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Abstract

The curve number (CN) method was developed more than half a century ago and is still used in many watershed/water quality
models to estimate direct runoff from a rainfall event. Despite its popularity, the method is plagued by a conceptual problem
where CN is assumed to be constant for a given set of watershed conditions, but many field observations show that CN
decreases with event rainfall (P). Recent studies indicate that heterogeneity within the watershed is the cause of this behavior,
but the governing mechanism remains poorly understood. This study shows that heterogeneity in initial abstraction, |5, can be
used to explain how CN varies with P. By conventional definition, I, is equal to the cumulative rainfall before the onset of
runoff, and is assumed to be constant for a given set of watershed conditions. Our analysis shows that the total storage in I
(lar) is constant, but the effective 1, varies with P, and is equal to the filled portion of l.r, which we call 1. CN calculated
using la varies with P similar to published field observations. This motivated modifications to the CN method, called Variable
la Models (VIMs), which replace 1, with l.e. VIMs were evaluated against Conventional Models CM0.2 (2 = 0.2) and CMA
(calibrated A) in their ability to predict runoff data generated using a distributed parameter CN model. The performance of
CMO0.2 was the poorest whereas those of the VIMs were the best in predicting overall runoff and watershed heterogeneity.
VIMs also predicted the runoff from smaller events better than the CMs, and eliminated the false prediction of zero-runoffs,
which is a common shortcoming of the CMs. We conclude that including variable 1, accounts for heterogeneity and improves

the performance of the CN method while retaining its simplicity.

1. Introduction

The estimation of runoff from a rainfall event is of primary importance in applied hydrology. It is necessary in the engineering
design of small structures, post-event appraisals, environmental impact work, and other applications (Hawkins, 1993). One of
the most popular techniques used for this purpose is the Curve Number method, which has been in use for more than half a
century (Soil Conservation Service, 1956). The method uses a parameter called Curve Number (CN), which is assumed to

depend mainly on land cover, soil types, and antecedent conditions within a watershed.
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Curve Number varies spatially due to watershed heterogeneity, and temporally due to changes in soil moisture, land cover,
temperature, and other processes (Hawkins et al., 2008; Ponce and Hawkins, 1996; Rallison and Miller, 1982). CN also varies
with the magnitude and spatiotemporal distribution of rainfall. When heterogeneity is known at sufficient detail, CN variation
can be accounted by using a distributed parameter model. Otherwise this approach can introduce more parameters than can be
reliably estimated from the available data, and cause large uncertainties in the predicted runoff. There are several ways to
account for temporal variation of CN, each with its own advantages and shortcomings (Santikari and Murdoch, 2018). CN
variation with the distribution of rainfall is usually ignored. CN method is most commonly applied as an event-scale lumped-
parameter model, which is simple but also limited in its ability to account for the variations of CN. This diminishes the

accuracy of its runoff predictions.

The objective of this work is to improve the event-scale lumped-parameter application of the CN method by describing an
approach for incorporating the spatiotemporal variations of CN. The investigation is described in two papers. In this paper,
effects of spatial variation of CN (heterogeneity) at the watershed scale are analyzed. Insights gained from this analysis are
used to create modified models that account for heterogeneity. The modified models are evaluated using the runoff generated
by a distributed parameter model applied to a hypothetical heterogeneous watershed. In a companion paper (Santikari and
Murdoch, 2018), the modified models are refined by including an approach that accounts for the temporal variation of CN
using antecedent moisture. The refined models, which account for spatial and temporal variability, are then evaluated using
data from real watersheds.

1.1. Background

The CN method assumes that a rainfall event produces runoff (Q) when the event rainfall (P) exceeds the initial abstraction
(1a). la includes interception storage (by tree canopy, roof tops and such), early infiltration, and surface depression storage. The

effective rainfall, P- I, is partitioned between Q and further infiltration (F). This is given by mass balance as

P-1.=F+Q V P2>1, D

Both F and Q are zero when P < |5, and both increase with P when P > I,. It is assumed that F has an upper limit, which is
referred to as the potential maximum retention (S). In other words, S is the total storage available for infiltration after the runoff

begins.

The conceptual basis that defines the curve number method comes from the following assumption (Hawkins et al., 2008;
NRCS, 2003; Ponce and Hawkins, 1996; Rallison and Miller, 1982; Woodward et al., 2002):
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i.e. the runoff coefficient (left hand side) is equal to the fraction of storage filled in S (right hand side). Equation (2) is developed
using the reasoning that the equality holds at the end points (P < I, and P — oo) (Hawkins et al., 2008; Rallison and Miller,
1982; Woodward et al., 2002), and that the behavior of both ratios in the intermediate range is essentially the same (Figure 1).
When P < I,, both Q and F are zero and therefore the ratios on either side of eq. (2) are zero. When P > I, both the ratios

increase with P, whereas their rate of increase diminishes. At the limit of P — oo, both the ratios approach unity.

e

o
°
=
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Figure 1. Presumed variation of the ratios in eq. (2) with event rainfall (P). Q is event runoff, la is initial abstraction, F is
cumulative infiltration after runoff begins, and S is potential maximum retention (modified from Rallison and Miller (1982)
Figure 2).

To eliminate the need for an independent estimation of I, (Ponce and Hawkins, 1996; Rallison and Miller, 1982), it is assumed
that

| =48 3)

a

where 4 is a dimensionless parameter called the initial abstraction ratio. Early field data suggested an optimum value of 4 =
0.2 (Soil Conservation Service, 1956). However, more recent studies (Hawkins et al., 2008; Woodward et al., 2003) suggest

that A = 0.05 is more appropriate. Using egs. (1), (2), and (3), la and F can be eliminated to give

Q=0 V P<S
(4)
_ [P-asT

= v P>AS
P+@1-A4)S

Since the value of A is usually fixed (at 0.2 or 0.05), eq. (4) requires only one parameter, S, which varies within the range 0 <

S<oo.
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For convenience (Hawkins et al., 2008; Ponce and Hawkins, 1996), S (units in mm) is mapped on to a dimensionless parameter
called the Curve Number (CN) as

25400
254+ S

CN =

)

so that CN is 100 when S is zero, but approaches zero as S approaches infinity. In practice, when 4 = 0.2, CN ranges from
around 30 (for vegetated surfaces with highly permeable soils) to close to 100 (for impermeable surfaces or soils) (USDA,
1986). Tabulated CN values for various land uses, soil types, and management scenarios are available in handbooks and
manuals (NRCS, 2003; USDA, 1986). If a watershed has multiple land uses or soil types, typically, the CN is areally averaged.
CN can also be determined from field data by solving eq. (4) for S as

1 2 2
S =2—/12[2/1P+(1—/1)Q—\/(1—/1) Q +4/1PQ] )

and then using eg. (5). Conversely, when the CN of a watershed is known, Q can be estimated for a rainfall event using egs.
(4) and (5).

