of the goal and the novelty of the research. 

We thank the referee for those suggestions. We have modified the introduction accordingly.  

## Major Comments 

### Section 2 Data 

10. Here, there is a distinction between "analog stage" and "regression stage" – are these two stages 
what is mean when the authors refer to as a _hybrid_ approach? This gets back to my original 
question: In the analog stage, are the authors looking for all May30’s in the past or only those 



May-30’s where the pattern of the geopotential field was similar on the May-29’s? How was this 
similarity determined? 

As mentioned in Q#8, the “hybrid” approach indeed refers to the two stage analog/regression 
approach.  

Let consider that the prediction has to be done for May-30’s, 2018. In the analog stage, we only 
consider days that are analogs in term of atmospheric circulation to the atmospheric circulation 
state of this day. As stated in the manuscript, the analog days are identified within a restricted 
pool of candidate days, namely all days of the archive that are included in a calendar window of 
± 30 calendar days centered on the prediction day. In the present example, all May 1st to all June 
30’s from all years of the archive period (1982-2001 ; 20 years) are considered as candidate 
days (this corresponds to 1200 candidates among which only 100 days will be selected). The 
prediction day (May-30’s, 2018) and its 5 preceding and following days are excluded from the 
candidates. The similarity is measured via the Teweless Wobus score which compare the shapes 
of the geopotential fields.  

We have adapted the text to make this analog selection step clearer.  

11. why 13 predictors? Is this enough? For what goal? 

The 13 predictors used for the regression stage gather most predictors considered in previous 
studies over Europe (e.g. Hanssen-Bauer et al., 2005; Wetterhall et al., 2009; Horton et al., 
2012; Raynaud et al., 2016). They include predictors characterizing the thermal state of the 
atmosphere, its dynamics, the water atmosphere content, its thermo-dynamical instability.  

As mentioned in the conclusion, the predictors classically used in similar downscaling works 
were selected owing to their prediction skill. This skill is classically the mean prediction skill 
evaluated for all days of a given time period. We show that some predictors could have no or 
fairly no prediction skill for most of the days but could be informative for very specific 
location/situations. Further works could thus indeed consider the interest of using other 
predictors, possibly non-conventional ones, as they may reveal, for very specific situations, to be 
very informative.  

This point is already mentioned/suggested in the discussion but we have clarified it further. 

### 3 The hybrid analog/regression model the approach of using a distribution 

function with a portion of zeros is clear. 

12. what is not so clear, is how the parameters are estimated and why this is treated independently? 

As mentioned in the manuscript, (line 26 p6), the parameters are estimated using the Iterative Re-
weighted Least Squares algorithm (IRLS, Nelder and Wedderburn, 1972). The significance of the 
regression coefficients is assessed by the Z-test (resp. the Student t-test). Because of the mass in 
zero, the precipitation distribution is modelled in two parts: the probability of occurrence and the 
distribution of non-zero amounts. The estimation of the parameters is indeed done independently, 
for precipitation occurrence probability first and for non-zero precipitation amounts next. This is 
the way the estimation is classically done (e.g. Stern and Coe, 1984; Chandler and Wheater, 
2002). This allows also the selected predictors to differ for the two variables to predict.   

13. Should the amount of precipitation not be a random variable drawn from the distribution depicted 
in Figure 1? It could then be either zero or some precipitation intensity other than zero. 

The amount of precipitation is indeed a random variable with a given distribution which varies 
from one day to the other. The objective of our approach is to model this distribution and its day 
dependency and to further use it as probabilistic prediction. For any given prediction day, we do 
thus not draw some realization from the distribution. If a single scenario would be required for 
the prediction day, a random realization could be indeed drawn from the distribution leading to 
either zero or some non-zero precipitation intensity.  



14. Why is npi estimated separately from the parameters of the distribution function? (I am assuming 
parameters, even though Figure 1 suggests the use of an empirical distribution) Can those 
parameters not be estimated jointly? Now, it seems like currently npi is estimated via a GLM, 
which seems to be an improved multiple regression with the secondary variables going into xˆo 
(Eq.2). 

The probability of occurrence pi is indeed estimated with a GLM where the x’o are the 
explanatory variables. In eq. 2, pi is the probability of occurrence estimated with the prediction 
model for the target prediction day. This prediction results from 1) the downscaling relationship 
estimated for this day from the n-analog dates (it thus depends on the predictors retained for this 
day and on the corresponding parameters estimated for this day) and it results also from 2) the 
values of the different predictors observed for the prediction day (used in a second step for the 
prediction with the downscaling relationship). pi is thus necessarily estimated after the 
parameters of the distribution have been estimated. 

Figure 1 actually suggests that the distribution function is empirical. It is indeed empirical when 
it is estimated with the AM25 backup analog model. Figure 2 clearly shows however that this 
distribution can be updated thanks to a parametric model.  

This has been clarified in the revised manuscript.  

15. it is not clear what the difference between superscript o and superscript q is in Eqs 2 and 3. 

The predictors identified for precipitation occurrence (o) can differ from those identified to 
predict the non-zero precipitation distribution. The different superscripts refer to the fact that the 
two sets of predictors are specific to the occurrence (o) or to the quantity (q).  

This notation has been clarified in the paper. 

16. How does the Gamma distribution come into the game? Are you using this type of distribution to 
model the non-zero part of the distribution? Why Gamma?  

The gamma is indeed used to model the non-zero part of the distribution. This distribution is a 
widely used distribution in the hydrological literature for the non-zero amounts (e.g. Stern and 
Coe, 1984, Chandler and Weather 2002). It has the advantage to be rather robust and it does 
require only 2 parameters to be estimated. Other distributions could be considered in our 
approach to model this nonzero part (e.g. the extended GPD distribution used by Naveau et al. 
(2016). This may improve the prediction but this may also lead to estimation difficulties as more 
complex distribution models would require more data for a robust fit. Here, the number of data is 
voluntarily limited to the number of analog dates considered for the fit. A more flexible model 
(with more parameters) would require considering more analog dates. This may be detrimental 
for the prediction skill as poorer analogs would be integrated in the set of dates used for the 
estimation of the regression. Another possibility would be to fit a more flexible model with the 
same number of analog dates than in the present case. Due to the estimation problems mentioned 
above, this would however likely lead to a much more frequent use of the backup analog 
prediction model in our case.  

17. Also, the logic in p6 lines 13,14 is off. I think you should use a distribution that fits somewhat well 
to the data and then fit its parameters to the data. 

We agree that lines 13-14 are not well written. We use the gamma distribution for the strictly 
positive precipitation. The method of moments is used to estimate the shape parameter of the 
distribution. Equation (4) expressed the way the variance is computed.  

This paragraph has been clarified  

18. what determines how "near" an analog is to the predicted day? (likely this is answered in Sect. 
3.2). 



As indeed mentioned in section 3.2, analog are identified based on their similarity in terms of the 
shapes of geopotential fields. The Teweless Wobus score is used to measure this similarity (see 
also no 10). 

19. why is the threshold for precipitation 0.1mm?  

This threshold is often used in the hydro-meteorological literature to define wet / dry days. It 
corresponds in France to the precision of the bucket capacity used in the raingauge devices used 
to measure precipitation. 

20. p6 lines 23 ff. are difficult to understand. Say again you are trying to predict May-30 2018 in one 
grid location of France. Then you are searching for the "nearest" geopotential conditions for all 
May-29 in the past and then estimate npi based on the precipitation occurrences in those days.  

Thank you for the suggestion. We have clarified the process of analog selection. 

21. The "nearest conditions" could be different for a neighbouring cell? What does this say about 
consistency and spatial dependence structure of precipitation fields.  

Yes, the referee is right. The “nearest conditions” could be different for a neighbouring cell. They 
are however not as different, as illustrated in Chardon et al. (2014). In a configuration where the 
analog model is optimized for each location, Chardon et al. (2014) show that, for a given 
prediction day, the analog dates are very similar from one grid cell to the next. This close 
similarity  covers rather large domains (up to a few 100’s of kilometers) excepted in regions with 
significant relief (the “nearest conditions” can be actually rather different on the western side 
and eastern side of the “Massif Central” mountainous region for instance).  

The similarity between analog dates makes possible the development of relevant spatial scenarios 
(which are especially coherent in terms of spatial structure) as a given analog date can be used 
as scenario for all locations of a given spatial region.  

This is now mentioned in the conclusion. 

22. Also for Jun-1 2018, again a potentially very different set of "nearest conditions" could be used? 
Or am I understanding this wrongly, and there are more constraints? 

As we consider each prediction day independently from the previous ones, the nearest conditions 
of Jun-1 2018 could be indeed very different from those of May-31 2018. This is however not the 
case due to the strong persistence of the large scale atmospheric dynamics which makes one day 
often rather similar from the previous one. Note again that we do not aim to develop time series 
scenarios of precipitation and that we did thus not introduce any specific constraint to cope with 
this temporal issue.  

23. Why are you using the BIC (and not another criterium)? 

In our application we have also tested the Akaike information criterion (AIC). Both criteria give 
the same results.  

24. I would suggest a more careful wording when the word "significance" is employed. Arguably, a 
predictor can be significant at a certain level, but not plainly not significant (p6 line 26ff) – what 
level of significance did you choose? 

We used the 5% significance level. This information has been added.  

25. p8, l21 you start to use a differently typeset "P" after the abbreviation "ESP" – please explain. 

Thank you for the remark. Yes the “typeset P” should appear the first time we introduce the 
abbreviation of a given Ensemble Prediction System, named P.  

This has been corrected 



### 4 Results 

26. p11 l12ff: you write that the BSS gain is "very sensitive to topography". The coasts along the 
Mediterranean (E portion of southern coast of France) and the Atlantic (W portion of northern 
coast of France) have opposite BSS gains (Fig 3b). How does that fit to your explanation? 

