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Referee#2 as described below.

 

Referee’s Comment 

I believe that the revised manuscript was substantially improved and the authors answered/addressed 

adequately almost all of the reviewers’ comments. The main weakness of the manuscript (i.e. strong 

reliance on a reference to an unpublished paper) was more or less addressed with the addition of a 

citation to the Ph.D. dissertation (Santikari, 2017), which is available online. I read the dissertation (at 

least partly) and it covers the issues raised by the reviewers, so, it is ok with me. However, the editor 

may finally suggest if it is allowed to add a citation to an unpublished paper or if only the citation to the 

Ph.D. dissertation should remain. Though, I believe that the objectives of this study (Page 2, lines 15-19) 

should be revised in order to also include the citation to the Ph.D. dissertation of Santikari, (2017). 
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The objectives have been revised to include citations to the Ph.D. dissertation as follows: 

The objective of this work is to improve the event-scale lumped-parameter application of the CN method 

by describing an approach for incorporating the spatiotemporal variations of CN. The investigation is 

described in two papers, which build on Santikari (2017). In this paper, effects of spatial variation of CN 

(heterogeneity) at the watershed scale are analyzed. Insights gained from this analysis are used to create 

modified models that account for heterogeneity. The modified models are evaluated using the runoff 

generated by a distributed parameter model applied to a hypothetical heterogeneous watershed. In a 

companion paper (Santikari and Murdoch, 2018) and in Santikari (2017), the modified models are refined 

by including an approach that accounts for the temporal variation of CN using antecedent moisture. The 

refined models, which account for spatial and temporal variability, are then evaluated using data from 

real watersheds.
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1. Page 4, Line 9. “If a watershed has multiple land uses or soil types, typically, the CN is areally 

averaged.” I believe that it should be made clear that this happens but it is erroneous in order to avoid 

confusion to the readers on which is the typical method to estimate runoff in heterogeneous 

watersheds. Alternatively, this phrase can be removed. Also, I think that “spatially” is more correct than 

“areally”. 
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To avoid misleading the readers, the sentence has been removed. 
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2. Page 5, Lines 4 -14. The definition of the various characterizations of the watersheds according 
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citation was already added to the previous phrase indicating that many researchers have noticed this 

behavior. Please also check the syntax in lines 5-6 because it is confusing.  

Conclusively, I believe that this manuscript is suitable for publication after very minor revisions. 
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Both citations were removed as both appear in the previous sentence. To avoid confusing syntax, the 

sentence was shortened as: 

In 75% of the watersheds, CN decreased with increasing P and asymptotically approached a constant 

value. 
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Abstract 

The curve number (CN) method was developed more than half a century ago and is still used in many watershed/water quality 

models to estimate direct runoff from a rainfall event. Despite its popularity, the method is plagued by a conceptual problem 10 

where CN is assumed to be constant for a given set of watershed conditions, but many field observations show that CN 

decreases with event rainfall (P). Recent studies indicate that heterogeneity within the watershed is the cause of this behavior, 

but the governing mechanism remains poorly understood. This study shows that heterogeneity in initial abstraction, Ia, can be 

used to explain how CN varies with P. By conventional definition, Ia is equal to the cumulative rainfall before the onset of 

runoff, and is assumed to be constant for a given set of watershed conditions. Our analysis shows that the total storage in Ia 15 

(IaT) is constant, but the effective Ia varies with P, and is equal to the filled portion of IaT, which we call IaF. CN calculated 

using IaF varies with P similar to published field observations. This motivated modifications to the CN method, called Variable 

Ia Models (VIMs), which replace Ia with IaF. VIMs were evaluated against Conventional Models CM0.2 (λ = 0.2) and CMλ 

(calibrated λ) in their ability to predict runoff data generated using a distributed parameter CN model. The performance of 

CM0.2 was the poorest whereas those of the VIMs were the best in predicting overall runoff and watershed heterogeneity. 20 

VIMs also predicted the runoff from smaller events better than the CMs, and eliminated the false prediction of zero-runoffs, 

which is a common shortcoming of the CMs. We conclude that including variable Ia accounts for heterogeneity and improves 

the performance of the CN method while retaining its simplicity. 

1. Introduction 

The estimation of runoff from a rainfall event is of primary importance in applied hydrology. It is necessary in the engineering 25 

design of small structures, post-event appraisals, environmental impact work, and other applications (Hawkins, 1993). One of 

the most popular techniques used for this purpose is the Curve Number method, which has been in use for more than half a 

century (D’Asaro and Grillone, 2012; Hawkins et al., 2008; Kent, 1968; Ponce and Hawkins, 1996; Rallison and Miller, 1982; 

Soil Conservation Service, 1956; Soil Conservation Service, 1972). The method uses a parameter called Curve Number (CN), 

which is assumed to depend mainly on land cover, soil types, and antecedent conditions within a watershed. 30 
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Curve Number varies spatially due to watershed heterogeneity, and temporally due to changes in soil moisture, land cover, 

temperature, and other processes (Hawkins et al., 2008; Ponce and Hawkins, 1996; Rallison and Miller, 1982). CN also varies 

with the magnitude (D’Asaro and Grillone, 2012; Hawkins, 1993; Hjelmfelt et al., 2001) and spatiotemporal distribution of 

rainfall (Hawkins et al., 2008; Van Mullem, 1997). When heterogeneity is known at sufficient detail, CN variation can be 

accounted by using a distributed parameter model, e.g. SWAT (Gassman et al., 2007). Otherwise this approach can introduce 5 

more parameters than can be reliably estimated from the available data (Soulis and Valiantzas, 2013), and can potentially cause 

large uncertainties in the predicted runoff. There are several ways to account for temporal variation of CN, each with its own 

advantages and shortcomings (Santikari, 2017). CN variation with the distribution of rainfall is usually ignored (Hawkins et 

al., 2008). CN method is most commonly applied as an event-scale lumped-parameter model, which is simple but also limited 

in its ability to account for the variations of CN. This diminishes the accuracy of its runoff predictions (e.g. Soulis and 10 

Valianzas, 2012). 

The objective of this work is to improve the event-scale lumped-parameter application of the CN method by describing an 

approach for incorporating the spatiotemporal variations of CN. The investigation is described in two papers, which build on 

Santikari (2017). In this paper, effects of spatial variation of CN (heterogeneity) at the watershed scale are analyzed. Insights 

gained from this analysis are used to create modified models that account for heterogeneity. The modified models are evaluated 15 

using the runoff generated by a distributed parameter model applied to a hypothetical heterogeneous watershed. In a companion 

paper (Santikari and Murdoch, 2018) and in Santikari (2017), the modified models are refined by including an approach that 

accounts for the temporal variation of CN using antecedent moisture. The refined models, which account for spatial and 

temporal variability, are then evaluated using data from real watersheds. 

1.1. Background 20 

The CN method assumes that a rainfall event produces runoff (Q) when the event rainfall (P) exceeds the initial abstraction 

(Ia). Ia includes interception storage (by tree canopy, roof tops and such), early infiltration, and surface depression storage. The 

effective rainfall, P- Ia, is partitioned between Q and further infiltration (F). This is given by mass balance as 

 
a a

P I F Q P I       (1) 

Both F and Q are zero when P ≤ Ia, and both increase with P when P > Ia. It is assumed that F has an upper limit, which is 25 

referred to as the potential maximum retention (S). In other words, S is the total storage available for infiltration after the runoff 

begins. 

The conceptual basis that defines the curve number method comes from the following assumption (Hawkins et al., 2008; 

NRCS, 2003; Ponce and Hawkins, 1996; Rallison and Miller, 1982; Woodward et al., 2002): 
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i.e. the runoff coefficient (left hand side) is equal to the fraction of storage filled in S (right hand side). Equation (2) is developed 

using the reasoning that the equality holds at the end points (P ≤ Ia and P → ∞) (Hawkins et al., 2008; Rallison and Miller, 

1982; Woodward et al., 2002), and that the behavior of both ratios in the intermediate range is essentially the same (Figure 1). 

When P ≤ Ia, both Q and F are zero and therefore the ratios on either side of eq. (2) are zero. When P > Ia, both ratios increase 5 

with P, whereas their rate of increase diminishes. At the limit of P → ∞, both ratios approach unity. 

