1 Supplementary material.

2 Section A.

The performance criteria described below have been used in this study to test how well the calibrated model fits the observed data. These evaluation statistics have been selected based on recommendations in the literature (Moriasi et al., 2007; Muleta, 2012).

6

7 Nash-Sutcliffe Efficiency (NSE)

8
$$NSE = 1 - \frac{\sum_{i=1}^{N} (S_i - O_i)^2}{\sum_{i=1}^{N} (S_i - O_{mean})^2}$$
 Equation 0-1.

9 where, " S_i " is the model simulated output and " O_i " observed hydrologic variable.

10

11 Volumetric Efficiency (VE)

12
$$VE = 1 - \frac{\sum_{i=1}^{N} |s_i - o_i|}{\sum_{i=1}^{N} o_i}$$
 Equation 0-2.

13 Ratio of Standard Deviation of Observations to RMS (RSR)

14
$$RSR = \frac{\sqrt{\sum_{i=1}^{N} (S_i - O_i)^2}}{\sqrt{\sum_{i=1}^{N} (S_i - O_{mean})^2}}$$
 Equation 0-3.

15 **Percent bias (PBIAS)**

16
$$PBIAS = \frac{\sum_{i=1}^{N} (O_i - S_i)}{\sum_{i=1}^{N} O_i} \cdot 100$$
 Equation 0-4.

17 Coefficient of Determination (**R**²)

18
$$R^{2} = \left(\frac{\sum_{i=1}^{N} [O_{i} - O_{mean}] \cdot [S_{i} - S_{mean}]}{\{\sum_{i=1}^{N} [O_{i} - O_{mean}]^{2}\}^{0.5} \cdot \{\sum_{i=1}^{N} [S_{i} - S_{mean}]^{2}\}^{0.5}}\right)^{2}$$
Equation 0-5.

19

Cantareira basins performance criteria for Calibration and Validation periods. *Cal. = Calibration period and Val. =Validation period, are shown in the Table A-1. The classification of colors are as follows: green for "very good" (NSE > 0.75; PBIAS < $\pm 10\%$; RSR < 0.50), yellow for "good or satisfactory" (0.75 > NSE > 0.5; $\pm 10\%$ < PBIAS < $\pm 25\%$; 0.50 < RSR < 0.60), red for "unsatisfactory" (NSE < 0.5; PBIAS > $\pm 25\%$; RSR > 0.70). Moreover, the correlation coefficient (R^2) and the VE criterion values close to 1.0 mean that the prediction

26 dispersion is equal to that of the observation.

Sub Sub Sub	b B-F28	Area	V	E	N_{i}	SE	R_{*}	SR	PBIA	S (%)	NSE	Log	R	2
Sub Sub Sub	<i>B-F28</i>	(km^2)	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.
Sub Sub		269.0	0.79	0.72	0.74	0.52	0.49	0.57	1.64	4.89	0.69	0.69	0.74	0.53
Sub	<i>b B-F23</i>	508.4	0.83	0.8	0.87	0.86	0.38	0.38	9.52	5.58	0.78	0.85	0.9	0.88
L	b B-F25	179.5	0.87	0.77	0.93	0.84	0.27	0.42	5.45	-9.54	0.91	0.78	0.94	0.86
50	aguarí	67.8	0.88	0.72	0.93	0.84	0.27	0.48	-3.3	-21.1	0.89	0.61	0.93	0.9
Watersheds	Area	V	Έ	N_{s}	SE	RS	SR	PBIA	S (%)	NS	E_{Log}	ŀ	\mathbf{R}^2	
<i>wa</i>	watersneus	(km^2)	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.
Ja	acareí	201.0	0.8	0.75	0.71	0.87	0.44	0.42	2.08	-1.54	0.49	0.75	0.79	0.87
Wat	tersheds	Area	V	E	NS	SE	RS	SR	PBL	AS (%)	N_{i}	SELog		\mathbf{R}^2
,, ci	ier streus	(<i>km</i> ²)	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Va
Sub	<i>b B</i> - <i>F</i> 24	172.8	0.83	0.78	0.85	0.76	0.41	0.47	-9.91	10.5	0.83	0.79	0.89	0.8
Sub	<i>b B-F30</i>	119.7	0.92	0.85	0.85	0.73	0.36	0.5	1.54	2.56	0.84	0.79	0.86	0.7
Ca	choeira	97.1	0.71	0.70	0.78	0.81	0.5	0.53	-20.3	-13.5	0.58	0.53	0.87	0.8
Wat	tersheds	Area	l	Έ	N	SE	RS	SR	PBIA	S (%)	NS	SE_{Log}		\mathbb{R}^2
mai	ersneus	(<i>km</i> ²)	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Val.	Cal.	Va
Sub	<i>B-F34</i>	135.5	0.85	0.84	0.53	0.35	0.7	0.68	14.6	2.59	0.42	0.38	0.84	0.6
Atil	bainha	176.2	0.80	0.72	0.75	0.74	0.44	0.53	9.41	-12.2	0.77	0.66	0.83	0.8
														n ²
Wat	tersheds	Area		<u>/E</u>	<u> </u>	SE		RSR	PB	IAS (%)	N	SELog	~ .	R ²
ח	Caratara	(Km)	<i>Cal.</i>	Val.	Cal.	Val.	Cal.	Cal.	Val.	Val.	Cal.	Val.	Cal.	Va
<i>P</i> . (Castro	333.7	0.81	0.78	0.73	0.72	0.58	0.53	-2.8	1 8.54	0.67	0.63	0.9	0.7