We agree that our formulation was confusing. A first result is that the BSS gain presents a high 
space variability. The gain is higher in the mountainous areas (Pyrenees, Massif Central, Alpes, 
Vosges) but topography is indeed not the only factor that influence the gain as important gains 
are also obtained for the whole Mediterranean coast.  

We have reformulated the text. 

27. p11 l32: what do you mean by "greatly and thus significantly"? 

We agree that the formulation was awkward as we did not evaluate in a statistical meaning the 
significance of the gains.  

We have reformulated the text. 

### 5 Discussion 

28. Generally, this section reads as a strung together explanation of what is shown on several figures. 
What does it mean remains more unclear than the authors probably think... 

The section “results” shows and discusses the improved prediction skill obtained with the hybrid 
approach. Within the “discussion” section, we wanted to give some illustration on the adaptive 
behavior of the model, both in space (with different selection frequencies of given regression 
structure from one place to the other) and time (with the differences from one weather type to the 
other for instance). We acknowledge that the meaning of the results presented in the figures of 
this section is not as clear and further work would be worth for a deeper analysis of the model’s 
behavior. What seems to be clear however, is that the most interesting predictors cannot be 
considered the same all the year and everywhere.  

We have modified the text to better highlight this point. 

29. can the selection of structures (what is visualised by Figures 8 and 9) be done in a more 
quantitative way (contribution of each variable to the prediction)? 

Another possibility would have been indeed to present the percentage of prediction days each 
predictor has been selected. This however prevents to identify which combinations of predictors 
are more often selected if any. We thought however that it was important to understand which 
predictors were associated for the prediction. This is the reason why we have preferred to present 
the selection frequency of the different structures.  

30. p19 l1: Please describe first what your point is, then what is visualised on Figure 10). 

We have reformulated the text as suggested. Our point is that one single regression structure is 
not necessarily the best one for all large scale situations. This is what is illustrated in Fig10 with 
important differences, from one weather type to the other, of the selection frequency of the 
regression structures considered here.  

31. p22 l4ff: you write that the gain is "non-negligible". Then you write that it is "up to 0.1". – Can you 
quantify how much of a gain this really is? 

Thank you for the remark. The gain is up to 10 percentage points (or in relative value up to 0.1). 
The best value of both the BSS and CRPSS score is 100 percentage points (or in relative value, 
1). The gain is here thus non-negligible indeed. 



## Minor Comments 

We have modified the text to account for those different comments when required. 
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\maketitle 
 
\begin{abstract} 
Statistical Downscaling Models (SDMs) are often used to produce local weather scenarios from large scale 
atmospheric information. SDMs include transfer functions which are based on a statistical link identified from 
observations between local weather and a set of large scale predictors. As physical processes driving surface 
weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is 
well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of 
the data.  
In this study, we present a two-stage analog/regression model where the regression link is estimated from 
atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential 
heights at 1000 and 500 hPa. For the regression stage, two Generalized Linear Models are further used to model 
the probability of precipitation occurrence and the distribution of non-zero precipitation amounts respectively.  
The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It 
noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days 
vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value 
of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus 
for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-
frequent weather configurations. 
\end{abstract} 
 
\introduction  %% \introduction[modified heading if necessary] 
\label{sec:introduction} 
 
Statistical Downscaling Models (SDMs) have been widely used to generate local weather scenarios for past or 
future climates from outputs of climate models \citep[e.g.][]{wilby_comparison_1999,hanssen-
bauer_scandinavia_2005,boe_statistical_2007,Lafaysse-etal:2014} and to produce local weather forecasts from 
outputs of numerical weather prediction models 
\citep[e.g.][]{obled_quantitative_2002,gangopadhyay_statistical_2005,marty_sensitivity_2013,ben_daoud_daily



_2016}. For the recent years, they have been also used to reconstruct past weather conditions from atmospheric 
reanalysis data \citep[e.g.][]{auffray_reconstructing_2011,kuentz_anatem_2015,Caillouet_probabilistic_2016}. 
 
Among the different SDM approaches presented over the last decades (\citep[see][for a 
review]{maraun_review_2010}), Perfect Prognosis SDMs make use of the physical relationships that exist 
between some large scale atmospheric parameters and local weather variables. Local weather scenarios can then 
be produced for any prediction day conditionally on the large scale atmospheric configuration observed or 
simulated for this day, where the “prediction day” refers here to some future, past or present simulation day, 
depending on the application context at hand (e.g. forecasting, simulation, reconstruction).  
 
Perfect Prognosis SDMs include transfer functions, weather-type based models and methods based on 
atmospheric analogs \citep[see][for a review]{maraun_review_2010}. In the latter case, atmospheric analog days 
of the current prediction day are searched for on the basis of some atmospheric similarity criterion in the 
historical database. The weather variables observed for the most similar day, for one similar day chosen 
randomly or for a selection of the $k$-most similar days are then used as a weather scenario for the prediction 
day of interest \citep[e.g.][]{dayon_transferability_2016, raynaud_multivariate_2016}.   
 
Transfer functions are widely applied and consist mainly of regression models where the expected value of the 
predictand for time $t$ is expressed as a linear or non-linear function of a set of predictors. For precipitation, the 
regression can be achieved with Multiple Linear Regressions or Generalized Linear Models (GLMs) which 
extent the linear regression to non-Gaussian data \citep[e.g.][]{nelder_generalized_1972, stern_model_1984, 
Asong_Projected_2016}. Transfer functions can also make use of classification and regression trees (CART) 
\citep[e.g.][]{Gaetan_comparison_2014} artificial neural networks or least squares support vector machines 
\citep[e.g.][]{Campozano_Comparison_2016}. 
 
The downscaling relationship used in transfer functions is usually established empirically between a selection of 
large-scale predictors and the predictand (e.g. precipitation occurrence) from a set of observations available for 
recent decades. As physical processes driving surface weather vary in time, the most relevant predictors and the 
downscaling link are however expected to vary in time too. When inferred from all observations available for a 
given period, the downscaling relationship -- which is thus likely inferred from a heterogeneous ensemble of 
weather configurations – is consequently likely to be sub-optimal. To reduce this potential limitation, the 
parameterization of the relationship is often estimated after some data stratification. In the usual calendar 
stratification, one parameter set is for instance optimized for each calendar month or season 
\citep[e.g.][]{Nasseri_DataMining_2013}. The stratification can also be based on some weather type 
information. In this case, a set of parameters is usually estimated for each weather type of a given pre-established 
weather type classification \citep[e.g.][]{enke_downscaling_1997}. Often applied, this weather-type based 
approach is expected to allow for a better identification of the most important driving large-scale variables and 
consequently for a more relevant downscaling. An obvious limitation however remains for prediction days that 
do not clearly belong to one specific weather type (e.g. prediction days that are close to the ''weather frontiers'' 
delimiting two or more weather types). Those days are indeed likely to be rather dissimilar to the weather 
configurations that each weather type is expected to characterize, making the downscaling relationships to be 
used not suited anymore or, at least, sub-optimal. 
 
A smoother weather type like approach consists in defining the weather type from all atmospheric situations that 
are similar to the situation of the prediction day. The ensemble of days from which the downscaling link can be 
identified is thus expected to be rather homogeneous and to rather well inform the large to small scale link 
sought for the considered prediction day. This is in turn expected to make the link stronger and to improve the 
prediction \citep[e.g.][]{Woodcock_OnTheUse_1980}. Such an approach can be actually achieved in applying 
jointly the two popular SDM approaches discussed above, based on atmospheric analogs and on transfer 
functions respectively. To our knowledge, this approach has been only explored in few previous studies. In 
\citet{ribalaygua_hybridSDM_2013}, it was found to improve the probabilistic prediction of local surface 
temperature in the Spanish Iberian Peninsula. The multiple linear regression of the regression stage, estimated 
from the 150 most similar atmospheric analogs of the prediction day of interest, uses forward and backward 
stepwise selection of predictors from a set of four potential predictors (thickness of the air column and three 
temperature indexes of previous days). For precipitation, the authors did not test the potential of the 
hybridization, building directly the predictions from the precipitation observations of the 30 most similar 
atmospheric analogs. In the deterministic approach presented by \citet{ibarra_hybridSDM_2011}, incorporating 
the regression stage (with 79 potential atmospheric predictors) was found to allow a clear though not 
overwhelming improvement of precipitation prediction over the simple analog based predictions. A multiple 
linear regression model was also applied here for the regression stage.  



 
In the present study, we present a two-stage analog/regression downscaling model for the probabilistic prediction 
of small-scale daily precipitation: for each prediction day, the statistical downscaling link between some large 
scale atmospheric predictors and small-scale precipitation is estimated from large scale and local scale 
observations available from an ensemble of days which are atmospheric analogs to the prediction day. The 
analog model (AM) used for the analog stage is based on developments from different studies initially focusing 
on the probabilistic quantitative precipitation forecasts in southern France 
\citep[e.g.][]{bontron_probabilistic_2005,marty_toward_2012} and extended to the prediction of precipitation 
on larger spatial domains \citep[e.g.][]{chardon_spatial_2014}.The statistical distribution of precipitation 
isstrongly non-gaussian with a non-negligible mass in zero (corresponding to the probability of a dry day), and a 
skewed distribution for non-zero daily amounts. For the regression stage, we thus use a 2-part GLM approach 
where the probability of precipitation occurrence and the distribution of wet-days amounts are modeled 
separately following \citet{chandler_analysis_2002} and \citet{mezghani_combined_2009}. Conversely to the 
work of \citet{ibarra_hybridSDM_2011}, this allows predicting the full distribution of precipitation, including 
the probability of a wet day. In this two-stage analog/regression approach, the analogs change from one 
prediction day to the other. This makes the statistical downscaling link potentially adaptive, i.e. the predictors 
and the regressions parameters are likely to vary from one day to the other.  
 