 

Figure 1. Presumed variation of the ratios in eq. (2) with event rainfall (P). Q is event runoff, Ia is initial abstraction, F is 
cumulative infiltration after runoff begins, and S is potential maximum retention (modified from Rallison and Miller (1982) 
Figure 2). 10 

To eliminate the need for an independent estimation of Ia (Ponce and Hawkins, 1996; Rallison and Miller, 1982), it is assumed 

that 

 
a

I S   (3) 

where λ is a dimensionless parameter called the initial abstraction ratio. Early field data suggested an optimum value of λ = 

0.2 (Soil Conservation Service, 1956). However, more recent studies (Hawkins et al., 2008; Woodward et al., 2003) suggest 15 

that λ = 0.05 is more appropriate. Using eqs. (1), (2), and (3), Ia and F can be eliminated to give 
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Since the value of λ is usually fixed (at 0.2 or 0.05), eq. (4) requires only one parameter, S, which varies within the range 0 ≤ 

S ≤ ∞. 

For convenience (Hawkins et al., 2008; Ponce and Hawkins, 1996), S (units in mm) is mapped on to a dimensionless parameter 

called the Curve Number (CN) as  

 
25400

CN
254 S




  (5) 5 

so that CN is 100 when S is zero, but approaches zero as S approaches infinity. In practice, when λ = 0.2, CN ranges from 

around 30 (for vegetated surfaces with highly permeable soils) to close to 100 (for impermeable surfaces or soils) (USDA, 

1986). Tabulated CN values for various land uses, soil types, and management scenarios are available in handbooks and 

manuals (NRCS, 2003; USDA, 1986). If a watershed has multiple land uses or soil types, typically, the CN is areally averaged. 

CN can also be determined from field data by solving eq. (4) for S as 10 

 2 2

2

1
2 (1 ) (1 ) 4

2
S P Q Q PQ   


      

 
  (6) 

and then using eq. (5). Conversely, when the CN of a watershed is known, Q can be estimated for a rainfall event using eqs. 

(4) and (5). 

The curve number method is appealing because it is based on an intuitive concept [eq. (2)], relies on only one parameter, has 

a large body of literature (Hawkins et al., 2008), and a comprehensive database (NRCS, 2003; USDA, 1986). It has been 15 

included in many watershed/water quality models such as SWAT (Soil and Water Assessment Tool) (Neitsch S.L. et al., 2005), 

CREAMS (Chemicals, Runoff and Erosion from Agricultural Management Systems), GLEAMS (Groundwater Loading 

Effects of Agricultural Management Systems) (Knisel and Douglas-Mankin, 2012), AnnAGNPS (Annualized Agricultural 

Non-point Source Pollution Model) (Bingner et al., 2011), EPIC (Environmental Policy Integrated Climate), APEX 

(Agricultural Policy/Environmental Extender) (Wang et al., 2012), and HydroCAD (HydroCAD, 2015). A physically-based 20 

modeling framework, such as the diffusive-wave approximation for overland flow coupled with the Richard’s equation for 

unsaturated subsurface flow, e.g. (Panday and Huyakorn, 2004), may improve accuracy and resolution of model predictions 

compared to the CN method, when the necessary input data, expertise, and computing resources are available. However, the 

CN method will likely remain popular for many applications in runoff modeling because of its ease of use, wide knowledge 

base, and less demand on computational resources than many physically-based models. 25 
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1.2. CN Variation with P 

Curve Number is assumed to be a watershed property that depends on the current conditions, but it also varies with P [e.g. 

Figure 2(a) and 2(b)]. This behavior was also observed in several previous studies (D’Asaro and Grillone, 2012; Hawkins, 

1993; Hjelmfelt et al., 2001; Soulis et al., 2009), and it appears to be a common phenomenon. Hawkins (1993) and D’Asaro 

and Grillone (2012) evaluated approximately 100 watersheds in a wide range of settings, and iIn 75% of the watersheds they 5 

observed, CN decreased with increasing P and asymptotically approached a constant value. Hawkins (1993) referred to this as 

standard behavior. In 20% of the watersheds, CN decreased with P but an asymptote was not attained within the range of the 

observed P. This was referred to as complacent behavior. In about 5% of the watersheds, the CN increased with P and 

asymptotically approached an apparent constant value. This behavior, referred to as violent, was often preceded by complacent 

behavior at smaller rainfalls. Hawkins (1993) hypothesized that the inverse relationship between CN and P may be due to 10 

some spurious correlation between them, or due to a bias that inherently results from the selective omission of data from small 

storm events that failed to produce runoff. The reasoning is that large rainfalls always produce runoff but small rainfalls 

produce runoff only under wet conditions, when the CN is large. Therefore, small CN values for small rainfalls go unrecorded. 

In watersheds showing a standard behavior, CN was treated as an asymptotic function of P as    

 CN CN (100 CN )
kP

e


 
     (7) 15 

where CN = CN∞ is the asymptote and k is a calibration parameter (Hawkins, 1993). CN∞ is the smallest possible value of CN 

for a watershed and is approached only at large values of P. To develop eq. (7), measured values of Q, ideally for a large range 

of values of P, are needed. The usual procedure involves “frequency matching” the data (Hawkins, 1993), i.e. sorting the 

values of P and Q separately, and pairing them according to their rank. CN for each pair is then calculated using eqs. (5) and 

(6). Frequency matching reduces the scatter of data points around the best fit curve in a CN vs. P plot. 20 

A standard behavior of CN was also observed in two watersheds (BC5 and BC1) near Greenville, South Carolina, USA [Figure 

2(a) and 2(b)]. In these watersheds, CN (calculated using λ = 0.2) decreased from 97 to 50 as P increased from 2 mm to 128 

mm. The data was characterized by a modest scatter (R2 = 0.9) about the best fit curve based on a quadratic function of P. 

Description of these watersheds is given by Santikari (2017) and Santikari and Murdoch (2018). The justification for using 

quadratic functions follows from the analysis of heterogeneity presented in Section-2. 25 

The approach used in Figure 2(a) and 2(b) avoids the commonly used frequency matching, e.g. (Hawkins, 1993). Each CN 

value in the plot was calculated using the P-Q pair from the same storm event. Frequency matching would significantly reduce 

the scatter in the plot, but it would also downplay the importance of CN variation due to antecedent conditions. Reducing the 

scatter by accounting for antecedent conditions, e.g. using antecedent moisture (Mishra et al., 2006), is a better approach. 
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The hypotheses given by Hawkins (1993) are valid, but insufficient to explain the standard and complacent behaviors. It may 

be true that small rainfalls produce runoff only under wet (large CN) conditions and therefore only the large CN values are 

recorded. However, if one has a large enough sample of storms, some of the larger storms also must have occurred during wet 

conditions. For the larger storms, therefore, one would expect to see the whole spectrum of CN values ranging from the largest 

to the smallest. However, this is not the case. As P increases, the values of CN decrease consistently [Figure 2(a) and 2(b)]. 5 

 

Figure 2. Variation of CN (λ = 0.2) with P in watersheds (a) BC5, (b) BC1, near Greenville, SC. Variation of Ia with P in (c) 
BC5, (d) BC1 (see Santikari (2017) or Santikari and Murdoch (2018) for study area description). Best fit curves for Ia are 
quadratic functions of P with zero intercept. Corresponding best fit curves for CN were derived from those of Ia using eqs. (3) 

and (5). 10 

1.3. Heterogeneity as a Cause of CN Variation with P 

Soulis and Valiantzas (2012) hypothesized that the observed variation of CN with P in the standard and complacent cases is 

a consequence of watershed heterogeneity. They assumed a hypothetical heterogeneous watershed with two subareas 

characterized by different CNs. They then calculated the watershed runoff, for a range of values of P, as the area-weighted 

average of the runoffs from the subareas. Watershed CN calculated using this runoff varied with P akin to the standard 15 
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behavior. The shape of the synthetically generated CN vs. P curve could be matched with the observations by adjusting the 

areas of the subareas and their respective CNs. This idea can also be extended to multiple subareas so that the heterogeneity 

within a watershed can be represented more accurately. However, this could lead to problems of over-parameterization, non-

uniqueness, and non-convergence as pointed out by Soulis and Valiantzas (2012). 