The curve number method is appealing because it is based on an intuitive concept [eq. (2)], relies on only one parameter, has
a large body of literature (Hawkins et al., 2008), and a comprehensive database (NRCS, 2003; USDA, 1986). It has been
included in many watershed/water quality models such as SWAT (Soil and Water Assessment Tool) (Neitsch S.L. et al., 2005),
CREAMS (Chemicals, Runoff and Erosion from Agricultural Management Systems), GLEAMS (Groundwater Loading
Effects of Agricultural Management Systems) (Knisel and Douglas-Mankin, 2012), AnnAGNPS (Annualized Agricultural
Non-point Source Pollution Model) (Bingner et al., 2011), EPIC (Environmental Policy Integrated Climate), APEX
(Agricultural Policy/Environmental Extender) (Wang et al., 2012), and HydroCAD (HydroCAD, 2015). A physically-based
modeling framework, such as the diffusive-wave approximation for overland flow coupled with the Richard’s equation for
unsaturated subsurface flow, e.g. (Panday and Huyakorn, 2004), may improve accuracy and resolution of model predictions
compared to the CN method, when the necessary input data, expertise, and computing resources are available. However, the
CN method will likely remain popular for many applications in runoff modeling because of its ease of use, wide knowledge

base, and less demand on computational resources than many physically-based models.

1.2. CN Variation with P

Curve Number is assumed to be a watershed property that depends on the current conditions, but it also varies with P [e.g.
Figure 2(a) and 2(b)]. Hawkins (1993) and D’Asaro and Grillone (2012) evaluated approximately 100 watersheds in a wide
range of settings and found the CN variation with P to be common. In 75% of the watersheds they observed, CN decreased

with increasing P and asymptotically approached a constant value. Hawkins (1993) referred to this as standard behavior. In
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20% of the watersheds, CN decreased with P but an asymptote was not attained within the range of the observed P. This was
referred to as complacent behavior. In about 5% of the watersheds, the CN increased with P and asymptotically approached
an apparent constant value. This behavior, referred to as violent, was often preceded by complacent behavior at smaller
rainfalls. Hawkins (1993) hypothesized that the inverse relationship between CN and P may be due to some spurious
correlation between them, or due to a bias that inherently results from the selective omission of data from small storm events
that failed to produce runoff. The reasoning is that large rainfalls always produce runoff but small rainfalls produce runoff only

under wet conditions, when the CN is large. Therefore small CN values for small rainfalls go unrecorded.

In watersheds showing a standard behavior, CN was treated as an asymptotic function of P as

CN=CN_+(100-CN )e )

where CN = CN,, is the asymptote and k is a calibration parameter (Hawkins, 1993). CN., is the smallest possible value of CN
for a watershed and is approached only at large values of P. To develop eq. (7), measured values of Q, ideally for a large range
of values of P, are needed. The usual procedure involves “frequency matching” the data (Hawkins, 1993), i.e. sorting the
values of P and Q separately, and pairing them according to their rank. CN for each pair is then calculated using egs. (5) and

(6). Frequency matching reduces the scatter of data points around the best fit curve in a CN vs. P plot.

A standard behavior of CN was also observed in two watersheds (BC5 and BC1) near Greenville, South Carolina, USA [Figure
2(a) and 2(b)]. In these watersheds, CN (calculated using A = 0.2) decreased from 97 to 50 as P increased from 2 mm to 128
mm. The data was characterized by a modest scatter (R? = 0.9) about the best fit curve based on a quadratic function of P.
Description of these watersheds is given by Santikari and Murdoch (2018). The justification for using quadratic functions

follows from the analysis of heterogeneity presented in Section-2.

The approach used in Figure 2(a) and 2(b) avoids the commonly used frequency matching, e.g. (Hawkins, 1993). Each CN
value in the plot was calculated using the P-Q pair from the same storm event. Frequency matching would significantly reduce
the scatter in the plot, but it would also downplay the importance of CN variation due to antecedent conditions. Reducing the

scatter by accounting for antecedent conditions, e.g. using antecedent moisture (Mishra et al., 2006), is a better approach.

The hypotheses given by Hawkins (1993) are valid, but insufficient to explain the standard and complacent behaviors. It may
be true that small rainfalls produce runoff only under wet (large CN) conditions and therefore only the large CN values are
recorded. However, if one has a large enough sample of storms, some of the larger storms also must have occurred during wet
conditions. For the larger storms, therefore, one would expect to see the whole spectrum of CN values ranging from the largest

to the smallest. However, this is not the case. As P increases, the values of CN decrease consistently [Figure 2(a) and 2(b)].
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Figure 2. Variation of CN (A = 0.2) with P in watersheds (a) BC5, (b) BC1, near Greenville, SC. Variation of la with P in (c)
BCS5, (d) BC1 (see Santikari and Murdoch (2018) for study area description). Best fit curves for la are quadratic functions of P
with zero intercept. Corresponding best fit curves for CN were derived from those of |2 using egs. (3) and (5).

1.3. Heterogeneity as a Cause of CN Variation with P

Soulis and Valiantzas (2012) hypothesized that the observed variation of CN with P in the standard and complacent cases is
a consequence of watershed heterogeneity. They assumed a hypothetical heterogeneous watershed with two subareas
characterized by different CNs. They then calculated the watershed runoff, for a range of values of P, as the area-weighted
average of the runoffs from the subareas. Watershed CN calculated using this runoff varied with P akin to the standard
behavior. The shape of the synthetically generated CN vs. P curve could be matched with the observations by adjusting the
areas of the subareas and their respective CNs. This idea can also be extended to multiple subareas so that the heterogeneity
within a watershed can be represented more accurately. However, this could lead to problems of over-parameterization, non-

unigqueness, and non-convergence as pointed out by Soulis and Valiantzas (2012).
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In a later paper, Soulis and Valiantzas (2013) suggested using spatial information on land cover and soils to delineate the areal
extent of subareas and constrain their respective CNs. This approach would reduce the number of calibrated parameters by
half because it only requires the calibration of the CNs for the subareas. In essence, the multiple-subarea approach is similar
to a distributed modeling approach that calculates the watershed runoff as the area-weighted average of the runoffs from the
subareas, e.g. SWAT (Gassman et al., 2007). The approach used by Soulis and Valiantzas (2013) attempts to match the
observed and simulated values of CN, whereas that used by SWAT attempts to match the observed and simulated values of Q.
Since CN and Q are uniquely related for given values of P and A, these approaches are equivalent. A major implication of the
work of Soulis and Valiantzas (2013) is that a distributed modeling approach can account for the standard and complacent
behaviors of CN.

