Revised Manuscript version of: An adaptive two-stag e analog/regression model for
probabilistic prediction of local precipitation in France

By Jérémy Chardon, B.Hingray and A.C. Favre

Dear Editor,

We are pleased to send you the revised version of our manuscript. We made significant modifications
to our initial work to account for comments and suggestions from both reviewers. They allowed
strengthening the analysis we presented in the former manuscript version. They also allowed
improving the pedagogical content of the paper.

As mentioned to both reviewers, the analog/regression approach we present here could be used for
either forecasting, reconstruction or simulation in a future climate. We did not select any given
application context for the present paper. Depending on the definitive intended use of SCAMP, some
specific issues would obviously apply, calling for specific focused analyses and developments. These
context specific issues are not considered here. Our main objectives are indeed to present the
principles of the two-stage analog/regression approach for the context of small scale precipitation
prediction, to assess its predictive power for both precipitation occurrence probability and amount, and
to give some insight on its adaptive behavior and thus on the temporal variability of the downscaling
link.

The main modifications of the manuscript are the following:

* We made the introduction more focused. We added a number of relevant references to recent
works on statistical downscaling models. We have clarified the objective of our work (and
especially the intended use of SCAMP), and the novelty of the approach.

* We fully rewrote some sections / paragraphs. For instance, the issue of the predictor selection
is now considered in the “data” section only. A concise outline of SCAMP is given in the first
part of section 3. The analog stage is described before the regression stage and the
description of the backup model follows. The process for the selection of atmospheric analogs,
the way the GLM parameters are estimated is clarified. The “discussion” is more focused on
the adaptability / variability of the large-to-small scale downscaling relationship.

 We provide in a “Supplementary Material” a new figure (map over France of the probability of
dry days) which allows explaining part of the results described in the manuscript.

« In the conclusion we mention additional issues and perspectives to be considered in future
works (possible dependence of the results to the dataset used for the analysis and especially
to the quality of the predictors, robustness of the adaptive downscaling link, possible
extensions of the model for the prediction of precipitation fields).

* We finally made extensive editorial changes and reformulated some sentences that were
sometimes clumsy and/or not clear.

* Note that we did not make any changes to figure 2 and figure 10 as suggested by the
reviewers as the readability was not improved.

In addition to the new version of the manuscript, the revised manuscript using track changes has been
attached. Changes are only highlighted for the major changes listed above, not for editorial changes.
With all these elements, we really hope that you will be convinced by the value of our work and that it
will be considered suitable for publication in a forthcoming issue of your journal.

Best regards,
B.Hingray



Final response to Anonymous Referee #1

We thank the referee for this thorough review andtie numerous constructive suggestions that
we will consider for incorporation in the modifi@sanuscript.

We made significant modifications to our initial lwdo account for comments and suggestions
from both reviewers. They allowed strengthening #malysis we presented in the former
manuscript version. They also allowed improving thexlagogical content of the paper. A
summary of those changes are given in the cover let the editor.

The detailed response to the comments of Referemdtithe changes made accordingly to the
manuscript are given below.

In addition to the new version of the manuscripg tevised manuscript using track changes has
been attached. Changes are only highlighted fomtlagor changes listed above, not for editorial

changes.

1 Topic and general comments

1.1 Topic The paper presents a hew two-stage hybrid perfect prognosis SDM called SCAMP. SCAMP
was applied to a large number of grid points in France and was proven to be adaptive to different
weather types and seasons which is illustrated nicely with visually appealing figures. The method
seems very interesting given the issues encountered with some other very popular downscaling- or
bias correction methods (e.g. lack of variance for pure transfer functions or physical inconsistency that
easily occurs with quantile mapping and related techniques). There are a couple of issues though that
| think should be addressed before publication. Some of them might be just a matter of clarification,
but some might be more fundamental depending on the intended use of the method. These issues are
outlined in the following.

1.2 What is the intended use of the method? In the introduction you mention regional climate studies
of present, past and future climate as well as numerical weather prediction (NWP) but without being
very clear for which of these cases SCAMP is actually made for. Given that you downscale from 1.125
degree resolution to a 8km grid | suppose that SCAMP is not designed to do NWP, given that the
ECMWF global deterministic model runs at 9km resolution and most national weather services in
Europe operationally run limited area models at 1- 2km resolution and limited area ensembles at 2-
10km resolution. If however that is the intended use, please explain in which context and for which
users you think it could be useful. What made me doubting that SCAMP is intended for regional
climate studies, is the use of the word “prediction” throughout the paper. If the intended use are
regional climate studies, | would recommend to either use “simulation” rather than “prediction” or to
precisely define what “prediction” means in this context. The same applies to section 3.4.

A widely used argument for the development ofssiedl downscaling models (SDMs) is that
they allow producing local scale weather scenaridg& obviously agree that high resolution
ensembles are operationally available from mostomat weather services. SCAMP would not be
of any interest in respect to this point.

As mentioned in the manuscript, another importagtimment for the development/use of SDMs is
that the outputs of GCM and/or NWP models are gahyet) biased and, from a statistical point
of view, 2) not reliable (the ensembles are oftedemndispersive — see for instance Leutbecher
and Palmer, 2008). In a number of cases howevegraanstudies require unbiased and reliable
meteorological scenarios. This is for instance &ical requirement for hydrological impact
studies as a result of the strong linearities ire thydrological response of river basins to
meteorological forcings.



In the present work, we did not select a given exintor the application of SCAMP. SCAMP
could be used for either forecasting, reconstructio simulation. We will precise this in the new
manuscript version. Some specific requirements dvapply for each context. For instance, the
temporal transferability of the model in a modifielimate context would be required for the
development of climate projections. The qualitylasfe scale predictors would have to be
checked for reconstructions over the XXth centurjoo climate prediction (as often reported,
thermodynamic predictors are of lower quality tldmamic ones — see questions + responses #5
and #6 below).

We have precised what the word “prediction” meamshis context.

We find this word more suited than “simulation” laese this latter suggests that times series of
precipitation are produced. This is here not theedalthough some postprocessing generation
process could be used for this but this is ouhefdcope of the present work) as we issue for each

day the statistical distribution of precipitatiomaunt (thus a probabilistic prediction).

Leutbecher, M, and T N. Palmer (2008). Ensembtecasting. Journal of Computational

physics, 227:3515-3539.

1.3 Manuscript organization and conciseness

1. The introduction is to my mind rather long and could be written more concisely. In addition it should
contain some more precise statement on the intended use of SCAMP (see section 1.2).

We have adapted the introduction as suggested lanflyche intended use of SCAMP.

2. | don’t understand why the description of the analog stage (stage 1, section 3.2 and 3.3) comes
after the description of the GLM stage (stage 2, section 3.1). In my view this should be reversed. The
first part of section 3 (page 5) should contain a concise outline of SCAMP. There is a start at page 5
line 10-12 that should be completed with one or two sentences on the backup model.

We thank the referee for these suggestions. Weduswpleted the outline of SCAMP and we will

describe the analog stage before the GLM one agesigd.

3. The last paragraph of section 3.2 could go in a tightened section 3.3 as well (The AM as benchmark
and backup model). Its last two sentences are already a very concise summary of section 3.3.

The Analog Model can be indeed presented as a bearéhand backup model.

We have merged the last paragraph of section 3I2 seiction 3.3 as suggested.

4. | wonder about sections 2 and 4.1 as well: | found it somewhat difficult to figure out which potential
predictors were actually used during the first read. There are a few things said in section 2, during
section 3 things are quite vague (concerning predictors) and only in section 4.1 things became more
clear. If you consider 4.1 to be a central result of the study the information in this subsection should be
split into a “methods part” right after or included in section 2 and a “results part” remaining in section 4.
If this is not the case I'd suggest to entirely include section 4.1 after or into section 2, but rewritten
(together with section 2 from the fourth paragraph on, page 4 line 17 et seq.) in a much more concise
manner. For example saying first what you used in the end and then concisely explain why. | think this
would allow to be more specific and to use more precise wording in section 3. With a more clear
structure lengthy transitions, such as the page 5 last sentence or page 11 lines 4-6, might not be
necessary any more.

We thank the referee for these different suggestiAs suggested we have included section 4.1
into section 2 and modified the text and transgi@onsequently. This makes indeed the paper
more clear.



1.4 Language issues. Please check your paper thoroughly for language/grammar issues during the
revision, especially

1. tenses ¢ stick to simple past for things you did avoid future tense for things you finally did, otherwise
it induces unnecessary doubt. 2. reduce the use of modal verbs (may, could etc.) where possible in
order to be more precise and quantitative.

3. prepositions

4. word order in the context of adjectives and adverbs

5. remove superfluous adverbs for more clarity

6. add missing definite articles

7. mind French to English translation pitfalls

See the technical correction section for examples.

We have carefully checked for these different mslieank you for these recommendations.

2 Specific comments

1. Is SCAMP an abbreviation for something? (I'm just curious)

In a previous work (Raynaud et al. (2016), we fivstked on a multivariate Analog version, for
multivariate prediction (precipitation, temperatusnd radiation). SCAMP is the abbreviation
defined in this previous work and stands for Seti@eQonstructive atmospheric Analogs for
Multivariate weather Prediction. We kept this abbagion for the present work even if we are in
a monovariate configuration. This has been cladifie

Raynaud, D., Hingray, B., Zin, I., Anquetin, S.bbane, S., Vautard, R. 2016. Atmospheric
analogs for physically consistent scenarii of sogfaveather in Europe and Maghreb. Int. J.
Climatology. doi :10.1002/joc.4844.

2. In the introduction (first paragraph) SDM and post-processing are used synonymously. Are they?
And if yes, in which context?
SDM and post-processing are sometimes rather synouny for instance when SDM are used to
produce local weather scenarios from GCM outputidgieir ability to do some bias correction
is an important feature here as mentioned previgusVe agree that this is not always the case.

Other applications of SDM are possible as thosetimeed in the second paragraph of the
introduction (weather generation, climate changeiladition...).

We have removed this paragraph. There no more lplessbnfusion.

3. some references seem slightly out of context. For example:

Those reference issues have been fixed.

4. Page 3 line 24-26: The last sentence of the paragraph is unclear. Please rewrite.

Our point is that the type of model used in thelwadribarra-Berastegi et al. (2011) is not really
optimal. A linear regression model is indeed noitesl to the non-gaussian nature of
precipitation amounts. The approach of Ibarra-Beeas et al. (2011) would thus benefit from
using a model suited to precipitation. We haverratdated the sentence.

5. Do you think that the selected predictors may depend on the data set used, or its resolution? Please
comment.



Different studies have shown that the predictorpetel on the predictand. For precipitation,
predictors can differ from one location to the atke.g. Cavazos and Hewitson, 2005; Timbal et
al., 2009; Chardon et al., 2014). They are alsometessary the same for precipitation, radiation
or other surface weather variables (e.g. Raynau@le2016). We could also expect that the
predictors depend on the dataset used, for the spimric reanalyses especially. To our
knowledge this analysis has not been carried out§eme dependence to the resolution is also
probably to expect. A higher resolution would défrely allow for a better description of the
shapes of geopotential fields. It would also alldar a more relevant simulation of
thermodynamic processes. It would likely lead im tio have higher quality variables for some
guantity such as air instability (as mentionedhee following question). The quality of simulation
does however not only depend on the resolutioearialyses but also on the quality of the model
and of the observed data available for assimilatidfe could thus expect that data with higher
resolution do not necessary always lead to betteity predictions.

These issues are obviously very interesting anddameiworth specific analyses in the future.
A comment has been introduced in the perspectiviee anodified manuscript.
6. Page 4 line 20: How meaningful are quantities describing instability at 1.125 degrees resolution?
and related, if the aim is to do downscaling of climate model outputs or reconstructions how well are

the instability and humidity variables simulated by these models, and could the quality of this
simulations be an issue for SCAMP? Please comment.

We agree that atmospheric variables describingainidity do not give a very good picture of
instability when available atmospheric variableseaat 1.125° resolution. To our opinion
however, they can have some predictive power ggaxy” of the instability.

The quality of such predictors in climate modelpot$ or reconstruction is obviously an issue.
When applied in a reconstruction context for theolehXXth century, we indeed found that the
added value of such predictors was much smallem thhen applied with the recent reanalyses
available for the last decades. A comment has bdderd in the discussion on this issue.

7. Page 4 line 20: Be more specific on the predictors used. For example by referring to table 1 here.

Thank you for the suggestion. We have precisetb#t@s suggested.

8. Figure 1: The caption text is unclear. What is highlighted in black? Is there a reason to use
“quantity” and not “amount”? (Same for figures 2 and 9, page 11 line 32, page 13 lines 3, 21,25 and
26, page 15 line 2, page 22 line 6)

We now use “amount” for the whole manuscript.

In figure 1, we use equation 1 to decompog@(yj into two parts. We highlight in black the
contribution of the empirical cdf of the non-zermegipitation amount to the overall cdf. As
expressed in equation 1, this last pdf is “weightdy the probability of occurrence of
probability. We have reformulated the caption @fufe 1 to make it clearer.

9. Page 5: I'd suggest to add “SCAMP” to the section title of section 3.

This has been done.

10. Page 7 line 6: What does “+12h and +24h UTC" refer to? are this lead times? but then UTC is
strange, because time differences don’t have a time zone. Or does it refer to the time of the day? But if
so, for which hour is the simulation?

The text has been clarified according to your ssgjga.
11. Section 3.2: What is the archive length used for the analog model?

The archive length is 1982-2001 is now clarified



12. Section 3.2: Which period was used for the optimization of the predictor domains? Is it the same
as for the simulation in this work? What are the implications?

The period used for the optimization of the premtictomains is 1982-2001. The period is thus
the same as the period of the predictions. Theigtied skill of SCAMP presented in our
manuscript may therefore be slightly overestimated.