In a later paper, Soulis and Valiantzas (2013) suggested using spatial information on land cover and soils to delineate the areal 5 

extent of subareas and constrain their respective CNs. This approach would reduce the number of calibrated parameters by 

half because it only requires the calibration of the CNs for the subareas. In essence, the multiple-subarea approach is similar 

to a distributed modeling approach that calculates the watershed runoff as the area-weighted average of the runoffs from the 

subareas, e.g. SWAT (Gassman et al., 2007). The approach used by Soulis and Valiantzas (2013) attempts to match the 

observed and simulated values of CN, whereas that used by SWAT attempts to match the observed and simulated values of Q. 10 

Since CN and Q are uniquely related for given values of P and λ, these approaches are equivalent. A major implication of the 

work of Soulis and Valiantzas (2013) is that a distributed modeling approach can account for the standard and complacent 

behaviors of CN. 

Using a single value of CN independent of P in a heterogeneous watershed can cause a systematic error in Q, and lead to poor 

predictive ability of the method. This is because when CN is constant, Q may be underestimated for small P and overestimated 15 

for large P [e.g. Soulis and Valianzas (2012, 2013)]. This problem can be addressed either by treating CN as a function of P, 

e.g. asymptotic fitting (Hawkins, 1993), or by using a distributed modeling approach that accounts for heterogeneity in 

sufficient detail, e.g. SWAT (Gassman et al., 2007) or Soulis and Valianzas (2013). An understanding of the mechanism of 

how watershed heterogeneity leads to the variation of CN with P is also important. It could help in accounting for this variation 

without resorting to fine discretization or over-parameterization of the CN method. To accomplish this, an analysis of the effect 20 

of heterogeneity on Ia and S is performed, which can then be used to understand the effect on CN. 

2. Reevaluation of Initial Abstraction 

The quantities CN, Ia and S are considered to be the properties of a watershed that depend on current conditions. In usual 

practice, CN estimated for a certain set of conditions is applicable to any rainfall event occurring in those conditions 

irrespective of the magnitude of P. However, in every watershed evaluated by the previous studies (D’Asaro and Grillone, 25 

2012; Hawkins, 1993) the CN varied with P. If so, since Ia and S are inversely related to CN [eqs. (3) and (5)], one can expect 

that they too vary with P but inversely to that of CN. The calculated values of Ia [using eqs. (3), (6), and λ = 0.2] for watersheds 

BC5 and BC1 near Greenville, SC, increase with P and appear to approach a constant at large values of P [Figure 2(c) and 

2(d)]. A plot of S vs. P would be similar to the Ia vs. P plot, with the y–coordinate scaled by 1/λ. 
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To evaluate the link between heterogeneity in Ia and its variation with P, we looked at how the effective Ia of a heterogeneous 

watershed is determined and whether it is affected by the magnitude of P. Our analysis shows that there is an inconsistency 

between the theoretical definition of Ia and its calculated value at the watershed scale. It also shows how heterogeneity can 

cause Ia to vary with P, and how this relates to variations of S and CN with P. 

2.1. Problems with the Current Usage of Ia 5 

By the theoretical definition of Ia, if runoff is detected in the hydrograph, it is assumed that Ia has been met for the watershed. 

Watersheds are heterogeneous combinations of various land use-soil-slope complexes. These are referred to as Hydrologic 

Response Units (HRUs) in SWAT (Gassman et al., 2007), and the same term is also used here. Each HRU is assumed to be 

homogeneous, and is characterized by representative values of CN (CNi) and Ia (Iai). During a rainfall event, the HRU with the 

smallest of the Iai values will be the first to generate runoff. Assuming that this runoff reaches the watershed outlet, by 10 

definition, Ia of the watershed should be equal to the smallest of the Iai values. This could even be zero if the watershed has 

surfaces such as open water bodies that cannot abstract the rainfall. 

However, it is difficult to detect the exact moment of generation of runoff and determine the corresponding value of Ia, which 

is equal to the cumulative precipitation at that moment. There have been studies (Shi et al., 2009; Woodward et al., 2003) that 

tried to determine Ia from hydrographs. A problem with this approach is that there can be a time lag between runoff generation 15 

in headwaters and its detection at gauging station. Rainfall that occurs during this time lag is also included in Ia, leading to its 

overestimation. Another possible approach would be to collect observations from a large number of rainfall events and take Ia 

to be equal to the smallest P that produced runoff. This would eliminate the problem with the lag time, but Q needs to be 

insignificant to reduce the error in Ia. It should also be noted that Ia determined this way is only representative of the antecedent 

conditions of the smallest event that produced runoff. 20 

It may be difficult to measure Ia directly, but it can be calculated for any event using eqs. (6) and (3). However, in medium to 

large rainfall events, even the HRUs with larger values of Iai will contribute to Q. Therefore, the calculated value of Ia in these 

events will also be influenced by the larger values of Iai. So, the calculated Ia tends to be greater than the smallest of the Iai 

values. Moreover, it can be expected to increase with P as increasingly larger rainfalls generate runoff from HRUs with 

increasingly larger values of Iai.  Thus, there is an inconsistency between the definition of Ia and its calculated value at the 25 

watershed scale. 

2.1.1. Spatial-scale effect on λ 

Strictly adhering to the definition of Ia at the watershed scale may also cause a spatial-scale effect on λ. Let us refer to the CN 

of the watershed as CNW, and Ia as IaW. One of the common ways to determine CNW is to calculate it as the area-weighted 

average of the CNi values (NRCS, 2003) as 30 
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where ai is the fractional area of the ith HRU. Note that the fractional areas must add up to unity. By definition, IaW is equal to 

the smallest of the Iai values. Therefore, if 
1 2 ....a a anI I I    then 

 
1aW a

I I   (9) 

From equations (3) and (5) it can be shown that CN and Ia are related as 5 
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If all the HRUs are assumed to have the same λ = λi, eqs. (8), (9) and (10) lead to 
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where λW is the effective initial abstraction ratio of the watershed. Therefore, if λ is assumed to be the same among the 

component HRUs, it will have a smaller value at the watershed scale. This implies that λ decreases with increasing spatial-10 

scale. Therefore setting λ constant, equal to 0.2 or 0.05, for all the spatial scales contradicts the definition of Ia. In any case, it 

is probably more accurate to calculate runoff at the HRU scale (Qi) and take the area-weighted average of Qi values, rather 

than take the area-weighted average of the CNi values and calculate Q at the watershed scale. It is also more appropriate 

because Q is runoff per unit area whereas CN is a dimensionless index variable. 

The inconsistencies in the usage of Ia are a direct result of heterogeneity in a watershed. Moreover, heterogeneity also appears 15 

to be responsible for the variation of IaW with P [Figure 2(c) and 2(d)]. To verify this, a relationship between IaW and the 

magnitude and areal distribution of Iai values needs to be developed. 

2.2. Ia in a Heterogeneous Watershed 

Consider a watershed with four HRUs mainly characterized by their land use types viz. open waterbody (Ia0), urban area (Ia1), 

park (Ia2), and forest (Ia3) [Figure 3(a)], such that Ia0 = 0 < Ia1 < Ia2 < Ia3. An open waterbody generates runoff during every 20 
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rainfall event. Other land use types generate runoff depending on the magnitude of the rainfall, with land uses of larger Iai 

values requiring larger magnitudes. If each land use type is assumed to be directly connected to the drainage network, the 

number of land use types contributing to the runoff, in other words the runoff contributing area, increases with rainfall. This 

process can be conceptualized by representing the storage distribution of Ia as a series of bins where each bin corresponds to a 

HRU [Figure 3(b)]. The height and the width of a bin are given by Iai and ai, respectively, and all bins have unit thickness. In 5 

a rainfall event, only the bins with Iai ≤ P are fully filled and contribute to runoff, whereas the others are partially filled and do 

not contribute to runoff. The total amount of filled storage in Ia [shaded area in Figure 3(b)] increases with P until it reaches a 

constant value when all the bins are fully filled and the whole watershed is contributing to the runoff. 

