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Abstract.  10 

Urbanisation has been associated with a reduction in the long-term correlation within a streamflow series, 

quantified by the Hurst exponent (H). This presents an opportunity to use the H exponent as an index for the 

classification of catchments on a scale from natural to urbanised conditions. However, before using the H exponent 

as a general index, the relationship between this exponent and level of urbanisation needs to be further examined 

and verified on catchments with different levels of imperviousness and from different climatic regions. In this 15 

study, the H exponent is estimated for 38 (deseasonalized) mean daily runoff time series, 22 from the USA and 

16 from Australia, using the traditional rescaled-range statistic (R/S) and the more advanced multi-fractal 

detrended fluctuation analysis (MF-DFA). Relationships between H and catchment imperviousness, catchment 

size, annual rainfall and specific mean discharge were investigated. No clear relationship with catchment area was 

found, and a weak negative relationship with annual rainfall and specific mean streamflow was found only when 20 

the R/S method was used. Conversely, both methods showed decreasing values of H as catchment imperviousness 

increased. The H exponent decreased from around 1.0 for catchments in natural conditions to around 0.6 for highly 

urbanised catchments. Three significantly different ranges of H exponents were identified, allowing catchments 

to be parsed into groups with imperviousness lower than 5% (natural), catchments with imperviousness between 

5 and 15 % (peri-urban), and catchments with imperviousness larger than 15% (urban). The H exponent thus 25 

represents a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.   

1 Introduction 

The increase in the degree of urbanization of a catchment is known to adversely influence streamflow quantity 

and quality (Paul and Meyer, 2001; O’Driscoll et al., 2010; Fletcher et al., 2013). Larger peak-flows and reduced 

times to peak are well known characteristics of urban streams (Leopold, 1968), while lower baseflow rates are 30 

often but not always observed (Hamel et al., 2015). At the same time, the larger flows discharged in urban streams 

increase the export of nutrients and pollutants, and cause a decrease in biodiversity with associated detrimental 

effects to the health of riparian ecosystems (Walsh et al., 2005b). Although traditionally focused on peak flows, 

the management of urban stormwater runoff is now often directed toward restoration of the overall streamflow 

regime, which includes the dynamic range of streamflow fluctuations (see Mejía et al., 2014). Therefore, the 35 

management of urban streams has been increasingly focused on controlling urban stormwater runoff with the 

intent to limit the streamflow during floods while also maintaining adequate flow rates during dry periods (Debusk 
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et al., 2011; Burns et al., 2012). This management strategy is often linked to the natural flow paradigm (Poff, 

1997), which advocates the maintenance of streams as close as possible to their natural regime. 

Accordingly, streams affected by urbanization should be managed to achieve streamflow regimes similar to 

predevelopment conditions. It is thus important to quantify the effect of urbanization on streamflow and 

systematically classify urban catchments according to their level of development (e.g., McDonnell and Woods, 5 

2004; Wagener et al., 2007; Sivakumar and Singh, 2012). A number of indexes are available for assessing the 

changes in hydrological regimes of rivers and streams (Olden and Poff, 2003; Poff et al., 2010); however, only a 

subgroup has been tested for application to a specific flow component (baseflow) in urbanized catchments (Hamel 

et al., 2015). These indexes are often grouped depending on the information they give about certain flow 

characteristics, such as magnitude, frequency, and duration. The selection of appropriate metrics that are 10 

applicable to different locations and climatic conditions is still an unresolved issue, with statistical methods often 

employed to avoid the use of metrics which provide redundant information on the streamflow regime (e.g., Olden 

and Poff, 2003; Poff et al., 2010; Hamel et al., 2015). Despite these efforts, it is still difficult to define a single 

streamflow metric that can summarize where a catchment lies across the spectrum of conditions from natural to 

fully urbanized.    15 

Because urbanization facilitates the rapid delivery of precipitation to streams due to impervious areas and the 

direct connection between land and stream via drainage systems (Hamel et al., 2013; Epps and Hathaway, in 

press), the resulting flashier hydrographs and the lower baseflow rates in urban areas have been associated with a 

possible reduction in long-term correlation (Jovanovic et al., 2016; Kim et al., 2016). A measure of long-term 

correlation is represented by the Hurst exponent (e.g., Beran, 1994), which has been largely used to characterized 20 

streamflow time series (Hurst, 1951; Mandelbrot and Wallis, 1969; Montanari et al., 1997; Koutsoyiannis, 2002; 

