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Abstract. The continual growth in the availability, detail, and wealth of environmental data provides an invaluable asset to

improve the characterization of land heterogeneity in Earth System models—a persistent challenge in macroscale models.

However, due to the nature of these data (volume and complexity) and computational constraints, these data are underused for

global applications. As a proof of concept, this study explores how to effectively and efficiently harness these data in Earth

System models over a 1/4 degree (∼25 km) grid cell in the western foothills of the Sierra Nevada in Central California. First, a5

novel hierarchical multivariate clustering approach (HMC) is introduced that summarizes the high dimensional environmental

data space into hydrologically interconnected representative clusters (i.e., tiles). These tiles and their associated properties are

then used to parameterize the sub-grid heterogeneity of the Geophysical Fluid Dynamics Laboratory (GFDL) LM4-HB land

model. To assess how this clustering approach impacts the simulated water, energy, and carbon cycles, model experiments

are run using a series of different tile configurations assembled using HMC. The results over the test domain show that: 1)10

the observed similarity over the landscape makes it possible to converge on the macroscale response of the fully distributed

model with around 300 sub-grid land model tiles; 2) assembling the sub-grid tiles from observed data leads at times to notice-

able differences in the macroscale states and fluxes of the water, energy, and carbon cycles; for example, explicit subsurface

interactions between the tiles leads to a dampening of macroscale extremes; 3) connecting the fine-scale grid to the model

tiles via HMC enables circumventing the classic scale discrepancies between the macroscale and field-scale estimates; this has15

potentially significant implications for the evaluation and application of Earth System models.

1 Introduction

Spatial heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles from local to continental

and global scales. This has been recognized for decades in hydrology, ecology, geomorphology, and soil science where it has

been observed repeatedly that at multiple temporal and spatial scales, land surface processes have deep ties to an ecosystem’s20

spatial structure and function. As a result, the macroscale behavior of the water, energy, and biogeochemical cycles cannot be
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disentangled from their fine-scale processes and interactions (Quinn et al., 1995; Wood et al., 2011; Bierkens et al., 2014; Katul

et al., 2007; Köppen, 1936; Holdridge, 1947; Box, 1981).

Recognizing the importance of multi-scale heterogeneity in the Earth System, in the 1980s and 1990s there was a strong

emphasis to include its role in large scale land surface models (Peters-Lidard et al., 1997; Avissar and Pielke, 1989; Liang

et al., 1994; Koster et al., 2000; Franks and Beven, 1997). These sub-grid schemes, however, rarely were designed to handle5

the sub-grid multi-scale coupling of the water, energy, and biogeochemical cycles as intended in contemporary applications

(e.g., Earth System models, Clark et al., 2015a). This is especially relevant as large scale models begin to include human

influence on land surface processes (Wada et al., 2014; Li et al., 2016). Acknowledging these constraints, in recent years there

has been a renewed emphasis on improving the representation of sub-grid heterogeneity through a more robust representation

of soil, topographic, urban, and microclimate heterogeneity and by enabling explicit subsurface and surface interactions among10

sub-grid mosaic “tiles” or hydrologic response units (Chaney et al., 2016a; Subin et al., 2014; Ajami et al., 2016; Clark et al.,

2015b).

Although these emerging approaches have the potential to considerably improve the representation of sub-grid heterogeneity

in macroscale models, their added value depends on both the data and the approaches used to inform the sub-grid schemes

on the underlying heterogeneity of the physical environment—the primary driver of spatial heterogeneity in land surface15

processes (e.g., topography). The continual growth in the availability, detail, and wealth of Earth System data over the past

decades provides an invaluable asset to make this possible. The use, harmonization, combination, and reinterpretation of field

surveys, in-situ networks, and satellite remote sensing have led to petabytes of vegetation, topography, climate, meteorology,

and soil data over continental to global extents with spatial resolutions ranging between 10-1000 meters (Gesch et al., 2009;

Chaney et al., 2016b; Hengl et al., 2014; Lehner et al., 2008; Roy et al., 2010; Pan et al., 2016; Farr et al., 2007; Fry et al.,20

2011; Hijmans et al., 2005; Chen et al., 2015; Daly et al., 2008). These data, although uncertain, provide invaluable very

high-resolution snapshots of the sub-grid physical environment and its impact on ecosystem spatial structure and function.

In most cases, environmental models use these data in two ways: 1) running the model at the native spatial resolution of the

data (i.e., fully distributed model) and 2) running the model on a coarser grid by upscaling the data (i.e., lumped model). Both

options are inadequate for Earth system models; the first is computationally unfeasible while the second mostly disregards the25

role of sub-grid heterogeneity. The question then remains: how can these data be used to the fullest extent while minimizing

both computation and storage requirements?. This challenge is analogous to image compression where the goal is to maximize

an image’s information content while minimizing disk storage (e.g., clustering) (Kanungo et al., 2002). For environmental

data, this equates to effectively and efficiently summarizing the data while minimizing information loss. This concept is the

underlying basis for mosaic schemes in land surface models (Avissar and Pielke, 1989) and hydrologic similarity in hydrologic30

models (Beven and Freer, 2001).

Commonly, within macroscale models, the use of similarity amounts to binning (i.e., 1-dimensional clustering) maps of

variables that are used as proxies of the drivers of spatial heterogeneity (e.g., topographic index is used to represent the role of

topography on subsurface flow) to assemble a set of representative sub-grid tiles. However, recently there have been efforts to

formally connect the concept of similarity to the clustering of an n-dimensional space—in this case, the n-dimensional space is35
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composed of the proxies of spatial heterogeneity (Newman et al., 2014). Chaney et al. (2016a) takes this concept a step further

by building a model (HydroBlocks) that enables the explicit interaction among the tiles assembled via multivariate clustering—

the connectivity between the tiles is learned from the elevation data. In this case, hydrologic connectivity was enforced in the

clustering algorithm primarily through flow accumulation area derived from the DEM while mostly disregarding the basin’s

channel, hillslope, and sub-basin structure; this over-simplification of catchment structure can lead to overly complex and at5

times unrealistic inter-tile connections—critical to accurately simulating baseflow production. Thus the need remains for a

clustering approach that allows for a minimal number of tiles while robustly accounting for the fine-scale hydrologic structure

of the macroscale grid cell.