As mentioned above, SDMs are used for the simulation of local weather scenarios in different contexts, e.g. local 
weather forecasts, reconstructions or for climate impact studies. No specific context is considered here and the 
two-stage model could be further considered for either forecasting, reconstruction or future projections. 
Depending on its intended use, some specific issues would obviously apply, calling for specific focused analyses 
and developments. For instance, the large scale atmospheric parameters to be considered as predictors would 
depend on the dataset considered (e.g. atmospheric reanalyses, climate model or numerical weather prediction 
models) as a result of their intrinsic quality \citep[e.g.][]{Caillouet_probabilistic_2016}. The development of 
climate projections would require to check the temporal transferability of the model in a modified climate 
context and would thus likely also condition the selection of the predictors as highlighted by 
\citep[e.g.][]{dayon_transferability_2016}. These context specific issues are not considered here. Our main 
objectives are  to present the principles of the two-stage analog/regression approach developed for the prediction 
of small-scale precipitation, to assess its predictive power for both precipitation occurrence and amount, and to 
give some insight on its adaptive behavior and thus on the temporal variability of the downscaling link. For this, 
we explore the model skill and behavior for the prediction of daily precipitation for a large number of sites in 
France.  
 
The paper is structured as follows: Section \ref{sec:data} describes the data and section \ref{sec:models} the 
two-stage downscaling model. Section \ref{sec:results} presents the skill of the model for the prediction of both 
precipitation occurrence and amount. The adaptive behavior of the model is considered in section 
\ref{sec:discussion} and section \ref{sec:conclusion} concludes. 
 
\section{Data} 
\label{sec:data} 
 
The predictand is the daily small-scale precipitation estimated for the 1982-2001 period over 8,981 grid cells of 
8 $\times$ 8 \unit{km\textsuperscript{2}} covering the continental French territory. The predictand is “local” 
precipitation, i.e. precipitation at a given grid cell. Each of the 8,981 grid cells is thus considered in turn in the 
following independently of the other cells. In other words, the predictions do not target precipitation fields. 
Small-scale precipitation data are obtained from the SAFRAN analysis produced for several surface variables at 
hourly time step by MeteoFrance \citep{quintana-segui_analysis_2008,vidal_50-year_2010}. SAFRAN 
precipitation estimates are obtained each day from the closest measurement stations. They are considered as 
pseudo-observations in the following.  
 
Atmospheric predictors are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
Re-Analysis \citep[ERA-40,][]{uppala_era-40_2005}. This global meteorological re-analysis is available on a 
1.125\unit{\textbf{$^{\circ}$}} $\times$ 1.125\unit{\textbf{$^{\circ}$}} grid with a 6-hourly temporal 
resolution. 
 
For the analog stage, predictors are the 1000hPa and 500hPa geopotential height fields over a large spatial 
domain (roughly Lat = $10^{\unit{\textbf{$^{\circ}$}}}$, Lon = $8^{\unit{\textbf{$^{\circ}$}}}$) cente red on 
the target location. These predictors have been found to be the most informative large scale predictors to be used 
in this context for France 



\citep[e.g.][]{guilbaud_approche_1998,obled_quantitative_2002,radanovics_optimising_2013}. They also 
correspond to the best large scale predictors of daily precipitation for different regions in Europe with contrasted 
meteorological regimes \citep{raynaud_multivariate_2016}.  
 
For the regression stage, 22 other predictors were also considered. The selection gathers most predictors 
considered in previous studies over Europe \citep[e.g.][]{hanssen-
bauer_scandinavia_2005,wetterhall_sweden_2009,horton_spatial_2012,raynaud_multivariate_2016}. They 
include predictors characterizing the thermal state of the atmosphere, its dynamics, the atmospheric water 
content, its thermo-dynamical instability (see Table \ref{tab:initial_predictors}). As potential predictor, we also 
consider the occurrence of precipitation on the previous day. All predictors are here scalar variables. 
Atmospheric predictors are estimated on a daily time step (mean of the four values available at 6, 12, 18 and 
24h00 UTC) from the four ERA-40 grid cells surrounding the prediction grid cell (inverse distance 
interpolation). 
 
To avoid the multi-colinearity in the predictors for the regression, we identified a subset of uncorrelated 
predictors. The cross-correlations between all predictor pairs were first estimated on an annual basis from all 
available data. The correlation structure can however differ from one atmospheric configuration to the other. The 
set of uncorrelated predictors could thus differ from one prediction day to the other. We thus repeated the 
correlation analysis for each prediction day, using for this estimation the predictor values observed for the 100 
nearest atmospheric analogs identified for this day. The main features of the inter-variable correlations were 
found to be roughly independent of the day (not shown). The final subset of uncorrelated predictors is 
highlighted in Table \ref{tab:initial_predictors}. These predictors are tested for the prediction of both 
precipitation occurrence and amount. 
 
A large number of different possible predictor sets can be built from these predictors. In the present work, for the 
sake of robustness, we consider that a maximum of four predictors can be integrated in a given GLM. Predictors 
are obviously expected to be both day and location specific. In the present work, for the sake of simplicity and 
readability, we select them from a unique set of four potential predictors. This allows us reducing the degrees of 
freedom in the model and to better highlight its skill and adaptive behavior. 
 
For each predictand, the set of the four potential predictors was selected as follows. For 12 SAFRAN grid cells 
uniformly distributed over the French territory, we first identified with a standard iterative forward/backward 
algorithm the four-predictor set which lead to the best prediction skill for the all-days configuration. From the 
twelve different sets respectively obtained for the 12 grid cells, we finally retained the set which leads in average 
to the best prediction skill for the 8,981 SAFRAN grid cells.  
 
For precipitation occurrence, this best four-predictor set is constituted from the relative humidity $R_{700}$, the 
helicity $H$, the vertical velocity of the air at 700hPa $W_{700}$ and the precipitation occurrence $Occ-1$ of 
the day before the prediction day. For precipitation amount, the best four-predictor set is similar except that the 
occurrence of the previous day $Occ-1$ is replaced by the 700 hPa air temperature $T_{700}$.  
Note that the selection of predictors $R_{700}$, $W_{700}$ and $T_{700}$ is consistent with results of several 
past studies in the region \citep[e.g.][]{ben_daoud_daily_2016}.  
 
Predictors considered for the analog and regression stages obviously inform about different features of the 
atmosphere state for different scales. Geopotential fields, by their spatial extent, characterize the large-scale 
atmospheric circulation configuration (the spatial domain of several thousands of kilometers, includes a part of 
North-Eastern Atlantic and covers France and a part of neighboring countries) whereas GLM scalar predictors 
are descriptive of a more local (and mostly thermodynamic) state of the atmosphere (the spatial domain of 
several hundreds of kilometers is roughly centered above the target location). 
 
\section{The hybrid analog/regression model (SCAMP)} 
\label{sec:models} 
 
As illustrated in Fig. \ref{fig:description_cdf}, the cumulative distribution function (cdf) $F_Y$ of precipitation 
$Y$ at a given site (grid cell) can be expressed for any given day as the composition of the no-precipitation 
occurrence probability $1-\pi$ and the cdf $F_Q$ of the precipitation amount $Q$ for non-zero precipitation: 
\begin{equation} 
F_Y(y)  = (1 - \pi) + \pi \cdot F_Q \left( q = y\right), 
\label{eq:cdf_precip} 
\end{equation} 



where $\pi$ is the precipitation occurrence probability, $y$ and $q$ correspond to the precipitation value with 
regard to the whole precipitation distribution and to the non-zero precipitation distribution respectively.  
 
\begin{figure}[t] 
\includegraphics[width = 8.3cm]{fig01.pdf} 
\caption{Cumulative distribution function (cdf) of precipitation amount for a given prediction day (in grey) at a 
given grid cell. For illustration, the prediction here corresponds to the empirical cdf achieved with the Analog 
Model (AM) mentioned in \ref{sec: def_backup}. The contribution of the precipitation amount $F_{Q,AM}$ 
cdf to the overall cdf is highlighted in black (c.f. Eq. \ref{eq:cdf_precip}).} 
\label{fig:description_cdf} 
\end{figure} 
 
In the present work, the cdf of precipitation is modeled for each grid cell and each prediction day with GLMs 
\citep{coe_fitting_1982, stern_model_1984}, estimated for this specific day from atmospheric analogs of the 
day. The probability of precipitation occurrence and the cdf of the non-zero precipitation amount are modeled 
separately.  
 
In the following, we first describe the Analog Model (AM) used to identify atmospheric analog days (section 
\ref{sec:def_AM}) and the GLMs applied in the regression stage (section \ref{sec:GLM_description}).  
 
As discussed later, one can face prediction days where the regression stage fails, i.e. wherethe regression 
parameters are not significantly different from zero at the chosen significance level. For such days, we use the 
Analog Model as backup prediction model. The backup model can be used for precipitation occurrence 
probability, for non-zero precipitation amount or for both predictands simultaneously. 
 
The way these different models are combined to finally give, for the current prediction day, a probabilistic 
prediction of precipitation is presented in section \ref{sec:def_backup}. In the following, this hybrid 
analog/regression model is further referred to as SCAMP (SCAMP stands for Sequential Constructive 
atmospheric Analogs for Multivariate weather Prediction and refers to the model presented by 
\cite{raynaud_multivariate_2016} for the multivariate prediction of precipitation/temperature/radiation/wind). 
 