Using a single value of CN independent of P in a heterogeneous watershed can cause a systematic error in Q, and lead to poor
predictive ability of the method. This is because when CN is constant, Q may be underestimated for small P and overestimated
for large P. This problem can be addressed either by treating CN as a function of P, e.g. asymptotic fitting (Hawkins, 1993),
or by using a distributed modeling approach that accounts for heterogeneity in sufficient detail, e.g. SWAT (Gassman et al.,
2007). An understanding of the mechanism of how watershed heterogeneity leads to the variation of CN with P is also
important. It could help in accounting for this variation without resorting to fine discretization or over-parameterization of the
CN method. To accomplish this, an analysis of the effect of heterogeneity on I, and S is performed, which can then be used to
understand the effect on CN.

2. Reevaluation of Initial Abstraction

The quantities CN, 1, and S are considered to be the properties of a watershed that depend on current conditions. In usual
practice, CN estimated for a certain set of conditions is applicable to any rainfall event occurring in those conditions
irrespective of the magnitude of P. However, in every watershed evaluated by the previous studies (D’Asaro and Grillone,
2012; Hawkins, 1993) the CN varied with P. If so, since I, and S are inversely related to CN [egs. (3) and (5)], one can expect
that they too vary with P but inversely to that of CN. The calculated values of I, for watersheds BC5 and BC1 near Greenville,
SC, increase with P and appear to approach a constant at large values of P [Figure 2(c) and 2(d)]. A plot of S vs. P would be
similar to the I, vs. P plot, with the y—coordinate scaled by 1/1.

To evaluate the link between heterogeneity in I, and its variation with P, we looked at how the effective I, of a heterogeneous
watershed is determined and whether it is affected by the magnitude of P. Our analysis shows that there is an inconsistency
between the theoretical definition of I, and its calculated value at the watershed scale. It also shows how heterogeneity can

cause |, to vary with P, and how this relates to variations of S and CN with P.
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2.1. Problems with the Current Usage of Ia

By the theoretical definition of I,, if runoff is detected in the hydrograph, it is assumed that I, has been met for the watershed.
Watersheds are heterogeneous combinations of various land use-soil-slope complexes. These are referred to as Hydrologic
Response Units (HRUs) in SWAT (Gassman et al., 2007), and the same term is also used here. Each HRU is assumed to be
homogeneous, and is characterized by representative values of CN (CN;) and I, (lai). During a rainfall event, the HRU with the
smallest of the l,is will be the first to generate runoff. Assuming that this runoff reaches the watershed outlet, by definition,
the I, of the watershed should be equal to the smallest of the l,s. This could even be zero if the watershed has surfaces such as

open water bodies that cannot abstract the rainfall.

However, it is difficult to detect the exact moment of generation of runoff and determine the corresponding value of I,, which
is equal to the cumulative precipitation at that moment. There have been studies (Shi et al., 2009; Woodward et al., 2003) that
tried to determine I, from hydrographs. A problem with this approach is that there can be a time lag between runoff generation
in headwaters and its detection at gauging station. Rainfall that occurs during this time lag is also included in |5, leading to its
overestimation. Another possible approach would be to collect observations from a large number of rainfall events and take I,
to be equal to the smallest P that produced runoff. This would eliminate the problem with the lag time, but Q needs to be
insignificant to reduce the error in l,. It should also be noted that I, determined this way is only representative of the antecedent

conditions of the smallest event that produced runoff.

It may be difficult to measure I, directly, but it can be calculated for any event using egs. (6) and (3). However, in medium to
large rainfall events, even the HRUs with larger l,s will contribute to Q. Therefore, the calculated value of I, in these events
will also be influenced by larger lss. This value of I, tends to be greater than the smallest of the 15s. Moreover, it can be
expected to increase with P as increasingly larger rainfalls generate runoff from HRUs with increasingly larger laS. Thus,

there is an inconsistency between the definition of 1, and its calculated value at the watershed scale.

2.1.1. Spatial-scale effect on A

Strictly adhering to the definition of I, at the watershed scale may also cause a spatial-scale effect on A. Let us refer to the CN
of the watershed as CNw, and I, as law. One of the common ways to determine CNy is to calculate it as the area-weighted
average of the CNis (NRCS, 2003) as

CN, =Y a CN, (8)
i=1

where a; is the fractional area of the i"" HRU. Note that the fractional areas must add up to unity. By definition, l.w is equal to

the lowest of the las. Therefore, if 1, <1, <....<1_, then
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From equations (3) and (5) it can be shown that CN and I, are related as
25400
CN = — (10)
254 + ()
A
If all the HRUs are assumed to have the same 1 = 4;, egs. (8), (9) and (10) lead to
CN, >CN, >...>CN_
CN, < CN,
To o (1)
Ao A
Ay <4

where Aw is the effective initial abstraction ratio of the watershed. Therefore, if 1 is assumed to be the same among the
component HRUSs, it will have a smaller value at the watershed scale. This implies that 4 decreases with increasing spatial-
scale. Therefore setting A constant, equal to 0.2 or 0.05, for all the spatial scales contradicts the definition of I.. In any case, it
is probably more accurate to calculate runoff at the HRU scale (Q;) and take the area-weighted average of Qis, rather than take
the area-weighted average of the CN;s and calculate Q at the watershed scale. It is also more appropriate because Q is runoff

per unit area whereas CN is a dimensionless index variable.

The inconsistencies in the usage of |, are a direct result of heterogeneity in a watershed. Moreover, heterogeneity also appears
be responsible for the variation of l.w with P [Figure 2(c) and 2(d)]. To verify this, a relationship between l.w and the magnitude

and areal distribution of s needs to be developed.

2.2. lain a Heterogeneous Watershed

Consider a watershed with four HRUs mainly characterized by their land use types viz. open waterbody (lao), urban area (la1),
park (la2), and forest (la3) [Figure 3(a)], such that l,o = 0 < la1 < la2 < la3. An open waterbody generates runoff during every
rainfall event. Other land use types generate runoff depending on the magnitude of the rainfall, with land uses of larger I,
requiring larger magnitudes. The number of land use types contributing to the runoff, in other words the runoff contributing
area, increases with rainfall. This process can be conceptualized by representing the storage distribution of I, as a series of bins
where each bin corresponds to a HRU [Figure 3(b)]. The height and the width of a bin are given by I, and a; respectively, and

all bins have unit thickness. In a rainfall event, only the bins with I < P are fully filled and contribute to runoff, whereas the
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others are partially filled and do not contribute to runoff. The total amount of filled storage in I, also increases with P until it

reaches a constant value when the l4s of all land use types are fully filled and the whole watershed is contributing to the runoff.