This paper introduces a hierarchical multivariate clustering approach (HMC) that summarizes the high dimensional envi-

ronmental data space into hydrologically interconnected representative clusters (i.e., tiles). HMC has three main components:10

1) cluster the fine-scale map hillslopes in a grid cell into characteristic hillslopes, 2) discretize the characteristic hillslopes

into height bands, and 3) cluster the intra-band soil and vegetation. As a proof of concept, these clusters (i.e., tiles) are then

used within the Geophysical Fluid Dynamics Laboratory (GFDL) LM4-HB land model to explore its potential to provide a

robust multi-scale coupling between the water, energy, and biogeochemical cycles. Using a 1/4 degree (∼25 km) grid cell in

the western foothills of the Sierra Nevada in Central California as a test-bed, this paper explores the number of tiles necessary15

to robustly account for the sub-grid multi-scale heterogeneity in the macroscale states and fluxes. It also explores the role that

each of the drivers of spatial heterogeneity plays at the macroscale. Finally, the implications of this approach in the application

and validation of large-scale environmental models and Earth System models are discussed.

2 Data

To develop, implement, and evaluate HMC, this study uses a 1/4 degree grid cell that covers the foothills and high sierras of20

southern Sierra Nevada in California (Figure 1). This domain is selected due to the observable role of the physical environment

in the sub-grid heterogeneity. This heterogeneity is primarily explained by the strong topographic gradient between the Central

Valley and the Sierra Nevada and its impact on precipitation and temperature; the highest point in the domain is 3118 meters

while the lowest is 163 meters. This area has an annual average rainfall of 614 mm with large intra-cell variability with a

minimum of 299 mm/year in the lowlands and a maximum of 1152 mm/year in the uplands. In both cases, most of the rainfall25

occurs between October and May. The uplands are primarily covered by evergreen vegetation while shrubs and grasses cover

the lowlands. The uplands are characterized by a higher sand content than the lowlands and vice-versa for clay content.

2.1 Land and meteorological data

2.1.1 Topography

This study uses the 1 arcsec USGS National Elevation Dataset (NED) digital elevation model (DEM) and a series of derived30

products including flow accumulation area, hillslopes, slope, height above nearest drainage area (HAND), and aspect. The
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NED covers the contiguous United States (CONUS) and is created primarily from the USGS 10 m and 30 m digital elevation

models and from higher resolution data sources such as light detection and ranging, interferometric synthetic aperture radar,

and high-resolution imagery (Gesch et al., 2009).

2.2 Meteorology and climate

The recently developed Princeton CONUS Forcing (PCF) dataset provides a 1/32 degree (∼3 km) meteorological product5

over CONUS at an hourly temporal resolution between 2002 and present (Pan et al., 2016). This dataset downscales the

National Land Data Assimilation System phase 2 (NLDAS-2) product from 1/8 to 1/32 degree using a series of available

products including Stage IV and Stage II radar/gauge products for rainfall. PCF includes precipitation, downward shortwave

radiation, downward longwave radiation, air temperature, specific humidity, wind speed, and pressure. Furthermore, to inform

the microclimate heterogeneity in HMC, this paper uses the recently released WorldClim2 dataset. This gridded dataset derived10

from in-situ observations provides monthly climatologies of temperature, precipitation, solar radiation, vapor pressure, and

wind speed over the global land surface at a 30 arcsec spatial resolution (Fick and Hijmans, 2017).

2.3 Soil properties

The soil properties come from the Probabilistic Remapping of SSURGO (POLARIS) dataset (Chaney et al., 2016b), a new con-

tinental soil dataset that uses random forests to spatially disaggregate and harmonize the Soil Survey Geographic (SSURGO)15

database (Soil Survey Staff , 2013) over CONUS. In POLARIS, for each 30-meter grid cell, every soil series is assigned a prob-

ability of being found at a given grid cell. These probabilities are then combined with the vertical profile information available

for each soil series to construct a minimum, maximum, weighted mean, and weighted variance for each grid cell—enough

information to construct a beta distribution for each parameter per vertical layer of each grid cell. For this study, this approach

provides porosity (θs), wilting point (θwp), and field capacity (θfc), and saturated hydraulic conductivity (Ksat) which are set to20

be the median of each corresponding beta distribution. These data are then used to directly compute the bubbling pressure (ψb)

and the inverse of the pore distribution size index (B) which are used in the Campbell water retention curve (θ = θs(ψb/ψ)1/B)

(Campbell, 1974).

2.3.1 Land cover

The Cropland Data Layer (CDL) provides the 30-meter land cover types. The CDL is an annually-produced database over25

CONUS that combines the National Land Cover Database (Fry et al., 2011) with an annual analysis of the spatial distribution of

croplands. It is created and managed by the United States Department of Agriculture’s National Agricultural Statistics Service

(USDA-NASS). The predicted land cover types are based on the reflective signatures from a number of satellites including

Landsat TM and ETM+, MODIS satellite data, and the Advanced Wide Field Sensors (AWiFS), among others (Boryan et al.,

2011). The different categories are associated to their corresponding land use types and species within the LM4-HB model.30
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3 Methods

3.1 Land model description: LM4-HB

For this study, the conceptual approach that is used to parameterize sub-grid heterogeneity in the HydroBlocks land surface

model (HB, Chaney et al., 2016a) is added to the fourth generation of the Geophysical Fluid Dynamics Laboratory (GFDL)

land model (LM4, Shevliakova et al., 2009; Milly et al., 2014; Subin et al., 2014). The resulting LM4-HB model is used to5

explore how Big Data can be efficiently and effectively harnessed to improve the characterization of the sub-grid multi-scale

heterogeneity in Earth System models. LM4-HB uses a hierarchical approach to represent the underlying sub-grid heterogene-

ity; this makes it an ideal candidate for the testing and implementation of a hierarchical multivariate clustering algorithm to

assemble the underlying sub-grid heterogeneity from available environmental datasets. This section provides an overview of

LM4-HB with a primary focus on describing its hierarchical representation of sub-grid heterogeneity.10

The land fraction of each grid cell in LM4-HB is partitioned into soil, glacier, and lake components. The soil component in

turn is composed of k characteristic hillslopes; each hillslope has a unique set of attributes including slope, aspect, convergence,

and convexity, among others. As shown in Figure 2, each characteristic hillslope i is divided into li height above nearest

drainage area (HAND) bands (referred to from now on as height bands). Each height band bi,j is divided into pi,j clusters (i.e.,

tiles) to account for the intra-band heterogeneity in soil and land cover. The total number of soil tiles is given by the sum of all15

tiles in each height band for all characteristic hillslopes within a grid cell. Although not shown in Figure 2, the current model

uses a uniform soil depth for all tiles within a characteristic hillslope. However, the soil properties (e.g., porosity and hydraulic

conductivity) control the effective soil depth of each tile and thus variable soil depths as shown in the schematic are effectively

represented.