Szolgayova et al., 2014; Jovanovic et al., 2016; Ausloos et al., 2017). The Hurst exponent tends to 0.5 when an 

aggregated signal converges to white noise, while values larger than 0.5, as commonly found for streamflow 

series, are associated with persistent processes (e.g., Serinaldi, 2010). Because urbanization, with the quicker 

delivery of stormwater runoff to streams, is likely to break the long-term correlation often found in rural and 25 

natural streams, one would expect the Hurst exponent of urban streams to be closer to 0.5 when compared to rural 

and natural streams. Following this hypothesis, Jovanovic et al. (2016) and Kim et al. (2016) reported a decrease 

in values of the Hurst exponent with an increase in catchment imperviousness. Thus, although not listed in the 

large number of metrics often used to classify streams, the Hurst exponent has the potential to quantify the impact 

of urbanization on stream hydrology. However, there is a need to further examine the relationship between the 30 

Hurst exponent and the level of urbanization of a catchment by 1) including more catchments into the analysis in 

order to better estimate the relationship, and 2) include catchments from different geographic and climatic regions 

to explore whether the observed relationship is site-independent. The assumption that catchments with lower 

degrees of urbanization present long-term persistence needs also to be validated across a spectrum of catchments.  

The aim of this study is to investigate the utility of the Hurst exponent to estimate the impacts of urbanization on 35 

stream hydrology, thereby providing a general index for the classification of different levels of catchment 

urbanization. 



3 

 

2 Methods 

2.1 Estimation of long-term dependence within a daily streamflow time series 

Two methods were applied to estimate the Hurst exponent, H. The first method is the oldest and well-known 

rescaled range statistics (R/S) (Hurst, 1951) as proposed by Mandelbrot and Wallis (1969). Although this method 

has limitations compared to other more sophisticated estimations of scaling indexes (Montanari et al., 1997; 5 

Szolgayova et al., 2014), it is rather simple and thus popular to detect long-term persistence by way of estimating 

H. The second method is multifractal detrended fluctuation analysis (MF-DFA) (Kantelhardt et al., 2002).  

For both methods, the analysis starts by creating from the original series of length 𝐿 the fluctuation series, 𝜙𝑗 (𝑗 =

1, . . , 𝐿), which does not have seasonal cycles. Seasonal cycles are approximately removed from the original series 

by subtracting the calendar day mean and dividing by the calendar day standard deviation (Kantelhardt et al., 10 

2002; Szolgayova et al., 2014). The R/S and the MF-DFA are then applied to the series 𝜙𝑗.  

The details of the R/S method can be found in Weron (2002) and Szolgayova et al. (2014). The time series 𝜙𝑗 is 

divided into 𝐷 subseries of length 𝑁. For each of the m subseries (𝑚 = 1, … , 𝐷), the following calculations are 

performed:  

1) The mean 𝐸𝑚 and standard deviation  𝑆𝑚 of the subseries are calculated. 15 

2) The subseries, 𝜙𝑖,𝑚, is normalized by subtracting the sample mean to obtain (Equation 1):  

 

𝑋𝑖,𝑚 = 𝜙𝑖,𝑚 − 𝐸𝑚          

 (1) 

 20 

for 𝑖 = 1, … , 𝑁. 

3) Cumulative time series are created as (Equation 2): 

 

𝑌𝑖,𝑚 = ∑ 𝑋𝑗,𝑚
𝑖
𝑗=1           

 (2) 25 

 

for 𝑖 = 1, … , 𝑁. 

4) The range is calculated as (Equation 3): 

 

𝑅𝑚 = max{𝑌1,𝑚, … , 𝑌𝑛,𝑚} − min{𝑌1,𝑚, … , 𝑌𝑛,𝑚}      30 

 (3) 

 

and then rescaled as 𝑅𝑚/𝑆𝑚. 

Once these steps have been repeated for the m subseries with length N, the mean value of the rescaled range for 

all subseries of length 𝑁 is calculated as (Equation 4): 35 

 

(𝑅/𝑆)𝑁 =
1

𝐷
∑ 𝑅𝑚/𝑆𝑚

𝐷
𝑚=1 .         