(b) 5

- = ——— ] T ———— - —

A

3
X
X
¥

Figure 3. Spatial distribution of la in a heterogeneous watershed (a) lais of various HRUs mainly characterized by their land
use types (lao = 0 < la1 < la2 < la3) (b) conceptual model in which each HRU is represented by a bin with height = lai, width = a;,
and unit thickness; shaded area indicates the filled portion during an event.

Consider a general case of a heterogeneous watershed with n +1 HRUSs such that

l,=0<I_ <I,<..<I (12)

an

where |y represents open water bodies and other surfaces that cannot abstract rainfall. The areal average of the total initial
abstraction (lar) is given by

10
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IaT = Zal Iai (13)
i=0

In arainfall event, all the HRUs with I, <P have their initial abstractions completely filled while the others are partially filled.
Just by analyzing the runoff for that event, it is impossible to quantify the magnitudes of the 1, that are partially filled. Because
they have not contributed to the runoff, all that can be said is that their I5s are greater than P but their magnitudes remain
unknown. However, the information on the magnitudes of the 1S that are completely filled should be present in the runoff

data. In other words, it takes larger rainfalls to fill larger I5s and gather information about their magnitude.

Then what is the effective initial abstraction of the watershed for a given rainfall event? Consider an event where the rainfall
falls within the range: lam <P < lam+1). HRUS with 1, < lan have their initial abstractions completely filled and produce runoff,
whereas HRUs with 15 > lam+1) have their initial abstractions partially filled up to the level of P and do not produce runoff.
The areal average of the filled portion (includes completely filled as well as partially filled HRUs) of the initial abstraction is
given by

| =Zm:ai |ai+(1—iaijp (14)

The first term on the right-hand side of eq. (14) represents completely filled HRUs. The second term represents partially filled
HRUs, all of which are filled to the level of P. Note that l.r is the areal average of total initial abstraction, whereas I is the
areal average of the filled portion. Therefore,

| < v P<I

aF aT
(15)
=1, Vv P>,

aF aT

The conceptual model presented in Figure 3, and in egs. (14) and (15) is intuitively appealing, and also hints at the possibility
that l.w may be equal to la. This is because I+ increases with P and approaches a constant value (lar), similar to the
observations in Figure 2(c) and 2(d). Eq. (14) is also consistent with a distributed parameter model application of the CN
method as described in Section-3.

2.3. Variation of lar with P

To investigate the variation of l.= with P, egs. (14) and (15) are applied to the scenario presented in Figure 3, where n = 3. A
plot of I vs. P (Figure 4) shows that I increases with P and becomes constant (1. = lar) at large values of P (P > la3). The
kink-points joining the line segments occur when the initial abstraction of one of the HRUs becomes completely filled. At

these points, P is equal to one of the I4s. In between these points (lan < P < lam+1)), the relationship between I, and P is linear

11
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with a slope of (l— Z a j . The slope abruptly changes across the kink-points. It decreases with m, and becomes zero when
i=0

m = n. The maximum value the slope can take is unity. This occurs with the line segment passing through the origin, when
HRUSs with zero initial abstraction are absent (i.e. ap = 0). When these HRUSs are present, however, the origin itself is a kink-

point where the slope abruptly jumps from unity to 1-ao.

rd

IaF 4

P:|a1 P:|a2 P:|a3 P

Figure 4. Variation of lar [egs.(14) and (15)] with P for the scenario presented in Figure 3.

The analysis presented so far represents a discrete case where each HRU is homogeneous and has a finite area. The values of
lais vary discontinuously across the HRUSs. Their areal distribution can be represented by a plot of a; vs. I, [Figure 5(a)]. The
smaller the area of HRUSs, the more numerous they are, and the more accurate is the representation of the heterogeneity within
the watershed. The most ideal representation would occur when the HRUSs shrink to points. Then the magnitudes of Is within
the watershed vary continuously and therefore can be represented by a probabilistic distribution of areal occurrence [Figure
5(b)]. Itis impractical to characterize the watershed at such fine scale, but it is worth understanding the properties of the initial

abstraction at the finest resolution first, and then making assumptions or simplifications later to suit the practical needs.

a
X (@, lay) a(l)

x (aSr |a3)

@ Y
((agl IaO) X (a2, IaZ)

N

S

| |
a IaT Ia,max a

Figure 5. Representing areal distribution of la within a watershed (a) discrete case (b) continuous case.
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For the case of a continuous distribution of I,, eq. (14) takes the form
P P
I, =Ilaa(la)dla+(1—ja(la)dla]P (16)
0 0

where a(l,) is the probability density function of areal occurrence of l.. The fractional area with initial abstraction = 1, is given
by a(la) dla. The upper limit of the integrals is set to P because the last initial abstraction to completely fill up would be equal
to P. The areal average of total initial abstraction, lar, is given by

| = j | a(l,)dl, (17)

where lamax is the maximum value of 1, within the watershed. Thus, lar is equal to the mean of the distribution [Figure 5(b)].
Eqg. (15) then becomes

aF T a,max (18)
IaF:IT v PZIa,max
laT
Y
Q
X
(4
N\
laF &
Q
0(\
&
eO
0 P 'a,max

Figure 6. Variation of lar with P for a continuous distribution such as the one shown in Figure 5(b)
Unlike the discrete case, the slope of the I curve for the continuous case decreases smoothly with increasing P (Figure 6).

This is because the line segments in the discrete case (Figure 4) shrink to points in the continuous case. It follows from eq.
(16) that
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di, .,
P |,
. p (19)
dP |,

a,max

Thus, the I curve is bounded by a line of slope = 1 passing through the origin, and a line of slope = 0 with the intercept equal
to lar (Figure 6). The line of slope = 1 is referred to as the no-runoff line because along this line I, = P. When the whole
watershed is represented by a single HRU, the I, curve coincides with the no-runoff line until lar = lar. A comparison of

Figure 6 to Figure 2(c) and 2(d) strengthens the case that l.w is equal to la.

2.4. Variation of CNw with P

Let us hypothesize that law = lar, i.€. the effective |, of a watershed is equal to the area-weighted average of the filled portion
of the las. Then, if eq. (10) is written for CNw, la can be replaced by l.. Substituting eq. (16) in eq. (10) gives CNw as a
function of P. When plotted against P, CNy starts at 100 when P = 0, and then decreases with increasing P (Figure 7).

0 P Ia,max

Figure 7. CNw as a function of P when law is assumed to be equal to lar (shown in Figure 6).