\subsection{Atmospheric analogs} 
\label{sec:def_AM} 
 
The atmospheric analog days retained for the regression stage are identified with an Analog Model defined from 
the developments of several past studies in France 
\citep[e.g.][]{obled_quantitative_2002,marty_toward_2012,radanovics_optimising_2013}.  
 
For any given prediction day (e.g. May-31’s, 2018), the analog days retained for the regression are the $N_d$ 
days that are most similar to that day in terms of large scale atmospheric circulation. The similarity is assessed 
using the Teweless-Wobus Score \citep[TWS, ][]{teweless_verification_1954} applied to the geopotential height 
at 1000 hPa and 500 hPa at 12h and 24h UTC respectively. The TWS compares the shapes of geopotential fields, 
and thus informs on the localization of low and high pressure systems and on the origin of air masses. Note that 
the $N_d$ analog days are identified within a restricted pool of candidate days, namely all days of the archive 
that are included in a calendar window of $\pm$ 30 calendar days centered on the prediction day (for the 
prediction of May-31’s, 2018, candidates are all May 1st to all June 30’s from all years of the archive). The 
prediction day (May-31’s, 2018) and its 5 preceding and following days are excluded from the candidates. In the 
present work, the archive period corresponds to 1982-2001 (20 years) and we used the 100-nearest atmospheric 
analog days to estimate the GLMs in the regression stage.  
 
Following \citet{chardon_spatial_2014}, the domain considered to estimate the atmospheric similarity was 
optimized for each target location. A different analog model was thus considered for each of the 8,981 SAFRAN 
grid cells. For each prediction day, the analog days thus likely differ from one SAFRAN grid cell to the next 
\citep [see][for illustration]{chardon_spatial_2014}.  
 
\subsection{Regression stage with GLMs} 
\label{sec:GLM_description} 
 



The cdf of precipitation is then modeled for each prediction day with GLMs estimated for this specific day from 
the atmospheric analogs of the day. GLMs make the cdf depending on some covariates, atmospheric predictors 
in the present case. 
For each prediction day, the probability of precipitation occurrence $\pi$ was modeled with a GLM in the form 
of a logistic regression as: 
\begin{equation} 
\log \left( \frac{\pi}{1-\pi} \right) = \mathbf{x^o}^\text{T} \mathbf{\beta^o}, 
\label{eq:logistic_regression} 
\end{equation} 
where $\mathbf{x^o}$ is the scalar vector of the $K_o$ predictors $(x^o_1, x^o_2, .. x^o_{K_o})$ and 
$\mathbf{\beta^o}$ the scalar vector of the $K_o$ corresponding regression coefficients $(\beta^o_1, \beta^o_2, 
.. \beta^o_{K_o})$. \par  
 
For the non-zero precipitation amount, we used a GLM with the gamma distribution and the log link function. 
The expected amount $\mu$ of non-zero precipitation is therefore here expressed as: 
\begin{equation} 
\log \left( \mu \right) = \mathbf{x^q}^\text{T} \mathbf{\beta^q}, 
\label{eq:logarithmic_regression} 
\end{equation} 
where $\mathbf{x^q}$ denotes the scalar vector of the $K_q$ predictors $(x^q_1, x^q_2, .. x^q_{K_q})$ and 
$\mathbf{\beta^q}$ the scalar vector of the corresponding regression coefficients $(\beta^q_1, \beta^q_2, .. 
\beta^q_{K_q})$ . The shape parameter $\nu$ of the gamma distribution is computed from the variance 
$\sigma^2$ of non-zero precipitation amounts estimated from Pearson's residuals 
\citep{mccullagh_generalized_1989} as: 
\begin{equation} 
\sigma^2 = \frac{1}{\left\{N_q- \left( K_q +1 \right) \right\}} \sum_{i=1}^{N_q} \frac{\left( q_i - \m u 
\right)^2}{\mu^2}, 
\label{eq:sigma_gamma}  
\end{equation} 
where $N_q$ is the number of non-zero precipitation data $q_i$ considered in the analysis. As the shape 
parameter $\nu$ equals the inverse of the variance $1/\sigma^2$, the gamma distribution $F_Q$ modeling the 
precipitation amount thus follows a gamma distribution of this type $\Gamma \left(\nu, \alpha = \mu / 
\nu\right)$. 
 
For any given prediction day, the estimation of both GLM models practically proceeds as follows:  
 
\begin{itemize} 
\item The precipitation state (wet or dry), the precipitation amount and the value of the different potential 
predictors are extracted for the $N_d$ nearest analogs of the day. The precipitation state of a given day is 
considered to be wet if the precipitation amount for this day is higher or equal to 0.1 mm. It is described with a 
binary precipitation occurrence variable $\mathbf{O}$, set to 1 for the wet case, 0 for the dry case.  
 
\item For occurrence probability, different sets of predictors are considered in turn. For each set, the parameters 
of the occurrence GLM are estimated from the predictors/occurrence values available for the $N_d$ analogs.  
 
\item For precipitation amount, different sets of predictors are again considered in turn. For each set, the 
parameters of the GLM are estimated from the predictors/amount values available from the analog days which 
are wet ($N_q$, the number of days considered here for the regression, is therefore smaller or equal to $N_d$ 
and varies a priori from one target day to another). 
 
\end{itemize} 
 
For the considered prediction day, the different sets of predictors considered in turn are built from the four 
potential predictors identified in the preliminary work (cf. section \ref{sec:data}). For occurrence probability 
(resp. precipitation amount), the four potential predictors actually allow to build fifteen different sets of 
predictors, further denoted as ''regressive structures'' in the following (cf list in Table 
\ref{tab:regressiv_structure}). For each regressive structure, the regression coefficients of corresponding GLMs 
are estimated using the Iterative Re-weighted Least Squares algorithm 
\citep[IRLS,][]{nelder_generalized_1972}. The prediction skills of the different regressive structures are then 
compared and the regressive structure (predictor set) which minimizes the Bayesian Information Criterion is 



retained for the prediction \citep{schwarz_estimating_1978,akaike_new_1974} (only the regressive structures 
for which all coefficients are significant at a 5% level are compared; the significance is estimated with the $Z$-
test (resp. the Student $t$-test)).  
 
The prediction of the occurrence probability (resp. the expected precipitation amount) for the prediction day is 
finally obtained from the best occurrence (resp. amount) GLM, using the values of the predictors observed for 
that prediction day. The final distribution of precipitation $F_Y$ is obtained by combining the issued occurrence 
probability $\pi$ and the amount distribution $F_Q$ according to Eq. \ref{eq:cdf_precip}. 
 
 
 
 
\subsection{The Analog Model as benchmark and backup prediction model} 
\label{sec:def_backup} 
 
The $N_d$-nearest analog days identified with the AM can also be directly used, without further regression 
stage, for a probabilistic prediction. In the following, we also consider predictions obtained with the 25 nearest 
analog days (for the AM considered here, 25 was found to give the best prediction skill for France by 
\citet{chardon_spatial_2014}). In this case, the precipitation cdf for the prediction day is simply the empirical 
distribution of the precipitation values observed for these 25 analogs. The predictions obtained with this analog 
model, further called AM$_\text{25}$, are used as a benchmark to assess the prediction skill of the hybrid 
analog/regression approach. In addition, they were used as backup prediction for days for which the regression 
stage failed in the hybrid approach. One can actually face the situation where no GLM satisfies the significance 
conditions required for the regression coefficients. This can occur for precipitation occurrence probability, for 
non-zero precipitation amount or for both predictands simultaneously. In such cases, AM$_\text{25}$ is applied 
as backup prediction model. 
 
If the significance conditions cannot be satisfied for the precipitation occurrence GLM, the occurrence 
probability $\pi$ is set to that obtained with AM$_\text{25}$. It thus simply corresponds to the empirical 
probability $\pi_{\text{AM$_\text{25}$}}$ of precipitation occurrence derived from the 25 analog days of 
AM$_\text{25}$ as: 
\begin{equation} 
\pi \equiv \pi_{\text{AM$_\text{25}$}} = \frac{1}{2 5} \sum_{i=1}^{25} o_i. 
\label{eq:pi_AM} 
\end{equation} 
 
Similarly, if the significance conditions cannot be satisfied for the precipitation amount GLM, the distribution 
$F_Q$ is estimated with the empirical distribution $F_{Q,\text{AM$_\text{25}$}}$ derived with 
AM$_\text{25}$ as: 
\begin{equation} 
F_Q(q) \equiv F_{Q,\text{AM$_\text{25}$}}(q) = \frac{F_{\text{AM$_\text{25}$}}(q) - \left( 1 - 
\pi_{\text{AM$_\text{25}$}} \right)}{\pi_{\text{AM$ _\text{25}$}}}, 
\label{eq:FQ_AM} 
\end{equation} 
where $F_{\text{AM$_\text{25}$}}$ corresponds to the empirical cdf estimated from all precipitations (null 
and positive) related to the 25 analog days. Note also that if the number $N_q$ of humid analog days is low 
($N_q < 10$), the estimation of a GLM is not expected to be robust. When this case appears, $F_Q$ is also set 
to the cdf obtained with AM$_\text{25}$. 
 
As illustrated in Fig. \ref{fig:description_assembling_cases}, four prediction cases are thus achieved with the 
hybrid approach. They correspond respectively to cases where AM$_\text{25}$ is used to backup the prediction 
of the whole precipitation distribution (case 1), where AM$_\text{25}$ is applied to backup the amount cdf 
prediction (case 2), where AM$_\text{25}$ is used to backup the occurrence probability prediction (case 3) and 
where the regression stage could be activated for both occurrence and amount (case 4).  
 
Note that the regression stage achieved with GLMs can also be seen as a way to refine the estimation of the cdf 
that could have been obtained directly with the backup (and benchmark) AM$_\text{25}$ analog model. The 
refinement leads to update the occurrence probability and/or the cdf of non-zero precipitation amount.  
 