 (4) 
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These operations are performed for different values of N. The minimum length of the subseries used in this study 

was 10 days, while the maximum length was ¼ of the total length of the available time series. Since the 𝑅/𝑆 

statistics asymptotically follows the relationship (𝑅/𝑆)𝑁~𝑐𝑁𝐻 (Mandelbrot and Wallis, 1969), the value of H is 

estimated as the slope of the linear least squares regression (Equation 5): 5 

 

log(𝑅/𝑆)𝑁 = log 𝑐 + 𝐻 log 𝑁.         

 (5) 

 

 10 

The details of the MF-DFA method can be found in, e.g., Jovanovic et al. (2016). The following calculations are 

performed on the time series 𝜙𝑗:   

1) The so-called profile value at 𝑖 of the fluctuation series is created as (Equation 6): 

 

𝑊(𝑖) = ∑ 𝜙𝑘
𝑖
𝑘=1 .          15 

 (6) 

 

The profile is segmented into non-overlapping intervals of duration s (Equation 7): 

 

𝑁𝑠 = 𝑖𝑛𝑡(𝑁/𝑠)          20 

 (7) 

 

2) Local trends from each 𝑁𝑠 segment are removed by fitting a polynomial trend to each segment and 

removing it from the series. This permits the calculation of the fluctuation function for each segment as 

(Equation 8): 25 

 

𝐹2(𝑣, 𝑠) =
1

𝑠
∑ [𝑊𝑠

𝑖=1 (𝑣𝑠 + 𝑖) − 𝑝𝑛,𝑣(𝑖)]2,       

 (8) 

 

where 𝑣 indexes the different segments  𝑣 = 0, … , 𝑁𝑠 − 1 and 𝑝𝑛,𝑣(𝑖) is the value at 𝑖 of the polynomial 30 

fit of order 𝑛 in segment 𝑣. 

3) Since the record length N is unlikely a multiple of s, to avoid disregarding that portion of the record, the 

fluctuation function is also computed starting from the end of the record as (Equation 9): 

 

𝐹2(𝑣, 𝑠) =
1

𝑠
∑ [𝑊𝑠

𝑖=1 (𝑁 − (𝑣 − 𝑁𝑠 + 1)𝑠 + 𝑖) − 𝑝𝑛,𝑣(𝑖)]2.     35 

 (9) 

 

To find the overall 𝑞th order fluctuation for the timescale 𝑠, the fluctuations from each segment are averaged such 

that 
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𝐹𝑞(𝑠) = {
1

2𝑁𝑠
∑ [𝐹2(𝑣, 𝑠)]𝑞 2⁄2𝑁𝑠−1

𝑖=0 }
1 𝑞⁄

.       

 10) 

 
When the time series has a long-term power-law correlation, one expects that 𝐹𝑞(𝑠) ∼ 𝑠ℎ(𝑞), where ℎ(𝑞) is the 5 

generalized Hurst exponent (Kantelhardt et al., 2002). In the case q =1, ℎ(1) corresponds to the Hurst exponent 

from the R/S analysis (Kantelhardt et al., 2006). To obtain the scaling exponent ℎ(𝑞), 𝐹𝑞(𝑠) is plotted as a function 

of 𝑠 in log-log space and a line is fitted to the data using the least square regression. In this study, q was 1 and the 

order of the polynomial fitting function was 5. 

The values of H obtained for different streamflow series were then grouped according to the level of impervious 10 

cover (i.e. level of urbanization of catchments) to select natural, peri-urban, and urban catchments. A two sample 

t-test and Wilcoxon rank-sum test was applied to test the difference between the empirical distributions of the 

Hurst exponents for these three different groups of catchments. 

Given the uncertainty in the estimation of H, especially when streamflow series are shorter than twenty years, the 

Pearson autocorrelation function of the series was calculated and the autocorrelation coefficient at 1-day delay 15 

(i.e., lag-1 Pearson autocorrelation) was selected as a metric characterizing the persistence of the series. The values 

of the lag-1 autocorrelation coefficient where then related to levels of catchment imperviousness as done for the 

H exponent. 