Differentiating eg. (10) and using eq. (19) gives

d(CN,) 10
P |, )
(20)
d(CN
D) I
P |,

='a,max
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where the constant 10 has units of 1/in. Thus the CNw vs. P curve is at its steepest at P = 0 and flattens with increasing P, and
becomes constant when P > I max. This constant, CNr, is the smallest value CNy can take and corresponds to the case la = lar,
when the initial abstractions of all the HRUs are fully filled. CNw as a function of P is bounded by a curve corresponding to

the condition P = I, the no-runoff line, and a line of slope = 0 with the intercept equal to CNr (Figure 7).

The shape of the CNw vs. P curve (Figure 7) generated using egs. (10) and (16) is quite similar to the best-fit curves from field
observations [Figure 2(a) and 2(b)]. Nearly 95% of the watersheds evaluated in the previous studies (D’Asaro and Grillone,
2012; Hawkins, 1993) also had responses identical to Figure 7, supporting the hypothesis that l.w = lar. As pointed out by
Soulis and Valiantzas (2012), complacent behavior appears to be a special case of standard behavior where observations from
larger rainfalls are unavailable. Therefore, it is probably more appropriate to refer to any “CN decreasing with P” trend as
standard behavior, because it is caused by the inevitable presence of heterogeneity in a watershed. It also shows that assuming
a partial source area whenever a complacent behavior is observed (D’ Asaro and Grillone, 2012; D'Asaro and Grillone, 2015)

can be misleading.

2.5. lar and CNw Curves for Various Distributions of Ia

The functional form of a(l,) defines the areal distribution of 1, within a watershed. We considered idealized functional forms
of a(l,) that correspond to uniform, normal, triangular, and bi-modal distributions (Table 1). In each a(l.), the maximum or
other key value was constrained so that the total area under the distribution was unity. For example, the y-coordinate of the
apex in the triangular distribution must be equal to 2 / lamax (Table 1). In the case of normal distribution, however, the area
under the curve is unity only when the limits are infinite. Therefore, a standard deviation (c) much less than lamax Was used so

that the area under the curve within the range 0 < la < la max is approximately equal to unity.

For each distribution, the corresponding functional form of 1.z was determined using eg. (16) and the results are presented in
Table 1. For the general case of a(l,) as a polynomial, the corresponding . is a polynomial two degrees higher than a(l,). For

the normal distribution, I is a combination of Gaussian and Error functions (Table 1).

For the purpose of comparison, symmetrical versions of the distributions were considered such that all of them have the same
minimum, mean, and maximum values of I, [Figure 8(a)]. The minimum value of I, was set to zero and the maximum value
was lamax. Therefore, the mean for all the distributions was la max /2.
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Figure 8. (a) Various symmetrical distributions of la with the same minimum (zero), mean (lamax/2), and maximum (lamax), (b) the
corresponding lar curves calculated using eq. (16), (c) the corresponding CNw curves calculated using eq. (10).

The kurtosis (peakedness) of a(l,) has a major influence on the shapes of I.- and CNy plotted as functions of P (Figure 8). The
normal distribution has the greatest kurtosis whereas the bimodal distribution has the least. As the kurtosis decreases, the la¢
and CNw curves deviate further from the bounding lines (Figure 8). When there is a gap in the distribution, as in the case of
the bimodal distribution, the corresponding la curve is linear for the range spanning the gap. This is consistent with the discrete

case where l.r was represented by line segments for the gaps in between the discrete values of 1, (Figure 4).

Skewness of a(l,) also affects l.r, and this is illustrated by an idealized case where an initially uniform distribution is positively
skewed [Figure 9(a) and 9(b)]. The mean of a(l,), which is equal to l.r [eq. (17)], decreases with increasing positive skewness.
This is important because a land use change such as conversion of forest to urban land is expected to increase the positive
skewness (i.e. more low values of 15). During the conversion, lamax remains unchanged while some forested land remains.

When the entire forest is converted, lamax drops to a lower value.
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The analysis also shows that a watershed cannot be characterized or compared with other watersheds using a single value of
CN [such as CN, used in asymptotic fitting, eq. (7)]. Depending on the distribution of heterogeneity, the relative runoff
potential of a watershed can be P dependent. This is illustrated by considering two uniform distributions, unil and uni2, where
uni2 has a narrower range and a smaller mean than unil [Figure 9(c)]. For smaller values of P, laguni1 < laguniz [Figure 9(d)],
and therefore CNw uniz > CNw,uniz. However, for larger values of P, the converse is true. Thus, the watershed with unil generates
more runoff for smaller values of P, whereas the watershed with uni2 generates more runoff for larger values of P.

@ (b)
- T T T T
__________ |
a(l ]
(la) -
1
A ———
0 la
(c)
Ly
| 3 I
| = | |
a(la) —
I | |
I =T
I | | = I
|1 s
| L] l
0 la lamax O P la,max

Figure 9. Effect of skewness, mean, and range of a(la) on lar (a) uniform, uni (solid), and two positively skewed distributions,
skewl (dashed) and skew?2 (dash dot dot) (b) lar as a function of P for the distributions shown in 9a (c) uniform distributions
unil (solid) and uni2 (dashed) where uni2 has a narrower range of values of la and a smaller mean than unil (d) lar as a
function of P for the distributions shown in 9c.
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3. Effect of Heterogeneity on S

Similar to the case of |, the presence of heterogeneity also causes the effective S of a watershed (Sw) to vary with P. Functional
form of Sw depends not only on the potential maximum retentions of the HRUs (S;s) but also on the I5s. Sw can be estimated
using eq. (2) if the quantities law, Qw, and Fw are known. A distributed modeling approach can be used to calculate these
quantities for a heterogeneous watershed. Distributed CN models, e.g. SWAT (Gassman et al., 2007), commonly calculate Qw

as the area-weighted average of Q;s, and this assumption can also be extended to Fw. Thus,

Q. =2.20Q

R -YaF
i=0

(21)

Using eg. (21) and applying mass balance [eq. (1)] at watershed and HRU scales gives eq. (14) for law. This shows that law
calculated using a distributed model is equal to ..

Writing an expression for Sy in terms of 1,is and Sis for a general case of a heterogeneous watershed is cumbersome. Therefore,
it is only presented graphically for an example of a heterogeneous watershed. However, an expression for Sw can be presented

in a compact form for a special case where all the 1S are zero as

if 1,=0 V ie{01..n}
(22)

-1
a
Thus, Sw varies from the area-weighted harmonic mean (Z—'J when P = 0, to the area-weighted arithmetic mean

(Z a;S, jwhen P>>S,

i=0

To illustrate the effect of heterogeneity on Sw, an example watershed with the storage distribution shown in (Table 2) was
considered. The variation of Sy with P was analyzed for the cases of 1i = 0 and 4i = 0.2 (Figure 10). In both cases, Sw increases
with P and approaches the area-weighted arithmetic mean, S, for large values of P. In the case of 4; = 0, the slope of the curve
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is maximum at the origin, and decreases monotonically with P. In case of /; = 0.2, however, the slope is zero at the origin and

generally increases with P until P = I, = 40 mm (P = lamax for the continuous case), where it reaches its maximum value.