 

Figure 3. Spatial distribution of Ia in a heterogeneous watershed (a) Iai values of various HRUs mainly characterized by their 10 
land use types (Ia0 = 0 < Ia1 < Ia2 < Ia3) (b) conceptual model in which each HRU is represented by a bin with height = Iai, width 
= ai, and unit thickness; shaded area indicates the filled portion during an event with rainfall = P. 
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Consider a general case of a heterogeneous watershed with n +1 HRUs such that 
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where Ia0 represents open water bodies and other surfaces that cannot abstract rainfall. The areal average of the total initial 

abstraction (IaT) is given by 
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In a rainfall event, all the HRUs with Iai ≤ P have their initial abstractions completely filled while the others are partially filled. 

Just by analyzing the runoff for that event, it is impossible to quantify the magnitudes of Iai in HRUs that are partially filled. 

Because these HRUs have not contributed to the runoff, all that can be said is that their Iai values are greater than P, but their 

magnitudes remain unknown. However, the information on the magnitudes of Iai in HRUs that are completely filled should be 

present in the runoff data. In other words, it takes larger rainfalls to fill larger values of Iai and gather information about their 10 

magnitude. 

Then what is the effective initial abstraction of the watershed for a given rainfall event? Consider an event where the rainfall 

falls within the range: Iam ≤ P < Ia(m+1). HRUs with Iai ≤ Iam have their initial abstractions completely filled and produce runoff, 

whereas HRUs with Iai ≥ Ia(m+1) have their initial abstractions partially filled up to the level of P and do not produce runoff. 

The areal average of the filled portion (includes completely filled as well as partially filled HRUs) of the initial abstraction is 15 

given by 
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The first term on the right-hand side of eq. (14) represents completely filled HRUs. The second term represents partially filled 

HRUs, all of which are filled to the level of P. Note that IaT is the areal average of total initial abstraction, whereas IaF is the 

areal average of the filled portion. Therefore, 20 

 
aF aT an

aF aT an

I I P I

I I P I

  

  
  (15) 

The conceptual model presented in Figure 3, and in eqs. (14) and (15) is intuitively appealing, and also hints at the possibility 

that IaW may be equal to IaF. This is because IaF increases with P and approaches a constant value (IaT), similar to the 
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observations in Figure 2(c) and 2(d). Eq. (14) is also consistent with a distributed parameter model application of the CN 

method as described in Section-3. 

2.3. Variation of IaF with P 

To investigate the variation of IaF with P, eqs. (14) and (15) are applied to the scenario presented in Figure 3, where n = 3. A 

plot of IaF vs. P (Figure 4) shows that IaF increases with P and becomes constant (IaF = IaT) at large values of P (P ≥ Ia3). The 5 

kink-points joining the line segments occur when the initial abstraction of one of the HRUs becomes completely filled. At 

these points, P is equal to one of the Iai values. In between these points (Iam < P < Ia(m+1)), the relationship between IaF and P is 

linear with a slope of 
0

1
m

i

i

a



 
 
 

 . The slope abruptly changes across the kink-points. It decreases with m, and becomes zero 

when m = n. The maximum value the slope can take is unity. This occurs with the line segment passing through the origin, 

when HRUs with zero initial abstraction are absent (i.e. a0 = 0). When these HRUs are present, however, the origin itself is a 10 

kink-point where the slope abruptly jumps from unity to 1-a0. 

 

Figure 4. Variation of IaF [eqs.(14) and (15)] with P for the scenario presented in Figure 3. 

The analysis presented so far represents a discrete case where each HRU is homogeneous and has a finite area. The values of 

Iai vary discontinuously across the HRUs. Their areal distribution can be represented by a plot of ai vs. Ia [Figure 5(a)]. The 15 

smaller the area of HRUs, the more numerous they are, and the more accurate is the representation of the heterogeneity within 

the watershed. The most ideal representation would occur when the HRUs shrink to points. Then the values of Iai within the 

watershed vary continuously and therefore can be represented by a probabilistic distribution of areal occurrence [Figure 5(b)]. 

It is impractical to characterize the watershed at such fine scale, but it is worth understanding the properties of the initial 

abstraction at the finest resolution first, and then making assumptions or simplifications later to suit the practical needs. 20 

PP = Ia1

IaF

P = Ia2 P = Ia3

IaT
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Figure 5. Representing areal distribution of Ia within a watershed (a) discrete case (b) continuous case. 

For the case of a continuous distribution of Ia, eq. (14) takes the form 
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where a(Ia) is the probability density function of areal occurrence of Ia. The fractional area with initial abstraction = Ia is given 5 

by a(Ia) dIa. The upper limit of the integrals is set to P because the last initial abstraction to completely fill up would be equal 

to P. The areal average of total initial abstraction, IaT, is given by 
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a
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where Ia,max is the maximum value of Ia within the watershed. Thus, IaT is equal to the mean of the distribution [Figure 5(b)]. 

Eq. (15) then becomes 10 
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Figure 6. Variation of IaF with P for a continuous distribution such as the one shown in Figure 5(b) 

Unlike the discrete case, the slope of the IaF curve for the continuous case decreases smoothly with increasing P (Figure 6). 

This is because the line segments in the discrete case (Figure 4) shrink to points in the continuous case. It follows from eq. 

(16) that 5 
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Thus, the IaF curve is bounded by a line of slope = 1 passing through the origin, and a line of slope = 0 with the intercept equal 

to IaT (Figure 6). The line of slope = 1 is referred to as the no-runoff line because along this line IaF = P. When the whole 

watershed is represented by a single HRU, the IaF curve coincides with the no-runoff line until IaF = IaT. A comparison of 

Figure 6 to Figure 2(c) and 2(d) strengthens the case that IaW is equal to IaF. 10 

2.4. Variation of CNW with P 

Let us hypothesize that IaW = IaF, i.e. the effective Ia of a watershed is equal to the area-weighted average of the filled portion 

of the initial abstraction. Then, if eq. (10) is written for CNW, Ia can be replaced by IaF. Substituting eq. (16) in eq. (10) gives 

CNW as a function of P. When plotted against P, CNW starts at 100 when P = 0, and then decreases with increasing P (Figure 

7).  15 
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Figure 7. CNW as a function of P when IaW is assumed to be equal to IaF (shown in Figure 6). 

 

Differentiating eq. (10) and using eq. (19) gives 

 

,max

0

(CN ) 10

(CN )
0

a

W

P

W

P I

d

dP

d

dP





 



  (20) 5 

where the constant 10 has units of 1/in. Thus the CNW vs. P curve is at its steepest at P = 0 and flattens with increasing P, and 

becomes constant when P ≥ Ia,max. This constant, CNT, is the smallest value CNW can take and corresponds to the case IaF = IaT, 

when the initial abstractions of all the HRUs are fully filled. CNW as a function of P is bounded by a curve corresponding to 

the condition P = IaF, the no-runoff line, and a line of slope = 0 with the intercept equal to CNT (Figure 7). 

The shape of the CNW vs. P curve (Figure 7) generated using eqs. (10) and (16) is quite similar to the best-fit curves from field 10 

observations [Figure 2(a) and 2(b)]. Nearly 95% of the watersheds evaluated in the previous studies (D’Asaro and Grillone, 

2012; Hawkins, 1993) also had responses identical to Figure 7, supporting the hypothesis that IaW = IaF. Thus, as also concluded 

by Soulis and Valiantzas (2012, 2013), the observed complacent and standard behaviors are caused by the inevitable presence 

of heterogeneity in a watershed. Moreover, complacent behavior appears to be a special case of standard behavior (Soulis and 

Valiantzas, 2012), where observations from larger rainfalls are unavailable. Therefore, it is probably more appropriate to refer 15 

to any “CN decreasing with P” trend as standard behavior.  It also shows that assuming a partial source area whenever a 

complacent behavior is observed (D’Asaro and Grillone, 2012; D'Asaro and Grillone, 2015) can be misleading. 
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2.5. IaF and CNW Curves for Various Distributions of Ia 

The functional form of a(Ia) defines the areal distribution of Ia within a watershed. We considered idealized functional forms 

of a(Ia) that correspond to uniform, normal, triangular, and bi-modal distributions (Table 1). In each a(Ia), the maximum or 

other key value was constrained so that the total area under the distribution was unity. For example, the y-coordinate of the 

apex in the triangular distribution must be equal to 2 / Ia,max (Table 1). In the case of normal distribution, however, the area 5 

under the curve is unity only when the limits are infinite. Therefore, a standard deviation (σ) much less than Ia,max was used so 

that the area under the curve within the range 0 ≤ Ia ≤ Ia,max is approximately equal to unity. 