To assess the influence of the optimization penwel,could have followed a leave-one-out
approach, where for instance, the best analogy doemwauld have been identified from all years
except that of the current prediction day. This ldobave required much larger computing
resource than those already used for the work prieskin the manuscript. The process used for
the optimization of the analogy domain is indeeithe@a long (as mentioned in the manuscript, it
is first iterative where different spatial domaiak increasing size and considered in turn. The
identification of the best analogs days for a giag@logy domain is also rather time consuming
as a result of the similarity criterion used to quare days). It had also to be applied successively
for the 8,981 grid cells of France. This optimipatiplus the re-estimation for each prediction
day of the different regression models consideredhe regression stage of SCAMP already
required the use of the Grenoble University Highrf®enance Computing centre CIMENT
(https://ciment.ujf-grenoble.fr/wiki-pub/index.php/ A leave-one-out approach would have
required too many computing resource and was tloispplied here.

We agree that the optimal domain may depend orpén®d used for the optimization of the
method. We however expect that the domains wouldather similar when obtained from
different periods and that their influence on thaimmresults we present in our work would be
limited. In a recent work carried out with an Angl&odel similar to AM25, we have actually
shown that slightly different domains may leaddeniify — for a given prediction day, rather
different sets of analog dates. We have howeversilewn that this does not lead to a significant
difference in the prediction skill (Chardon et &Q14). For the context of the present manuscript,
an interesting work would be to explore if analdgsm different but similar analogy domains
would influence the choice of the predictors in thgression stage and/or also if the coefficients
of the regression would change. This could contglia assess the robustness of the approach.

This perspective work is now mentioned in the dision.

13. Section 3.3 first line: Please specify briefly what the significance conditions are.

We used the 5% significance level for each predidtois information has been added in the new
version of the paper.

14. Section 3.1: are there discrete values drawn from the Gamma distribution for the final prediction?
And if so, how?

We aim to model the distribution of precipitatiom@unt, its day dependency, and to further use
this distribution as probabilistic prediction. F@ny given prediction day, we do thus not draw
some realization from the distribution.

15. Page 9: | think it is a good thing to look at the skill with respect to climatology as you do, especially
for comparison with other studies or methods, but you could have used the AM2s benchmark as P_as
well, right? Would that be equivalent to your _BSS or _CRPSS? If not, what is the difference and
which one should be preferred under which circumstances?

Yes, we could have chosen the AM25 model as reterfen the evaluation of the combined
model. We have preferred to use the climatologiefarence as this allows for normalized scores
which can be compared, as mentioned by the refaridethose obtained in other studies.

We compared the combined approach and the AM25 Imotlegains in skill scores estimated
for both approach with respect to the climatolo§uch gains, given in terms of BSS or CRPSS
percentage points, are also widely used to comgdferent prediction models. They thus present
the advantage to be rather easy to interpret.



16. In section 4.1 you describe several steps of restrictions applied in terms of the candidate predictors
for the sake of robustness and clarity of the article. | appreciate these goals, but at present the
description is a bit confusing and it remains unclear which of these restrictions are a feature of SCAMP
and would be kept for a general application of SCAMP and which ones aren’t and what would be the
potential impact on robustness and skill.

The issue of predictor restrictions is an intenegtpoint which was not easy to tackle. The main
goal of those restrictions was indeed to improwe ¢larity of the article. The manuscript does
thus not present a definitive configuration of SGAMit more a proof of concept for an adaptive
model which could use a much larger set of potéptiedictors, when relevant.

The impact of fewer restrictions on the robustr@dhie method is potentially an important issue
and would be worth a detailed analysis. This is soggested as a perspective of the work.

17. Page 13 line 8: The phrase is very unclear. Please rewrite.
The phrase has been modified
18. Page 13 second paragraph: What exactly causes the GLM to “fail” in the southeast for the

occurrence? Are there not enough wet analogues to estimate the occurrence probability or does it fail
the significance test for the parameters? please comment.

We agree that the text of the second paragraph @Bps somehow confusing. As mentioned in
the paragraph, the GLM which models the occurresmes actually almost never fail, even in the
southeast. From the sum of the frequencies obtdimethe two cases “case 2" and “case 4" of
Figure 5, we can see that, whatever the regionGh#& which models the occurrence is indeed
activated most of the time (more than 97% of thgesd@&emember that case 2 corresponds to
(Success of GLM modeling the occurrence + FailofreGLM modeling the quantity); case 4
corresponds to (Success of GLM modeling the ocnoeret Success of GLM modeling the
guantity). Consequently, and whatever the regiba, dituation where AM25 is used as backup
for the prediction of the occurrence probability very rare (see the sum of the frequencies
obtained for case 1 and case 3).

Nevertheless, Figure 5 indeed highlights a venc#igebehavior in the southeast when compared
to the remaining of France. Case 2 is activated Immore often in this region (increase of 30%
percentage point) than elsewhere and, in a synienetty, Case 4 is activated much less often
than elsewhere (decrease of 30% percentage points

The reason underlying this result is to be relatedhe much higher proportion of dry days in
southeast as illustrated in figure R1la below. Fonwmber of predictions days, the number of
analog days that are wet is indeed to be smalh@ndoutheast. This is obviously not a difficulty
for the estimation of the GLM modeling the occuceenThis is conversely likely one for the
estimation of the GLM modeling the quantity. Foysldor which the number of wet analogs is
small, the size of the dataset available to fit leM modeling the quantity can be too small to
allow for a fit with significant parameters. Thisry likely explains the spatial disparities in both
graphs “Case 2” and “Case 4” of Figure 5.

In our work, a GLM (GLM modeling the occurrence@tM modeling the quantity) was said to
fail for a given prediction day when the significantest failed for the parameters. The link of
these failures with the number of wet/dry analogsdia not as direct as we could have presented
it in the text. It is however strongly suggestamhfrFigure R1a and from what is described in the
different graphs of Figure 6.

The whole section has been rewritten for clarification. The figure of Pdry is now given in a
supplementary material
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Figure R1la : Probability of a dry days over the 29801 period (percentage of days which are
dry).

19. Page 15 line 2-3: The predictor set optimized for the whole of France? | thought they were
optimized for each grid cell and time step. Is this only for this experiment or in general? This is
confusing and will hopefully get more clear with a restructured version of sections 2 and 4.1.
We agree that the text is somehow confusing. Ferstke of clarity, a single set of potential
predictors was used for all grid points of Franseé section 4.1). The most interesting set may

be however rather different from one region to oliger. This is a possible reason for which we
obtain no gain in southern France when we activh&equantity model.

This has been clarified with the restructured vemsdf the manuscript.

20. Page 16 line 20: Please quantify which proportion of days you would consider as “reasonable”.

We had actually not in mind to suggest a “reasoraljproportion of days, which could be used
to retain a reduced number of regression sets. {derisng a reduced number of regression sets
would obviously allow for reducing the computatibname required for the model
identification/evaluation.

As mentioned in the next sentence of the manusthiptmay however limits the possibility to
achieve a better prediction for some (rare) evemwitich would activate very unusal predictors.
This is what is highlighted with some of the graphthe discussion section.

This has been clarified in the revised manuscrgssion.
21. Looking at figure 9, | wonder if the high frequency of the AM25 model in the south-east might be

related to the Gamma distribution being a suboptimal approximation of the precipitation amount
distribution in this region. Did you test this?

Thank you very much for this input.

To our opinion, the main reason is very likely timeich larger number of dry days in the
Southeastern region, as already discussed in osparse to comment 18 and figure Rla.
(consider that the sum of frequency for case 1 aimfigure 5) exactly corresponds to what is
shown in figure 9 for the selection frequency aledifor the backup model (structure 16)).

This now mentioned in the manuscript.



Of course, the choice of a same distribution mddekhe whole country is also an issue. The
distribution of non-zero precipitation amounts mgleed rather different in the southeast region
than that of the other regions of France. The nmraison is the existence of much more frequent
and intense heavy precipitations in southeasteranEe (this is the reason why a lot of works
have focused in the last decades on precipitativinemes in southeastern France). This is
suggested with the much higher Coefficient of \enaof daily precipitation in this region (cf.
figure R1b below).
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Figure R1b. Variation coefficient of daily precigiion

The gamma distribution is obviously flexible andely used in the hydro-meteorology literature
to model strictly positive precipitation. It may bewever not optimal in this specific context and
a distribution with a heavy tail would be probabtyore appropriate (e.g. the extended GPD
distribution introduced by Naveau et al., 2016)isTimay improve the prediction but this may
also lead to estimation difficulties as a more ctarmistribution would require more data for a

robust fit. Here, the number of data is voluntarilynited to the number of analog dates
considered for the fit. A more flexible model (witre parameters) would require considering
more analog dates. This may be detrimental forpttegliction skill as poorer analogs would be

integrated in the set of dates used for the estimaif the regression. Another possibility would
be to fit a more flexible model with the same nuntbeanalog dates than in the present case.
Due to the estimation problems mentioned above wbuld however likely lead to a much more
frequent use of the backup analog prediction modeur case.

22. Why is figure 10 a line chart? There is no order in the WPs, is there? I'd recommend to transform
this in a series of bar charts (one for each WP). This would further avoid all the colors and line types
and thus solve the issue with the invisible (probably yellow) dotted line for R700+H+Occ-1 in a) and
R700+T700+W700 in b).

We agree that a series of bar charts would have Ineere relevant. We tested this representation

but this made the figure less clear. We thus Kepirtitial representation.

23. Depending on the intended use of SCAMP, the temporal structure of the simulated precipitation
might be relevant. | suppose that a detailed analysis of the representation of the annual cycle, the
autocorrelation and the interannual variability in both SCAMP and AMz2s is beyond the scope of the
present paper, especially since this is not straight forward for probabilistic simulations, and you might



have a look at this in future work, but could you make a statement on the overall variance of the
SCAMP simulations as compared to the benchmark and the observations? Typically analog models
reproduce the observed variance quite well while deterministic regression models suffer from reduced
variance. Since SCAMP is a hybrid model it would be interesting to know which characteristics it
“inherits”.

In a context where time series have to be simulaeditional criteria would be actually relevant

to evaluate / compare the different modelling apptees; they should especially include as
mentioned by the referee, the ability to reprodtioe observed variance of precipitation from
daily to interannual time scales.

Those additional evaluation criteria would obviouslepend on the final application of the
model. This has been mentioned in the conclusion.

Deterministic regression models are indeed knownumalerestimate the variance of daily
precipitation. However, scenarios obtained withedetinistic regression models disregard the
variance of the residuals in the regression. Howexegression models can be also used in a
stochastic simulation framework, where a randomialde is drawn from the statistical
distribution associated to the regression. In Mezghand Hingray (2009) for instance, such a
generation process was used, to first identifyh@ prediction day was wet or dry (based on a
random variable compared to the occurrence prohgbdbtained from a first occurrence model)
and to next generate some precipitation amount gbasn a random realization within the
gamma distribution used to model the distributidrpiecipitation amount in case of a wet day).
The observed variance of daily precipitation wad veproduced.

If time series would have to be simulated with SEAR similar stochastic generation process
would be followed for the regression stage. We thosld expect that the variance of observed
daily precipitation would be rather well reproduced in Mezghani and Hingray (2009). The
regression stage is also not expected to increbsevariance that would be obtained for the
benchmark analog (in a configuration where onelaf k-nearest analogs is randomly sorted
each day and used as weather scenario for the ddys is one of the preliminary results we
obtained for a similar work we currently developalestern Switzerland.

24. page 22 lines 16-20: This part is not clear, please rewrite.

We have reformulated this paragraph.

25. page 22 lines 28-32: | don't understand what “classically” means in this part. please use some
more precise wording.

The word “often” is indeed more suited there.

26. page 22 line 35: This sentence is not clear to me. In what sense is the set of days homogeneous?

The days are homogeneous with respect to their elagple atmospheric circulation

configuration. We have clarified this.

27. page 23 line 2: The sentence is not clear to me. Which context? and who leaves room for
improvement?

The context we wanted to refer is that of very ifijpaneteorological configurations that may be
observed from time to time and for which the uspatdictors are sub-optimal. The
analog/regression approach presented here is egpetd allow for the identification of better
suited predictors and thus for an improved prediatiskill for the prediction day under
consideration.

We have modified the paragraph.

28. Is SCAMP transferable to other regions or countries? To what extent? Under which circumstances
would it be necessary/unnecessary to redo the predictor selection? Please comment.



SCAMP is indeed transferable to other regions. Weaddd a comment on this in the discussion.
The development of SCAMP for another context walgously first require the identification of
the best predictor set. In a number of previouslis the most relevant predictors to be used for
statistical downscaling are indeed found to be oegdependent (e.g. Cavazos and Hewitson,
2005; Timbal et al., 2009; Chardon et al., 2014)mifar conclusions have likely to be expected
for SCAMP also. Part of these conclusions may atsult from the occurrence frequency of
weather regimes observed for the different regidiey can actually vary a lot from one region
to the other. In such a case, the best predictdestified for a given region could partly be a
result of the fact that the weather situationsvidnich they are more relevant are more frequently
observed for that region. This issue would be whrthre investigations.

29. It would be helpful to mark or highlight the predictors that were preselected for the occurrence and
amount models respectively in table 1.

Thank you for the suggestion. This has been done

3 Technical corrections

We thank the reviewer for the very careful readofgthe paper and for all the technical
corrections pointed out here.

The text has been corrected accordingly.



Final response to Anonymous Referee #2

We thank the referee for this thorough review andtie numerous constructive suggestions that
we will consider for incorporation in the modifi@sanuscript.

We made significant modifications to our initial lwdo account for comments and suggestions
from both reviewers. They allowed strengthening #malysis we presented in the former
manuscript version. They also allowed improving thexlagogical content of the paper. A
summary of those changes are given in the cover let the editor.

The detailed response to the comments of Referemdtithe changes made accordingly to the
manuscript are given below.

In addition to the new version of the manuscripg tevised manuscript using track changes has
been attached. Changes are only highlighted fomtlagor changes listed above, not for editorial
changes.

## Big Picture

1.

The authors present and explore a methodology to simulate precipitation intensities. Yet, neither
time series and/or spatial fields of simulated precipitation intensities are shown nor compared to
observations (in a probabilistic manner as the title might suggest). While the methodology might
be beautiful, | think this is the biggest missing thing in this paper. | am not a specialist in analog
methods. | did my best to understand what is done here. Ideally my potential failings help to detect
shortcomings in the paper and lead to improvements. Besides the analog part, | tried to help with
general statistical hydrological comments.