As described previously, the two-stage analog/regression prediction process is repeated for each prediction day 
in turn. As the analog days vary from one prediction day to another, the predictors selected in the regression 
stage and the value of the corresponding regression coefficients are expected to vary from one prediction day to 
the other. The hybrid model SCAMP allows thus for a day-to-day adaptive and tailored downscaling. 
 
\begin{figure*}[t] 
\includegraphics[width = 8.3cm]{fig02.pdf} 
\caption{Illustrations of the four cases met for the issue of $F_Y(y)$ by the hybrid model. Case 1: None of the 
occurrence and amount GLMs could be retained during the regression stage: AM$_\text{25}$ is used to predict 
the whole precipitation distribution. Case 2: Only the occurrence GLM could be retained. It gives the estimated 
occurrence probability. The distribution of non-zero precipitation comes from AM$_\text{25}$. Case 3: Only 
the amount GLM could be retained. It gives the distribution of non-zero precipitation. The occurrence 
probability is the empirical occurrence probability from AM$_\text{25}$. Case 4: Both occurrence and amount 
GLMs could be estimated: they respectively give the occurrence probability and the distribution of non-zero 
precipitation, to be further combined for the full distribution of precipitation.} 
\label{fig:description_assembling_cases} 
\end{figure*} 
 
\subsection{Model evaluation} 
\label{sec:evaluation} 
 
The prediction skill of the downscaling model is assessed with probabilistic scores usually used to evaluate 
Ensemble Prediction Systems (EPS). Let us consider a given EPS, denoted as $\mathcal{P}$. 
 
The Brier Score \citep{brier_verification_1950,murphy_new_1973} first evaluates the ability of EPS 
$\mathcal{P}$ to predict precipitation occurrence. When estimated over $M$ prediction days, the mean Brier 
Score $\overline{\mathrm{BS}}$ reads: 
\begin{equation} 
\overline{\mathrm{BS}} = \frac{1}{M} \sum_{i=1}^{M}  \left[ p_i - o_i \right] ^2, 
\label{eq:def_BS} 
\end{equation} 
where, for a given prediction day $i$, $p_{i}$ is the occurrence probability issued by EPS $\mathcal{P}$ and 
$o_i$ is the effective precipitation occurrence for this day ($o_i=1$ for a wet day, $=0$ otherwise).  
 
The ability of EPS $\mathcal{P}$ to estimate the precipitation amount is evaluated with the Continuous Ranked 
Probability Score \citep[CRPS,][]{brown_admissible_1974,matheson_scoring_1976}. When estimated over 
$M$ prediction days, the mean CRPS reads: 
\begin{equation} 
\mathrm{\overline{CRPS}} = \frac{1}{M} \sum_{i=1}^{ M}\int_{-\infty}^{+\infty}{ \left[ F_{i}(x)-
H_{y_{i}}(x) \right] }^2 dx, 
\label{eq:def_CRPS} 
\end{equation} 
where, for a given prediction day $i$, $H_{y_{i}}$ and $F_i$ denote respectively the cdf of the observation 
$y_{i}$ and the cdf derived from EPS $\mathcal{P}$. $x$ denotes the predictand quantiles of the cdfs. Note that 
$H_{y_{i}}$ corresponds to the Heaviside function where $H_{y_{i}} = 1$ if $x \ge y_{i}$ and 
$H_{y_{i}}=0$ otherwise.  
 
For this evaluation, the probabilistic prediction of the predictand $y$ is here described, for each prediction day, 
with a discretized cdf composed of $N$ values, with $N=25$. When AM$_\text{25}$ is used as backup model, 
the $N$ values are the precipitation observations of the 25t analog days. When the prediction is issued with 
SCAMP~, the $N$ values are those of the 25 percentiles $(k-0.5)/25$, $k$ in $[1,N]$, of the predicted cdf 
$F_Y$.  
 
In the following, we discuss the prediction skill for precipitation occurrence and amount with the Brier Skill 
Score (BSS) and the Continuous Ranked Probability Skill Score (CRPSS) respectively. Both scores normalize 
the prediction skill of EPS $\mathcal{P}$ with that obtained with a reference EPS $\mathcal{P}_\varphi$. 
$\mathcal{P}_\varphi$ is here a climatological EPS based on a calendar climatology defined for each prediction 
day by the precipitation distribution of all days belonging to a seasonal window ($\pm$ 30 days) centered on the 
corresponding calendar day. In this context, the BSS and CRPSS respectively read:  
\begin{equation} 



\mathrm{BSS} = 1 - \frac{\overline{\mathrm{BS}}}{\overline{\mathrm{BS}}_\varphi}, 
\label{eq:def_BSS} 
\end{equation} 
and 
\begin{equation} 
\mathrm{CRPSS} = 1 - 
\frac{\overline{\mathrm{CRPS}}}{\overline{\mathrm{CRPS}}_{\mathcal{P}_\varphi}}, 
\label{eq:def_CRPSS} 
\end{equation} 
 
where $\overline{\mathrm{BS}}_\varphi$ and $\overline{\mathrm{CRPS}}_{\mathcal{P}_\varphi}$ 
correspond to the mean BS and the mean CRPS obtained with EPS $\mathcal{P}_\varphi$. For both scores, a 
negative value indicates that the prediction obtained with EPS $\mathcal{P}$ is worse than the prediction 
obtained with the climatological EPS $\mathcal{P}_\varphi$. A score of 1 conversely denotes a perfect EPS 
$\mathcal{P}$. 
 
In the following, to assess the added value of the hybrid SCAMP~model when compared to the benchmark 
AM$_\text{25}$ analog model, we additionally estimate the gain in prediction skill as: $\Delta S = 
S_{\text{SCAMP}} - S_{\text{AM}_{25}}$ where $S$ corresponds either to the BSS or the CRPSS.  
 
\section{Results} 
\label{sec:results} 
 
The hybrid model is used for the probabilistic prediction of small-scale precipitation over the continental French 
territory for each day of the 1982-2001 period. We here present the prediction skill obtained for occurrence and 
amount with the two predictors sets presented in section \ref{sec:data}. As discussed later in section 
\ref{sec:discussion}, the four predictors of each set are not necessarily all used; the predictors which have some 
predictive power for the considered predictand vary from one day to the other.  
 
\subsection{Performance of SCAMP} 
\label{sec:performance_hybrid} 
 
Figure \ref{fig:gain_BSS}a presents the BSS skill score of SCAMP~for precipitation occurrence prediction. The 
highest BSS values -- up to 0.5 -- are found in the western part of the Massif Central, in the Alps and along the 
Atlantic coast. Lower skill (BSS from 0.45 to 0.5) is obtained in northern and western lowlands. The lowest skill 
(0.35) is obtained for few cells located along the Mediterranean coast.  
 
The BSS gain obtained with SCAMP~over AM$_\text{25}$ is rather important (up to 0.1 BSS points) and a 
presents high space variability (Fig. \ref{fig:gain_BSS}b). The gain (between 0.05 and 0.1 BSS points) is high in 
the mountainous areas (Pyrenees, Massif Central, Alpes, Vosges). The highest gains are found along the 
Mediterranean coast and in the Southern Alps where the BSS of SCAMP~was the lowest. This highlights the 
weakness of the AM$_\text{25}$ in these regions -- characterized by more frequent convective precipitation and 
thus a weaker link with large-scale atmospheric circulation -- and the interest for thermodynamic and more local 
predictors. Conversely, lower gains are observed in the western part of France characterized by more frontal 
precipitation and thus a stronger link with large-scale circulation. Note also that the spatial distribution of 
$\Delta$BSS is very close (even if it has higher values) to the one obtained by SCAMP~with $R_{700}$ as 
unique predictor (not shown here). 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig03.pdf} 
\caption{(a) BSS obtained with SCAMP (best possible value = 1). (b) BSS gain obtained with 
SCAMP~compared to AM$_\text{25}$. Black solid lines correspond to the French borders and the contours 
around mountainous regions (400- and 800-m elevation) while the dashed lines show the ERA-40 grid mesh.} 
\label{fig:gain_BSS} 
\end{figure*} 
 
Figure \ref{fig:gain_CRPSS}a shows the CRPSS obtained with SCAMP. The CRPSS values also depend on 
topography. The highest values, up to 0.45, are obtained in the western part of the Massif Central, the northern 
Alps, the Jura and the Vosges massifs. Lower values, between 0.32 and 0.45, are obtained in lowlands. The 
lowest skill (below 0.30) is again obtained along the Mediterranean coast.  



 
The CRPSS gain obtained over AM$_\text{25}$ is significant (up to 0.07 CRPSS points) for most grid cells, 
with the highest value (up to 0.10 CRPSS points) obtained in the Rhone valley and in north-eastern France (Fig. 
\ref{fig:gain_CRPSS}b). Similarly to the BSS gain, a lower CRPSS gain is here also obtained in lowlands and 
western France. The spatial distribution of $\Delta$CRPSS is here also very close (even if it has higher values) 
to the one obtained by SCAMP~with $W_{700}$ as unique predictor for amount (not shown here). 
 
Despite the large dependency on regional features such as topography or proximity to the sea, adding local and 
thermodynamic information in SCAMP~greatly improves the prediction skill over that of AM$_\text{25}$, for 
both precipitation occurrence and amount. 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig04.pdf} 
\caption{(a) CRPSS obtained with SCAMP (best possible value=1). (b) CRPSS gain obtained with 
SCAMP~compared to AM$_\text{25}$.} 
\label{fig:gain_CRPSS} 
\end{figure*} 
 
\subsection{Characterisation of SCAMPs behaviour} 
\label{sec:behavior_SDM} 
 
As described in section \ref{sec:def_backup}, the regression stage of SCAMP~is equivalent to update the 
empirical distribution obtained from the atmospheric analogs directly. For some prediction days, the regression 
stage can be however only partly activated, for either occurrence or amount. It can be even not activated at all. In 
these cases, the prediction is fully or partly obtained from the backup model AM$_\text{25}$. 
 