For each distribution, the corresponding functional form of IaF was determined using eq. (16) and the results are presented in 

Table 1. For the general case of a(Ia) as a polynomial, the corresponding IaF is a polynomial two degrees higher than a(Ia). For 

the normal distribution, IaF is a combination of Gaussian and Error functions (Table 1). 10 

For the purpose of comparison, symmetrical versions of the distributions were considered such that all of them have the same 

minimum, mean, and maximum values of Ia [Figure 8(a)]. The minimum value of Ia was set to zero and the maximum value 

was Ia,max. Therefore, the mean for all the distributions was Ia,max /2. 
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Table 1. Functional forms of a(Ia) and IaF for various synthetic distributions 
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The kurtosis (peakedness) of a(Ia) has a major influence on the shapes of IaF and CNW plotted as functions of P (Figure 8). The 

normal distribution has the greatest kurtosis whereas the bimodal distribution has the least. As the kurtosis decreases, the IaF 

and CNW curves deviate further from the bounding lines (Figure 8). When there is a gap in the distribution, as in the case of 5 

the bimodal distribution, the corresponding IaF curve is linear for the range spanning the gap. This is consistent with the discrete 

case where IaF was represented by line segments for the gaps in between the discrete values of Iai (Figure 4). 

Skewness of a(Ia) also affects IaF, and this is illustrated by an idealized case where an initially uniform distribution is positively 

skewed [Figure 9(a) and 9(b)]. The mean of a(Ia), which is equal to IaT [eq. (17)], decreases with increasing positive skewness. 

This is important because a land use change such as conversion of forest to urban land is expected to increase the positive 10 

skewness (i.e. more low values of Ia). During the conversion, Ia,max remains unchanged while some forested land remains. 

When the entire forest is converted, Ia,max drops to a lower value. 
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Figure 8. (a) Various symmetrical distributions of Ia with the same minimum (zero), mean (Ia,max/2), and maximum (Ia,max), (b) the 
corresponding IaF curves calculated using eq. (16), (c) the corresponding CNW curves calculated using eq. (10). 
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The analysis also shows that a watershed cannot be characterized or compared with other watersheds using a single value of 

CN [such as CN∞ used in asymptotic fitting, eq. (7)]. Depending on the distribution of heterogeneity, the relative runoff 

potential of a watershed can be P dependent. This is illustrated by considering two uniform distributions, uni1 and uni2, where 

uni2 has a narrower range and a smaller mean than uni1 [Figure 9(c)]. For smaller values of P, IaF,uni1 < IaF,uni2 [Figure 9(d)], 

and therefore CNW,uni1 > CNW,uni2. However, for larger values of P, the converse is true. Thus, the watershed with uni1 generates 5 

more runoff for smaller values of P, whereas the watershed with uni2 generates more runoff for larger values of P. 

 

Figure 9. Effect of skewness, mean, and range of a(Ia) on IaF (a) uniform, uni (solid), and two positively skewed distributions, 
skew1 (dashed) and skew2 (dash dot dot) (b) IaF as a function of P for the distributions shown in 9a (c) uniform distributions 
uni1 (solid) and uni2 (dashed) where uni2 has a narrower range of values of Ia and a smaller mean than uni1 (d) IaF as a 10 
function of P for the distributions shown in 9c.  
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3. Effect of Heterogeneity on S 

Similar to the case of Ia, the presence of heterogeneity also causes the effective S of a watershed (SW) to vary with P. Functional 

form of SW depends not only on the potential maximum retentions of the HRUs (values of Si) but also on the values of Iai. SW 

can be estimated using eq. (2) if the quantities IaW, QW, and FW are known. A distributed modeling approach can be used to 

calculate these quantities for a heterogeneous watershed. Distributed CN models, e.g. SWAT (Gassman et al., 2007), 5 

commonly calculate QW as the area-weighted average of Qis, and this assumption can also be extended to FW. Thus, 
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  (21) 

Using eq. (21) and applying mass balance [eq. (1)] at watershed and HRU scales gives eq. (14) for IaW. This shows that IaW 

calculated using a distributed model is equal to IaF. 

Writing an expression for SW in terms of Iai and Si values for a general case of a heterogeneous watershed is cumbersome. 10 

Therefore, it is only presented graphically for an example of a heterogeneous watershed. However, an expression for SW can 

be presented in a compact form for a special case where all the values of Iai are zero as 
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Thus, SW varies from the area-weighted harmonic mean 
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To illustrate the effect of heterogeneity on SW, an example watershed with the storage distribution shown in (Table 2) was 

considered. The variation of SW with P was analyzed for the cases of λi = 0 and λi = 0.2 (Figure 10). In both cases, SW increases 

with P and approaches the area-weighted arithmetic mean, S∞, for large values of P. In the case of λi = 0, the slope of the curve 
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is maximum at the origin, and decreases monotonically with P. In case of λi = 0.2, however, the slope is zero at the origin and 

generally increases with P until P ≈ Ian = 40 mm (P ≈ Ia,max for the continuous case), where it reaches its maximum value. 

Thereafter the slope decreases monotonically with P, giving an S-shaped curve. In other words, the slope generally increases 

with P until the entire watershed area contributes to the runoff, and decreases thereafter. 

Table 2. Storage distribution in a hypothetical heterogeneous watershed used to illustrate the variation of SW with P. 5 

HRU ai Si (mm) 

0 0.05 0 

1 0.20 50 

2 0.35 100 

3 0.25 150 

4 0.15 200 

 

 

Figure 10. Variation of SW with P in a heterogeneous watershed with the storage distribution shown in Table 2. 

The similarities between IaW and SW are that they both increase with P and have an upper limit equal to the area-weighted 

arithmetic mean of their respective components. The difference is that IaW reaches its upper limit of IaT for a finite value of P 10 

(P = Ian or P = Ia,max), whereas SW requires large values of P (P >> S) to reach its upper limit of S∞. Moreover, SW vs. P is an S-
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shaped curve when λi > 0. This shows that IaW and SW are not proportional, i.e. λW is not a constant even though λi values are 

assumed to be equal and constant. 

4. Application  

The analysis from previous sections shows that IaW and SW are functions of P, and gives their functional forms. Incorporating 

these functions in the lumped parameter application can potentially improve the performance of the CN method. 5 

4.1. IaW as a function of P 

The distributed parameter modeling approach, eq. (21) with the application of mass balance [eq. (1)] at watershed and HRU 

scales, shows that IaW = IaF. IaF is given by eq. (14) for the discrete case and eq. (16) for the continuous case. All the distributions 

in Table 1, except the normal distribution, gave a zero-intercept polynomial for IaF. Therefore, using a quadratic function of 

the form 10 
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is an efficient way to describe IaW. In eq. (23), c1 and c2 are calibration parameters such that 0 ≤ c1 ≤ 1 and c2 ≥ 0. Since the 

slope of IaW is zero at P = Ia,max [eq. (19)], it follows from eq. (23) that 
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Similarly, the slope of IaW is unity at P = 0 so c1 should be unity. However, it was kept as a free parameter in eq. (23) to allow 15 

for the approximation of piecewise functions (e.g. IaF for triangular and bimodal distributions in Table 1). Moreover, the 

analysis for the discrete case shows that when HRUs with zero initial abstraction are present, the origin is a kink-point where 

the slope abruptly jumps from unity to 1-a0. To avoid over-parameterization of the model, a polynomial of degree > 2 for IaW 

was not considered. 

4.2. SW as a function of P 20 

The sigmoid shaped function of SW, with the conditions that SW = 0 when P = 0 and that the maximum slope occurs at P = Ia,max, 

requires at least two parameters to describe it. However, this along with eq. (23) would also increase the number of calibrated 

parameters in the CN method, increasing its complexity and potentially causing non-uniqueness. A relatively simple approach 
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is to assume that SW is constant similar to the conventional CN method. Another approach is to assume that SW is proportional 

to IaW, i.e. eq. (3) is applicable for a heterogeneous watershed. 