The downscaling model first aims to issue probstidipredictions of local precipitation at any
given grid point of the SAFRAN grid. This predinticesults in a probabilistic distribution
function for each prediction day for each grid poi\ times series representation, where
(probabilistic) simulations and observations arengmared, is thus not really convenient. The
evaluation is here done with the CRPSS, which égjuently used for the evaluation of
probabilistic predictions in a framework where wavh to compare one value (the observation)
with a whole distribution.

We also agree that the prediction of precipitatf@ids is an important issue. It was not in the
scope of our work but further work should consithés issue.

A paragraph has been added in the conclusion on this point.

### "Hybrid" Approach

2. The authors want to predict a variable (e.g., precipitation) for a given day (say, for the example of

this review, May 30th 2018) at a given location (within France). Then they look at all 30-Mays in
the past when precipitation amounts were recorded. Where exactly do the authors look? at the
closest measurement station? Is an interpolation performed? What kind of spatial dependence
between observations (and simulated values) is assumed / considered?

In the present work, we want to predict local ppé#eition only. We do not thus need any
assumption on the spatial dependence betweenrsatio

For each prediction target location (each targetdybox), we only use precipitation data that
were estimated within the SAFRAN reanalysis systerthis exact location. Note that the
SAFRAN reanalysis give an estimate of daily préaijpn at each location from the closest
measurement stations and from some informationhenweather type for each day. To date,
these SAFRAN estimates provide the only high résplueanalysis of local precipitation over



France for the 60 past years. We consider thesematts as pseudo-observations. This is now
clarified.

On p22 I1ff you write that "the predictors and regression coefficients of the regression models vary
from one day to the other? — How much do they vary? And how much do they vary in
neighbouring cells? Is there some kind of relationship between the variations in neighbouring
cells? Can you show this?

Thank you for this very interesting point. We alfjualid not estimate these day-to-day
variations. We will change this formulation for &tpredictors and regression coefficients of the
regression models can thus vary from one day toadther”. We have actually an indirect
estimation of the variation in the predictors witle different sampling frequencies obtained for
the different weather types. If not straightforwaedmore formal / direct evaluation would be
probably worth.

We agree that the regional consistency of the pteds is another very interesting issue. An
evaluation of this consistency is indeed expeatdatn on the robustness of the downscaling
relationship. From the results shown in the manipscwe have a partial idea of this with the

rather high spatial coherency of the selection frecy obtained for each regression structure
considered in our work. This is illustrated in Frgg 8, 9 and 11. In Figure 11, this coherency is
also shown to be high (even if with different sdaiatterns) for different weather types.

This spatial coherency is also suggested from adhatyses not shown in the manuscript. Figure
R2a below presents the percentage of time (oveR@hgears used for the analysis) where the
regression structure selected for a given locai®the same than the regression structure used
for a reference location. As illustrated, this pemtage of time with same structures - varies from
35% to more than 50% in the close neighborhoodhef reference location. Some regional
consistency is also found for the regression atefft obtained for the predictors. We find that
the spatial pattern of this consistency dependshenweather situation. This is illustrated in
Figure R2b below for the regression coefficienineated for W in the regression structurédn
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Figure R2a: Percentage of time (over the 20 yeasdufor the analysis) where the regression strgctur
selected for a given location is the same than tis&d for a reference location (the reference liorats
indicated with the blue dot in each figure). Resalte shown for 16 different reference locations.
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Figure R2b: Spatial distribution of the mean regies coefficients obtained for the predictor W ahd
regression structure n°4. Results are presentedtlier different seasons and for the 8 weather types
considered in this work.

4. What if the observed time-series is not stationary? Are there any checks performed? Is stationarity
assumed? How strong of an assumption is it?

No hypothesis of stationarity is assumed in thesgmework. The time series of precipitation can
be non-stationary. In such a case, this non-statiityy would be expected to be reproduced as a
result for instance of a change in frequency of thhelatypes or as a result of a non-stationarity

(i.e. temporal evolution) in some of the prediatariables.



An indirect illustration of this is the ability dfie method to reproduce the interannual variability
of annual precipitation (or of seasonal precipitat). This was illustrated by Lafaysse (2011) for
three different downscaling approaches similartte present one.
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Fig10.1 extracted p122 in Lafaysse(2011). Timeesedf winter (DJF) and summer (JJA) precipitation
obtained with an Analog Prediction model (100 sc&®) for the Upper Durance basin in South-Eastern
France (red = observation, green : median scenabiag : first analog scenario)

The authors claim that values outside the range of observations can be simulated via
"extrapolation" (p2 line 20ff.) — some background / assumptions / limitations of this extrapolation
methodology is required. The previous statement seems contradictory to what is said on p2 lines
29ff..

In this paragraph, we wanted to highlight the issefesimulating non observed values. This
obviously refers to values that are outside thegenf observed values (including rare values):
this is indeed extrapolation. This also refers tbvalues that are in-between two consecutive
observed ones. In our context, precipitation isnested as a function of different predictors. For
a given prediction day, the statistical model gavg@rediction which is a kind of interpolation
from what has been observed in configurations thiat close to the configuration of the
prediction day (in terms of predictors). We haventimmed these two different prediction contexts
in our initial text but we understand that too m@hphasize was given to extrapolation.

As the development of our model is not justifiedhyy extrapolation issue, we have removed it
from the manuscript.

The author's method is able of extrapolation? is there any evidence of the quality of the
extrapolation?

The “extrapolation” issue is not more consideredthe revised manuscript version (see Q5
above).

p2 line 28: | am not sure how a linear model can be "extended" to non-Gaussian data. If this is not
to be a reference to what Maraun et al. (2010) did, but the authors rather claim that their method is
capable of simulating non-Gaussian data, then there is some more extensive explanation
required: What kind of non-Gaussian-ness is observed in the data and how can linear models
mimic this kind of non-Gaussian data? How and where is this non-Gaussianness seen in the data
and how is the model describing it?

We agree that these lines are somehow confusinger@éezed Linear Models (GLM) are

regression models specifically introduced by stiaiens to model non-gaussian data (see Nelder
and Wedderburn, 1972). GLMs are an extension @flirregression models. They represent a
large family of different statistical models whicéin all be described within a same theory. They



were first used by Stern and Coe (1984) for theegsion of precipitation. Another important

application for precipitation was presented by Ctin et Wheater, 2002. The vector
generalized linear models (VGLM, Yee and Wild 198l@sely related to the class of GLMs, are
the most general class of linear regression modeislable. The work of Maraun et al. (2010) is
just one recent application of VGLMs for the cabprecipitation.

We have simplified this section and remove theioretd VLGMSs, which is not necessary here.

Daily precipitation data are indeed non-gaussiamey are positive, have a mass in zero (the
probability of null precipitation is strictly posite and high) and have classically a skewed
distribution for non — zero amounts. To model poitation, two different GLMs are generally
used, one for the probability occurrence of preeifon, another for the distribution of non-zero
precipitation. The occurrence of precipitation lagsically modelled with a GLM using a logistic
link function and a binomial probability distriboth. The distribution of non-zero precipitation is
often modelled with a GLM using a log-link functiand a gamma probability distribution. We
follow this two part modelling approach in our workith these two different GLM
configurations.

Nelder, J.A., Wedderburn, R.W.M., 1972. Generalibegiar models. Journal of the Royal
Statistical Society A 135 (370-384).

Yee, T.W.,Wild, C.J, 1996.: Vector generalizedtaddimodels. J. R. Stat. Soc., B 58, 481-493)

Stern, R.D., Coe, R., 1984. A model-fitting analydi daily rainfall data. Journal of the Royal
Statistical Society Series A — Statistics in Spdd, 1-34.

Chandler, RE; Wheater, HS. 2002.. Analysis of dinvariability using generalized linear
models: A case study from the west of Ireland. eRésources Research 38(10).

8. From the abstract it did not become clear to me, what is meant with an _hybrid_("having two kinds
of components that produce the same or similar results”) approach. The title is worded more
suitably. On the other hand "local" could be confused with "small scale"

We thank the referee for this comment. The hylpmt@ach refers to the fact that two different
methods, often used alone for the prediction, &h@og approach and the regression approach)
are used in our approach as a combination.

As suggested, we now use “two-stage analog/regnesabddel” in the abstract and elsewhere.

We also agree that “small scale” precipitation iore suited in the present context than “local”.

We have changed it in the manuscript.

### Setup and Language

9. At various places within the paper (see comments below) parts of the methodology are explained.
| suggest that the introduction is reworded and a section of the introduction is established that
clearly and concisely explains what is done in one paragraph. This should also include an explicit
statement of the goal and the novelty of the research.

We thank the referee for those suggestions. Werauddied the introduction accordingly.

## Major Comments

### Section 2 Data

10. Here, there is a distinction between "analog stage" and "regression stage" — are these two stages
what is mean when the authors refer to as a _hybrid_ approach? This gets back to my original
question: In the analog stage, are the authors looking for all May30’s in the past or only those



May-30's where the pattern of the geopotential field was similar on the May-29’s? How was this
similarity determined?

As mentioned in Q#8, the “hybrid” approach indeeafears to the two stage analog/regression
approach.

Let consider that the prediction has to be doneMary-30’s, 2018. In the analog stage, we only
consider days that are analogs in term of atmospharculation to the atmospheric circulation
state of this day. As stated in the manuscript,ah&log days are identified within a restricted
pool of candidate days, namely all days of the eeclthat are included in a calendar window of

+ 30 calendar days centered on the prediction dayhe present example, all May 1st to all June
30's from all years of the archive period (1982-2020 years) are considered as candidate
days (this corresponds to 1200 candidates amonghwbnly 100 days will be selected). The
prediction day (May-30’s, 2018) and its 5 precedargl following days are excluded from the
candidates. The similarity is measured via the TesgeeWobus score which compare the shapes
of the geopotential fields.

We have adapted the text to make this analog smhestiep clearer.

11. why 13 predictors? Is this enough? For what goal?

The 13 predictors used for the regression stag@eagamost predictors considered in previous
studies over Europe (e.g. Hanssen-Bauer et al.520@etterhall et al., 2009; Horton et al.,
2012; Raynaud et al., 2016). They include predgtonaracterizing the thermal state of the
atmosphere, its dynamics, the water atmospheresngrits thermo-dynamical instability.

As mentioned in the conclusion, the predictors sitadly used in similar downscaling works
were selected owing to their prediction skill. Thlgll is classically the mean prediction skill
evaluated for all days of a given time period. \WWevs that some predictors could have no or
fairly no prediction skill for most of the days babuld be informative for very specific
location/situations. Further works could thus indeeonsider the interest of using other
predictors, possibly non-conventional ones, as thay reveal, for very specific situations, to be
very informative.

This point is already mentioned/suggested in teeudision but we have clarified it further.

### 3 The hybrid analog/regression model the approach of using a distribution
function with a portion of zeros is clear.

12. what is not so clear, is how the parameters are estimated and why this is treated independently?

As mentioned in the manuscript, (line 26 p6), themeters are estimated using the Iterative Re-
weighted Least Squares algorithm (IRLS, Nelder\Aedlderburn, 1972). The significance of the
regression coefficients is assessed by the Zitesp.(the Student t-test). Because of the mass in
zero, the precipitation distribution is modelledtimo parts: the probability of occurrence and the
distribution of non-zero amounts. The estimatiothefparameters is indeed done independently,
for precipitation occurrence probability first arfdr non-zero precipitation amounts next. This is
the way the estimation is classically done (e.grr5tand Coe, 1984; Chandler and Wheater,
2002). This allows also the selected predictorditier for the two variables to predict.

13. Should the amount of precipitation not be a random variable drawn from the distribution depicted
in Figure 17 It could then be either zero or some precipitation intensity other than zero.

The amount of precipitation is indeed a random afalé with a given distribution which varies
from one day to the other. The objective of ourrapgh is to model this distribution and its day
dependency and to further use it as probabilistedgction. For any given prediction day, we do
thus not draw some realization from the distribntiéf a single scenario would be required for
the prediction day, a random realization could bddéed drawn from the distribution leading to
either zero or some non-zero precipitation intgnsit



14. Why is npi estimated separately from the parameters of the distribution function? (I am assuming
parameters, even though Figure 1 suggests the use of an empirical distribution) Can those
parameters not be estimated jointly? Now, it seems like currently npi is estimated via a GLM,

which seems to be an improved multiple regression with the secondary variables going into x"o
(Eq.2).

The probability of occurrence pi is indeed estindatgith a GLM where the x'o are the
explanatory variables. In eq. 2, pi is the probapibf occurrence estimated with the prediction
model for the target prediction day. This predinti@sults from 1) the downscaling relationship
estimated for this day from the n-analog datesh{is depends on the predictors retained for this
day and on the corresponding parameters estimaiethfs day) and it results also from 2) the
values of the different predictors observed for phediction day (used in a second step for the
prediction with the downscaling relationship). @B ithus necessarily estimated after the
parameters of the distribution have been estimated.

Figure 1 actually suggests that the distributiondtion is empirical. It is indeed empirical when
it is estimated with the AM25 backup analog moB&ure 2 clearly shows however that this
distribution can be updated thanks to a parametradel.

This has been clarified in the revised manuscript.

15. it is not clear what the difference between superscript o and superscript g is in Eqs 2 and 3.

The predictors identified for precipitation occunee (o) can differ from those identified to
predict the non-zero precipitation distribution. etifferent superscripts refer to the fact that the
two sets of predictors are specific to the occucee(p) or to the quantity (q).

This notation has been clarified in the paper.

16. How does the Gamma distribution come into the game? Are you using this type of distribution to
model the non-zero part of the distribution? Why Gamma?

The gamma is indeed used to model the non-zeroopdhte distribution. This distribution is a
widely used distribution in the hydrological liteéuse for the non-zero amounts (e.g. Stern and
Coe, 1984, Chandler and Weather 2002). It has theaatage to be rather robust and it does
require only 2 parameters to be estimated. Othestrithutions could be considered in our
approach to model this nonzero part (e.g. the elegdnGPD distribution used by Naveau et al.
(2016). This may improve the prediction but this/rakso lead to estimation difficulties as more
complex distribution models would require more dataa robust fit. Here, the number of data is
voluntarily limited to the number of analog datemsidered for the fit. A more flexible model
(with more parameters) would require consideringrenanalog dates. This may be detrimental
for the prediction skill as poorer analogs would inéegrated in the set of dates used for the
estimation of the regression. Another possibiliguld be to fit a more flexible model with the
same number of analog dates than in the presert €se to the estimation problems mentioned
above, this would however likely lead to a much eanfsequent use of the backup analog
prediction model in our case.