The frequency each activation case (case 1 to 4) is obtained over the simulation period is illustrated in Fig. 
\ref{fig:freq_cas}. The situation where both precipitation occurrence and amount GLMs are activated (case 4) is 
very frequently observed. It corresponds to more than 85 \% of the days except in south-eastern France where 
only 60 \% of the days are concerned. All in all, the regression stage of SCAMP~is very often activated (more 
than 97% of the days) to predict the occurrence probability (case 2 + 4). In the failing full-updating cases, 
AM$_\text{25}$ is usually applied to backup the precipitation amount prediction (case 1+2). Case 1, where the 
whole prediction is backup with AM$_\text{25}$ is finally very rare. For a large majority of the grid cells, it 
occurs less than 35 times in the 20-year period considered (corresponding to around 5\textperthousand). 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig05.pdf} 
\caption{Percentage of days where 1) no updates are applied, 2) only the precipitation occurrence is updated, 3) 
only the precipitation amount is updated and 4) the occurrence and the precipitation amount are updated. Grids 
with gray colors correspond to grid cells where the corresponding case has been met less than 35 times over the 
20-year evaluation period.} 
\label{fig:freq_cas} 
\end{figure*} 
 
Figure \ref{fig:AnoPmoy_cas} presents the mean precipitation anomaly for each of the previous cases, i.e. the 
ratio between the mean amount obtained for all days belonging to the considered case and the overall mean 
precipitation amount. An anomaly greater (resp. lower) than 1 indicates days that are rainier (resp. drier) than 
usual. The different cases correspond clearly to different precipitation configurations. The mean precipitation 
amount of days in case 4 is close to the overall mean. Days in cases 1 and 2 are very dry. Days in case 3 are very 
wet with a mean precipitation three times larger than the overall mean.  
 
For a given prediction day, the precipitation state of its analog days is actually expected to be roughly similar to 
that of the day. This thus explains the SCAMP's behavior described above. In case 1 and 2, analog days of the 
prediction day are likely very dry. The number of humid analog days is thus likely small to very small, and 
actually too small to allow for a robust estimation of the precipitation amount GLM. Analog days are conversely 
likely humid in case 4 or even very humid in case 3. The number of humid days in those cases is thus likely large 
enough to allow for a robust estimation of the precipitation amount GLM. The very humid configuration of case 
3 suggests that predictions days are characterized by a very large number of humid analog days, which can in 
turn prevent for a robust estimation of the occurrence GLM (e.g. the occurrence GLM cannot be estimated in 
configurations where all days are wet).  



 
This can also explain the specific results obtained in Southeast. Case 2 is indeed activated much more often in 
this region (increase of  30% percentage point) than elsewhere and, in a symmetric way, Case 4 is activated 
much less often in this region (decrease of  30% percentage points). The reason underlying this result is to be 
related to the much higher proportion of dry days in Southeast (not shown). In this region, the number of wet 
analog days is thus likely small for a large number of predictions days. As suggested above, this is obviously not 
a difficulty for the estimation of the occurrence GLM. This is conversely likely one for the estimation of the 
amount GLM. A small number of wet analogs likely prevents for a robust estimation of the precipitation amount 
GLM. This likely explains the much lower (resp. higher) frequency of Case 4 (resp. Case 2) in Southeast.  
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig06.pdf} 
\caption{Ratio between the mean amount obtained for all days belonging to a given case and the overall mean 
precipitation amount. Gray grids: same as in Fig. \ref{fig:freq_cas}.} 
\label{fig:AnoPmoy_cas} 
\end{figure*} 
 
The CRPSS gain achieved with SCAMP's results from the updated prediction of both precipitation occurrence 
and amount. To assess the relative effects of these updates on the gain, we further compared the four following 
prediction experiments: 
\begin{description} 
 \item[Exp. 1:] The prediction of both the occurrence and the amount is achieved with AM$_\text{25}$ 
for all prediction days. This corresponds to the results given by \citet[cf. Fig. 3]{chardon_spatial_2014}.  
 \item[Exp. 2:] When possible, the precipitation occurrence probability is updated with the occurrence 
GLM. The non-zero precipitation amount is always predicted with AM$_\text{25}$.  
 \item[Exp. 3:] When possible, the precipitation amount is updated with the amount GLM. The 
precipitation occurrence probability is always predicted with AM$_\text{25}$.  
 \item[Exp. 4:] When possible, both precipitation occurrence probability and amount are updated with 
the occurrence and amount GLMs. This corresponds to the hybrid configuration already evaluated previously. 
\end{description} 
 
The CRPSS gain obtained between Exp.1 and 2, between Exp. 1 and 3 and between Exp.1 and 4 are presented in 
Fig. \ref{fig:contrib_dCRPSS} (the results for Exp.4, already presented in Fig. \ref{fig:gain_CRPSS}, are 
presented again for the ease of comparison). 
 
For a large majority of grid cells, the CRPSS gain obtained with an updated prediction of the occurrence 
probability (from 0 to 0.05 CRPSS points) is significantly lower than that obtained with an updated prediction of 
amount (from 0.03 to 0.1 CRPSS points). The CRPSS gain obtained in the latter case is additionally close to that 
obtained with the full hybrid model. The CRPSS gain obtained by SCAMP~in Fig. \ref{fig:contrib_dCRPSS}c 
is thus explained in most cases by the updated prediction of precipitation amount.  
The scheme is somehow different in the south of France along the Mediterranean coast and in the Cevennes-
Vivarais mountains. In those regions, the CRPSS gain obtained by SCAMP~is mostly explained by the updated 
prediction of the occurrence probability. Updating only the precipitation amount leads to fairly no CRPSS gain.  
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig07.pdf} 
\caption{Gain in CRPSS for different prediction experiments (see section \ref{sec:behavior_SDM} for details) 
compared to the performance of AM$_\text{25}$. (a) Exp.2: only the precipitation occurrence probability is 
updated (when possible), (b) Exp.3: only the precipitation amount is updated (when possible), (c) Exp.4: both 
occurrence probability and precipitation amount are updated (when possible).} 
\label{fig:contrib_dCRPSS} 
\end{figure*} 
 
\section{Discussion} 
\label{sec:discussion} 
 
The sets of potential predictors used in SCAMP~for the prediction of precipitation occurrence and amount have 
been listed in section \ref{sec:Predictor_sets}. For each variable, the number of potential predictors is here equal 
to four. All four predictors are not necessary retained for the GLM. For a given prediction day, a GLM with a 
single predictor or a combination of several predictors among the four can be selected. Fifteen regressive 



structures plus the backup AM$_\text{25}$ model are possible in our context (Table 
\ref{tab:regressiv_structure}).  
 
For a given prediction day, the regressive structure selected by SCAMP~for precipitation occurrence or for 
precipitation amount are supposed to include the best information for the prediction. In the following, we assess 
how often each structure has been selected. This allows for some insight in the atmospheric information really 
used for the regression stage and how this information varies in time. 
 
Figure \ref{fig:global_selection_occ} and Fig. \ref{fig:global_selection_qu} present the percentage of times that 
the 15 regressive structures and the backup AM$_\text{25}$ are used for the prediction of precipitation 
occurrence and amount, respectively. As in Fig. \ref{fig:freq_cas}, gray cells indicate that the regression 
structure has been retained less than 35 times over the 20-year evaluation period. 
 
For occurrence (Fig. \ref{fig:global_selection_occ}), the most often selected structure is Str. 
n\textsuperscript{o}1, which is only based on $R_{700}$ (more than 25 \% for the whole of France). 
$R_{700}$ was actually found to give the highest predictive power when used in a single predictor 
configuration. Another structure which is also often selected (more than 15 \% for a high number of grids) is Str. 
n\textsuperscript{o}7 which combines $R_{700}$ with $Occ-1$. Secondary structures -- as for example Str. 
n\textsuperscript{o}6 and n\textsuperscript{o}13 combining $R_{700}$ to $W_{700}$ and $Occ-1$ -- can be 
selected more than 10 \% of the days for some given regions. Other structures are seldom selected and some of 
them (Str. n\textsuperscript{o}8, n\textsuperscript{o}11, n\textsuperscript{o}14 and n\textsuperscript{o}15) are 
almost never selected. The selection frequency of the structures is also rather region dependent and strongly 
influenced by topography. 
 
Similar results are obtained for amount. The selected regressive structures gather one principal structure, Str. 
n\textsuperscript{o}3 which only includes $W_{700}$, and some secondary structures (Str. 
n\textsuperscript{o}1, n\textsuperscript{o}6 ,n\textsuperscript{o}8 and n\textsuperscript{o}13 including the 
other predictors). Str. n\textsuperscript{o}9, n\textsuperscript{o}12, n\textsuperscript{o}14 and 
n\textsuperscript{o}15 are almost never selected. 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig08.pdf} 
\caption{Prediction of occurrence probability: selection frequencies (\%) of the 15 regression structures and of 
the backup model AM$_\text{25}$. Predictors involved are indicated in graphs headers and index of the 
regressive structure in top left corners. Gray grids: same as in Fig. \ref{fig:freq_cas}. The selection frequency of 
AM$_\text{25}$ corresponds to the sum of those obtained for cases 1 and 3 in Fig. \ref{fig:freq_cas}.} 
\label{fig:global_selection_occ} 
\end{figure*} 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig09.pdf} 
\caption{Same as Fig. \ref{fig:global_selection_occ} for the probabilistic prediction of precipitation amount. 
The selection frequency of AM$_\text{25}$ corresponds to the sum of those obtained for cases 1 and 2 in Fig. 
\ref{fig:freq_cas}.} 
\label{fig:global_selection_qu} 
\end{figure*} 
 
Note that for the selection of the best regression structure for a given prediction day, all these 15 regressive 
structures have been in turn tested. The results above suggest that this systematic test is not necessary and that it 
could be reasonable to consider only the few structures which are frequently retained or which are retained a 
“reasonable” fraction of the days. However, the selection frequency of a given structure actually varies with the 
seasons and/or the encountered synoptic situation and some secondary regressive structures can be retained 
frequently for specific situations. This is illustrated in Fig. \ref{fig:adapt_temp_404_2321} for a cell located in 
north-western France. The figure presents how the selection frequency of each regression structure differs in 
different seasons and weather patterns \citep[WP, defined in Table \ref{tab:WP_definition}, 
][]{garavaglia_introducing_2010} from the selection frequency obtained for the all-days situation.   
 