Here the emphasis is placed on treating IaW as a function of P while offering some flexibility on how SW is treated. This is 

because the variation of IaW with P had a significant impact on the model performance, whereas including the variation of SW 

with P showed only marginal or no improvement. This may be because IaW is a component of mass balance [eq. (1)] while SW 5 

is not. FW, which is the filled portion of SW, is a component of mass balance and varies with P even if SW is assumed to be a 

constant. Therefore, to maintain the simplicity of the CN method and avoid the problems of over-parameterization and non-

uniqueness, modeling the sigmoid-shaped function of SW is omitted. 

4.3. Lumped Parameter Models 

Lumped parameter application of the CN method was modified by treating IaW as a function of P as described in the previous 10 

section. Modified lumped parameter CN models were evaluated by comparing their performance with that of the conventional 

lumped parameter CN models. 

4.3.1. Conventional Models (CMs) 

Conventional CN models are defined by eqs. (1) through (5), and by the assumption that IaW and SW are independent of P. In 

this study two types of conventional models, referred to as CM0.2 and CMλ, were used. In CM0.2, λW was fixed at 0.2, and in 15 

CMλ, λW was determined by calibration. Thus CM0.2 had one free parameter, SW, whereas CMλ had two free parameters, λW 

and SW. 

4.3.2. Variable Initial Abstraction Models (VIMs) 

VIMs are defined by eqs. (1), (2), (4), (5), and (23), and they have three free parameters. If SW is assumed to be independent 

of P, then the model requires calibration of c1, c2, and SW, and is referred to as VIMS. If eq. (3) is also included, then the model 20 

requires calibration of c1, c2, and λW, and is referred to as VIMλ. 

5. Evaluation 

Lumped parameter models described in the previous section were evaluated in their ability to predict runoff and account for 

watershed heterogeneity. Accounting for heterogeneity means that the model accurately predicts IaW and SW, and runoff from 

smaller events. This is because (i) IaW and SW as functions of P are directly related to heterogeneity, and (ii) inability to account 25 

for their variation with P causes under-estimation of runoff in smaller events. 
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Evaluation of lumped parameter models requires the data for IaW, QW and SW. This is generated using a distributed parameter 

model application of the CN method. The assumption is that a distributed parameter model accounts for heterogeneity, and 

therefore its estimates of IaW, QW and SW are accurate. 

5.1. Distributed Parameter Model 

In a distributed parameter model, eqs. (1) through (5) are applicable at the HRU scale, with the assumption that Iai and Si are 5 

independent of P. Once Qi and Fi are calculated for each HRU, watershed scale quantities IaW, QW, FW and SW are calculated 

using eqs. (14), (21), and (2). 

The distributed parameter model was applied to an idealized synthetic watershed with the storage distribution shown in Table 

2, for the cases of λi = 0, 0.2, and 0.5. A range of values of P were synthetically generated such that they vary lognormally 

from 0.1 mm to 200 mm with a median of 8 mm. For each rainfall event, IaW, QW, FW and SW were calculated, and used in the 10 

evaluation of the lumped parameter models. 

The reason for using a synthetic watershed here is that the heterogeneity can be precisely defined and used to evaluate the 

predictions of heterogeneity by the lumped parameter models. In real watersheds, the heterogeneity has to be determined by 

calibration, and there can be non-uniqueness when multiple HRUs are present. Application of these modified models to data 

from real watersheds is discussed by Santikari (2017) and Santikari and Murdoch (2018). 15 

5.2. Model Evaluation Criteria 

Each lumped parameter model was calibrated by minimizing the sum of the squared residuals between its predicted runoff 

(QW) and the baseline from the distributed parameter model. All the models were evaluated using the Nash-Sutcliffe efficiency 

parameter (NSE), the standard error of estimate (SEE), and the percent bias (PB) (McCuen, 2003; Moriasi et al., 2007). NSE 

can vary from -∞ to 1. The calculations and observations are exactly equal when NSE = 1. The calculations are only as good 20 

as the average observation when NSE = 0. SEE is the root-mean-square residual adjusted to the degrees of freedom (Santikari, 

2017). A smaller SEE indicates a better performance, and its ideal value is zero. PB indicates whether the model is over (PB 

< 0) or under-predicting (PB > 0) on average. The optimal value for PB is zero. 

NSE values were calculated for the model predictions of runoff (NSEQ), initial abstraction (NSEIa), potential maximum 

retention (NSES), and runoff from events with P less than the median value (NSEQ50). Relative NSE, rNSE (Krause et al., 25 

2005), was used instead of NSE when the latter was strongly influenced by larger events. PB values were calculated for runoff 

from all the events (PBQ) and runoff from events with P less than the median value (PBQ50). SEE was calculated for runoff 

from all the events (SEEQ). 
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NSEIa and NSES indicate how accurately a lumped parameter model predicts the watershed heterogeneity. NSEQ, SEEQ, and 

PBQ reflect the overall accuracy in a model prediction of runoff from all the events, whereas NSEQ50 and PBQ50 reflect the 

accuracy in predicting runoff from smaller events (P < 8 mm). Conventional models tend to under-predict runoffs from smaller 

events because of the usage of constant Ia and S. They often falsely predict zero-runoffs because the runoff condition (P > Ia) 

cannot be overcome in smaller events. NSEQ50 and PBQ50 are used to expose this shortcoming. 5 

6. Results and Discussion 

The results show that using variable initial abstraction improved the accuracy of model predictions of runoff and heterogeneity 

(Table 3). Based on their overall performance, the models can be arranged from the best to the worst as VIMλ > VIMS > CMλ 

> CM0.2. Results for the case of λi = 0 are not presented in Table 3 because VIMλ, VIMS, and CMλ performed equally well 

while CM0.2 was the worst (i.e. VIMλ = VIMS = CMλ > CM0.2). 10 

Variable Ia models predicted runoff better than the conventional models. It was not possible to determine relative model 

performance using NSEQ because it was 1.0 for all the models. This was because NSEQ was strongly influenced by a few larger 

events, and a good fit in these events was sufficient to render NSEQ = 1.0.Therefore  rNSEQ (Krause et al., 2005) was calculated 

instead, and listed in Table 3. Larger events had greater influence on rNSEQ as well, but the values varied slightly between the 

models (Table 3). rNSEQ increased down the table whereas SEEQ decreased, both indicating an improvement in model 15 

performance. PBQ was positive for all the models, indicating that they all under-predicted runoff. The extent of under-

prediction, however, was smaller in variable Ia models than the conventional models. 

Variable Ia models gave a better estimate of watershed heterogeneity than the conventional models as indicated by the higher 

values of NSEIa and NSES (Table 3). NSEIa was zero or negative in the conventional models, whereas it varied from 0.2 to 0.7 

in the variable Ia models. NSES was negative in all the models, indicating that their estimates of S were poor. In case of the 20 

conventional models this was due to using uniform Ia and S, and thereby homogenizing the watershed. In case of the variable 

Ia models, this was due to their inability to model the S-shaped function of S. Based on NSEIa and NSES, VIMλ was the best 

model in estimating watershed heterogeneity. 

Variable Ia models also predicted runoff better than the conventional models in smaller rainfall events (P < 8 mm) as indicated 

by NSEQ50 and PBQ50. In both cases of λi = 0.2 and 0.5, only HRU #0 (Table 2) produced runoff when P < 8 mm. This was 25 

similar to the case of a partial source area. As CM0.2 and CMλ predicted an Ia > 8 mm in both cases (Table 3), they falsely 

predicted zero-runoffs in all the events with P < 8 mm because the runoff condition (P > Ia) could not be overcome. Therefore, 

their PBQ50 = 100 in both cases, indicating a 100% under-prediction in small events. Their NSEQ50 was also poor with the same 

value in both cases. VIMS performed slightly better than the conventional models with 70-90% under-predictions, and with 

NSEQ50 varying from -0.8 to -1.8 (Table 3). VIMλ performed significantly better than all the other models with 30% or less 30 



 

 26 

under-predictions, and with NSEQ50 varying from 0.6 to 0.9. Even though there were under-predictions, there was no false 

prediction of zero-runoff for any of the events in the variable Ia models. 
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Table 3. The performance of lumped parameter CN models that were calibrated to the runoff data generated using a distributed CN model for 

two cases of a synthetic watershed with the storage distribution shown in Table 2. SEE, Ia, and S are in mm. (SEE: Standard Error of Estimate, 

PB: Percent Bias, NSE: Nash-Sutcliffe Efficiency parameter, rNSE: relative NSE) 