Thereafter the slope decreases monotonically with P, giving an S-shaped curve. In other words, the slope generally increases

with P until the entire watershed area contributes to the runoff, and decreases thereafter.

Table 2. Storage distribution in a hypothetical heterogeneous watershed used to illustrate the variation of Sy with P.

HRU ai Si (mm)
0 0.05 0
1 0.20 50
2 0.35 100
3 0.25 150
4 0.15 200
120y sysueem
80
3
E
(/);
40
A=0
—_——— 1=02
0 T - r
0 50 100 150

P (mm)

200

Figure 10. Variation of Sw with P in a heterogeneous watershed with the storage distribution shown in Table 2.

The similarities between law and Sy are that they both increase with P and have an upper limit equal to the area-weighted

arithmetic mean of their respective components. The difference is that l.w reaches its upper limit of Ir for a finite value of P

(P = lan Or P = lamax), Whereas Sw requires large values of P (P >> S) to reach its upper limit of S... Moreover, Sw vs. P is an S-
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shaped curve when 4; > 0. This shows that l.w and Sw are not proportional, i.e. Aw is not a constant even though Ais are assumed

to be equal and constant.

4. Application

The analysis from previous sections shows that l.w and Sw are functions of P, and gives their functional forms. Incorporating

these functions in the lumped parameter application can potentially improve the performance of the CN method.

4.1. law as a function of P

The distributed parameter modeling approach, eq. (21) with the application of mass balance [eq. (1)] at watershed and HRU
scales, shows that law = lar. lar is given by eq. (14) for the discrete case and eq. (16) for the continuous case. All the distributions
in Table 1, except the normal distribution, gave a zero-intercept polynomial for l.=. Therefore, using a quadratic function of

the form

|, =cP-cP’ vV P<I
(23)
L = IaT :Cl(la,max)_cz(la‘max)z v P>l

aw

is an efficient way to describe law. In eq. (23), ¢1 and c; are calibration parameters such that 0 < ¢; < 1 and ¢ > 0. Since the

slope of law is zero at P = lamax [€q. (19)], it follows from eq. (23) that

(24)

Similarly, the slope of l.w is unity at P = 0 so c¢; should be unity. However, it was kept as a free parameter in eg. (23) to allow
for the approximation of piecewise functions (e.g. la for triangular and bimodal distributions in Table 1). Moreover, the
analysis for the discrete case shows that when HRUs with zero initial abstraction are present, the origin is a kink-point where
the slope abruptly jumps from unity to 1-ao. To avoid over-parameterization of the model, a polynomial of degree > 2 for law

was not considered.

4.2. Sw as a function of P

The sigmoid shaped function of Sw, with the conditions that Sw= 0 when P =0 and that the maximum slope occurs at P = 15 max,
requires at least two parameters to describe it. However, this along with eq. (23) would also increase the number of calibrated

parameters in the CN method, increasing its complexity and potentially causing non-uniqueness. A relatively simple approach

21



10

15

20

25

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-616 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Discussion started: 8§ November 2017 Sciences
(© Author(s) 2017. CC BY 4.0 License.

Discussions

is to assume that Sy is constant similar to the conventional CN method. Another approach is to assume that Sw is proportional

to law, i.e. eq. (3) is applicable for a heterogeneous watershed.

Here the emphasis is placed on treating l.w as a function of P while offering some flexibility on how Sy is treated. This is
because the variation of 1w with P had a significant impact on the model performance, whereas including the variation of Sy
with P showed only marginal or no improvement. This may be because law is a component of mass balance [eq. (1)] while Sw
is not. Fw, which is the filled portion of Sw, is a component of mass balance and varies with P even if Sy is assumed to be a
constant. Therefore, to maintain the simplicity of the CN method and avoid the problems of over-parameterization and non-

uniqueness, modeling the sigmoid-shaped function of Sy is omitted.

4.3. Lumped Parameter Models

Lumped parameter application of the CN method was modified by treating law as a function of P as described in the previous
section. Modified lumped parameter CN models were evaluated by comparing their performance with that of the conventional

lumped parameter CN models.

4.3.1. Conventional Models (CMs)

Conventional CN models are defined by egs. (1) through (5), and by the assumption that l.w and Sw are independent of P. In
this study two types of conventional models, referred to as CM0.2 and CMA, were used. In CMO0.2, Aw was fixed at 0.2, and in
CMA, Aw was determined by calibration. Thus CMO0.2 had one free parameter, Sw, whereas CMA had two free parameters, Aw

and Sw.

4.3.2. Variable Initial Abstraction Models (VIMs)

VIMs are defined by egs. (1), (2), (4), (5), and (23), and they have three free parameters. If Sy is assumed to be independent
of P, then the model requires calibration of ¢, c,, and Sw, and is referred to as VIMS. If eq. (3) is also included, then the model

requires calibration of c1, ¢z, and Aw, and is referred to as VIMA.

5. Evaluation

Lumped parameter models described in the previous section were evaluated in their ability to predict runoff and account for
watershed heterogeneity. Accounting for heterogeneity means that the model accurately predicts law and Sw, and runoff from
smaller events. This is because (i) law and Sw as functions of P are directly related to heterogeneity, and (ii) inability to account

for their variation with P causes under-estimation of runoff in smaller events.
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Evaluation of lumped parameter models requires the data for law, Qw and Sw. This is generated using a distributed parameter
model application of the CN method. The assumption is that a distributed parameter model accounts for heterogeneity, and

therefore its estimates of law, Qw and Sw are accurate.

5.1. Distributed Parameter Model

In a distributed parameter model, egs. (1) through (5) are applicable at the HRU scale, with the assumption that I, and S; are
independent of P. Once Q; and F; are calculated for each HRU, watershed scale quantities law, Qw, Fw and Sw are calculated
using egs. (14), (21), and (2).

The distributed parameter model was applied to an idealized synthetic watershed with the storage distribution shown in Table
2, for the cases of 4i = 0, 0.2, and 0.5. A range of values of P were synthetically generated such that they vary lognormally
from 0.1 mm to 200 mm with a median of 8 mm. For each rainfall event, l.w, Qw, Fw and Sw were calculated, and used in the

evaluation of the lumped parameter models.

The reason for using a synthetic watershed here is that the heterogeneity can be precisely defined and used to evaluate the
predictions of heterogeneity by the lumped parameter models. In real watersheds the heterogeneity has to be determined by
calibration, and there can be non-uniqueness when multiple HRUs are present. Application of these modified models to data
from real watersheds is discussed by Santikari and Murdoch (2018).