17. Also, the logic in p6 lines 13,14 is off. | think you should use a distribution that fits somewhat well
to the data and then fit its parameters to the data.

We agree that lines 13-14 are not well written. Wge the gamma distribution for the strictly
positive precipitation. The method of moments edu® estimate the shape parameter of the
distribution. Equation (4) expressed the way theavee is computed.

This paragraph has been clarified

18. what determines how "near" an analog is to the predicted day? (likely this is answered in Sect.
3.2).



As indeed mentioned in section 3.2, analog aretifiieth based on their similarity in terms of the

shapes of geopotential fields. The Teweless Watmue $& used to measure this similarity (see
also no 10).

19. why is the threshold for precipitation 0.1mm?

This threshold is often used in the hydro-metejiold literature to define wet / dry days. It

corresponds in France to the precision of the btick@acity used in the raingauge devices used
to measure precipitation.

20. p6 lines 23 ff. are difficult to understand. Say again you are trying to predict May-30 2018 in one
grid location of France. Then you are searching for the "nearest" geopotential conditions for all
May-29 in the past and then estimate npi based on the precipitation occurrences in those days.

Thank you for the suggestion. We have clarifiedptioeess of analog selection.

21. The "nearest conditions" could be different for a neighbouring cell? What does this say about
consistency and spatial dependence structure of precipitation fields.

Yes, the referee is right. The “nearest conditionsuld be different for a neighbouring cell. They
are however not as different, as illustrated in @lan et al. (2014). In a configuration where the
analog model is optimized for each location, Chardst al. (2014) show that, for a given
prediction day, the analog dates are very similaoni one grid cell to the next. This close
similarity covers rather large domains (up to af&00’s of kilometers) excepted in regions with
significant relief (the “nearest conditions” can kactually rather different on the western side
and eastern side of the “Massif Central” mountaisaegion for instance).

The similarity between analog dates makes postiklelevelopment of relevant spatial scenarios
(which are especially coherent in terms of spadialicture) as a given analog date can be used
as scenario for all locations of a given spatiadjien.

This is now mentioned in the conclusion.
22. Also for Jun-1 2018, again a potentially very different set of "nearest conditions" could be used?
Or am | understanding this wrongly, and there are more constraints?

As we consider each prediction day independentiy fthe previous ones, the nearest conditions
of Jun-1 2018 could be indeed very different fronsé of May-31 2018. This is however not the
case due to the strong persistence of the largke stanospheric dynamics which makes one day
often rather similar from the previous one. Notaiaghat we do not aim to develop time series
scenarios of precipitation and that we did thus imitoduce any specific constraint to cope with

this temporal issue.

23. Why are you using the BIC (and not another criterium)?
In our application we have also tested the Akaikermation criterion (AIC). Both criteria give
the same results.

24. 1 would suggest a more careful wording when the word "significance" is employed. Arguably, a
predictor can be significant at a certain level, but not plainly not significant (p6 line 26ff) — what
level of significance did you choose?

We used the 5% significance level. This informalias been added.

25. p8, 121 you start to use a differently typeset "P" after the abbreviation "ESP" — please explain.

Thank you for the remark. Yes the “typeset P” stioappear the first time we introduce the
abbreviation of a given Ensemble Prediction Systeamed P.

This has been corrected



### 4 Results

26. pll I12ff: you write that the BSS gain is "very sensitive to topography". The coasts along the

27.

Mediterranean (E portion of southern coast of France) and the Atlantic (W portion of northern
coast of France) have opposite BSS gains (Fig 3b). How does that fit to your explanation?

We agree that our formulation was confusing. At fiesult is that the BSS gain presents a high
space variability. The gain is higher in the mountaus areas (Pyrenees, Massif Central, Alpes,
Vosges) but topography is indeed not the only faittat influence the gain as important gains
are also obtained for the whole Mediterranean coast

We have reformulated the text.

pll I132: what do you mean by "greatly and thus significantly"?

We agree that the formulation was awkward as wendidevaluate in a statistical meaning the
significance of the gains.

We have reformulated the text.

### 5 Discussion

28.

29.

30.

31.

Generally, this section reads as a strung together explanation of what is shown on several figures.
What does it mean remains more unclear than the authors probably think...

The section “results” shows and discusses the imvgaqorediction skill obtained with the hybrid
approach. Within the “discussion” section, we wahte give some illustration on the adaptive
behavior of the model, both in space (with differeslection frequencies of given regression
structure from one place to the other) and timdhwhe differences from one weather type to the
other for instance). We acknowledge that the mepninthe results presented in the figures of
this section is not as clear and further work wohtdworth for a deeper analysis of the model’s
behavior. What seems to be clear however, is thatnhost interesting predictors cannot be
considered the same all the year and everywhere.

We have modified the text to better highlight gamt.

can the selection of structures (what is visualised by Figures 8 and 9) be done in a more
quantitative way (contribution of each variable to the prediction)?

Another possibility would have been indeed to presiee percentage of prediction days each
predictor has been selected. This however prevent$entify which combinations of predictors
are more often selected if any. We thought howthadrit was important to understand which
predictors were associated for the prediction. Tikithe reason why we have preferred to present
the selection frequency of the different structures

pl9 I1: Please describe first what your point is, then what is visualised on Figure 10).

We have reformulated the text as suggested. Out that one single regression structure is
not necessarily the best one for all large scafeations. This is what is illustrated in Fig10 with
important differences, from one weather type to dkiger, of the selection frequency of the
regression structures considered here.

p22 l4ff: you write that the gain is "non-negligible". Then you write that it is "up to 0.1". — Can you
quantify how much of a gain this really is?

Thank you for the remark. The gain is up to 10 eetage points (or in relative value up to 0.1).
The best value of both the BSS and CRPSS sco@® igelcentage points (or in relative value,
1). The gain is here thus non-negligible indeed.



## Minor Comments

We have modified the text to account for thosergifft comments when required.

Cavazos T, Hewitson BC. 2005. Performance of NCERRI reanalysis variables in statistical
downscaling of daily precipitation. Clim. Res. 28-107.

Timbal B, Fernandez E, Li Z. 2009. Generalizatiba gtatistical downscaling model to provide
local climate change projections for Australia. Eown. Model. Software 24(3): 341-358.

Chardon J, Hingray B, Favre AC, Autin P, GailhardZln I, Obled C. 2014. Spatial similarity
and transferability of analog dates for precipitatidownscaling over France. J. Clim. 27: 5056—
5074, doi: 10.1175/JCLI-D-13-00464.1.

Raynaud, D., Hingray, B., Zin, I|., Anquetin, S.bane, S., Vautard, R. 2016. Atmospheric
analogs for physically consistent scenarii of sogfaveather in Europe and Maghreb. Int. J.
Climatology. doi :10.1002/joc.4844.

Mezghani, A. and Hingray, B., 2009. A combined dwaling-disaggregation weather generator
for stochastic generation of multisite hourly weathariables in complex terrain. Development
and multi-scale validation for the Upper Rhone RBasin. J. Hydrology. 377 (3-4) : 245-260.
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\begin{abstract}

Statistical Downscaling Models (SDMs) are oftendugeproduce local weather scenarios from largéesca
atmospheric information. SDMs include transfer tiots which are based on a statistical link idésdifrom
observations between local weather and a set@é Iscale predictors. As physical processes drisimtace
weather vary in time, the most relevant predictord the regression link are likely to vary in titoe. This is
well known for precipitation for instance and tiheklis thus often estimated after some seasorstifgtation of
the data.

In this study, we present a two-stage analog/regresnodel where the regression link is estimatedhf
atmospheric analogs of the current prediction édamospheric analogs are identified from fields ebgotential
heights at 1000 and 500 hPa. For the regressige,dt@o0 Generalized Linear Models are further usemodel
the probability of precipitation occurrence and digribution of non-zero precipitation amountspedively.
The two-stage model is evaluated for the probatilfrediction of small-scale precipitation oveafkce. It
noticeably improves the skill of the prediction fusth precipitation occurrence and amount. As tiedag days
vary from one prediction day to another, the atrhesie predictors selected in the regression stagdtse value
of the corresponding regression coefficients cag fram one prediction day to another. The modielved thus
for a day-to-day adaptive and tailored downscalihgan also reveal specific predictors for peaudiad non-
frequent weather configurations.

\end{abstract}

\introduction %% \introduction[modified headingniécessary]
\label{sec:introduction}

Statistical Downscaling Models (SDMs) have beenelyidised to generate local weather scenarios fsirqra
future climates from outputs of climate modelsépfe.qg.][[{wiloy comparison 1999,hanssen-

bauer scandinavia 2005,boe_statistical 2007,Ladagtd: 2014} and to produce local weather forectstn
outputs of numerical weather prediction models

\citep[e.qg.][l{fobled quantitative 2002,gangopadhystatistical 2005,marty sensitivity 2013,ben_dadadly




2016}. For the recent years, they have been asd to reconstruct past weather conditions fronosjineric
reanalysis data \citep[e.qg.][J{auffray reconstragti2011,kuentz_anatem 2015,Caillouet probabilig6id6}.

Among the different SDM approaches presented dwetast decades (\citep[see][for a
review]{maraun_review 2010}), Perfect Prognosis Sbilake use of the physical relationships that exist
between some large scale atmospheric parametets@idveather variables. Local weather scenarwosthen
be produced for any prediction day conditionallytiba large scale atmospheric configuration obseoved
simulated for this day, where the “prediction dagfers here to some future, past or present siiualagay,
depending on the application context at hand fergcasting, simulation, reconstruction).

Perfect Prognosis SDMs include transfer functiovesather-type based models and methods based on
atmospheric analogs \citep[see][for a review]{maraneview 2010}. In the latter case, atmospheridandays
of the current prediction day are searched forthenbiasis of some atmospheric similarity criteriomhie
historical database. The weather variables obsdoratie most similar day, for one similar day ks
randomly or for a selection of the $k$-most simdays are then used as a weather scenario fordédeon
day of interest \citep[e.qg.][l[{dayon_transferahili?016, raynaud _multivariate 2016}.

Transfer functions are widely applied and consiginty of regression models where the expected vallee
predictand for time $t$ is expressed as a lineaoorlinear function of a set of predictors. Foggpitation, the
regression can be achieved with Multiple Linear ieegions or Generalized Linear Models (GLMs) which
extent the linear regression to non-Gaussian didé&ple.qg.][l{nelder_generalized 1972, stern_modéB4,
Asong_Projected 2016}. Transfer functions can alsde use of classification and regression treesRIOA
\citep[e.q.][[{Gaetan_comparison 2014} artificiadural networks or least squares support vector mash
\citep[e.q.][[{Campozano_Comparison_2016}.

The downscaling relationship used in transfer fiomst is usually established empirically betweerlaction of
large-scale predictors and the predictand (e.@igitation occurrence) from a set of observatiovalable for
recent decades. As physical processes drivingcivf@ather vary in time, the most relevant predicémd the
downscaling link are however expected to varyrmetioo. When inferred from all observations avaddbr a
given period, the downscaling relationship -- whiglhus likely inferred from a heterogeneous eriderof
weather configurations — is consequently likelyp#&osub-optimalTo reduce this potential limitation, the
parameterization of the relationship is often eatad after some data stratification. In the usabdrwdar
stratification, one parameter set is for instanu#énauized for each calendar month or season
\citep[e.g.][I[{Nasseri_DataMining_2013}. The stifatation can also be based on some weather type
information. In this case, a set of parametersiglly estimated for each weather type of a givergstablished
weather type classification \citep[e.g.][[{enke_dwmealing_1997}. Often applied, this weather-typsdia
approach is expected to allow for a better ides#tfon of the most important driving large-scaleiatales and
consequently for a more relevant downscaling. Avias limitation however remains for prediction dakat
do not clearly belong to one specific weather tigg. prediction days that are close to the "wardtiontiers"
delimiting two or more weather types). Those dagsiadeed likely to be rather dissimilar to the thea
configurations that each weather type is expedeatharacterize, making the downscaling relatiorstipe
used not suited anymore or, at least, sub-optimal.

A smoother weather type like approach consistefinthg the weather type from all atmospheric gituzs that
are similar to the situation of the prediction dakie ensemble of days from which the downscalink éian be
identified is thus expected to be rather homoges@md to rather well inform the large to small edaik
sought for the considered prediction day. Thisiiturn expected to make the link stronger and frave the
prediction \citep[e.g.][[{Woodcock _OnTheUse_1988kch an approach can be actually achieved in applyi
jointly the two popular SDM approaches discussealapbased on atmospheric analogs and on transfer
functions respectively. To our knowledge, this a@h has been only explored in few previous studiies
\citet{ribalaygua_hybridSDM_ 2013}, it was found itoprove the probabilistic prediction of local swéa
temperature in the Spanish Iberian Peninsula. Tli&pte linear regression of the regression stagémated
from the 150 most similar atmospheric analogs efgfediction day of interest, uses forward and bhack
stepwise selection of predictors from a set of foatential predictors (thickness of the air coluamdl three
temperature indexes of previous days). For pretipit, the authors did not test the potential ef th
hybridization, building directly the prediction®fn the precipitation observations of the 30 mawilar
atmospheric analogs. In the deterministic apprqaiekented by \citet{ibarra_hybridSDM_2011}, incorgiing
the regression stage (with 79 potential atmospheadictors) was found to allow a clear though not
overwhelming improvement of precipitation predictiover the simple analog based predictions. A iplalti
linear regression model was also applied heren@reégression stage.