2.2 Data 

Thirty eight time series of mean daily streamflows were used for this study, as detailed in Table 1. Twenty two 20 

streamflow gauging stations were located in the USA and sixteen were in Australia. The US stations were located 

in the metropolitan areas of the cities of Baltimore, Philadelphia and Washington, DC, and the Australian stations 

were located in the metropolitan area of the city of Melbourne. The locations of these monitoring stations within 

the USA and Australia were visualized on maps in Jovanovic et al. (2016) and Hamel et al. (2015), respectively. 

The streamflow series were not affected by large structures, such as dams and reservoirs, and flow in most 25 

catchments was driven by climatic conditions and catchment characteristics. Large areas of some of the 

catchments in the USA are agricultural land; with the exception of Lang Lang River, which is partly used for 

agriculture, the catchments with no degrees of impervious areas in Australia are completely forested. The mean 

annual rainfall for US catchments ranged from around 1000 mm to 1250 mm. The mean annual rainfall for the 

Australian catchments located close to the city is about 700 mm (Melbourne water station 229636A for the period 30 

1978-2016), while some of the outlaying catchments having low to no imperviousness receive up to about 1100 

mm (Melbourne water station 229111A for the period 1990-2016). The air temperature range for US catchments 

is from -20 to 41 C with an average of 13 C, while the air temperature for Australian catchments ranges from -

3 to 47 C with an average of 15 C. According to the Koppen-Geiger classification, the climate of the US and 

Australian catchments is classified as Cfa and Cfb respectively. 35 

The level of catchment urbanization for each of the stations was indicated by the fraction of total impervious cover 

(i.e. imperviousness, U [%]), which ranged from zero (i.e. natural conditions) to nearly 50 % (i.e. largely urbanized 

catchments). For the US catchments, information about impervious data can be found in Mejia et al. (2015). 
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Imperviousness was calculated using a combination of tax map information and areal imagery. In terms of land 

use, pervious land is mainly agricultural and urban green spaces, including lawns, parks and other grassed areas. 

Riparian corridors, if present, are likely to be forested. The majority of imperviousness consist of residential, 

commercial and transportation land use areas. For the Australian catchments, the percentage of impervious area 

were taken from Hamel et al. (2015) and were calculated using the methods in Kunapo et al. (2005). Buildings 5 

and paved areas (i.e., roads and carparks) were mapped using a geographical information system software, and 

the percentage of impervious areas, U, was calculated as the ratio between total impervious area and catchment 

area. The land use of the catchments with larger U is residential, while those with low U are mostly covered by 

natural forests.  

3 Results and Discussion 10 

The values of H obtained using R/S analysis were between about 0.6 to around 0.9, while the MF-DFA analysis 

resulted in slightly higher values, with H larger than 0.65 (Figure 1); MF-DFA can give estimates slightly higher 

than 1 (Serinaldi, 2010) due to uncertainties in the estimation of the parameter H.  

Regardless of the method used, the obtained values of H showed a decreasing trend with the increase in 

imperviousness for both US and Australian catchments (Spearman correlation coefficient ρ = -0.68, p<0.001 for 15 

R/S method and ρ = -0.77, p<0.001 for MF-DFA method; Figure 1). The decreasing trend appears to stop around 

15% of imperviousness; increasing the impervious fraction beyond 15% does not seem to be associated with a 

further decrease of the estimated values of H. From Figure 1, it appears that the rapid release of stormwater runoff 

to urban streams, which generates the well-known flashiness in urban streamflow series (e.g. Leopold, 1968; Paul 

and Meyer, 2001) breaks the long-term correlation within the time series, as reflected by the lower values of H. 20 

Conversely, the catchments in natural conditions have the highest values of H due to high precipitation filtering 

capacity of natural landscapes.  

The lag-1 autocorrelation coefficient follows a pattern similar to H for the Australian catchments, but the 

relationship between the lag-1 autocorrelation coefficient and imperviousness is not as evident for the catchments 

in the USA (Figure 1). The US catchments can be quite flashy, and this may be a reason why the lag-1 25 

autocorrelation is low irrespectively of the level of imperviousness. 

This decrease in the long-term dependence of the streamflow time series has been observed in previous studies 

(Jovanovic et al., 2016; Kim et al., 2016). Jovanovic et al. (2016), using data from the same US catchments as the 

present study, showed that the temporal structure of the streamflow for the most urbanized US catchments was 

similar to the temporal structure of the precipitation records. This suggests that the increase in impervious cover 30 

might cause more precipitation to bypass the groundwater storage due to a reduction in infiltration potential. 