5.2. Model Evaluation Criteria

Each lumped parameter model was calibrated by minimizing the sum of the squared residuals between its predicted runoff
(Qw) and the baseline from the distributed parameter model. All the models were evaluated using the Nash-Sutcliffe efficiency
parameter (NSE), the standard error of estimate (SEE), and the percent bias (PB) (McCuen, 2003; Moriasi et al., 2007). NSE
can vary from - to 1. The calculations and observations are exactly equal when NSE = 1. The calculations are only as good
as the average observation when NSE = 0. SEE is the root-mean-square residual adjusted to the degrees of freedom (Santikari
and Murdoch, 2018). A smaller SEE indicates a better performance, and its ideal value is zero. PB indicates whether the model

is over (PB < 0) or under-predicting (PB > 0) on average. The optimal value for PB is zero.

NSE values were calculated for the model predictions of runoff (NSEg), initial abstraction (NSE;s), potential maximum
retention (NSEs), and runoff from events with P less than the median value (NSEgso). PB values were calculated for runoff
from all the events (PBg) and runoff from events with P less than the median value (PBgso). SEE was calculated for runoff
from all the events (SEEg).

NSE,. and NSEs indicate how accurately a lumped parameter model predicts the watershed heterogeneity. NSEq, SEEq, and

PBg reflect the overall accuracy in a model prediction of runoff from all the events, whereas NSEqso and PBqso reflect the
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accuracy in predicting runoff from smaller events (P < 8 mm). Conventional models tend to under-predict runoffs from smaller
events because of the usage of constant I, and S. They often falsely predict zero-runoffs because the runoff condition (P > 1,)

cannot be overcome in smaller events. NSEqso and PBqsp are used to expose this shortcoming.

6. Results and Discussion

The results show that using variable initial abstraction improved the accuracy of model predictions of runoff and heterogeneity
(Table 3). Based on their overall performance, the models can be arranged from the best to the worst as VIMA > VIMS > CMA
> CMO.2. Results for the case of /; = 0 are not presented in Table 3 because VIMA, VIMS, and CMA\ performed equally well
while CM0.2 was the worst (i.e. VIMA = VIMS = CMA > CMO0.2).

Variable I, models predicted runoff better than the conventional models. It was not possible to determine relative model
performance using NSEq because it was 1.0 for all the models. This was because NSEq was strongly influenced by a few larger
events. A good fit in these events was sufficient to render NSEq = 1.0, and therefore it is not listed in Table 3. However, SEEq
decreased down the table, indicating an improvement in performance. PBq was positive for all the models, indicating that they
all under-predicted runoff. The extent of under-prediction, however, was smaller in variable I, models than the conventional
models.

Variable I, models gave a better estimate of watershed heterogeneity than the conventional models as indicated by the higher
values of NSE, and NSEs (Table 3). NSE;, was zero or negative in the conventional models, whereas it varied from 0.2 to 0.7
in the variable 1, models. NSEs was negative in all the models, indicating that their estimates of S were poor. In case of the
conventional models this was due to using uniform I, and S, and thereby homogenizing the watershed. In case of the variable
la models, this was due to their inability to model the S-shaped function of S. Based on NSE;, and NSEs, VIMA was the best

model in estimating watershed heterogeneity.

Variable 1, models also predicted runoff better than the conventional models in smaller rainfall events (P < 8 mm) as indicated
by NSEqso and PBgso. In both cases of 2i = 0.2 and 0.5, only HRU #0 (Table 2) produced runoff when P < 8 mm. This was
similar to the case of a partial source area. As CM0.2 and CMA predicted an 1, > 8 mm in both the cases (Table 3), they falsely
predicted zero-runoffs in all the events with P < 8 mm because the runoff condition (P > I,) could not be overcome. Therefore,
their PBgso = 100 in both the cases, indicating a 100% under-prediction in small events. Their NSEqso Was also poor with the
same value in both the cases. VIMS performed slightly better than the conventional models with 70-90% under-predictions,
and with NSEqso varying from -0.8 to -1.8 (Table 3). VIMA performed significantly better than all the other models with 30%
or less under-predictions, and with NSEqso varying from 0.6 to 0.9. Even though there were under-predictions, there was no

false prediction of zero-runoff for any of the events in the variable 1, models.
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In the models where Aw was calibrated (CMA and VIMA), it was smaller than A; (Table 3). This shows that A at the watershed
scale tends to be smaller than that at the HRU scale in the lumped parameter models. All the models under-predicted 1, or lar
with CMA being the most severe. There was also a corresponding over-prediction of S or S, by all the models except for the
case of 4; = 0.2 in CMO0.2. Again, the most over-prediction of S occurred in CMA. The under-prediction of I, and the
corresponding over-prediction of S is due to the transfer of storage from I, to S, which generally improves the performance in
the conventional models.

6.1. Storage Transfer from lato S

The storage in a watershed is distributed between I, and S. |5 is the part of the storage that does not produce runoff while being

filled, whereas S is the part that produces runoff while being filled. Using egs. (2) and (1) it can be shown that

¢ (P-1)(P-1,-Q)
Q

(25)

For an observed storm event, P and Q are known and therefore are constants in eq. (25), so decreasing |l will increase S.
However, the magnitude of increase in S will be greater than the magnitude of decrease in l.. This is illustrated by
differentiating eq. (25) and using eq. (4) to give

ds 25
— =—|1+ vV P> (26)
di, P—|

a

Thus, dS/dl, is always negative and less than or equal to -1. If (P — 1) >> S or S = 0, then dS/dl, = -1, implying an equal
transfer in storage between I, and S. However, as P decreases, dS/dl, becomes less than -1, implying that S changes more
rapidly than l.. In other words, the relative change of magnitude in S with respect to I, is large for smaller P, decreases with

increasing P, and approaches unity for large values of P.

Storage transfer is evident when the values of 1, and S for the models CM0.2 and CMA\ are compared (Table 3). For the case
of 1i=0.2, I, decreased from 19 mm in CMO0.2 to 9 mm in CMA, whereas S increased from 97 mm to 132 mm, i.e. dS/dl; = -
3.5. Similarly for the case of 4; = 0.5, dS/dl, = -4.2.

A transfer of storage from I, to S improves the performance in the conventional models (i.e. CMA > CMO0.2) because (i) a
smaller I, reduces the percentage of events with falsely predicted zero-runoffs, and (ii) it allows the model to mimic a variable
la. Because of a larger 1, CMO0.2 falsely predicted zero-runoffs in 80% of the events for A = 0.2, and in 85% of the events for
i =0.5. In case of CMA they dropped to 57% and 81% respectively because its I, was smaller than CMO0.2. Mimicking variable

la can be explained by considering I and F, which are the filled portions of 1, and S respectively. I, and F have similar
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functional relationships with P (compare Figure 6 to Figure 1), i.e. they both increase with P and approach a constant for large
values of P. In the conventional CN models, there is no provision to represent I, as a function of P. However, F is understood
to be a function of P and is treated as such through eq. (2) and Figure 1. Therefore, by transferring the storage from I, to S,

CMA uses F as a surrogate for Iar, thereby partly mimicking the variable nature of I.