Each soil tile within LM4-HB consists of a model from canopy air down to impermeable bedrock. The processes captured20

within the model include bidirectional diffuse and direct, visible and near-infrared radiation transfer; photosynthesis and stom-

atal conductance; surface energy, momentum, and water fluxes; snow physics; soil thermal and hydraulic physics (including

advection of heat by water fluxes); vegetation phenology, growth, and mortality; simple plant-functional-type transition dy-

namics; and simple soil-carbon dynamics. For further details on the intra-tile processes see Shevliakova et al. (2009); Milly

et al. (2014).25

Within each characteristic hillslope, each tile interacts with the tiles in its same height band and the tiles in the height bands

immediately below and above via the subsurface flow of water; heat and carbon are advected by the water fluxes. The tiles

adjacent to the channel interact with the stream in one direction (tile to stream). Each height band is characterized by a length,

width, and height above nearest drainage area. The effective width of a tile for a given height band is the corresponding fraction

of the width of the height band. For further details on the tile interactions and the hillslope model more generally see Subin30

et al. (2014).

For all model simulations in this study, LM4-HB is run with a 50 meter soil depth (the same for all tiles) at a 1 hour time

step for 130 years by cycling through the forcing between 2002 and 2014 ten times. The first 117 years are used for spin-up

while the final 13 years of the simulation are used for the analysis.
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3.2 Assembling the land model tiles: Hierarchical multivariate clustering

To take advantage of LM4-HB’s sub-grid representation of land cover, soil, climate, and topography, the characteristic hill-

slopes and the intra-hillslope heterogeneity are parameterized using available continental and global environmental data. This

section provides an overview of the hierarchical multivariate clustering (HMC) algorithm used to assemble a grid cell’s tiles.

Its steps are: 1) define the characteristic hillslopes, 2) discretize the characteristic hillslopes into height bands, and 3) define the5

intra-band heterogeneity.

3.2.1 Define the characteristic hillslopes

The characteristic hillslopes for a given grid cell are defined by clustering a grid cell’s fine-scale map of hillslopes. To assemble

the map of hillslopes, the DEM is sink-filled (Planchon and Darboux, 2002) and the channels are delineated using an area

threshold of 100,000 m2. A recursive algorithm then splits each basin into a maximum of three hillslopes—left side, right side,10

and headwaters. Each hillslope’s attributes are assembled from the high-resolution soil, topography, and climate data. These

include each hillslope’s average aspect, slope, annual mean precipitation, and annual mean temperature. Metrics that summarize

each hillslope’s plan and profile geometry are derived from the hillslope’s binned HAND data. Given each bin’s slope, HAND,

and area, the length and width are readily computed. To summarize these properties, a line is fit to the set of widths for each

hillslope; the slope of this function provides a summary metric of the hillslope’s plan shape (convergence/divergence). For each15

hillslope’s profile, the function h=H
[
1− (1− (x/L)a)

b
]

is fit to the binned HAND data; where h is the HAND, H is the

maximum HAND, x is the horizontal position, and L is the hillslope length. The parameters a and b summarize the concavity

of the lower half and upper half of each hillslope respectively. This function is chosen due to its flexibility to reproduce convex,

concave, and complex hillslope profiles.

Assembling all the calculated attributes leads to an n by m array where n is the number of hillslopes and m is the number of20

attributes. The k-means clustering algorithm (MacQueen, 1967) is then used to partition the normalizedm dimensional attribute

space into k characteristic hillslopes. Figure 3 provides an overview of the steps used to define the characteristic hillslopes. The

attributes of each characteristic hillslope are then set to be the arithmetic mean of the attributes of its corresponding hillslopes.

3.2.2 Discretize the characteristic hillslopes

After assembling the set of characteristic hillslopes, their attributes, and their corresponding profile and width functions, the25

next step is to discretize each profile along the length axis into height bands. The number of height bands is li = dHi/∆he;
where i is the characteristic hillslope, Hi is the profile’s maximum height, and ∆h is the fixed height difference between

adjacent height bands. Note that the number of height bands per characteristic hillslope can differ per characteristic hillslope

since each has a unique Hi. Each resulting height band has a unique mean width, length, and height.

Using the high-resolution maps of characteristic hillslopes and the HAND, each high-resolution grid cell is assigned a30

characteristic hillslope and a height band. This is accomplished by first normalizing the HAND map per hillslope by dividing

all HAND values that belong to a given hillslope by the given hillslope’s maximum HAND value (H). This normalized HAND
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map is then combined with the normalized discretized HAND profiles of the characteristic hillslopes to assign each high-

resolution grid cell to its corresponding height band. This process formally connects the discretized characteristic hillslopes

to the observed landscape. Figure 4 illustrates an example discretization of a characteristic hillslope and the mapping of the

discretized hillslopes to the high-resolution grid.

3.2.3 Define the intra-band heterogeneity5

The final step is to define the heterogeneity within each height band bi,j where i is the characteristic hillslope and j is the

height band. For each band bi,j , the collocated fine-scale grid cell values of the proxies of heterogeneity are extracted. This

study uses saturated hydraulic conductivity, porosity, and a set of binary maps (natural/cropland, evergreen/deciduous, and

grass/tree) derived from the high resolution land cover map. These binary maps are used to avoid clustering categorical data.