For precipitation occurrence (Fig. \ref{fig:adapt_temp_404_2321}a), the selection of the main regressive 
structures (i.e. Str. n\textsuperscript{o}1 and n\textsuperscript{o}7 respectively based on $R_{700}$ and 
$R_{700} + Occ-1$) is up to 15 \% more frequent (resp. less frequent) for WP3 (resp. WP5) compared to the all-



days situation. For precipitation amount (Fig. \ref{fig:adapt_temp_404_2321}b), the selection frequency of the 
main regressive structures (Str. n\textsuperscript{o}1 and n\textsuperscript{o}3 based on $R_{700}$ and 
$W_{700}$ respectively) can similarly change up to +/-10\%. The reduced selection of a main regressive 
structure for a given season or WP can lead to preferentially retain some secondary regressive structure. For 
instance, the regressive Str. n\textsuperscript{o}8 based on $W_{700} + H$ is selected 10 \% more frequently 
for WP2 than for the all-days situation (Fig. \ref{fig:adapt_temp_404_2321}b). 
 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig10.pdf} 
\caption{For each season and weather type, difference (\%) in selection frequency with the all-days case for 
different regression structures. Results for the prediction of (a) occurrence and (b) amount. A positive difference 
indicates that the considered regressive structure is selected more often than for the all-day situation. Results are 
displayed for a grid cell located in the north-west of France. For a clearer illustration, the three or four regressive 
structures that are almost never selected are not displayed.} 
\label{fig:adapt_temp_404_2321} 
\end{figure*} 
 
The preferential (or conversely reduced) selection of some regression structures for given WTs or seasons was 
estimated for all grid cells of France. In most cases, the preferential (or reduced) selection was found to present a 
noticeable spatial coherency. Different configurations are observed as illustrated in Figure 
\ref{fig:adapt_spatiale} and discussed below.  
 
The preferential selection of some regression structures can first be observed over large to very large regions. As 
an example, the preferential selection of Str. n\textsuperscript{o}3 for the prediction of precipitation amount for 
days in WP7 (more than +15 \% compared to usual) is obtained for all grid cells in France. Whatever the 
location, the vertical velocity $W_{700}$ seems thus required in this specific weather pattern. Another example 
is that of WP8 which corresponds to an Anticyclonic situation. Whatever the location, no precipitation is really 
expected for this configuration. No predictor is thus required in addition to geopotential heights used in the 
analog stage. This configuration logically leads to a large preferential selection of the backup AM$_\text{25}$ 
model. 
 
For a given weather pattern, the preferential selection of a regressive structure can also vary from one region to 
the other. For WP2 for instance, the structures based on $W_{700}$ or on $W_{700}$  and $H$ are selected 
much more often along the Atlantic coast and in the north of France. The backup AM$_\text{25}$ model is 
conversely more selected in the South-East, in the Mediterranean coast especially. For this weather regime, the 
South-east is actually protected by the Massif Central mountain and does thus usually not receive precipitation 
\citep[cf. Fig. 3 of ][]{garavaglia_introducing_2010}.  
 
The preferential selection of a regressive structure can be also obtained for rather small and specific regions. In 
Fig. \ref{fig:adapt_spatiale}b, the regressive Str. n\textsuperscript{o}8 based on $W_{700}+H$ is more 
frequently selected for WP7 (around +15 \%) in the Cevennes-Vivarais regions (south-eastern part of the Massif 
Central) and in the pre-alpine mountains (western part of the Alps). The combination of $W_{700}$ and $H$ 
seems thus to be very informative in those configurations for this really rare WP (4 \% of the 20-year period). 
 
Whatever the configuration, the preferential selection of regression structures presents some spatial coherency, at 
small or large regional scales. This obviously also suggests the spatial robustness of the informative predictors to 
be retained for given large scale weather configurations.  
 
 
\begin{figure*}[t] 
\includegraphics[width = 12cm]{fig11.pdf} 
\caption{(a) Mean geopotential height at 1000 hPa for three WPs \citep{garavaglia_introducing_2010}. (b) For 
each WP, difference  (\%) in selection frequency with the all-days case. Results for two regression structures 
($W_{700}$ and $W_{700}+H$) and for AM$_\text{25}$. Predictand is precipitation amount. A positive (resp. 
negative) difference indicates an extra-selection (resp. reduced selection). Gray grids: same as in Fig. 
\ref{fig:freq_cas}.} 
\label{fig:adapt_spatiale} 
\end{figure*} 
 



\conclusions  %% \conclusions[modified heading if necessary] 
\label{sec:conclusion} 
 
The relevance of a hybrid analog/regression model has been explored in this study for the probabilistic 
prediction of precipitation over France. Atmospheric analogs of the prediction day are identified to estimate the 
parameters of a two-part regression model further applied for the prediction. The regression model consists of a 
logistic GLM for the prediction of precipitation occurrence and a logarithmic GLM for the prediction of 
precipitation amount. The prediction obtained with this two-stage approach updates the predictive distribution 
that would have been achieved directly from a one stage analog model based on atmospheric circulation analogs. 
The hybrid approach makes the downscaling model adaptive: as the analog days are identified for each 
prediction day, the predictors and regression coefficients of the regression models can vary from one day to the 
other.  
 
The regression stage allows a non-negligible prediction skill gain compared to the reference analog model (gain 
up to 0.1 skill score points for both the BSS and the CRPSS). The CRPSS gain is mainly achieved due to the 
regression model estimated for the precipitation amount. The introduction of local scale predictors such as 
relative humidity is obviously crucial there. The adaptive nature of the model and thus the possibility to tailor the 
downscaling relationship (both predictors and regression coefficients) to the current prediction day seems to be 
decisive as well. The CRPSS gain obtained with the two-stage approach is actually two times larger than the one 
obtained by \citet{chardon_spatial_2014} with a two level analog model where a unique and same second level 
analogy variable (namely humidity) is considered for all days.  
 
The prediction skill and adaptability of this hybrid approach was illustrated for the prediction of both the 
precipitation occurrence and amount in a simplified configuration where four predictors, selected in a 
preliminary analysis from a large ensemble of potential predictors, are used in the regression stage. The 
predictors used for precipitation occurrence are the relative humidity and vertical velocity at 700 hPa, the helicity 
integrated from 1000 hPa to 500 hPa and the occurrence of the previous day. A similar set of predictors is used 
for the precipitation amount (the occurrence of the previous day is replaced by the 700 hPa temperature). Most of 
the time, the final regression model only includes one or two predictors. It also very often includes the relative 
humidity $R_{700}$ for precipitation occurrence and the vertical velocity $W_{700}$ for precipitation amount. 
Some combinations of predictors, almost never used in general, appear to be more frequently retained for some 
specific weather patterns and/or locations in France, revealing their potential interest for these situations. 
 
For the sake of simplicity and to limit the degrees of freedom in our analysis, we considered a unique set of four 
potential predictors for all SAFRAN grid cells. This obviously leads to a sub-optimal prediction configuration. 
The main meteorological processes driving precipitation in France obviously differ from one region to the other. 
The most informative predictors are thus expected to be region-dependent and the set of predictors to be 
considered in the regression stage could be refined on a regional basis. This is expected to improve the skill of 
the prediction. The same would apply for an application of SCAMP to other regions worldwide.  
 
A number of atmospheric variables have been considered as potential predictors in similar downscaling studies. 
The predictors found to be of interest are most often few. They are roughly the same than those considered in the 
preliminary analysis of the present work. However, as in the present work, the analyses usually carried out to 
identify these informative predictors are potentially misleading. The selection of a variable is indeed often based 
on its predictive power, estimated with some prediction skill score in an all-days evaluation framework. As 
highlighted in the present work however, some predictors are likely to be informative for very few 
meteorological situations. An all-days evaluation is expected to reveal robust predictors. It however very likely 
misses important situation-specific predictors. The hybrid approach here estimates the statistical downscaling 
link from a homogeneous set of days, with respect to their large-scale atmospheric circulation configuration. 
Those days are moreover atmospheric analogs to the prediction day. This two-stage approach has thus the 
potential to reveal the predictive power of very specific predictors, suited for very specific meteorological 
configurations. It leaves very likely room for significant improvements of the prediction skill for such unusual 
configurations. It gives likely also the opportunity to better understand the atmospheric factors under play in a 
number of non-frequent and atypical meteorological situations. Notwithstanding the technical limitations that 
may hamper such analyses, a broader exploration of a much larger diversity of predictors, possibly non-
conventional ones, would be thus definitively worth in this context.  
 