In the present study, we present a two-stage afatprg@ssion downscaling model for the probabiliptiediction
of small-scale daily precipitation: for each preidio day, the statistical downscaling link betweseme large
scale atmospheric predictors and small-scale gtatign is estimated from large scale and localesca
observations available from an ensemble of daystwhie atmospheric analogs to the prediction dag. T
analog model (AM) used for the analog stage isdasedevelopments from different studies initidhgusing
on the probabilistic quantitative precipitationdoasts in southern France
\citep[e.qg.][[{bontron_probabilistic_2005,marty_tavd_2012} and extended to the prediction of preaijmin
on larger spatial domains \citep[e.g.][][{chardonati@l_2014}.The statistical distribution of predgtion
isstrongly non-gaussian with a non-negligible maszero (corresponding to the probability of a day), and a
skewed distribution for non-zero daily amounts. #her regression stage, we thus use a 2-part GLIvbaph
where the probability of precipitation occurrencg @he distribution of wet-days amounts are modeled
separately following \citet{chandler_analysis_20@2id \citet{mezghani_combined_200@onversely to the
work of \citet{ibarra_hybridSDM_2011}, this allowsredicting the full distribution of precipitatiomcluding
the probability of a wet day. In this two-stage lan&egression approach, the analogs change fr@mn on
prediction day to the other. This makes the steislownscaling link potentially adaptive, i.eetpredictors
and the regressions parameters are likely to vam bne day to the other.

As mentioned above, SDMs are used for the simulaifdocal weather scenarios in different contegtg, local
weather forecasts, reconstructions or for climatpeact studies. No specific context is considerad had the
two-stage model could be further considered fdregiforecasting, reconstruction or future projatio
Depending on its intended use, some specific issoedd obviously apply, calling for specific focusanalyses
and developments. For instance, the large scalesaineric parameters to be considered as predivtorisl
depend on the dataset considered (e.q. atmospkanalyses, climate model or numerical weatherigtieod
models) as a result of their intrinsic quality &égife.q.][[{Caillouet probabilistic 2016}. The dewgiment of
climate projections would require to check the temaptransferability of the model in a modifiedrahte
context and would thus likely also condition théestion of the predictors as highlighted by
\citep[e.qg.][l{dayon_transferability 2016}. Thesentext specific issues are not considered here n@im
objectives are to present the principles of the-stage analog/regression approach developeddagarddiction
of small-scale precipitation, to assess its pradgigiower for both precipitation occurrence and anipand to
give some insight on its adaptive behavior and truthe temporal variability of the downscalindklifror this,
we explore the model skill and behavior for thedirgon of daily precipitation for a large numbdrsites in
France.

The paper is structured as follows: Section \raf{data} describes the data and section \ref{secaispdhe
two-stage downscaling model. Section \ref{sec:its$@resents the skill of the model for the preidiatof both
precipitation occurrence and amount. The adap&@rabior of the model is considered in section
\ref{sec:discussion} and section \ref{sec:concluiooncludes.

\section{Data}
\label{sec:data}

The predictand is the daily small-scale precipitagstimated for the 1982-2001 period over 8,981 aglls of
8 $\times$ 8 \unit{km\textsuperscript{2}} coverirtge continental French territory. The predictantiasal”
precipitation, i.e. precipitation at a given grielicEach of the 8,981 grid cells is thus considereturn in the
following independently of the other cells. In atirds, the predictions do not target precipitafields.
Small-scale precipitation data are obtained from3AFRAN analysis produced for several surfaceatdes at
hourly time step by MeteoFrance \citep{quintanatsegnalysis_2008,vidal _50-year 2010}. SAFRAN
precipitation estimates are obtained each day flentlosest measurement stations. They are copsidesr
pseudo-observations in the following.

Atmospheric predictors are taken from the Europg@antre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis \citep[ERA-40,][[{uppala_era-40_2003his global meteorological re-analysis is availadrea
1.125\unit{\textbf{$ {\circ}$}} $\times$ 1.125\unifitextbf{$*\circ}$}} grid with a 6-hourly temporal
resolution.

For the analog stage, predictors are the 1000h&&@0hPa geopotential height fields over a largeiap
domain (roughly Lat = $10*{\unit{\textbf{$"{\circ}$}}$, Lon = $8"{\unit{\textbf{${\circ}$}}}$) cente red on
the target location. These predictors have beendfoo be the most informative large scale predictobe used
in this context for France



\citep[e.g.][{guilbaud_approche_1998,0obled_quaatiite_2002,radanovics_optimising_2013}. They also
correspond to the best large scale predictorsitf geecipitation for different regions in Europetivcontrasted
meteorological regimes \citep{raynaud_multivari&e16}.

For the regression stage, 22 other predictors alseconsidered. The selection gathers most poadict
considered in previous studies over Europe \citgd[fhanssen-
bauer_scandinavia_2005,wetterhall_sweden_2009/mapatial_2012,raynaud_multivariate_2016}. They
include predictors characterizing the thermal sthtthe atmosphere, its dynamics, the atmospheaterw
content, its thermo-dynamical instability (see Babéf{tab:initial_predictors}). As potential prexdor, we also
consider the occurrence of precipitation on theviptes day. All predictors are here scalar variables
Atmospheric predictors are estimated on a dailgtetep (mean of the four values available at 61&82nd
24h00 UTC) from the four ERA-40 grid cells surrounglthe prediction grid cell (inverse distance
interpolation).

To avoid the multi-colinearity in the predictors the regression, we identified a subset of unt¢ated
predictors. The cross-correlations between alliptedpairs were first estimated on an annual biasis all
available data. The correlation structure can haweiffer from one atmospheric configuration to tiber. The
set of uncorrelated predictors could thus diffenfrone prediction day to the other. We thus repetue
correlation analysis for each prediction day, usorghis estimation the predictor values obserfeedhe 100
nearest atmospheric analogs identified for this &g main features of the inter-variable correladiwere
found to be roughly independent of the day (nowstjo The final subset of uncorrelated predictors is
highlighted in Table \ref{tab:initial_predictorsY.hese predictors are tested for the predictiorotifi b
precipitation occurrence and amount.

A large number of different possible predictor s&tr be built from these predictors. In the presenk, for the
sake of robustness, we consider that a maximurouwfdredictors can be integrated in a given GLMdRitors
are obviously expected to be both day and locamtific. In the present work, for the sake of diaiy and
readability, we select them from a unique set af footential predictors. This allows us reducing dlegrees of
freedom in the model and to better highlight itdl siad adaptive behavior.

For each predictand, the set of the four poteptiadlictors was selected as follows. For 12 SAFRAN cells
uniformly distributed over the French territory, Viest identified with a standard iterative forwdésdckward
algorithm the four-predictor set which lead to Hesst prediction skill for the all-days configuratid=rom the
twelve different sets respectively obtained for 1Regrid cells, we finally retained the set whiehds in average
to the best prediction skill for the 8,981 SAFRANdccells.

For precipitation occurrence, this best four-prestiset is constituted from the relative humidi®y $700}$, the
helicity $H$, the vertical velocity of the air @d0hPa $W_{700}$ and the precipitation occurrence&&D$ of
the day before the prediction day. For precipitatonount, the best four-predictor set is similazegt that the
occurrence of the previous day $Occ-13 is replédgetthe 700 hPa air temperature $T_{700}$.

Note that the selection of predictors $R_{700}$, $W001$ and $T {700}$ is consistent with resultsseveral
past studies in the region \citep[e.q.][[{ben_daodmily 2016}.

Predictors considered for the analog and regressages obviously inform about different featuréthe
atmosphere state for different scales. Geopotdieidk, by their spatial extent, characterizeltdrge-scale
atmospheric circulation configuration (the spatiainain of several thousands of kilometers, incluapart of
North-Eastern Atlantic and covers France and agfareighboring countries) whereas GLM scalar prexls
are descriptive of a more local (and mostly therymaginic) state of the atmosphere (the spatial dowfin
several hundreds of kilometers is roughly centegave the target location).

\section{The hybrid analog/regression model (SCAMP)
\label{sec:models}

As illustrated in Fig. \ref{fig:description_cdf}he cumulative distribution function (cdf) $F_Y$mrecipitation
$Y$ at a given site (grid cell) can be expressedity given day as the composition of the no-piiipn
occurrence probability $1-\pi$ and the cdf $F_Q$hef precipitation amount $Q$ for non-zero preaiiin:
\begin{equation}

F_Y(y) = (1 -\pi) +\pi\cdot F_Q \left( q = yght),

\label{eq:cdf precip}

\end{equation}



where $\pi$ is the precipitation occurrence prolitgby$ and $g$ correspond to the precipitatiatue with
regard to the whole precipitation distribution @aadhe non-zero precipitation distribution respeady.

\begin{figure}[t]

\includegraphics[width = 8.3cm]{fig01.pdf}

\caption{Cumulative distribution function (cdf) pfecipitation amount for a given prediction daydgney) at a
given grid cell. For illustration, the predictioerie corresponds to the empirical cdf achieved thighAnalog
Model (AM) mentioned in \ref{sec: def_backup}. Thentribution of the precipitation amount $F_{Q,AM}$
cdf to the overall cdf is highlighted in black (dHg. \ref{eq:cdf_precip}).}

\label{fig:description_cdf}

\end{figure}

In the present work, the cdf of precipitation isdatied for each grid cell and each prediction da WiLMs
\citep{coe_fitting_1982, stern_model_1984}, estiathfor this specific day from atmospheric analogthe
day. The probability of precipitation occurrenceldine cdf of the non-zero precipitation amountraosieled
separately.

In the following, we first describe the Analog MddaM) used to identify atmospheric analog days{em
\ref{sec:def AM}) and the GLMs applied in the regséon stage (section \ref{sec:GLM_description}).

As discussed later, one can face prediction daysentine regression stage fails, i.e. wherethe ssime
parameters are not significantly different fromaet the chosen significance level. For such dagsiuse the
Analog Model as backup prediction model. The baakwplel can be used for precipitation occurrence
probability, for non-zero precipitation amount or both predictands simultaneously.

The way these different models are combined tdlfirgve, for the current prediction day, a prolesic
prediction of precipitation is presented in secli@i{sec:def_backup}. In the following, this hylri
analog/regression model is further referred to@&M8P (SCAMP stands for Sequential Constructive
atmospheric Analogs for Multivariate weather Préditand refers to the model presented by
\cite{raynaud_multivariate_2016} for the multivatéaprediction of precipitation/temperature/radiati@ind).

\subsection{Atmospheric analogs}
\label{sec:def AM}

The atmospheric analog days retained for the regnestage are identified with an Analog Model defi from
the developments of several past studies in France
\citep[e.q.][[{obled guantitative 2002,marty towafD12radaneovics—optimising—2013}.

For any given prediction day (e.g. May-31's, 202B& analog days retained for the regression &&h d$
days that are most similar to that day in termiaigfe scale atmospheric circulation. The similaistassessed
using the Teweless-Wobus Score \citep[TWS, ][]{tlass_verification 1954} applied to the geopotertiight
at 1000 hPa and 500 hPa at 12h and 24h UTC resekcfihe TWS compares the shapes of geopoterdldbf
and thus informs on the localization of low andhhpyessure systems and on the origin of air mabk#s. that
the $N_d$ analog days are identified within a refstd pool of candidate days, namely all days efdichive
that are included in a calendar window of $\pm$&&ndar days centered on the prediction day [ffor t
prediction of May-31's, 2018, candidates are allyMat to all June 30’s from all years of the arehivl he
prediction day (May-31's, 2018) and its 5 preceding following days are excluded from the candislaiethe
present work, the archive period corresponds t@ 3881 (20 years) and we used the 100-nearest phaos
analog days to estimate the GLMs in the regresstiage.

Following \citet{chardon_spatial 2014}, the domamnsidered to estimate the atmospheric similardg w
optimized for each target location. A different mmpmodel was thus considered for each of t888 SAFRAN
grid cells. For each prediction day, the analogsdaus likely differ from one SAFRAN grid cell thd next
\citep [see][for illustration]{chardon_spatial 2014

\subsection{Regression stage with GLMs}
\label{sec:GLM_description}



The cdf of precipitation is then modeled for eaobdiction day with GLMs estimated for this specifiay from
the atmospheric analogs of the day. GLMs make diieepending on some covariates, atmospheric pozdic
in the present case.

For each prediction day, the probability of pretpon occurrence $\pi$ was modeled with a GLMhia torm
of a logistic regression as:

\begin{equation}

\log \left( \frac{\pi{1-\pi} \right) = \mathbf{x"o}"\text{T} \mathbf{\beta”o},

\label{eq:logistic_regression}

\end{equation}

where $\mathbf{x"0}$ is the scalar vector of the $#$ predictors $(xo_1, x*o_2, .. x*o_{K_0})$ and
$\mathbf{\beta”0}$ the scalar vector of the $K_afbresponding regression coefficients $(\betaobdtalo_2,
.. \beta™o_{K_o})$. \par

For the non-zero precipitation amount, we used ¥M@lith the gamma distribution and the log link ftina.
The expected amount $\mu$ of non-zero precipitadherefore here expressed as:

\begin{equation}

\log \left( \mu \right) = \mathbf{x"q}"\text{T} \mahbf{\beta”q},

\label{eq:logarithmic_regression}

\end{equation}

where $\mathbf{x"q}$ denotes the scalar vectohef $K_q$ predictors $(xq_1, x*q_2, .. x*g_{K_qp#d
$\mathbf{\beta™q}$ the scalar vector of the cori@sgling regression coefficients $(\betaq_1, \beta)q
\betaq_{K_g})$ . The shape parameter $\nu$ ofghmma distribution is computed from the variance
$\sigma”'2$ of non-zero precipitation amounts edihdrom Pearson's residuals
\citep{mccullagh_generalized_1989} as:

\begin{equation}

\sigma”'2 = \frac{1H{\left\{N_qg- \left( K_q +1 \righ) \right\}} \sum_{i=1}N_q} \frac{\left( g_i - \mu
\right)*"2}{\mu”"2},

\label{eq:sigma_gammay}

\end{equation}

where $N_qg$ is the number of non-zero precipitatiata $g_i$ considered in the analysis. As theeshap
parameter $\nu$ equals the inverse of the varig§fifieigma’2$, the gamma distribution $F_Q$ modetirey
precipitation amount thus follows a gamma distiifruof this type $iGamma \left(\nu, \alpha =\mu /
\nu\right)$.