Furthermore, the urban stormwater network tends to enhance the delivery of water from directly connected areas 

to urban streams. Although direct connectivity was not explicitly considered in this study, one would expect 

impervious fraction and direct connectivity to be highly correlated. The elevated degree of direct connectivity in 

highly impervious catchments may have contributed to the decrease in the H exponent. Because new 35 

developments in both USA and Australia are increasingly implementing stormwater green infrastructure that 

reduces connectivity between impervious areas and urban streams, it is possible that the reduction of H will 

become less visible in the future.   
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The obtained values of H can be parsed into three groups according to their impervious cover fraction (Figure 1). 

Catchments with less than 5% impervious areas have larger values of H (0.75<H using R/S and 0.9<H using MF-

DFA), while those with values of imperviousness larger than 15% are mostly related to lower values of H 

(0.6<H<0.75 using R/S and 0.6<H<0.9 using MF-DFA). This is consistent with experimental observations, which 

showed that imperviousness as low as 15-20% is sufficient to impact stream health and ecology (e.g., Arnold and 5 

Gibbons, 1996; Walsh et al., 2005a). Between 5% and 15% the values of H appear more scattered. Therefore, 

Figure 1 suggests that the analysed catchments might be classified as natural (U5%), peri-urban (5%<U15%), 

and urban (U>15%) catchments based on the corresponding range of values of H. Similar classification ranges 

were reported in the literature previously (e.g., Hamel et al., 2015), although they were not based on a single 

metric quantifiable from streamflow series. The relationship between H and catchment imperviousness appears to 10 

be more evident for the US catchments, as the Australian streamflow series for two highly urbanized catchments 

(i.e., Blind Creek @ Knox and Gardiners Creek @ Kinkora) resulted in values of H comparable to peri-urban 

catchments, potentially due to data gaps. Nevertheless, when considered together as three different groups (i.e., 

natural, peri-urban and urban), the empirical distributions of H corresponding to these groups are significantly 

different from each other (p<0.05, t-test and p<0.05, Wilcoxon rank-sum test) for both the R/S and MF-DFA 15 

methods (Figure 2). A similar classification would result from the lag-1 autocorrelation coefficient for the 

Australian catchments, while the lag-1 autocorrelation would not show any visible difference in the US 

catchments. 

Because other variables and catchment attributes can affect the value of H, the estimated H exponents and lag-1 

autocorrelation coefficients were also related to the catchment area and catchment wetness. 20 

The differences in lag-1 autocorrelation coefficients between US and Australian catchments shown in Figure 1 

make it difficult to identify a general pattern in relation to other variables (Figure 3). 

Previous studies identified a positive relationship between H and catchment area (e.g., Mudelsee, 2007; Hirpa et 

al., 2010; Szolgayova et al., 2014). The increase in long-term dependence has been hypothesized as being due to 

the increase in storage capacity (e.g., groundwater, inundations) with increasing catchment size. However, no 25 

relationship was found between these two variables for the dataset in Table 1, as shown in Figure 3 (ρ = 0.24, p = 

0.15 for R/S method and ρ = 0.28, p = 0.09 for MF-DFA method). These conflicting results may be due to the 

smaller size of the catchments used here compared to those in literature. For example, the size of the largest 

catchment used in this analysis (see Table 1) is comparable to the smallest of the catchments used by Szolgayova 

et al. (2014). The groundwater storage appears to be able to affect the persistence of the series of the less urbanized 30 

catchments irrespectively of the area. However, small urbanized catchments may not have sufficient water storage 

to influence the long-term dependence in flow time series, and an increase in imperviousness further limits the 

water storage capacity of the urban catchments. This may contribute to the lack of apparent relationship between 

the H exponent and the catchment size. 