For each height band bi,j , this leads to an n by m array of attributes where n is the number of fine-scale grid cells that belong10

to bi,j and m is the number of attributes. The k-means algorithm is then used to cluster the m dimensional attribute space into

pi,j intra-band clusters (i.e., tiles). In this study, for simplicity, pi,j is set to be the same for all height bands and characteristic

hillslopes. Therefore, the final number of tiles for the macroscale grid cell is given by:

ntiles = p

k∑
i=1

li (1)

Each tile within a grid cell is assigned an id ti,j,k where i is the characteristic hillslope, j is the height band, and k is the intra-15

band cluster. Figure 5 shows an example of the intra-band clustering and the tile configuration resulting from the hierarchical

clustering algorithm over this study’s domain. For each tile, the continuous land model parameters are set to be the arithmetic

average of all the parameter values of the fine-scale grid cells that belong to the given tile. The mode is used instead of the

mean for categorical land model parameters. Each tile is assigned its own meteorology by assigning a weighted average of all

the overlying 4 km PCF grid cells that intersect with the 30-meter grid cells that belong to the tile. One of the advantages of20

having each 30-meter grid cell belong to a tile and the corresponding map of tiles is that the simulations for each tile can be

mapped to the fine scale grid to provide a 30-meter representation of the model output at each time step.

3.3 Model experiments

3.3.1 Exploratory simulation

By clustering the high-dimensional environmental space, HMC explicitly relates the tiles used in LM4-HB to the observed25

fine-scale physical environment while ensuring realistic hydrologic connections between tiles along characteristic hillslopes.

To illustrate the benefits and additional model information that can be extracted when using HMC, an exploratory simulation

is run using a simple HMC-assembled tile configuration (k = 2, ∆h= 50 meters, p= 2) with 14 tiles within LM4-HB. This

tile configuration is among the simplest case for this domain that is able to illustrate the role of all the different drivers of

heterogeneity. This exploratory simulation is then analyzed to illustrate the added information that HMC provides.30
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3.3.2 Hierarchical multivariate clustering: Parameter sensitivity

The primary objective of HMC is to harness high-resolution environmental data to efficiently and effectively summarize a

macroscale grid cell’s underlying multi-scale spatial structure. To make this possible, HMC relies on a set of user-defined

parameters to control the importance of each hierarchical step in the algorithm; these parameters include: 1) the number of

characteristic hillslopes (k), 2) the elevation difference between adjacent height bands (∆h), and 3) the number of intra-band5

clusters per height band (p). To test LM4-HB’s sensitivity to these parameters, 9 model experiments are performed in which

the HMC parameters are adjusted to assess their individual roles. The model experiments are outlined in Table 1. Experiments

e1,1000,1,e2,1000,1, and e10,1000,1 increase k from 1 to 10 characteristic hillslopes, experiments e10,50,1,e10,20,1, and e10,10,1

decrease ∆h until 10 meters, and experiments e10,10,2,e10,10,3, and e10,10,5 increase p up to 5 intra-band clusters.

3.3.3 Characterizing the roles of the drivers of heterogeneity10

Applying HMC on existing high resolution environmental data enables a robust representation of the different drivers of spatial

heterogeneity (soil, topography, meteorology, and land cover) within macroscale environmental models. However, it does not

explicitly characterize the individual role of each driver—key to advancing our understanding of the relationship between the

physical environment, ecosystem spatial structure, and macroscale response. To make this analysis possible, another set of

model experiments is explored that investigate the individual role of each driver at the macroscale. Using an approach similar15

to Chaney et al. (2014), each driver’s sensitivity is explored by turning the heterogeneity of properties associated with each

driver on and off. When “on” the properties associated to the driver are left as assigned through HMC; when “off” the driver’s

properties are set to be the grid cell mean. The different model experiments are outlined in Table 2.

4 Results and Analysis

4.1 Exploratory simulation20

Figure 6 shows the simulated time series for all 14 tiles at a daily time step for baseflow, root zone soil moisture, evapotranspi-

ration, and sensible heat flux. The fine-scale map of tiles is also shown and color-coded to relate the spatial location of each tile

to the simulated time series. Each tile is assigned an id ti,j,k, where i is the characteristic hillslope, j is the height band, and k

is the intra-band cluster. A comparison of the tiles’ time series exemplifies the differences in states and fluxes that are driven

by a tile’s location, properties, and meteorology. Explicitly resolving hillslope dynamics leads to significant differences in the25

root zone soil moisture; in general, soil moisture decreases as the tiles are further away from the valley. However, land cover,

soil, hillslope structure, and meteorological differences can lead to differences in soil moisture between hillslopes and intra-

band clusters (e.g., uplands vs lowlands). This strong topographic gradient in soil moisture provides more water for vegetation

growth in the valleys than along the ridges; given that this is a water-limited area, this explains the appreciable differences

in simulated evapotranspiration. Furthermore, this also explains the strong heterogeneity in sensible heat flux with tiles with30
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higher soil moisture having lower sensible heat fluxes. Finally, only the tiles that are adjacent to the channels (t1,1,1,t1,1,2,t2,1,1,

and t2,1,2) produce noticeable baseflow.

For all states and fluxes, the macroscale (tile weighted average) time series for each variable is superimposed on the tile

simulations to illustrate the strong differences that can exist between individual tiles and the macroscale estimate (temporal

dynamics and mean). These differences illustrate the challenge of comparing a macroscale estimate to observations and simu-5

lations at different spatial resolutions; a persistent challenge when aiming to apply and evaluate macroscale models. However,

as will be discussed in section 5.2, being able to connect each 30-meter grid cell to each tile simulation enables a path towards

circumventing the scale discrepancies between macroscale model estimates and in-situ observations.

Figure 7 illustrates how the tile simulations can then be mapped onto the 30-meter fully distributed grid. In this example, the

daily averaged simulated evapotranspiration value for each tile on June 16th, 2005 is assigned to each corresponding fine-scale10

grid cell. Being able to visualize the assumed heterogeneity of the model enables a more realistic comparison to fully distributed

models. Furthermore, it makes it possible to provide model output at spatial resolutions at far finer spatial resolutions than the

tile weighted average (i.e., macroscale estimate).

4.2 Hierarchical multivariate clustering: Parameter sensitivity

As outlined in Section 3.3.2, the experiments in this section explore the sensitivity of the HMC parameters through a set of15

model experiments; these experiments are summarized in Table 1.