Both the predictors and the regression coefficients were shown in our work to depend on the analog days 
identified in the analog stage. This is the reason of the adaptability of the downscaling discussed above. Besides 
the adaptability, we ideally expect that for a given prediction day the predictor selection and the associated 



regression coefficients are robust. Further analyses should explore this issue. An interesting work would be for 
instance to check that the predictors and their related coefficients do not significantly change when the set of 
analog days considered for the estimation is modified as a result of a different setup of the Analog Model (e.g. 
when one changes the archive period or the archive length).  
 
Results of our work depend on a number of choices and assumptions. They for instance likely depend on the 
database used for the large scale atmospheric predictors. The day-to-day behavior of such an analog/regression 
approach (and the skill of the prediction) likely depends on the database and especially on the quality of the 
predictors. An atmospheric reanalysis with a higher spatial resolution would for instance likely allow for a better 
description of the shapes of geopotential fields and for a more relevant simulation of regional / local 
thermodynamic processes. It would likely lead in turn to have higher quality variables for some atmospheric 
parameters such as air instability. This may allow for a better identification of the daily specificity in the 
downscaling relationship and of the most informative predictors to be used each day. The reverse may occur 
when using lower quality predictors, for instance lower quality data from reanalyses available for the 20th 
century or lower quality data from climate or numerical weather forecasting models. The quality of the 
predictors is thus obviously also an important issue to be further considered. It may lead to reveal different 
informative predictors depending on the intended use of the model (forecast, simulation or climate impact 
studies).  
 
SCAMP was here used for the prediction of small scale precipitation at individual grid cells. The prediction of 
precipitation fields, obviously required for a number of impact studies, is also a challenging issue 
\citep[e.g.][]{Clark_ShaakeShuffle_2004, Yang_SpaceTimeGLM_2005}. Different adaptations of SCAMP 
would be worth investigating in this context. SCAMP could be for instance applied for the prediction of mean 
areal precipitation over the whole targeted spatial domain and some spatial disaggregation process could be 
further used to generate the required fields \citep[e.g.][]{mezghani_combined_2009, 
Rupp_multiplicative_2012}. As highlighted by \citet{chardon_aggregation_2016}, the prediction skill of 
SCAMP is expected to increase with the size of the spatial domain targeted for the prediction, which makes such 
an approach rather appealing. Another possible strategy for spatial predictions would be to rely on the 
advantages introduced by the analog stage of SCAMP. \citet{ chardon_spatial_2014} indeed showed that for a 
given prediction day a same set of analog days can be used over rather large domains (up to a few 100’s of 
kilometers) for a quasi-optimal prediction of local scale precipitation. The precipitation field of each analog day 
(which is thus spatially coherent because already observed) could thus be used as a first guess precipitation field 
scenario for the considered region. The field could be next updated at each location with day- and location 
specific coefficients obtained from the regression stage of SCAMP. This spatial prediction issue will be 
considered in future works.  
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%\appendixtitle{Acronyms} 
%--------------------------------------------------------------------------------------------------------------- 
\begin{table*}[t] 
 \begin{tabular}{rl} 
 AM & Analog Model\\ 
 AM$_\text{25}$ & Analog Model (based on the 25 nearest atmospheric analogs) used as benchmark or 
backup prediction model. \\ 



 BS & Brier Score\\ 
 BSS & Brier Skill Score\\ 
 cdf & cumulative distribution function\\ 
 CRPS & Continuous Ranked Probability Score \\ 
 CRPSS & Continuous Ranked Probability Skill Score \\ 
 EPS & Ensemble Prediction System\\ 
 GCM & General Circulation Model\\ 
 GLM & Generalized Linear Model\\ 
 SAFRAN & 8x8km precipitation reanalysis for France from MeteoFrance\\ 
 SCAMP & two-stage analog / regression model\\ 
 SDM & Statistical Downscaling Model \\ 
 TWS & Teweless-Wobus Score\\ 
 WP & Weather Pattern \\ 
 \end{tabular} 
 \label{tab:Acronyms} 
\end{table*} 
\end{appendix} 
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\begin{table*}[t] 
 \caption{Large-scale potential variables considered in the work. Stars: predictors obtained from the best 
GLMs identified for the 12 test SAFRAN grid cells (section \ref{sec:data_model_evaluation}). Double stars: 
predictors used for the analog stage. Bold text: predictors retained for the SCAMP version presented and 
evaluated in this work. See \cite{Holton_introduction_2012} for the definition of the variables.} 
 \begin{tabular}{rl} 
  \tophline 
  Acronym & Predictor description\\ 
  \middlehline 
  $R_{850}$ & *Relative humidity at 850 hPa \\ 
  $R_{700}$ & *\textbf{Relative humidity at 700 hPa} \\ 
  $R_{500}$ & Relative humidity at 500 hPa \\ 
  $TCW$ & Total Column Water\\ 
  $R_{850}TCW$ & *Product of $R_{850}$ and $TCW$ \\ 
  $T_{700}$ & *\textbf{Air temperature at 700 hPa} \\ 
  $B_{700}$ & *Baroclinity at 700 hPa \\ 
  $\Delta_z$ & 700hPa - 1000hPa thickness of the air column\\ 
  $Z_{1000}$ & **\textbf{Geopotential height at 1000 hPa} \\ 
  $Z_{700}$ & Geopotential height at 700 hPa \\ 
  $Z_{500}$ & **\textbf{Geopotential height at 500 hPa} \\ 
  $F_{700}$ & Wind speed at 700 hPa \\ 
  $U_{700}$ & West component of wind speed at 700 hPa \\ 
  $V_{700}$ & South component of wind speed at 700 hPa \\ 
  $W_{700}$ & *\textbf{Vertical velocity (vertical component of wind speed) at 700 hPa} \\ 
  $H$ & *\textbf{Helicity of horizontal wind integrated from 1000 to 500 hPa} \\ 
  $PV_{400}$ & *Potential vorticity of the atmosphere at 400 hPa \\ 
  $\Delta \theta$ & *Potential temperature gradient between 925 and 700 hPa \\ 
  $FR_{700}$ & *Humidity flux at 700 hPa \\ 
  $FU_{700}$ & West component of humidity flux at 700 hPa \\ 
  $FV_{700}$ & South component of humidity flux at 700 hPa \\ 
  $\nabla FR_{700}$ & *Divergence of $FR_{700}$ \\   
  $Occ-1$ & *\textbf{Precipitation occurrence of the day before the prediction day}\\ 



  \bottomhline 
 \end{tabular} 
 \belowtable{} % Table Footnotes 
 \label{tab:initial_predictors} 
\end{table*} 
 
 
\clearpage 
\begin{table*}[t] 
 \caption{Possible regressive structures (i.e. combination of predictors) for the modeling of precipitation 
occurrence and amount.} 
 \begin{tabular}{cll} 
  \tophline 
  Structure index & Precipitation occurrence & Precipitation amount \\ 
  \middlehline 
  Str. n\textsuperscript{o}1 & $R_{700}$ & $R_{700}$ \\ 
  Str. n\textsuperscript{o}2 & $H$ & $H$\\ 
  Str. n\textsuperscript{o}3 & $W_{700}$ & $W_{700}$\\ 
  Str. n\textsuperscript{o}4 & \textit{Occ-1} & $T_{700}$ \\ 
  Str. n\textsuperscript{o}5 & $R_{700} + H$ & $R_{700} + H$ \\ 
  Str. n\textsuperscript{o}6 & $R_{700} + W_{700}$ & $R_{700} + W_{700}$\\ 
  Str. n\textsuperscript{o}7 & $R_{700} + $\textit{Occ-1} & $R_{700} + T_{700}$\\ 
  Str. n\textsuperscript{o}8 & $H + W_{700}$ & $H + W_{700}$\\ 
  Str. n\textsuperscript{o}9 & $H + $\textit{Occ-1} & $H + T_{700}$\\ 
  Str. n\textsuperscript{o}10 & $W_{700} + $\textit{Occ-1} & $W_{700} + T_{700}$ \\ 
  Str. n\textsuperscript{o}11 & $R_{700} + H + W_{700}$ & $R_{700} + H + W_{700}$\\ 
  Str. n\textsuperscript{o}12 & $R_{700} + H + $\textit{Occ-1} & $R_{700} + H + T_{700}$ 
\\ 
  Str. n\textsuperscript{o}13 & $R_{700} + W_{700} + $\textit{Occ-1} & $R_{700} + 
W_{700} + T_{700}$\\ 
  Str. n\textsuperscript{o}14 & $H + W_{700} + $\textit{Occ-1} & $H + W_{700} + 
T_{700}$\\ 
  Str. n\textsuperscript{o}15 & $R_{700} + H + W_{700} + $\textit{Occ-1} & $R_{700} + H + 
W_{700} + T_{700}$\\ 
  \bottomhline 
 \end{tabular} 
 \belowtable{} % Table Footnotes 
 \label{tab:regressiv_structure} 
\end{table*} 
 
\clearpage 
\begin{table*}[t] 
 \caption{Names of the weather patterns (WP) defined in \citet{garavaglia_introducing_2010} and 
related frequency for the 01 August 1982-08-01 to 2001-07-31 period.} 
 \begin{tabular}{ccc} 
  \tophline 
  Index & Denomination & Annual frequency (\%)\\ 
  \middlehline 
  WP1 & Atlantic Wave & 8\\ 
  WP2 & Steady Oceanic & 22 \\ 
  WP3 & Southwest Circulation & 8 \\ 
  WP4 & South Circulation & 17 \\ 
  WP5 & Northeast Circulation & 6 \\ 
  WP6 & East Return & 6 \\ 
  WP7 & Central Depression & 4 \\ 
  WP8 & Anticyclonic & 29\\ 
  \bottomhline 
 \end{tabular} 
 \belowtable{} % Table Footnotes 
 \label{tab:WP_definition} 



\end{table*} 
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