For any given prediction day, the estimation ofb@LM models practically proceeds as follows:

\begin{itemize}

\item The precipitation state (wet or dry), thegipéation amount and the value of the differentembial
predictors are extracted for the $N_d$ nearesbasalf the day. The precipitation state of a gigdan is
considered to be wet if the precipitation amounttiigs day is higher or equal to 0.1 mm. It is d#dsd with a
binary precipitation occurrence variable $\mathi3ffCset to 1 for the wet case, 0 for the dry case.

\item For occurrence probability, different setgpoddictors are considered in turn. For each Betparameters
of the occurrence GLM are estimated from the pteditoccurrence values available for the $N d$cusl

\item For precipitation amount, different sets odgictors are again considered in turn. For eathlse
parameters of the GLM are estimated from the pteditamount values available from the analog ddyishv
are wet ($N_g$, the number of days consideredfoertbe regression, is therefore smaller or equ&N_d$
and varies a priori from one target day to another)

\end{itemize}

For the considered prediction day, the differeitd s¢ predictors considered in turn are built fridhra four
potential predictors identified in the preliminamgrk (cf. section \ref{sec:data}). For occurrenaelmability
(resp. precipitation amount), the four potentia@dictors actually allow to build fifteen differesgts of
predictors, further denoted as "regressive strastun the following (cf list in Table
\ref{tab:regressiv_structure}). For each regressivacture, the regression coefficients of corresiiog GLMs
are estimated using the Iterative Re-weighted L8gshres algorithm

\citep[IRLS,][[{nelder generalized 1972}. The pretion skills of the different regressive structuags then
compared and the regressive structure (predictpmdech minimizes the Bayesian Information Critgriis




retained for the prediction \citep{schwarz_estimati1978,akaike _new 1974} (only the regressive siras
for which all coefficients are significant at a 3&tel are compared; the significance is estimatil the $Z$-
test (resp. the Student $t$-test)).

The prediction of the occurrence probability (rehe. expected precipitation amount) for the prégiictay is
finally obtained from the best occurrence (respoamt) GLM, using the values of the predictors obsdrfor
that prediction day. The final distribution of pigitation $F Y$ is obtained by combining the issw@edurrence
probability $\pi$ and the amount distribution $F_&®ording to Eq. \ref{eq:cdf_precip}.

\subsection{The Analog Model as benchmark and bagkediction model}
\label{sec:def_backup}

The $N_d$-nearest analog days identified with thedan also be directly used, without further regres
stage, for a probabilistic prediction. In the feliog, we also consider predictions obtained with 26 nearest
analog days (for the AM considered here, 25 wanddo give the best prediction skill for France by
\citet{chardon_spatial 2014}). In this case, thegipitation cdf for the prediction day is simplhetbampirical
distribution of the precipitation values observedthese 25 analogs. The predictions obtained tithanalog
model, further called AM$ \text{25}$, are used asemchmark to assess the prediction skill of tHeridy
analog/regression approach. In addition, they wees as backup prediction for days for which tlyeassion
stage failed in the hybrid approa@®ne can actually face the situation where no Ghlikfes the significance
conditions required for the regression coefficiefitsis can occur for precipitation occurrence piuolitg, for
non-zero precipitation amount or for both predidssimultaneously. In such cases, AM$ \text{25}&pplied
as backup prediction model.

If the significance conditions cannot be satisfiedthe precipitation occurrence GLM, the occurenc
probability $\pi$ is set to that obtained with AM&xt{25}$. It thus simply corresponds to the engat
probability $\pi_{\text{AM$_\text{25}$}}$ of preciptation occurrence derived from the 25 analog dsys
AMS \text{25}$ as:

\begin{equation}

\pi \equiv \pi_{\text{AM$_\text{25}$}} = \frac{1}{2 5} \sum_{i=1}"{25} o_i.

\label{eq:pi_AM}

\end{equation}

Similarly, if the significance conditions cannot smtisfied for the precipitation amount GLM, thetdbution
$F_Q$ is estimated with the empirical distributif {Q,\text{AM$_\text{25}$}}$ derived with

AMS$ \text{25}$ as:

\begin{equation}

F_Q(a) \equiv F_{Q,\text{AM$_\text{25}$}}(q) = \fra{F_{\text{AM$_\text{25}$}}(q) - \left( 1 -
\pi_{\text{AM$_\text{25}$}} \right) {\pi_{\text{ AM$ _\text{25}$}}},

\label{eq:FQ_AM}

\end{equation}

where $F_{\Mtext{AM$_\text{25}$}}$ corresponds to éhempirical cdf estimated from all precipitationsil{
and positive) related to the 25 analog days. Nisie that if the number $N_g$ of humid analog daylew
(BN_qg < 10%), the estimation of a GLM is not expelcto be robust. When this case appears, $F_Qsoiset
to the cdf obtained with AM$_\text{25}$.

As illustrated in Fig. \ref{fig:description_assernmyg_cases}, four prediction cases are thus achiewtdthe
hybrid approach. They correspond respectively sesavhere AM$_\text{25}$ is used to backup the mtézh
of the whole precipitation distribution (case 1hexe AM$_\text{25}%$ is applied to backup the amoadt
prediction (case 2), where AM$_\text{25}$ is usedockup the occurrence probability prediction écasand
where the regression stage could be activatedoftr diccurrence and amount (case 4).

Note that the regression stage achieved with GLasalso be seen as a way to refine the estimatithre @df
that could have been obtained directly with thekbpgand benchmark) AM$_\text{25}$ analog modeleTh
refinement leads to update the occurrence probahitid/or the cdf of non-zero precipitation amount.



As described previously, the two-stage analog/ssioa prediction process is repeated for each giediday
in turn. As the analog days vary from one predictiay to another, the predictors selected in theession
stage and the value of the corresponding regressiefiicients are expected to vary from one préalictlay to
the other. The hybrid model SCAMP allows thus falag-to-day adaptive and tailored downscaling.

\begin{figure*}[t]

\includegraphics[width = 8.3cm]{fig02.pdf}

\caption{lllustrations of the four cases met foe thsue of $F_Y(y)$ by the hybrid model. Case In&of the
occurrence and amount GLMs could be retained duhegegression stage: AM$_\text{25}$ is used tedact
the whole precipitation distribution. Case 2: Otiilg occurrence GLM could be retained. It givesdstémated
occurrence probability. The distribution of nonag@recipitation comes from AM$_\text{25}$. CaseGnly
the amount GLM could be retained. It gives theritiation of non-zero precipitation. The occurrence
probability is the empirical occurrence probabifitym AM$_\text{25}$. Case 4: Both occurrence amdaant
GLMs could be estimated: they respectively givedbeurrence probability and the distribution of rmmro
precipitation, to be further combined for the filibtribution of precipitation.}
\label{fig:description_assembling_cases}

\end{figure*}

\subsection{Model evaluation}
\label{sec:evaluation}

The prediction skill of the downscaling model isessed with probabilistic scores usually used éduexe
Ensemble Prediction Systems (EPS). Let us consaid@ren EPS, denoted as $\mathcal{P}$.

The Brier Score \citep{brier_verification_1950,mhyp new_1973} first evaluates the ability of EPS
$\mathcal{P}$ to predict precipitation occurren@éhen estimated over $M$ prediction days, the meder B
Score $\overline{\mathrm{BS}}$ reads:

\begin{equation}

\overline{\mathrm{BS}} = \frac{1{M} \sum_{i=1}M} \left[ p_i- o_i\right] ~2,

\label{eq:def _BS}

\end{equation}

where, for a given prediction day $i$, $p_{i}$ letoccurrence probability issued by EPS $\mathédlgnd
$o_i$ is the effective precipitation occurrencetfis day ($o_i=1$ for a wet day, $=0% otherwise).

The ability of EPS $\mathcal{P}$ to estimate thegpitation amount is evaluated with the ContinuBasked
Probability Score \citep[CRPS,][[{brown_admissibl®74,matheson_scoring_1976}. When estimated over
$M$ prediction days, the mean CRPS reads:

\begin{equation}

\mathrm{\overline{CRPS}} = \frac{1{M} \sum_{i=1}{ MAint_{-\infty}N+\infty}{ \left[ F_{i}(x)-

H_{y_{i}}(x) \right] }"2 dx,

\label{eq:def CRPS}

\end{equation}

where, for a given prediction day $i$, $H_{y_{i}}&nd $F_i$ denote respectively the cdf of the olztarm
$y_{i}$ and the cdf derived from EPS $\mathca{P#k$ denotes the predictand quantiles of the ddfte that
$H_{y {i}}$ corresponds to the Heaviside functiorhere $H_{y {i}} = 1% if $x \ge y_{i}$ and
$H_{y_{i}}=0$ otherwise.

For this evaluation, the probabilistic predictidrtiee predictand $y$ is here described, for eaeldiption day,
with a discretized cdf composed of $N$ values, BF25%. When AM$_\text{25}$ is used as backup npde
the $N$ values are the precipitation observatidiibe25t analog days. When the prediction is idsuith
SCAMP~, the $N$ values are those of the 25 pelesr#i(k-0.5)/25%, $k$ in $[1,N]$, of the prediciedf
$F_Y$.

In the following, we discuss the prediction skdl fprecipitation occurrence and amount with theeB8kill
Score (BSS) and the Continuous Ranked Probabkity Score (CRPSS) respectively. Both scores noizeal
the prediction skill of EPS $\mathcal{P}$ with thalbtained with a reference EPS $\mathcal{P} \vaBphi
$\mathcal{P}_\varphi$ is here a climatological EP&ed on a calendar climatology defined for eaediption
day by the precipitation distribution of all daysldnging to a seasonal window ($\pm$ 30 days) cedten the
corresponding calendar day. In this context, th& B8d CRPSS respectively read:

\begin{equation}



\mathrm{BSS} = 1 - \frac{\overline{\mathrm{BS}}K\overline{\mathrm{BS}} \varphi},
\label{eq:def BSS}

\end{equation}

and

\begin{equation}

\mathrm{CRPSS} =1 -
\frac{\overline{\mathrm{CRPS}}}{\overline{\mathrm{CRPS}} {\mathcal{P} \varphi}},
\label{eq:def CRPSS}

\end{equation}

where $\overline{\mathrm{BS}} \varphi$ and $\overé{\mathrm{CRPS}} {\mathcal{P}_\varphi}$
correspond to the mean BS and the mean CRPS abbtaititeEPS $\mathcal{P}_\varphi$. For both scors,
negative value indicates that the prediction olethiwith EPS $\mathcal{P}$ is worse than the prédict
obtained with the climatological EPS $\mathcal{Rjanphi$. A score of 1 conversely denotes a peE&3
$\mathcal{P}$.

In the following, to assess the added value ohtfimid SCAMP~model when compared to the benchmark
AM$_\text{25}$ analog model, we additionally estiteahe gain in prediction skill as: $\Delta S =
S_{\text{SCAMP}} - S_{\text{AM}_{25}}$ where $S$ caresponds either to the BSS or the CRPSS.

\section{Results}
\label{sec:results}

The hybrid model is used for the probabilistic pcedn of small-scale precipitation over the coetital French
territory for each day of the 1982-2001 period. Méee present the prediction skill obtained for ecence and
amount with the two predictors sets presenteddtiae\ref{sec:data}. As discussed later in section
\ref{sec:discussion}, the four predictors of eaehare not necessarily all used; the predictorglvhave some
predictive power for the considered predictand \feoyn one day to the other.

\subsection{Performance of SCAMP}
\label{sec:performance_hybrid}

Figure \ref{fig:gain_BSS}a presents the BSS skilbe of SCAMP~for precipitation occurrence prediatiThe
highest BSS values -- up to 0.5 -- are found invtketern part of the Massif Central, in the Alpd atong the
Atlantic coast. Lower skill (BSS from 0.45 to 0iS)obtained in northern and western lowlands. Dkt skill
(0.35) is obtained for few cells located along Mediterranean coast.

The BSS gain obtained with SCAMP~over AM$_\text{$5% rather important (up to 0.1 BSS points) and a
presents high space variability (Fig. \ref{fig:gaBSS}b). The gain (between 0.05 and 0.1 BSS poistsigh in
the mountainous areas (Pyrenees, Massif CentnagsANMosges). The highest gains are found along the
Mediterranean coast and in the Southern Alps wtier®&SS of SCAMP~was the lowest. This highlights th
weakness of the AM$_\text{25}%$ in these regionsharacterized by more frequent convective predipiteand
thus a weaker link with large-scale atmosphericutation -- and the interest for thermodynamic axate local
predictors. Conversely, lower gains are observatd@nvestern part of France characterized by nrorgdl
precipitation and thus a stronger link with largalde circulation. Note also that the spatial disttion of
$\Delta$BSS is very close (even if it has highdugs) to the one obtained by SCAMP~with $R_{700%$ a
unique predictor (not shown here).

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig03.pdf}

\caption{(a) BSS obtained with SCAMP (best possidkie = 1). (b) BSS gain obtained with
SCAMP~compared to AM$_\text{25}$. Black solid linesrrespond to the French borders and the contours
around mountainous regions (400- and 800-m elewptidile the dashed lines show the ERA-40 grid njesh
\label{fig:gain_BSS}

\end{figure*}

Figure \ref{fig:gain_CRPSS}a shows the CRPSS oletaiwith SCAMP. The CRPSS values also depend on
topography. The highest values, up to 0.45, araindd in the western part of the Massif Centrad,rtbrthern
Alps, the Jura and the Vosges massifs. Lower vahetsveen 0.32 and 0.45, are obtained in lowlants.
lowest skill (below 0.30) is again obtained alohg Mediterranean coast.



The CRPSS gain obtained over AM$_\text{25}$ is #igant (up to 0.07 CRPSS points) for most gridsel
with the highest value (up to 0.10 CRPSS point$aiakd in the Rhone valley and in north-eastermégdFig.
\ref{fig:gain_CRPSS}b). Similarly to the BSS gaanJower CRPSS gain is here also obtained in lovdadi
western France. The spatial distribution of $\DRRRPSS is here also very close (even if it hasdnighlues)
to the one obtained by SCAMP~with $W_{700}$ as weigredictor for amount (not shown here).

Despite the large dependency on regional featurels &s topography or proximity to the sea, addieglland
thermodynamic information in SCAMP~greatly improvhe prediction skill over that of AM$_\text{25}$or
both precipitation occurrence and amount.