As an initial visual comparison, Figure 8 shows the mapped annual mean evapotranspiration between 2002 and 2014 at a 30-

meter spatial resolution for the different model experiments. The baseline experiment is the one tile configuration (i.e. no sub-

grid heterogeneity). An increase in the number of characteristic hillslopes leads to the appearance of large-scale spatial patterns

in evapotranspiration (experiments e1,1000,1,e2,1000,1, and e10,1000,1). This is primarily due to the strong topographic gradient in20

precipitation between the lowlands and uplands; this heterogeneity in evapotranspiration is possible through the disaggregation

of the PCF meteorology among the land model tiles. Decreasing ∆h leads to an increase in the number of height bands per char-

acteristic hillslope; this makes the role of topographic convergence in sub-surface flow readily apparent—evapotranspiration

is higher in the riparian zones (experiments e10,50,1,e10,20,1, and e10,10,1). Finally, increasing the number of intra-band clus-

ters adds to heterogeneity in evapotranspiration due to land cover and soil heterogeneity (experiments e10,10,2,e10,10,3, and25

e10,10,5). Note how after experiment e10,10,2 (278 tiles), the spatial patterns cease to change as much.

Figure 9 formalizes the comparison between the different model experiments; it shows how the spatial mean and spatial

standard deviation of the annual mean of each year between 2002 and 2014 change as a function of the tile configuration for a

suite of states and fluxes. The primary result is the apparent convergence of all states and fluxes for both the spatial mean and

standard deviation with the increase in the number of land model tiles. In other words, there is a point at which further increases30

in the number of tiles have a limited impact at the macroscale. For this site, that limit is approximately 300 tiles compared to the

810,000 fine-scale grid cells in the domain. This result is encouraging; it illustrates that multi-scale sub-grid heterogeneity can

be characterized effectively and efficiently in large scale models by taking advantage of the covariance between environmental

properties.
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The role that each parameter of HMC has at the macroscale depends on the prognostic variable; these differing roles are

discussed below.

– k - An increase in the number of characteristic hillslopes from experiments e1,1000,1 (1 tile) to e10,1000,1 (10 tiles)

leads to noticeable changes in all the prognostic variables. The most noticeable changes occur when increasing the

number of characteristic hillslopes from 1 to 2. This is primarily due to the improved representation of land cover5

heterogeneity; instead of the grid cell being represented uniformly as evergreen trees, the lowlands are now grasses

while the uplands remain as evergreen trees. This leads to a decrease in the cell’s effective roughness length (i.e., a

decrease in aerodynamic conductance), and thus a decrease in sensible heat flux and an increase in surface temperature.

The decrease in aerodynamic conductance also contributes to a decrease in transpiration.

– ∆h - A decrease in ∆h from experiments e10,50,1 (28 tiles) to e10,10,1 (139 tiles) leads to an increase in the number10

of height bands in the characteristic hillslopes. This results in an explicit representation of the role of topographic

convergence in sub-surface flow; more soil water is available in the valleys than along the ridges. The increase of soil

water in the valleys also leads to more frequent saturated excess runoff; to the extent that during wet years this counteracts

the decrease in baseflow. Another noticeable impact of the increase in the number of height bands is the decrease in

inter-annual variability in transpiration, net primary productivity, baseflow, and sensible heat flux. As will be discussed15

in Section 5.1 this can have potentially important implications for the role of spatial structure on ecosystem resilience to

hydrologic extremes.

– p - An increase in the number of intra-band clusters from experiments e10,10,2 (278 tiles) to e10,10,5 (695 tiles) leads

to a more robust representation of soil and land cover heterogeneity throughout the domain. This leads to differences

in most variables. However, these differences are not as noticeable as those due to changes in k and ∆h since most of20

the heterogeneity in land cover and soil heterogeneity has already been represented through these other parameters. This

parameter will most likely play a larger role in regions where the ecosystem spatial structure is not as strongly tied to

topography.

4.3 Characterizing the roles of the drivers of heterogeneity

Although Section 4.2 provides preliminary insight into the role of the different drivers of spatial heterogeneity (e.g., topographic25

convergence impacts the macroscale soil moisture mean), due to the interactions of the HMC parameters, it cannot precisely

disentangle each driver’s unique role. For this purpose, as introduced in Section 3.3.3, another set of experiments is explored

that turn the different drivers of heterogeneity on and off. These experiments are summarized in Table 2. Furthermore, the tile

configuration of experiment e10,10,2 in Section 4.2 (278 tiles) is used for all experiments in this section; this tile configuration

is chosen because, as shown in Section 4.2, the model macroscale states and fluxes converge at around 300 tiles.30

As an initial visual comparison, the mapped model results of the different experiments are shown in Figure 10 for annual

mean runoff, 2 meter root zone soil moisture, leaf area index, and soil temperature between 2002 and 2014 at a 30-meter spatial
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resolution; Figure 11 formalizes this comparison. The role that each driver plays on the macroscale prognostic states and fluxes

are discussed below.

– Baseline (B) - The baseline experiment equates to the homogeneous sub-grid cell case. However, in this case, there

are 278 tiles where each tile has the same soil properties, hillslope structure (each tile is set to be its own characteristic

hillslope), and land cover properties. Furthermore, each tile is run using the grid cell mean meteorology. Not surprisingly,5

there is no heterogeneity in the plotted maps and the spatial standard deviation for all prognostic states and fluxes is 0.

– Soil heterogeneity (S) - This experiment adds heterogeneity in the soil properties; this includes porosity, and the Camp-

bell retention curve parameters, among others. It has a relatively small impact on the spatial mean for all variables.

However, there are changes in their spatial standard deviations. The increase in spatial standard deviation is largest for

soil moisture, which in turn impacts the remaining prognostic variables. For example, changes in available water impacts10

infiltration excess runoff leading to, at times, appreciable heterogeneity in annual runoff production. In any case, these

differences are minor at the macroscale when compared to the subsequent experiments.