Catchments wetness, as indicated by annual rainfall and specific mean streamflow, is also known to influence the 35 

Hurst exponent (Szolgayova et al., 2014). Generally, catchments with lower rainfall totals and lower specific mean 

streamflow are found to have higher long-term dependence due to the longer dry weather periods and consequently 

longer low flow periods. In this study, weak but significant negative correlations were found between the H 

exponent and both annual rainfall (ρ = -0.36, p < 0.05) and specific mean streamflow (ρ = -0.35, p < 0.05), but 

only for the rescaled-range method, indicating that to some extent this holds true for smaller catchment sizes. The 40 
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links between rainfall and streamflow persistence have been explored by Jovanovic et al. (2016) for the USA 

catchments; they showed that the scaling properties of quickflow in the USA stations were similar to those of 

some rainfall stations in the same area.  

However, as demonstrated above, catchment imperviousness seems to be the most influential parameter in 

affecting long range correlations for these sites.  5 

4 Conclusions 

Catchment imperviousness has long been identified as a key environmental indicator for stream health (e.g., 

Arnold and Gibbons, 1996; Hatt et al., 2004). In this study, the percent imperviousness of urban catchments was 

also related to the loss of long-term persistence in the streamflow series as quantified by the Hurst exponent. 

Streamflow data series from catchments in the USA (Jovanovic et al., 2016) were combined with data from 10 

catchments in Australia (Hamel et al., 2015) to cover a large range of imperviousness, from catchments used for 

water supply in natural conditions to those that were heavily urbanized.  

The Hurst exponent, calculated using both the rescaled-range statistics (a simpler method) and the more 

sophisticated de-trended fluctuation analysis, decreased from values around 1 in natural catchments to values 

around 0.6 for highly urbanized catchments. The values of the Hurst exponent, which is now not listed in the large 15 

range of metrics often calculated to characterise river regimes (e.g., Poff et al., 2010; Hamel et al., 2015), were 

conducive to the classification of the catchments as natural, peri-urban, and urban. That is, the Hurst exponent 

showed fairly visible breakpoints between these catchment types and has been shown here to be an effective and 

easy-to-estimate metric to distinguish different levels of catchment urbanization. The range of imperviousness 

associated with this classification scheme is comparable to ranges developed via other metrics in literature, but 20 

was obtained herein using a metric easily calculated from daily streamflow data that is routinely collected by 

water agencies. There are obvious benefits to such a method, which can be applied without the need to use 

expensive and time consuming water quality and biological measurements. A downside of the method is that the 

estimation of the H exponent requires long time series (at least between 15 to 20 years; e.g., Koutsoyiannis (2013), 

Dimitriadis and Koutsoyiannis (2015)); the method is thus not usable to determine the benefit of restoration 25 

activities on the short term. Additionally, the analyses presented here did not use any adjustment to correct for 

bias in the estimation of the Hurst exponent; this adjustment would in general lead to higher values of estimated 

H (H<1). 

With the increasing availability of streamflow and rainfall data from water management agencies, it should be 

possible to relate the scaling properties of rainfall and streamflow as well as detecting the effect of urbanization 30 

on rainfall patterns around cities. This was not possible using the data of this study because of the lack of rainfall 

stations corresponding to the flow stations and the availability of series too short to detect changes in rainfall 

patterns.  
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Figure 1. Relationship between the percentage of catchment impervious area and the H-exponent of the streamflow series estimated 

with R/S method (left) and MF-DFA method (middle), and lag-1 Pearson’s autocorrelation coefficient (r) (right) for catchments in 

the USA and Australia. Time series with gaps longer than 200 consecutive days have empty markers. 

 5 

 

 

Figure 2. Empirical probability distributions of the H-exponent of the streamflow series estimated with R/S method (left) and with 

MF-DFA method (right) grouped into natural (U<5%), peri-urban (U=5-15%) and urban (U >15%) catchments in the USA and 

Australia. Numbers below the boxplots indicate number of data points used to generate the empirical distributions.  10 
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Figure 3. Relationship between the H-exponent of the streamflow series (estimated with R/S method (left) and with MF-DFA method 

(middle)), and lag-1 Pearson autocorrelation coefficient (right) with the catchment size (top), annual rainfall (middle) and average 

flow rate per unit area (bottom) for catchments in the USA and Australia. Time series with gaps longer than 200 consecutive days 

have empty markers. 5 
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Table 1. US and Australian streamflow monitoring stations with monitoring period, number of missing days, fraction of impervious 

area, and total catchment area. Grey cells indicate monitoring stations with a gaps in time series longer than 200 consecutive days. 