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig04.pdf}

\caption{(a) CRPSS obtained with SCAMP (best pdesialue=1). (b) CRPSS gain obtained with
SCAMP~compared to AM$_\text{25}$.}

\label{fig:gain_CRPSS}

\end{figure*}

\subsection{Characterisation of SCAMPs behaviour}
\label{sec:behavior_SDM}

As described in section \ref{sec:def_backup}, thgression stage of SCAMP~is equivalent to update th
empirical distribution obtained from the atmospbemalogs directly. For some prediction days, @ggassion
stage can be however only partly activated, fdregibccurrence or amount. It can be even not detivat all. In
these cases, the prediction is fully or partly oigd from the backup model AM$_\text{25}$.

The frequency each activation case (case 1 toahtaned over the simulation periodlisstrated in Fig.
\ref{fig:freq_cas}. The situation where both preitigion occurrence and amount GLMs are activatadd€et) is
very frequently observed. It corresponds to moa@ 85 \% of the days except in south-eastern Frahege
only 60 \% of the days are concerned. All in dlé tegression stage of SCAMP~is very often acti/é&teore
than 97% of the days) to predict the occurrencedndity (case 2 + 4). In the failing full-updatimases,

AMS$ \text{25}$ is usually applied to backup the pigtation amount prediction (case 1+2). Case Jerwlhe
whole prediction is backup with AM$ \text{25}$ imhlly very rare. For a large majority of the gddlls, it
occurs less than 35 times in the 20-year periodidened (corresponding to around 5S\textperthousand)

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig05.pdf}

\caption{Percentage of days where 1) no updateagked, 2) only the precipitation occurrencepslated, 3)
only the precipitation amount is updated and 4)atbeurrence and the precipitation amount are upgd&eads
with gray colors correspond to grid cells wheredberesponding case has been met less than 35aiveeshe
20-year evaluation period.}

\label{fig:freq_cas}

\end{figure*}

Figure \ref{fig:AnoPmoy_cas} presents the mean jpiémtion anomaly for each of the previous cases.the
ratio between the mean amount obtained for all t&ysnging to the considered case and the overdim
precipitation amount. An anomaly greater (resp.ddwhan 1 indicates days that are rainier (respr)dhan
usual. The different cases correspond clearlyfferéint precipitation configurations. The mean [piation
amount of days in case 4 is close to the overalrmBays in cases 1 and 2 are very dry. Days ia 8ase very
wet with a mean precipitation three times largantthe overall mean.

For a given prediction day, the precipitation st#tés analog days is actually expected to be Inbugimilar to
that of the day. This thus explains the SCAMP'sabadr described above. In case 1 and 2, analog afaie
prediction day are likely very dry. The number afifid analog days is thus likely small to very smaitid
actually too small to allow for a robust estimatmfrthe precipitation amount GLM. Analog days anawersely
likely humid in case 4 or even very humid in cas&® number of humid days in those cases is tkekyllarge
enough to allow for a robust estimation of the jpiéation amount GLM. The very humid configuratiohcase
3 suggests that predictions days are charactebiz@dvery large number of humid analog days, whkgih in
turn prevent for a robust estimation of the ocauwreeGLM (e.g. the occurrence GLM cannot be estichate
configurations where all days are wet).




This can also explain the specific results obtaineSoutheast. Case 2 is indeed activated much oftae in
this reqgion (increase of 30% percentage point) #laewhere and, in a symmetric way, Case 4 isaetl
much less often in this region (decrease of 30Pégreage points). The reason underlying this resutt be
related to the much higher proportion of dry daySoutheast (not shown). In this region, the nunofhevet
analog days is thus likely small for a large numifgoredictions days. As suggested above, thivsownisly not
a difficulty for the estimation of the occurrenc&l. This is conversely likely one for the estimatiof the
amount GLM. A small number of wet analogs likelgpents for a robust estimation of the precipitaBomunt
GLM. This likely explains the much lower (resp. Inéy) frequency of Case 4 (resp. Case 2) in Southeas

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig06.pdf}

\caption{Ratio between the mean amount obtainealatays belonging to a given case and the overalin
precipitation amount. Gray grids: same as in Fef{fig:freq_cas}.}

\label{fig:AnoPmoy_cas}

\end{figure*}

The CRPSS gain achieved with SCAMP's results fioerupdated prediction of both precipitation ocaocee
and amount. To assess the relative effects of tiyedates on the gain, we further compared theffilawing
prediction experiments:
\begin{description}

\item[Exp. 1:] The prediction of both the occurterand the amount is achieved with AM$_\text{25}$
for all prediction days. This corresponds to theuhes given by \citet[cf. Fig. 3]{chardon_spatiaD12}.

\item[Exp. 2:] When possible, the precipitatiortorence probability is updated with the occurrence
GLM. The non-zero precipitation amount is alwaysdicted with AMS$_\text{25}$.

\item[Exp. 3:] When possible, the precipitationcaamt is updated with the amount GLM. The
precipitation occurrence probability is always peeed with AMS$_\text{25}$.

\item[Exp. 4:] When possible, both precipitatiactarrence probability and amount are updated with
the occurrence and amount GLMs. This correspontisetbybrid configuration already evaluated presigu
\end{description}

The CRPSS gain obtained between Exp.1 and 2, betiage 1 and 3 and between Exp.1 and 4 are presante
Fig. \ref{fig:contrib_dCRPSS} (the results for Edpalready presented in Fig. \ref{fig:gain_ CRPS&k
presented again for the ease of comparison).

For a large majority of grid cells, the CRPSS gaitained with an updated prediction of the occureen
probability (from 0 to 0.05 CRPSS points) is sigrahtly lower than that obtained with an updateedgstion of
amount (from 0.03 to 0.1 CRPSS points). The CRRS$ @ptained in the latter case is additionallyselto that
obtained with the full hybrid model. The CRPSS gatitained by SCAMP~in Fig. \ref{fig:contrib_dCRPS3S}
is thus explained in most cases by the updatedqtiea of precipitation amount.

The scheme is somehow different in the south afi¢galong the Mediterranean coast and in the Cegenn
Vivarais mountains. In those regions, the CRPSS8 ghiained by SCAMP~is mostly explained by the upda
prediction of the occurrence probability. Updatorgy the precipitation amount leads to fairly noEFS gain.
\begin{figure*}[t]

\includegraphics[width = 12cm]{fig07.pdf}

\caption{Gain in CRPSS for different prediction exipnents (see section \ref{sec:behavior_SDM} forads)
compared to the performance of AM$_\text{25}$. Exp.2: only the precipitation occurrence probapikt
updated (when possible), (b) Exp.3: only the pritaion amount is updated (when possible), (c) Expoth
occurrence probability and precipitation amountwpdated (when possible).}

\label{fig:contrib_ dCRPSS}

\end{figure*}

\section{Discussion}
\label{sec:discussion}

The sets of potential predictors used in SCAMP#ierprediction of precipitation occurrence and antdwave
been listed in section \ref{sec:Predictor_sets}. &ach variable, the number of potential predictotsere equal
to four. All four predictors are not necessary iregd for the GLM. For a given prediction day, a Gith a
single predictor or a combination of several predi&camong the four can be selected. Fifteen reyees



structures plus the backup AM$_\text{25}$ model possible in our context (Table
\ref{tab:regressiv_structure}).

For a given prediction day, the regressive stractalected by SCAMP~for precipitation occurrencéoor
precipitation amount are supposed to include ths¢ information for the prediction. In the followinge assess
how often each structure has been selected. Tihissafor some insight in the atmospheric informatieally
used for the regression stage and how this infoomaaries in time.

Figure \ref{fig:global_selection_occ} and Fig. \{{&f§:global_selection_qu} present the percentagéirogs that
the 15 regressive structures and the backup AM&{28}$ are used for the prediction of precipitatio
occurrence and amount, respectively. As in Fid{figefreq_cas}, gray cells indicate that the regséon
structure has been retained less than 35 timestloe&0-year evaluation period.

For occurrence (Fig. \ref{fig:global_selection_o¥fdhe most often selected structure is Str.
n\textsuperscript{o}1, which is only based on $RO@¥$ (more than 25 \% for the whole of France).
$R_{700}$ was actually found to give the highestdictive power when used in a single predictor
configuration. Another structure which is also aftelected (more than 15 \% for a high number iofsyiis Str.
n\textsuperscript{o}7 which combines $R_{700}$ wflOcc-1$. Secondary structures -- as for example St
n\textsuperscript{o}6 and n\textsuperscript{o}13nsbining $R_{700}$ to $W_{700}$ and $Occ-1$ --caa b
selected more than 10 \% of the days for some giegions. Other structures are seldom selected@ame of
them (Str. n\textsuperscript{o}8, n\textsupersdidpt 1, n\textsuperscript{o}14 and n\textsupersc{gil5) are
almost never selected. The selection frequenclestructures is also rather region dependent taoidgdy
influenced by topography.

Similar results are obtained for amount. The setbcggressive structures gather one principal tstre,cStr.
n\textsuperscript{o}3 which only includes $W_{700Q}&nd some secondary structures (Str.
n\textsuperscript{o}1, n\textsuperscript{o}6 ,n\tsyperscript{o}8 and n\textsuperscript{o}13 includgi the
other predictors). Str. n\textsuperscript{o}9, mt®uperscript{o}12, n\textsuperscript{o}14 and
n\textsuperscript{o}15 are almost never selected.

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig08.pdf}

\caption{Prediction of occurrence probability: sstien frequencies (\%) of the 15 regression stmast@and of
the backup model AM$_\text{25}$. Predictors invadvare indicated in graphs headers and index of the
regressive structure in top left corners. Graygreghme as in Fig. \ref{fig:freq_cas}. The selecticequency of
AMS$_\text{25}$ corresponds to the sum of those aied for cases 1 and 3 in Fig. \ref{fig:freq_cas}.}
\label{fig:global_selection_occ}

\end{figure*}

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig09.pdf}

\caption{Same as Fig. \ref{fig:global_selection_p#&ar the probabilistic prediction of precipitatiamount.
The selection frequency of AM$_\text{25}$ correspsrto the sum of those obtained for cases 1 and-Bi
\ref{fig:freq_cas}.}

\label{fig:global_selection_qu}

\end{figure*}

Note that for the selection of the best regresstacture for a given prediction day, all thesedgressive
structures have been in turn tested. The resultgeabuggest that this systematic test is not nacgasd that it
could be reasonable to consider only the few sirestwhich are frequently retained or which areinetd a
“reasonable” fraction of the days. However, thesibn frequency of a given structure actually e@anvith the
seasons and/or the encountered synoptic situatidis@me secondary regressive structures can beegta
frequently for specific situationghis is illustrated in Fig. \ref{fig:adapt_temp 4®321} for a cell located in
north-western France. The figure presents howelecgon frequency of each regression structurferdifin
different seasons and weather patterns \citep[Vefhed in Table \ref{tab:WP_definition},
]{garavaglia_introducing_2010} from the selectifnrequency obtained for the all-days situation.

For precipitation occurrence (Fig. \ref{fig:adamnip 404 2321}a), the selection of the main regvessi
structures (i.e. Str. n\textsuperscript{o}1 anderisuperscript{o}7 respectively based on $R_{70a}#l
$R {700} + Occ-19) is up to 15 \% more frequenssfreless frequent) for WP3 (resp. WP5) compardhdall-




days situation. For precipitation amount (Fig.{figfadapt temp 404 2321}b), the selection frequeoaftthe
main regressive structures (Str. n\textsupersalitfind n\textsuperscript{o}3 based on $R_{700}%lan
$W {700}$ respectively) can similarly change upt10\%. The reduced selection of a main regressive
structure for a given season or WP can lead tepegfially retain some secondary regressive streickor
instance, the regressive Str. n\textsuperscriptfmd8ed on $W {700} + H$ is selected 10 \% moredssdly
for WP2 than for the all-days situation (Fig. \ficifadapt temp 404 2321}bh).

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig10.pdf}

\caption{For each season and weather type, difteré®o) in selection frequency with the all-daysecéor
different regression structures. Results for threjation of (a) occurrence and (b) amount. A pesitlifference
indicates that the considered regressive struggwelected more often than for the all-day sitratResults are
displayed for a grid cell located in the north-wesErance. For a clearer illustration, the threéoar regressive
structures that are almost never selected areisyibgled.}

\label{fig:adapt_temp_404_ 2321}

\end{figure*}

The preferential (or conversely reduced) seleabiosome regression structures for given WTs or@eawas
estimated for all grid cells of France. In mostasaghe preferential (or reduced) selection wasddo present a
noticeable spatial coherency. Different configurasi are observed as illustrated in Figure
\ref{fig:adapt_spatiale} and discussed below.

The preferential selection of some regression giras can first be observed over large to verydaegions. As
an example, the preferential selection of Str.xteperscript{o}3 for the prediction of precipitati amount for
days in WP7 (more than +15 \% compared to usualpigined for all grid cells in France. Whateves th
location, the vertical velocity $W {700}$ seems stmequired in this specific weather pattern. Anothemple
is that of WP8 which corresponds to an Anticyclagitoation. Whatever the location, no precipitati@neally
expected for this configuration. No predictor igghrequired in addition to geopotential heightsusehe
analog stage. This configuration logically leads farge preferential selection of the backup ANEXt{251$
model.

For a given weather pattern, the preferential seleof a regressive structure can also vary from Kkegion to
the other. For WP2 for instance, the structuresdas $W_{700}$ or on $W {700}$ and $H$ are sedbekt
much more often along the Atlantic coast and inrntwth of France. The backup AM$ \text{25}$ mode! i
conversely more selected in the South-East, ilMbditerranean coast especially. For this weathginre, the
South-east is actually protected by the Massif @énmountain and does thus usually not receiveipitation
\citep[cf. Fig. 3 of J[[{garavaglia_introducing 201

The preferential selection of a regressive strigctan be also obtained for rather small and spaeifiions. In
Fig. \ref{fig:adapt_spatiale}b, the regressive 8ltextsuperscript{o}8 based on $W {700}+H$ is more
frequently selected for WP7 (around +15 \%) in@®vennes-Vivarais regions (south-eastern parteoassif
Central) and in the pre-alpine mountains (westam @f the Alps). The combination of $W_{700}$ afiHl$
seems thus to be very informative in those conéiians for this really rare WP (4 \% of the 20-ypariod).