– Soil and hillslope heterogeneity (SH) - Assigning each tile to its original corresponding characteristic hillslope and

discretizing these hillslopes leads to significant differences at the macroscale. The strong topographic gradients caused

by the discretized hillslopes lead to strong topographic gradients in soil moisture and thus explain the sharp increase in15

the spatial standard deviation of soil moisture. These topographic gradients in soil moisture lead to an overall increase

in saturated excess runoff during wet years, thus counteracting the overall decrease in baseflow; this also explains the

increase in the spatial standard deviation of runoff. The most noticeable role of the topographically driven subsurface

flow is the reduction in inter-annual variability in root zone soil moisture, leaf area index, baseflow, transpiration, net

primary productivity, and sensible heat flux. This is due primarily to the significant increase in inter-annual change in20

storage when including explicit topographic gradients; these topographic gradients enable the system to be able to release

more water during dry years (uphill deep soil water is made available to the riparian zone through subsurface flow) and

to absorb more water during the wet years (increase in infiltration capacity due to the heterogeneity of soil moisture).

– Soil, hillslope, and land cover heterogeneity (SHL) - This experiment adds heterogeneity in land cover. These changes

are similar to those seen in Section 4.2 when increasing the number of characteristic hillslopes. This is because both cases25

ensure evergreen forests are represented in the uplands and grasslands and shrubs are represented in the lowlands. This

leads to a lower effective roughness height explaining the decrease in sensible heat flux, net primary productivity, and

transpiration. Land cover heterogeneity also leads to an appreciable increase in the spatial standard deviation of sensible

heat flux, net primary productivity, and transpiration. Its role is also particularly noticeable in the soil temperature spatial

distribution by creating sharp contrasts between the lowlands and uplands.30

– Soil, hillslope, land cover, and meteorological heterogeneity (SHLM) - This last experiment adds heterogeneity in

meteorology by prescribing the meteorology to each tile from the overlying 4 km PCF grid. This leads to a net increase

in annual mean runoff and a decrease in transpiration. The spatial heterogeneity of meteorology further enhances the

11



contrast in soil temperature between the lowlands and uplands. Furthermore, the larger availability of water in the uplands

leads to higher net primary productivity in this region and thus higher LAI.

5 Discussion

5.1 Sub-grid redistribution of water: Dampening of extremes

Seeking to account for the role of sub-grid redistribution of subsurface water within macroscale hydrologic and land surface5

models is not a new objective; many schemes have been implemented over the past decades to characterize its influence (Liang

et al., 1994; Peters-Lidard et al., 1997; Milly et al., 2014). However, these approaches are designed primarily to account for

the role of fine-scale heterogeneity on the macroscale hydrologic response; they are generally not meant to handle the sub-grid

spatial coupling of the water, energy, and biogeochemical cycles. LM4-HB addresses these limitations by explicitly modeling

the subsurface flow of water via horizontally and vertically discretized characteristic hillslopes (Subin et al., 2014); this makes10

it possible to account for the impact of sub-grid redistribution of water on the full gamut of land surface states and fluxes (e.g.,

soil moisture, sensible heat flux, and net primary productivity). Furthermore, by harnessing existing environmental information

to parameterize sub-grid heterogeneity, HMC ensures that the properties of the characteristic hillslopes are formally connected

to the observed physical environment.

The results from the model experiments in Section 4.3 show that upon enabling subsurface redistribution, the most noticeable15

difference at the macroscale is the dampening of annual extremes in the water, energy, and carbon cycles; for example, as

shown in Figure 11 there is a strong decrease in the inter-annual variability of baseflow, transpiration, net primary productivity,

and sensible heat flux between the S and SH simulations. As mentioned in Section 4.3, this is primarily due to the significant

increase in inter-annual change in storage when including explicit topographic gradients; these topographic gradients enable the

system to release more water during dry years (uphill deep soil water is made available to the riparian zone through subsurface20

flow) and to absorb more water during the wet years (increase in infiltration capacity due to the heterogeneity of soil moisture).

How topography controls infiltration capacity and baseflow production has been recognized for decades in hydrology (Liang

et al., 1994; Koster et al., 2000), however, its role in the coupled water, energy, and biogeochemical cycles remains poorly

understood. This study provides insight into how a robust representation of land heterogeneiy in Earth system models makes it

possible to more fully characterize the role of topography in the coupled system.25

These model experiments provide insight into the role of subsurface redistribution at the macroscale; the underlying physical

environment provides a mechanism for ecosystems with pronounced topography to mitigate the impacts of seasonal to annual

hydrologic extremes. These results suggest that an improved representation of spatial heterogeneity could improve projections

of ecosystem response to drought, particularly in mountainous regions. A better representation of biophysical feedbacks to

variations in air temperature and vapor pressure deficit could also improve simulations of land-atmosphere feedbacks that30

can intensify droughts and affect macroscale circulations (Bagley et al., 2012; Nicholson, 2015; Berg et al., 2015). Future

work should explore how these results extend to other regions with different configurations of the physical environment (e.g.,
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topography). Beyond understanding the role of the sub-grid subsurface redistribution of water, these model experiments would

also bring to light other impacts that the fine-scale physical environment has on macroscale response.

5.2 Revisiting the application and evaluation of Earth System models

As explored in Section 4.1 and shown in Figure 7, formally connecting the sub-grid tile configuration to the high-resolution

environmental covariates provides a novel approach to visualize the output of the land components of Earth System models—5

the simulation of each land model tile can be mapped to the fine-scale grid. Using this approach, macroscale models are able

to maintain their existing computational and storage efficiency while providing highly detailed local information. As discussed

below, this has important repercussions for the evaluation and application of these models.

Evaluation - As shown in Figure 6, when robustly characterized, sub-grid multi-scale heterogeneity can lead to significant

differences between the simulations at the tile (i.e., field-scale) and grid cell levels (i.e., macroscale). This discrepancy in10

spatial scale is analogous to using in-situ observations to evaluate and validate Earth system models: the observations are at the

field-scale yet the model estimates are at the macroscale. The approach explored in this study allows the Earth system modeling

community to revisit this persistent challenge. Since each fine-scale grid cell (∼30 meters) is assigned to a land model tile,

in-situ observations can be readily compared to the simulations of their collocated model tile. This makes it possible to evaluate

these models using in-situ observation networks (e.g., FLUXNET) without having to upscale the observations or downscale the15

macroscale estimate. Furthermore, it also enables the use of very high-resolution satellite products (e.g., Landsat) to evaluate

the modeled fine-scale spatial patterns. This approach enables the Earth system modeling community to work more closely

with field scientists to further understanding of the Earth System and to accelerate the model development cycle.