Storage transfer from I, to S also causes a decrease in Aw (Table 3). Conversely, when Ay decreases, storage is transferred from
lato S. This is important because several studies (Baltas et al., 2007; D’ Asaro and Grillone, 2012; Shi et al., 2009; Woodward
et al., 2003) found that the optimal value of Aw was much less than 0.2, and even close to zero in many watersheds. This shows
that there is a positive correlation between a decrease in Aw, storage transfer from I, to S, and a general increase in model

performance for the reasons mentioned above.

6.2. Model Suitability

One of the main objectives of this study was to improve the predictive ability of the CN method while maintaining its
simplicity. Using the number of calibrated parameters as an indicator, the models can be arranged in the order of increasing
complexity as: CMO0.2 (one) < CMA (two) < VIMS = VIMA (three). CM0.2 was the simplest, but also had the poorest
performance (Table 3). Moreover, there is no justification in fixing Aw at 0.2 or any other constant as its optimal value can vary

from zero to one (Hawkins et al., 2008). Therefore, the usage of CMO0.2 is not recommended.

CMA predicted the overall runoff and the runoff from small events better than CMO0.2. Often, the optimal Aw is much smaller
than 0.2 and this allows CMA to partly mimic a variable I by transferring storage from 1, to S. A smaller Ay also reduces the
false prediction of zero-runoffs, which are completely eliminated when Aw = 0. Compared to the variable I, models, CMA\ is a
poor predictor of runoff and watershed heterogeneity (Table 3). However, in watersheds with negligible I.s (or 4i = 0) CMA

can perform as well as the variable I, models, and therefore may be preferable because of its simplicity.

Variable I, models show that significant improvement in the model prediction of overall runoff and heterogeneity can be
achieved by using one extra parameter (Table 3). This is because the functional form of I, [eq. (23)] is consistent with the
observations [Figure 2(c) and 2(d)] and the results from the theoretical analysis of heterogeneous watersheds [eq. (16), Figure
6, and Table 1]. Using variable 1, also improved the runoff predictions in small events and eliminated the false prediction of

zero-runoffs. Therefore, their application is recommended in heterogeneous watersheds with non-zero initial abstractions.

7. Conclusions

Watershed heterogeneity causes calculated values of 15, S, and CN to vary with P. Therefore, using a single effective value of
these quantities at the watershed scale can lead to systematic errors in the predictions of Q. This problem can be mitigated by

treating la, S, or CN as functions of P. A theoretical analysis assuming spatial variation of 1, led to the following conclusions.
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1. Effective |, of a watershed is equal to the filled portion of the total storage in I,

The total storage (called lar) is constant, whereas the filled portion (called l.r) is a function of P [eq. (16)]. Variation of I
with P (Figure 6) is similar to the variation of calculated I, (also called effective I, or law) with P [Figure 2(c) and 2(d)]. This
shows that law = lag, Which is also supported by a distributed model using many HRUSs [eg. (21)]. The form of 1, as a function

of P depends on the spatial distribution of I, within a watershed (Table 1, Figures 8 and 9).

2. Adecreases with increasing spatial scale

Using the definition of 1, and CNy, calculated as the area-weighted average of CNis (CNs of the HRUS), it can be shown that
Aw < 4i [egs. (8) through (11)]. Even when Aw was calibrated using CMA, the result was Aw < Ai (Table 3). This shows that in
conventional models, 1 at the watershed scale tends to be smaller than that at the HRU scale, i.e. 1 decreases with increasing

spatial scale.

3. Replacing I, with I, can account for heterogeneity

Heterogeneity causes the effective I, of a watershed to vary with P, so to account for heterogeneity variable 1, models (VIMs)
replace 1, with I, which is a function of P (Figure 6). For practical purposes, l.= can be treated as a quadratic function of P
[eq. (23)] with two free parameters ¢; and c; that need to be calibrated. In addition, the model also requires the calibration of
either S (VIMS) or A (VIMA).

4. Variable 1, models perform better than the conventional models

Variable I, models predict runoff and heterogeneity better than the conventional models CM0.2 (2 = 0.2) and CMA (calibrated
A). They also eliminate the false prediction of zero-runoffs and improve runoff predictions in small events. Based on their
overall performance, the models are arranged from the best to the worst as VIMA > VIMS > CM)\ > CMO0.2.

5. Storage transfer can improve model performance

Storage transfer from I, to S generally improves the model performance because the filled portions of 1, and S, I and F
respectively, have similar functional relationships with P (compare Figure 6 to Figure 1). This enables a CN model to partly
mimic a variable I by using F as its surrogate. Storage transfer also lowers the threshold P for runoff generation, thereby
reducing the false prediction of zero-runoffs. Storage transfer decreases Aw [eg. (3)], and this can explain why the optimal

value of Aw from published studies is much less than 0.2 or even zero in many watersheds.
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List of Symbols
ai = fractional area of the i"" HRU
a(la) = probability density function of areal occurrence of I,
CMO0.2 = conventional curve number model with 1 =0.2
CMA = conventional curve number model with calibrated 1
CN = curve number, applicable to any spatial scale
CN; = curve number of the i"" HRU
CNr = curve number of a watershed when Iz = lar
CNw = curve number of a watershed
F = cumulative infiltration after runoff begins
HRU = hydrologic response unit
la = initial abstraction, applicable to any spatial scale
lar = areal average of the filled portion of lar
L = initial abstraction of the i"" HRU
lat = areal average of the total initial abstraction
law = effective initial abstraction of a watershed
la,max = maximum value of I, within a watershed
A = initial abstraction ratio, applicable to any spatial scale
Ai = initial abstraction ratio at HRU scale
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Aw = initial abstraction ratio at watershed scale

m = no. of HRUs with fully filled non-zero l.is

n = no. of HRUs with non-zero l,is

NSE = Nash-Sutcliffe efficiency parameter

P = eventrainfall

PB =  percent bias

Q = event runoff

R? =  coefficient of determination

S = potential maximum retention, applicable to any spatial scale

Si = potential maximum retention of i HRU

Se = maximum value of Sw, occurs when P is infinitely large

Sw = effective potential maximum retention of a watershed

SEE = standard error of estimate

VIMA = variable initial abstraction model in which 1 is calibrated

VIMS = variable initial abstraction model in which S is calibrated
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