Whatever the configuration, the preferential sébgcof regression structures presents some spatigrency, at
small or large regional scales. This obviously @ligsggests the spatial robustness of the informatigdictors to
be retained for given large scale weather confiipma.

\begin{figure*}[t]

\includegraphics[width = 12cm]{fig11.pdf}

\caption{(a) Mean geopotential height at 1000 hitatiree WPs \citep{garavaglia_introducing_201®). For
each WP, difference (\%) in selection frequencthulie all-days case. Results for two regressiatsires
($W_{700}$ and $W_{700}+H$) and for AM$_\text{25}%Predictand is precipitation amount. A positivesfre
negative) difference indicates an extra-selectiesf. reduced selection). Gray grids: same aggin Fi
\ref{fig:freq_cas}.}

\label{fig:adapt_spatiale}

\end{figure*}



\conclusions %% \conclusions[modified headingetessary]
\label{sec:conclusion}

The relevance of a hybrid analog/regression modglbeen explored in this study for the probahilisti
prediction of precipitation over France. Atmospbemalogs of the prediction day are identifiedgtneate the
parameters of a two-part regression model furtpbptied for the prediction. The regression modelsists of a
logistic GLM for the prediction of precipitation carrence and a logarithmic GLM for the predictidn o
precipitation amount. The prediction obtained vtitis two-stage approach updates the predictiveildigton
that would have been achieved directly from a dagesanalog model based on atmospheric circulatiafogs.
The hybrid approach makes the downscaling modegitada as the analog days are identified for each
prediction day, the predictors and regression @deffts of the regression models can vary fromaaneto the
other.

The regression stage allows a non-negligible ptieaickill gain compared to the reference analogleh¢gain
up to 0.1 skill score points for both the BSS dmel €RPSS). The CRPSS gain is mainly achieved dtieto
regression model estimated for the precipitatioo@m The introduction of local scale predictorstsas
relative humidity is obviously crucial there. Thaaptive nature of the model and thus the possiliditailor the
downscaling relationship (both predictors and regien coefficients) to the current prediction degras to be
decisive as well. The CRPSS gain obtained withleestage approach is actually two times largen tie one
obtained by \citet{chardon_spatial_2014} with a tiewel analog model where a unique and same sdewal
analogy variable (namely humidity) is considereddib days.

The prediction skill and adaptability of this hybapproach was illustrated for the prediction ahbibe
precipitation occurrence and amount in a simpliiedfiguration where four predictors, selected in a
preliminary analysis from a large ensemble of pidépredictors, are used in the regression stage.
predictors used for precipitation occurrence aeerdtative humidity and vertical velocity at 700shEhe helicity
integrated from 1000 hPa to 500 hPa and the oaueref the previous day. A similar set of predistisrused
for the precipitation amount (the occurrence offihevious day is replaced by the 700 hPa tempe&aivost of
the time, the final regression model only includes or two predictors. It also very often includles relative
humidity $R_{700}$ for precipitation occurrence atie vertical velocity $wW_{700}$ for precipitaticeimount.
Some combinations of predictors, almost never usgeéneral, appear to be more frequently retaineddme
specific weather patterns and/or locations in Feanevealing their potential interest for thesaatibns.

For the sake of simplicity and to limit the degreéfreedom in our analysis, we considered a unagieof four
potential predictors for all SAFRAN grid cells. Blobviously leads to a sub-optimal prediction ogunfation.
The main meteorological processes driving predipitan France obviously differ from one regiontte other.
The most informative predictors are thus expeabduktregion-dependent and the set of predictadog to
considered in the regression stage could be refinalregional basis. This is expected to impreeskill of
the prediction. The same would apply for an appiticeof SCAMP to other regions worldwide.

A number of atmospheric variables have been coreidas potential predictors in similar downscabhgdies.
The predictors found to be of interest are mosrofew. They are roughly the same than those ceresidn the
preliminary analysis of the present work. Howearjn the present work, the analyses usually choig to
identify these informative predictors are potemfiatisleading. The selection of a variable is irdleéen based
on its predictive power, estimated with some prigalicskill score in an all-days evaluation framelwoks
highlighted in the present work however, some mteds are likely to be informative for very few
meteorological situations. An all-days evaluatisexpected to reveal robust predictors. It howseey likely
misses important situation-specific predictors. fikibrid approach here estimates the statisticahdoaling
link from a homogeneous set of days, with respetieir large-scale atmospheric circulation configion.
Those days are moreover atmospheric analogs farélaiction day. This two-stage approach has theis th
potential to reveal the predictive power of vergdfic predictors, suited for very specific metdogical
configurations. It leaves very likely room for sificant improvements of the prediction skill forcduunusual
configurations. It gives likely also the opportynid better understand the atmospheric factorsmupldg in a
number of non-frequent and atypical meteorologsitalations. Notwithstanding the technical limitaisathat
may hamper such analyses, a broader exploratiamafch larger diversity of predictors, possibly nhon
conventional ones, would be thus definitively wdrthhis context.

Both the predictors and the regression coefficiame shown in our work to depend on the analog day
identified in the analog stage. This is the reasfaihe adaptability of the downscaling discusseovab Besides
the adaptability, we ideally expect that for a aiyeediction day the predictor selection and treweaisited




regression coefficients are robust. Further analgbeuld explore this issue. An interesting workikddoe for
instance to check that the predictors and theateel coefficients do not significantly change whsmnset of
analog days considered for the estimation is medlifis a result of a different setup of the AnalagdM (e.qg.
when one changes the archive period or the ardéingth).

Results of our work depend on a number of choicgsaasumptions. They for instance likely depenthen
database used for the large scale atmosphericcpoesliThe day-to-day behavior of such an analgggssion
approach (and the skill of the prediction) likegp&nds on the database and especially on theygohtte
predictors. An atmospheric reanalysis with a higpatial resolution would for instance likely alldor a better
description of the shapes of geopotential fields fan a more relevant simulation of regional / lloca
thermodynamic processes. It would likely lead imtio have higher quality variables for some atrhesic
parameters such as air instability. This may alloma better identification of the daily specificin the
downscaling relationship and of the most informafvedictors to be used each day. The reverse oway o
when using lower quality predictors, for instano@ér quality data from reanalyses available forz@th
century or lower quality data from climate or nuinak weather forecasting models. The quality of the
predictors is thus obviously also an importantéssube further considered. It may lead to revé&rent
informative predictors depending on the intendeslafgshe model (forecast, simulation or climate aTip

studies).

SCAMP was here used for the prediction of smallespeecipitation at individual grid cells. The preitbn of
precipitation fields, obviously required for a nuenlof impact studies, is also a challenging issue
\citep[e.q.][[{Clark ShaakeShuffle 2004, Yang_ SpeioeeGLM 2005}. Different adaptations of SCAMP
would be worth investigating in this context. SCAM®uld be for instance applied for the predictibmean
areal precipitation over the whole targeted spaiishain and some spatial disaggregation procedd beu
further used to generate the required fields \fEtep|[[{mezghani_combined 2009,
Rupp_multiplicative_2012}. As highlighted by \cifehardon_aggregation 2016}, the prediction skill of
SCAMP is expected to increase with the size ofthetial domain targeted for the prediction, whichkes such
an approach rather appealing. Another possibléesiydor spatial predictions would be to rely oa th
advantages introduced by the analog stage of SCAdtBt{ chardon spatial 2014} indeed showed tloataf
given prediction day a same set of analog daydearsed over rather large domains (up to a fewsloD’
kilometers) for a quasi-optimal prediction of losahle precipitation. The precipitation field othanalog day
(which is thus spatially coherent because alredbeived) could thus be used as a first quess ppmp field
scenario for the considered region. The field cdndchext updated at each location with day- andtion
specific coefficients obtained from the regressitage of SCAMP. This spatial prediction issue bl
considered in future works.
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{\clearpage}
\begin{appendix}[A]
%\appendixtitle{Acronyms}
%
\begin{table*}[t

\begin{tabular}{rl}

AM & Analog Model\\

AMS$ \text{25}$ & Analog Model (based on the 25 mest atmospheric analogs) used as benchmark or
backup prediction model. \\




BS & Brier Score\\
BSS & Brier Skill Score\\
cdf & cumulative distribution function\\
CRPS & Continuous Ranked Probability Score \\
CRPSS & Continuous Ranked Probability Skill Scbre
EPS & Ensemble Prediction System\\
GCM & General Circulation Model\\
GLM & Generalized Linear Model\\
SAFRAN & 8x8km precipitation reanalysis for Frarfoem MeteoFrance\\
SCAMP & two-stage analog / regression model\\
SDM & Statistical Downscaling Model \\
TWS & Teweless-Wobus Score\\
WP & Weather Pattern \\
\end{tabular}
\label{tab:Acronyms}
\end{table*}
\end{appendix}

%% REFERENCES

%% Since the Copernicus LaTeX package include8ihi€eX style file copernicus.bst,
%% authors experienced with BibTeX only have tdude the following two lines:

\bibliographystyle{copernicus}
\bibliography{references}

%% Tables
\clearpage
\begin{table*}t]
\caption{Large-scale potential variables considdrethe work. Stars: predictors obtained fromliest
GLMs identified for the 12 test SAFRAN grid celettion \ref{sec:data_model_evaluation}). Doubby st
predictors used for the analog stage. Bold texdistors retained for the SCAMP version presentetl a
evaluated in this work. See \cite{Holton_introdocti 2012} for the definition of the variables.}
\begin{tabular}{rl}
\tophline
Acronym & Predictor description\\
\middlehline
$R_{850}$ & *Relative humidity at 850 hPa \\
$R_{700}$ & *\textbf{Relative humidity at 700 hRa\
$R_{500}$ & Relative humidity at 500 hPa \\
$TCW$ & Total Column Water\\
$R {850} TCW$ & *Product of $R_{850}$ and $TCW$ \\
$T {7001$ & *\textbf{Air temperature at 700 hPa}
$B _{700}$ & *Baroclinity at 700 hPa \\
$\Delta z$ & 700hPa - 1000hPa thickness of theadumn\\
$Z {1000}$ & **\textbf{Geopotential height at 1@hPa} \\
$Z {700}$ & Geopotential height at 700 hPa \\
$Z {500}$ & **\textbf{Geopotential height at 506Pa} \\
$F {700}$ & Wind speed at 700 hPa \\
$U {700}$ & West component of wind speed at 7@&aA\
$V _{700}$ & South component of wind speed at Ha \\
$W_{700}$ & *\textbf{Vertical velocity (verticalcomponent of wind speed) at 700 hPa} \\
$H$ & *\textbf{Helicity of horizontal wind intecated from 1000 to 500 hPa} \\
$PV _{4001$ & *Potential vorticity of the atmospteat 400 hPa \\
$\Delta \theta$ & *Potential temperature gradiesiween 925 and 700 hPa \\
$FR_{700}$ & *Humidity flux at 700 hPa \\
$FU _{7001$ & West component of humidity flux a®@ hPa \\
$FV _{700}$ & South component of humidity flux @00 hPa \\
$\nabla FR_{700}$ & *Divergence of $FR_{700}$ \\
$0cc-1$ & *\textbf{Precipitation occurrence oftllay before the prediction day}\




\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\label{tab:initial predictors}

\end{table*}

\clearpage
\begin{table*}[t]
\caption{Possible regressive structures (i.e. doatibn of predictors) for the modeling of precitibn
occurrence and amount.}
\begin{tabular}{cll}
\tophline
Structure index & Precipitation occurrence & Rpéation amount \\
\middlehline
Str. n\textsuperscript{o}1 & $R_{700}$ & $R_{70&H\\
Str. ntextsuperscript{o}2 & $H$ & $HS\
Str. n\textsuperscript{o}3 & $W_{700}$ & $W_{70GH\
Str. n\textsuperscript{o}4 & \textit{Occ-1} & $T{700}$ \\
Str. n\textsuperscript{o}5 & $R_{700} + H$ & $R7P0} + H$ \\
Str. n\textsuperscript{o}6 & $R_{700} + W_{700}& $R_{700} + W_{700}$\\
Str. n\textsuperscript{o}7 & $R_{700} + $\texti@cc-1} & $R_{700} + T_{700}$\\
Str. n\textsuperscript{o}8 & $H + W_{700}$ & $H W_{700}$\\
Str. n\textsuperscript{o}9 & $H + $\textit{Occ-1& $H + T_{700}$\\
Str. n\textsuperscript{o}10 & $W_{700} + $\texfiDdcc-1} & $W_{700} + T_{700}$ \\
Str. ntextsuperscript{o}11 & $R_{700} + H + W_{00}$ & $R_{700} + H + W_{700}$\\
Str. n\textsuperscript{o}12 & $R_{700} + H + $x8t{Occ-1} & $R_{700} + H + T_{700}$
\\
Str. n\textsuperscript{o}13 & $R_{700} + W_{700} $\textit{Occ-1} & $R_{700} +
W_{700} + T_{700}$\\
Str. n\textsuperscript{o}14 & $H + W_{700} + $%et{Occ-1} & $H + W_{700} +
T_{700}$\\
Str. n\textsuperscript{o}15 & $R_{700} + H + W_{0} + $\textit{Occ-1} & $R_{700} + H +
W_{700} + T_{700}$\\
\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\label{tab:regressiv_structure}
\end{table*}

\clearpage
\begin{table*}[t]
\caption{Names of the weather patterns (WP) defimécitet{garavaglia_introducing_2010} and
related frequency for the 01 August 1982-08-01001207-31 period.}
\begin{tabular}{ccc}
\tophline
Index & Denomination & Annual frequency (\%)\\
\middlehline
WP1 & Atlantic Wave & 8\\
WP2 & Steady Oceanic & 22 \\
WP3 & Southwest Circulation & 8 \\
WP4 & South Circulation & 17 \\
WP5 & Northeast Circulation & 6 \\
WP6 & East Return & 6 \\
WP7 & Central Depression & 4 \\
WP8 & Anticyclonic & 29\\
\bottomhline
\end{tabular}
\belowtable{} % Table Footnotes
\label{tab:WP_definition}



\end{table*}
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