27 Table 0-1. Performance criteria results on the Cantareira modeled basins.

40 Section B.

Figure Fig. B-1 it is possible to observe that in the future there is no clear a trend in the averaged discharge, since in some periods the curve exhibits increase and in other periods decrease. In addition, the average discharge per time period showed higher values during the 2041-2070 scenario, on the other hand, the average discharge per model showed higher values in the Eta/HadGEM model results, compared to the Eta/MIROC5 model.

47 Figure 0-1. Discharge projection scenarios modeled in WEAP, driven by RCM Eta-MIROC5 and Eta-HadGEM

⁴⁸ under RCP 4.5 - 8.5 scenarios.

49 Section C.

50 Fit diagnostic plot of Generalized Extreme Value (GEV) distribution.

Figure 0-1. Diagnostic plots for stationary GEV model under historical Eta-HadGEM historical scenario and
stationarity demand (monthly drought duration intervals): Left panel QQ-plot in [m³]; Right panel, return level
[m³] vs return period plot.

Figure 0-2. Diagnostic plots for stationary GEV model under historical Eta-HadGEM historical scenario and non stationarity demand (monthly drought duration intervals): Left panel QQ-plot [m³]; Right panel [m³], return level
vs return period plot.

Figure 0-3. Diagnostic plots for stationary GEV model under historical Eta-MIROC5 historical scenario and
stationarity demand (monthly drought duration intervals): Left panel QQ-plot [m³]; Right panel, return level [m³]
vs return period plot.

- ...

Figure 0-4. Diagnostic plots for stationary GEV model under historical Eta-MIROC5 historical scenario and non stationarity demand (monthly drought duration intervals): Left panel QQ-plot [m³]; Right panel, return level [m³]
vs return period plot.

- 93 Section D.
- 94
- 95 Table 0-1. Adjusted parameters GEV distribution Adjusted for SDF curve under Eta-MIROC5. Hist.-Stationary
- 96 Demand scenario.

Drought	EtaMIROC5	Negative			
Duration	Location (µ)	Scale (σ)	Shape (ξ)	Log- Likelihood	
31 days	1.69E+07	1.06E+07	-2.88E-01	773.50	
90 days	4.25E+07	2.29E+07	-3.67E-01	714.02	
180 days	1.06E+08	4.48E+07	0.00E+00	629.90	
365 days	2.00E+08	8.86E+07	0.00E+00	592.68	

97

- 98 Table 0-2. Adjusted parameters GEV distribution Adjusted for SDF curve under Eta-MIROC5. Hist.-Non-
- 99 Stationary Demand scenario.

Drought	EtaMIROC5 H	Negative			
Duration	Location (μ)	Scale (σ)	Shape (ξ)	Log- Likelihood	
31 days	1.90E+07	1.33E+07	2.74E-02	791.25	
90 days	4.36E+07	2.40E+07	-1.07E-01	813.71	
180 days	1.20E+08	5.62E+07	0.00E+00	853.50	
365 days	2.42E+08	1.13E+08	0.00E+00	884.40	

100

- 101 Table 0-3. Adjusted parameters GEV distribution Adjusted for SDF curve under Eta-HadGEM. Hist.-Stationary
- 102 Demand scenario.

Drought	EtaHADGEM-	Negative			
Duration	Location (μ)	Scale (σ)	Shape (ξ)	Log- Likelihood	
31 days	1.33E+07	8.64E+06	-1.10E-01	576.79	
90 days	3.53E+07	1.88E+07	-5.54E-02	605.61	
180 days	8.00E+07	4.56E+07	0.00E+00	631.75	
365 days	1.53E+08	8.73E+07	0.00E+00	653.16	

103

- 104 Table 0-4. Adjusted parameters GEV distribution Adjusted for SDF curve under Eta-HadGEM. Hist.-Non-
- 105 Stationary Demand scenario.

Drought	EtaHADGEN	Negative Log-		
Duration	Location (μ)	Scale (σ)	Shape (ξ)	Likelihood
31 days	1.62E+07	1.32E+07	-3.04E-01	728.85
90 days	4.13E+07	2.71E+07	-1.84E-01	761.14
180 days	8.63E+07	5.73E+07	0.00E+00	792.70
365 days	1.65E+08	1.10E+08	0.00E+00	819.49

106

107

109 Section E.

111

112 Figure 0-1. Relationship assumptions between Drought duration intervals and water tariff adjustments. Series

structure: 16 data in total; first interval 1 frequency, second interval 9 frequencies, third interval 3 frequencies,

fourth interval 1 frequency and fifth interval 2 frequencies; average 7.85%, minimum 3.14% and maximum 18.9%.