No. Name 
Gauge 

ID 
Location 

From – To 

(number of 

years) 

Total missing days 

(consecutive 

missing days) 

Impervious 

fraction 

U 

Catchment 

Area 

 

      [%] [ha] 

1 French Creek 1472157 US 1968-2013 (45) / 4.6 15310 

2 Hunting Creek 1641000 US 1949-1992 (43) / 4.6 1840 

3 Patuxent River 1591000 US 1944-2013 (69) / 4.7 9010 

4 Winters Run 1581700 US 1967-2013 (46) / 7.1 9010 

5 Raccoon Creek 1477120 US 1966-2014 (48) / 7.2 2690 

6 Chester Creek 1477000 US 1931-2013 (81) / 10.6 15820 

7 Seneca Creek 1645000 US 1930-2013 (83) / 11.5 26160 

8 Skippack Creek 1473120 US 1966-1994 (28) / 12.3 13910 

9 Northwest Branch Anacostia River (upper) 1650500 US 1923-2013 (90) 422 (330) 18.3 5460 

10 South Branch Pennsauken Creek 1467081 US 1967-2014 (47) 203 (159) 20.2 900 

11 Cooper River 1467150 US 1963-2013 (50) / 21.1 4400 

12 Northeast Branch Anacostia River 1649500 US 1938-2013 (75) / 21.7 18860 

13 Northwest Branch Anacostia River 1651000 US 1938-2013 (54) / 22.7 12790 

14 Little Patuxent River 1593500 US 1932-2013 (81) / 24.2 9840 

15 Stemmers Run 1585300 US 1958-1989 (31) 365 (365) 28.5 1160 

16 Gwynns Falls 1589300 US 1957-2013 (56) 364 (273) 30.0 8420 

17 Henson Creek 1653500 US 1948-1978 (65) / 30.8 4330 

18 Watts Branch 1645200 US 1957-1987 (30) / 35.3 960 

19 Whitemarsh Run 1585100 US 1959-2013 (54) 158 (92) 36.2 1970 

20 West Branch Herring Run 1585200 US 1957-2013 (56) 579 (273) 40.4 550 

21 East Branch Herbert Run 1589100 US 1957-2013 (56) 365 (273) 44.4 640 

22 Dead Run 1589330 US 1959-2013 (54) 282 (189) 48.6 1430 

23 Lang Lang River 228209B AUS 1985 - 2011 (27) 9 (2) 0.0 27743 

24 McMahons Creek 229106A AUS 1991 - 2008 (18) 767 (128) 0.0 4000 

25 
OShannassy River 

229652A 
AUS 

1979 – 2008 

(30) 
1147 (196) 0.0 8700 

26 
Starvation Creek 

229109A 
AUS 

1981 – 2008 

(28) 
2071 (972) 0.0 3160 

27 Olinda Creek 229690 AUS 1992 - 2008 (17) 302 (102) 0.3 2610 

28 
Woori Yallock Creek 

229679B 
AUS 

2000 – 2011 

(12) 
141 (31) 3.0 28460 

29 Cardinia Creek 228228A AUS 1985 - 2011 (27) 262 (105) 7.0 9060 

30 Bungalook Creek 228369A AUS 1985 - 2011 (27) 634 (236) 13.0 385 

31 
Cohranwarrabul Creek 

228393A 
AUS 

1999 – 2011 

(13) 
50 (24) 20.0 6232 

32 Brushy Creek 229249A AUS 1992 - 2008 (17) 361 (281) 28.0 1470 

33 Dandenong Creek @ Wantirna 228357A AUS 1985 - 2011 (27) 173 (94) 31.0 6817 

34 Mullum Creek 229648A AUS 1992 - 2008 (17) 66 (13) 31.0 3700 

35 Blind Creek @ Knox 228366A AUS 1985 - 2011 (27) 483 (281) 41.0 1554 

36 Gardiners Creek @ Ashwood 229625A AUS 1992 - 2008 (17) 181 (72) 44.0 3950 

37 Blind Creek @ High St 228351A AUS 1985 - 2009 (25) 758 (185) 45.0 2656 

38 Gardiners Creek @ Kinkora 229636A AUS 1985 - 2011 (27) 1966 (213) 47.0 432 

 