For example, this approach could facilitate improved methods for validating soil carbon projections in ESMs. Past model-

data comparisons of soil carbon have relied on spatial models to scale soil carbon measurements to the grid cell scale, as in20

the Harmonized World Soil Database (HWSD; Todd-Brown et al. (2013); Luo et al. (2016)). Such scaling techniques can be

problematic for direct comparison with model simulations. First, the spatial models necessary for scaling have the potential

to introduce bias in the observation-based product, and result in a comparison that is not purely measurement-based. Second,

variability in topography, ecosystem type, and soil properties within the grid cell scale makes these comparisons challenging to

interpret: failure of a model grid cell to match scaled observations could be due to process representation, model parameteriza-25

tion, or the relative spatial coverage of ecosystem or edaphic types within the model grid cell relative to the scaled observations.

Incorrect attribution of model error could result in inappropriate adjustments to model parameters or processes, for example

reducing the turnover rate of soil carbon pools in uplands when a model underestimate of carbon stocks is actually due to high

carbon stocks observed in wetlands. HMC could address these issues by facilitating direct comparison of modeled soil carbon

stocks with measurements grouped by the same properties used in the clustering analysis.30

Application - Earth System models are used almost exclusively for regional to global applications due to their coarse spatial

scales with limited applicability to local stakeholders (e.g., farmers). Having the ability to map the tile simulations to the fine-

scale grid (∼30 meters) allows the community to reevaluate how these models are applied. For example, accounting for the

very high resolution soil properties in each model tile leads to more locally-relevant soil moisture simulations; providing these
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field-scale model estimates in real-time can then be used to inform irrigation requirements. Furthermore, the inherent model

efficiency of this approach facilitates robust ensemble frameworks; this enables a path towards constraining the unavoidable

uncertainty of the model predictions—even more pervasive at higher spatial resolutions—while still providing local detail.

This novel approach to model application should be explored further as it requires minimal increases in computational expense

with potentially large societal benefits.5

5.3 Caution: Convergence on the fully distributed simulation

The primary result of this study is that a relatively few number of land model tiles (∼300 tiles in this study) are necessary to

converge on the macroscale response (mean and standard deviation) of the corresponding fully distributed model. Although

this result provides a promising path forward for a robust representation of multi-scale heterogeneity in large-scale models, as

discussed below, there are limitations that must be acknowledged and addressed in future implementations of this method.10

Model structure uncertainty - The optimal tile configuration is tied to the underlying process representation of the model.

For example, LM4-HB does not currently represent subsurface or surface interactions among characteristic hillslopes. For this

study, this translates to the model not transferring water between the uplands and lowlands. This is an obvious oversimplifica-

tion as aquifers in the Central Valley in California (i.e., lowlands) strongly rely on water recharge via subsurface and surface

flows from the Sierra Nevada (i.e., uplands). Other important missing processes include surface redistribution of water, water15

ponding, preferential flowpaths, and water management, among others. As these key processes are included, the optimal tile

configuration will most likely become more complex (i.e., more tiles). More generally, this implies that the optimal tile con-

figuration is model structure dependent and thus its transferability between land surface models (and even different versions of

the same model) is limited.

Parameter uncertainty - This study uses a single realization of plausible model parameters per 30 meter grid cell over20

the domain. The tile-level parameters are then derived from these high resolution maps as described in Section 3.2.3. All

model simulations in the study and thus the convergence analysis rely on this single realization of model parameters. Given the

known strong sensitivity of the spatial properties and macroscale response of the water, energy, and carbon cycle to many of

these highly uncertain model parameters (e.g., saturated hydraulic conductivity and soil depth), it follows that the optimal tile

configuration is most likely strongly dependent on the prescribed model parameters. As this method is implemented for use in25

parameter ensemble frameworks, special care must be taken to ensure that different tile configurations are used for different

parameter realizations to ensure that the intended goal behind HMC of robustly characterizing the multi-scale heterogeneity is

still fulfilled in each ensemble member.

Model application - The search for an optimal tile configuration in this study focuses exclusively on converging on the

annual spatial mean and spatial standard deviation of the fully distributed model. Although appropriate for climate time scales,30

these coarse metrics will most likely be insufficient for finer temporal scales (e.g., numerical weather prediction). For example,

if the objective is to model flash flooding using minute-scale radar rainfall, the characteristic hillslopes in LM4-HB will need

to more robustly represent the spatial grid to appropriately capture the minute-scale spatial variability of precipitation. This

will likely require a large increase in the total number of characteristic hillslopes to ensure convergence on the macroscale
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response. For these types of applications other approaches to assess convergence would be useful including comparing runoff

histograms. Another approach would involve a direct comparison of the mapped 30 meter simulations. This would provide a

more complete assessment of convergence and would be critical for field-scale applications (e.g., predictions of soil moisture at

the farm level). In summary, the optimal tile configuration will also be application dependent; while optimal tile configurations

derived for finer time scale applications will be appropriate for coarser time scale applications, the opposite will rarely be true.5

5.4 Proxy heterogeneity vs. process heterogeneity

The implementation of HMC throughout this study assumes that observed characteristics of the physical environment (e.g.,

elevation) are robust proxies of the heterogeneity of the biogeochemical cycles. Although this assumption is generally adequate,

it only indirectly addresses the real goal which is to characterize the multi-scale heterogeneity of the water, energy, and carbon

cycles. Moving forward, future development of HMC should move beyond only clustering proxies of heterogeneity and instead10

focus on the processes themselves. Following Newman et al. (2014), one approach would involve directly clustering the output

from the fully distributed model. Although unfeasible for global applications due to computational constraints, this would

provide the most robust method to ensure a comprehensive characterization of the heterogeneity captured in the fully distributed

model with a minimal number of land model tiles. Another option would be to use satellite remote products that directly

measure the states and fluxes of the biogeochemical fluxes at high spatial resolutions. For example, soil moisture retrievals15

from Sentinel-1 (Paloscia et al., 2013) would provide key observations of the spatial distribution of saturation within a domain.