Lumped 

Model 

 Distributed Model: λi = 0.2, IaT = 22, Ia,max = 40, S∞ = 112 

rNSEQ SEEQ PBQ NSEIa NSES NSEQ50 PBQ50 λW Ia or IaT Ia,max S or S∞ 

CM0.2 0.93 0.91 12.6 -1.8 -13 -2.9 100 0.20 19 - 97 

CMλ 0.94 0.37 5.4 0.0 -26 -2.9 100 0.07 9 - 132 

VIMS 0.97 0.13 2.1 0.2 -22 -0.8 71 - 12 64 121 

VIMλ 1.00 0.06 0.2 0.4 -3 0.9 16 0.09 11 43 124 

Lumped 

Model 

 Distributed Model: λi = 0.5, IaT = 56, Ia,max = 100, S∞ = 112 

rNSEQ SEEQ PBQ NSEIa NSES NSEQ50 PBQ50 λW Ia or IaT Ia,max S or S∞ 

CM0.2 0.93 0.81 18.8 -1.4 -102 -2.9 100 0.20 31 - 155 

CMλ 0.94 0.66 13.6 -0.3 -166 -2.9 100 0.11 21 - 197 

VIMS 0.96 0.26 6.9 0.7 -83 -1.8 87 - 37 130 140 

VIMλ 0.99 0.13 1.6 0.7 -9 0.6 33 0.21 33 96 153 
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In the models where λW was calibrated (CMλ and VIMλ), it was smaller than λi (Table 3). This shows that λ at the watershed 

scale tends to be smaller than that at the HRU scale in the lumped parameter models. All the models under-predicted Ia or IaT 

with CMλ being the most severe. There was also a corresponding over-prediction of S or S∞ by all the models except for the 

case of λi = 0.2 in CM0.2. Again, the most over-prediction of S occurred in CMλ. The under-prediction of Ia and the 

corresponding over-prediction of S is due to the transfer of storage from Ia to S, which generally improves the performance in 5 

the conventional models. 

6.1. Storage Transfer from Ia to S 

The storage in a watershed is distributed between Ia and S. Ia is the part of the storage that does not produce runoff while being 

filled, whereas S is the part that produces runoff while being filled. Using eqs. (2) and (1) it can be shown that 

 
( ) ( )

a a
P I P I Q

S
Q

  
   (25) 10 

For an observed storm event, P and Q are known and therefore are constants in eq. (25), so decreasing Ia will increase S. 

However, the magnitude of increase in S will be greater than the magnitude of decrease in Ia. This is illustrated by 

differentiating eq. (25) and using eq. (4) to give 
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Thus, dS/dIa is always negative and less than or equal to -1. If (P − Ia) >> S or S ≈ 0, then dS/dIa ≈ -1, implying an equal 15 

transfer in storage between Ia and S. However, as P decreases, dS/dIa becomes less than -1, implying that S changes more 

rapidly than Ia. In other words, the relative change of magnitude in S with respect to Ia is large for smaller P, decreases with 

increasing P, and approaches unity for large values of P. 

Storage transfer is evident when the values of Ia and S for the models CM0.2 and CMλ are compared (Table 3). For the case 

of λi = 0.2, Ia decreased from 19 mm in CM0.2 to 9 mm in CMλ, whereas S increased from 97 mm to 132 mm, i.e. dS/dIa = -20 

3.5. Similarly, for the case of λi = 0.5, dS/dIa = -4.2. 

A transfer of storage from Ia to S improves the performance in the conventional models (i.e. CMλ > CM0.2) because (i) a 

smaller Ia reduces the percentage of events with falsely predicted zero-runoffs, and (ii) it allows the model to mimic a variable 

Ia. Because of a larger Ia, CM0.2 falsely predicted zero-runoffs in 80% of the events for λi = 0.2, and in 85% of the events for 

λi = 0.5. In case of CMλ they dropped to 57% and 81% respectively because its Ia was smaller than CM0.2. Mimicking variable 25 

Ia can be explained by considering IaF and F, which are the filled portions of Ia and S respectively. IaF and F have similar 
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functional relationships with P (compare Figure 6 to Figure 1), i.e. they both increase with P and approach a constant for large 

values of P. In the conventional CN models, there is no provision to represent IaF as a function of P. However, F is understood 

to be a function of P and is treated as such through eq. (2) and Figure 1. Therefore, by transferring the storage from Ia to S, 

CMλ uses F as a surrogate for IaF, thereby partly mimicking the variable nature of IaF. 

Storage transfer from Ia to S also causes a decrease in λW (Table 3). Conversely, when λW decreases, storage is transferred from 5 

Ia to S. This is important because several studies (Baltas et al., 2007; D’Asaro and Grillone, 2012; Shi et al., 2009; Woodward 

et al., 2003) found that the optimal value of λW was much less than 0.2, and even close to zero in many watersheds. This shows 

that there is a positive correlation between a decrease in λW, storage transfer from Ia to S, and a general increase in model 

performance for the reasons mentioned above. 

6.2. Application to Real Watersheds 10 

The models were also evaluated using rainfall-runoff observations from 9 real watersheds located in different parts of the 

world (Santikari, 2017; Santikari and Murdoch, 2018). Models’ ability to predict the observed runoff was assessed using NSEQ. 

Results show that in all the watersheds VIMs performed better than CMs but the difference in performance, ∆NSEQ, varied 

across the watersheds. Between VIMλ and CM0.2, ∆NSEQ < 0.05 in one watershed, 0.05 ≤ ∆NSEQ < 0.7 in 6 watersheds, and 

∆NSEQ ≥ 0.7 in 2 watersheds. Between VIMλ and CMλ, ∆NSEQ < 0.05 in 3 watersheds, 0.05 ≤ ∆NSEQ < 0.1 in 4 watersheds, 15 

and ∆NSEQ ≥ 0.1 in 2 watersheds. Based on their performance, the models can be arranged from the best to the worst as VIMλ 

> VIMS > CMλ > CM0.2, which is consistent with results from their application to the synthetic watershed. 

6.3. Effect of Degree of Heterogeneity 

The degree of heterogeneity, defined as the sharpness of change in CN, Ia, or S between the HRUs, may affect the relative 

performance of the models. To verify this, the degree of heterogeneity of the synthetic watershed (Table 2) was increased by 20 

doubling the values of Si for HRUs 3 and 4 while the others were left unchanged, i.e. the modified distribution was S0 = 0 mm, 

S1 = 50 mm, S2 = 100 mm, S3 = 300 mm, and S4 = 400 mm. The models were applied to this modified synthetic watershed, for 

the cases of λi = 0.2 and 0.5, and their performances were assessed using rNSEQ and SEEQ. 

Comparing the results (Tables 3 and 4) shows that the performance of VIMs remained nearly the same, whereas the 

performance of CM0.2 decreased and that of CMλ increased. The relative order of performance remained unchanged, i.e. 25 

VIMλ > VIMS > CMλ > CM0.2. 

The results from real watersheds (Santikari, 2017; Santikari and Murdoch, 2018) also show that the performance of CM0.2 

was poor, NSEQ < 0.25, in watersheds with a sharp change in CN. Therefore, CM0.2 is unsuitable when the degree of 

heterogeneity is large. CMλ performed moderately well on synthetic and real watersheds with a large degree of heterogeneity, 

possibly by transferring the storage (Section 6.1). So, CMλ is suitable for predicting overall runoff, but unreliable for predicting 30 
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heterogeneity or runoff from small events. VIMs outperformed CMλ in synthetic (Table 4) as well as real watersheds 

(Santikari, 2017; Santikari and Murdoch, 2018) with a large degree of heterogeneity, and therefore they are more reliable. 

Table 4. Performance of the models for the cases of λi = 0.2 and 0.5, when the degree of heterogeneity in the synthetic 

watershed (Table 2) was increased by doubling the values of Si for HRUs 3 and 4. 

Lumped 

Model 

λi = 0.2  λi = 0.5 

rNSEQ SEEQ  rNSEQ SEEQ 

CM0.2 0.92 1.54  0.92 1.30 

CMλ 0.95 0.19  0.94 0.38 

VIMS 0.97 0.12  0.96 0.25 

VIMλ 1.00 0.06  1.00 0.12 

 5 

6.4. Model Suitability 

One of the main objectives of this study was to improve the predictive ability of the CN method while maintaining its 

simplicity. Using the number of calibrated parameters as an indicator, the models can be arranged in the order of increasing 

complexity as: CM0.2 (one) < CMλ (two) < VIMS = VIMλ (three). CM0.2 was the simplest, but also had the poorest 

performance (Tables 3 and 4). Moreover, there is no justification in fixing λW at 0.2 or any other constant as its optimal value 10 

can vary from zero to one (Hawkins et al., 2008). Therefore, the usage of CM0.2 is not recommended. 

CMλ predicted the overall runoff and the runoff from small events better than CM0.2. Often, the optimal λW is much smaller 

than 0.2 and this allows CMλ to partly mimic a variable IaF by transferring storage from Ia to S. A smaller λW also reduces the 

false prediction of zero-runoffs, which are completely eliminated when λW = 0. Compared to the variable Ia models, CMλ is a 

poor predictor of runoff and watershed heterogeneity (Table 3). However, in watersheds with negligible Iai values (or λi ≈ 0) 15 

CMλ can perform as well as the variable Ia models, and therefore may be preferable because of its simplicity. 

Variable Ia models show that significant improvement in the model prediction of overall runoff and heterogeneity can be 

achieved by using one extra parameter (Table 3). This is because the functional form of IaF [eq. (23)] is consistent with the 

observations [Figure 2(c) and 2(d)] and the results from the theoretical analysis of heterogeneous watersheds [eq. (16), Figure 

6, and Table 1]. Using variable Ia also improved the runoff predictions in small events and eliminated the false prediction of 20 

zero-runoffs. Therefore, their application is recommended in heterogeneous watersheds with non-zero initial abstractions. 
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When the watershed heterogeneity is known in great detail such that the number of calibrated parameters ≤ 3, a distributed 

modeling approach [e.g. SWAT (Gassman et al., 2007) or Soulis and Valianzas (2013)] may be preferable over the variable Ia 

models. A distributed parameter model has advantages similar to the variable Ia models over the conventional models. It would 

inherently account for the variation of CN method’s parameters spatially and with P. It would also avoid the false prediction 

of zero runoffs in small events because HRUs with larger CNs, which generate runoff even in small events, are explicitly 5 

considered. When the heterogeneity is unknown, however, the number of calibrated parameters (for values of CNi and ai) in a 

distributed model with n HRUs is 2n-1. This number would increase further if values of λi are also calibrated. Therefore, when 

the number of calibrated parameters > 3, application of a variable Ia model should be considered. 

6.5. Model Limitation 

A strength of the models proposed in this paper is that they provide a compact way to account for the spatial variation of CN, 10 

Ia, or S (watershed heterogeneity), but a limitation is that they do not account for the temporal variation. During dry periods Ia, 

and S increase whereas CN decreases. The behavior is opposite during the wet periods. Changes in land cover introduce 

additional temporal variations. Therefore, the calibrated model parameters in this paper can be considered as temporal 

averages. The models may underpredict runoff during wet periods and overpredict during dry periods. A procedure to account 

for temporal variations using antecedent moisture is described by Santikari (2017) and Santikari and Murdoch (2018). 15 

Another limitation of VIMs is that the CN values calculated using eqs. (5) or (10) are incompatible with the standard CN 

values (NRCS, 2003; USDA, 1986) derived using CM0.2. However, this limitation is not unique to VIMs because any method, 

including CMλ, which involves an altered relationship between Ia and S (i.e. λ ≠ 0.2) leads to CN values that are incompatible 

with those derived from CM0.2. Given that (i) CM0.2 is a poor predictor of runoff (Tables 3 and 4; Santikari, 2017; Santikari 

and Murdoch, 2018), and (ii) the evidence contradicts λ = 0.2 (Baltas et al., 2007; D’Asaro and Grillone, 2012; Shi et al., 2009; 20 

Woodward et al., 2003), the above-mentioned limitation is an acceptable compromise. 

7. Conclusions 

Watershed heterogeneity causes calculated values of Ia, S, and CN to vary with P.  Therefore, using a single effective value of 

these quantities at the watershed scale can lead to systematic errors in the predictions of Q. This problem can be mitigated by 

treating Ia, S, or CN as functions of P. A theoretical analysis assuming spatial variation of Ia led to the following conclusions. 25 

1. Effective Ia of a watershed is equal to the filled portion of the total storage in Ia 

The total storage (called IaT) is constant, whereas the filled portion (called IaF) is a function of P [eq. (16)]. Variation of IaF 

with P (Figure 6) is similar to the variation of calculated Ia (also called effective Ia or IaW) with P [Figure 2(c) and 2(d)]. This 

shows that IaW = IaF, which is also supported by a distributed model using many HRUs [eq. (21)]. The form of IaF as a function 

of P depends on the spatial distribution of Ia within a watershed (Table 1, Figures 8 and 9). 30 
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2. λ decreases with increasing spatial scale 

Using CNW, calculated as the area-weighted average of CNi values (CNs of the HRUs), and the definition of Ia, it can be shown 

that λW < λi [eqs. (8) through (11)]. Even when λW was calibrated using CMλ, the result was λW < λi (Table 3). This shows that 

in conventional models, λ at the watershed scale tends to be smaller than that at the HRU scale, i.e. λ decreases with increasing 

spatial scale. 5 

3. Replacing Ia with IaF can account for heterogeneity 

Heterogeneity causes the effective Ia of a watershed to vary with P, so to account for heterogeneity variable Ia models (VIMs) 

replace Ia with IaF, which is a function of P (Figure 6). For practical purposes, IaF can be treated as a quadratic function of P 

[eq. (23)] with two free parameters c1 and c2 that need to be calibrated. In addition, the model also requires the calibration of 

either S (VIMS) or λ (VIMλ). 10 

4. Variable Ia models perform better than the conventional models 

Variable Ia models predict runoff and heterogeneity better than the conventional models CM0.2 (λ = 0.2) and CMλ (calibrated 

λ). They also eliminate the false prediction of zero-runoffs and improve runoff predictions in small events. Based on their 

overall performance, the models are arranged from the best to the worst as VIMλ > VIMS > CMλ > CM0.2. 

5. Storage transfer can improve model performance 15 

Storage transfer from Ia to S generally improves the model performance because the filled portions of Ia and S, IaF and F 

respectively, have similar functional relationships with P (compare Figure 6 to Figure 1). This enables a CN model to partly 

mimic a variable IaF by using F as its surrogate. Storage transfer also lowers the threshold P for runoff generation, thereby 

reducing the false prediction of zero-runoffs. Storage transfer decreases λW [eq. (3)], and this can explain why the optimal 

value of λW from published studies is much less than 0.2 or even zero in many watersheds. 20 
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List of Symbols 25 

ai = fractional area of the ith HRU 
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a(Ia) = probability density function of areal occurrence of Ia 

CM0.2 = conventional curve number model with λ = 0.2 

CMλ = conventional curve number model with calibrated λ 

CN = curve number, applicable to any spatial scale 

CNi = curve number of the ith HRU 

CNT = curve number of a watershed when IaF = IaT 

CNW = curve number of a watershed 

F = cumulative infiltration after runoff begins 

HRU = hydrologic response unit 

Ia = initial abstraction, applicable to any spatial scale 

IaF = areal average of the filled portion of IaT 

Iai = initial abstraction of the ith HRU 

IaT = areal average of the total initial abstraction 

IaW = effective initial abstraction of a watershed 

Ia,max = maximum value of Ia within a watershed 

λ = initial abstraction ratio, applicable to any spatial scale 

λi = initial abstraction ratio at HRU scale 

λW = initial abstraction ratio at watershed scale 

m = no. of fully filled HRUs in which Iai ≠ 0 

n = no. of HRUs in which Iai ≠ 0  

NSE = Nash-Sutcliffe efficiency parameter 

P = event rainfall 
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PB = percent bias 

Q = event runoff 

R2 = coefficient of determination 

S = potential maximum retention, applicable to any spatial scale 

Si = potential maximum retention of ith HRU 

S∞ = maximum value of SW, occurs when P is infinitely large 

SW = effective potential maximum retention of a watershed 

SEE = standard error of estimate 

VIMλ = variable initial abstraction model in which λ is calibrated 

VIMS = variable initial abstraction model in which S is calibrated 
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