Other maps that would be useful include Leaf Area Index from MODIS (Yuan et al., 2011), and evapotranspiration from Landsat

(Anderson et al., 2012), among others. Although biased, these data would provide a more formal connection between the model

and observed heterogeneity. It would also open a novel path to assimilate these high-resolution products into land models at

field-scales.20

5.5 Applying HMC over the globe: Assembling optimal tile configurations

Section 4.2 illustrates how a relatively small number of land model tiles are necessary to explicitly characterize the underlying

sub-grid heterogeneity in this study’s domain—this is substantially less than the 810,000 grid cells of a corresponding 30

meter fully distributed simulation. This provides the best trade-off for large-scale models: it explicitly captures the role of sub-

grid fine-scale features while maintaining computational efficiency. However, although this study does provide a preliminary25

exploration of the HMC parameter space (k, ∆h, and p), it does not provide a robust approach to find the optimal HMC

parameters at different regions over the globe. Three approaches that are outlined below could be used to accomplish this goal.

1. The most direct approach is to optimize the HMC parameters on all macroscale grid cells for a given grid size over

the globe. This would be accomplished through parameter optimization techniques (e.g., Hadka and Reed, 2013; Duan

et al., 1993). For each parameter set, HMC would be run to create the model tiles and then LM4-HB would be used30

to run a simulation to characterize its long-term macroscale states and fluxes. Convergence on the fully distributed

simulation would be attained at the parameter set that leads to the fewest number of tiles while ensuring the macroscale
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states and fluxes have converged within a user-defined tolerance. This would lead to a robust representation of sub-grid

heterogeneity albeit requiring substantial computational resources.

2. A more computationally efficient path forward is to use the first approach on only a subset of macroscale grid cells

or catchments. These domains would be chosen such that they sample comprehensively from different climate, soil,

land cover, and topographic regimes throughout the globe. The HMC parameters would be optimized independently5

for each of these domains. Machine learning (e.g., random forests) would then be used to regionalize these optimized

parameters by deriving non-linear functional relationships between the optimized parameters and a suite of summary

macroscale metrics (e.g., standard deviation of elevation, grid cell area, and average precipitation, among others). This

approach would provide a method to assemble the optimal HMC parameters for a chosen region without having to resort

to optimizing the parameters for a new domain.10

3. Finally, another option is to rely exclusively on the data that are used within HMC. The primary goal behind clustering

these data is to extract all the relevant information and minimize redundancies. Assuming that the water, energy, and bio-

geochemical fine-scale features are tightly coupled to the observed environment, then ensuring that the mapped clustered

input data matches the original fine-scale maps would ensure that the model results will provide a robust representation

of the defined sub-grid heterogeneity. This approach would provide a method to define the optimal number of land model15

tiles without having to resort to model simulations; thus making the parameter selection less model dependent.

5.6 Clustering: Expanding beyond natural soil systems

The strong covariance between the different proxies of the drivers of spatial heterogeneity makes it possible to summarize

a high dimensional proxy space (i.e., environmental data) using a relatively small number of representative clusters. HMC

capitalizes on this covariance to characterize the fine-scale heterogeneity of natural soil systems. However, the covariance of20

environmental properties is not exclusive to natural soil systems and can be extended to other systems over land including

urban areas, croplands, water bodies, and glaciers. This section explores both the data that are available for these types of

systems and how clustering can be used to extract their most representative characteristics.

– Lakes and glaciers - Earth System models represent lakes and glaciers as model tiles over land. Each lake tile is char-

acterized by a set of properties including depth and area; these can be obtained from existing global lake inventory25

databases. These data have information such as shoreline length, water volume, and average depth, among others (e.g.,

HydroLakes; Messager et al. (2016)). For each macroscale grid cell, clustering could be used to define a set of character-

istic lakes with their associated representative properties. A similar approach could also be used to identify a grid cell’s

characteristic glaciers by clustering the properties associated associated with the glaciers within that cell; rich global

glacier inventory databases such as GLIMS (Raup et al., 2007) could then be harnessed within ESMs.30

– Urban areas - Recognizing the important role that urban areas play in the coupled system, the community is actively

incorporating them into ESMs through urban canopy models (UCMs) (Li et al., 2016). UCMs represent urban areas
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through a set of characteristics including roof fraction, building height, and canyon fraction, among others. Although

there is currently no comprehensive database that provides the characteristics for all urban areas over the globe, there

are emerging efforts to make this information available (e.g., WUDAPT; Bechtel et al. (2015)). As these data become

accessible, clustering could also be used to distinguish the characteristic urban features within a model grid cell (e.g.,

high vs. low buildings).5

– Croplands - Although Earth System models include croplands, their representation is generally oversimplistic. For

example, in most cases, irrigation practices are ignored and many different phenological and physiological differences

between crops are disregarded (e.g., rice vs. corn). Although far from complete, datasets are emerging that are able to

provide this information at moderate to very high spatial resolutions over continental to global extents (Boryan et al.,

2011; Pervez and Brown, 2010; Siebert et al., 2013; Teluguntla et al., 2015). These data provide metrics that summarize10

local cropland characteristics (e.g., C3/C4) and irrigation practices (e.g., irrigated/rainfed). This information can be

summarized per grid cell via clustering to provide a more complete representation of sub-grid cropland characteristics.

Although this study explores this possibility using the CDL database, further work is necessary to more adequately

account for the sub-grid variablity in crop characteristics and irrigation practices.

– Peatland and permafrost landscapes - In wet and high-latitude regions characterized by organic matter accumulation15

in peat and permafrost, spatial heterogeneity can be crucial to understanding regional carbon stocks. For example, Buffam

et al. (2011) found that peat and lake sediments account for more than 70% of carbon stocks despite covering only 33% of

the land area in a northern Wisconsin landscape. Likewise, in permafrost systems microtopographic variations driven by

ice-wedge polygon formation can dominate spatial variability of carbon cycling (Lipson et al., 2012; Zona et al., 2011).

While spatially-explicit modeling of these complex landscapes can yield important insights about ecosystem function20

and vulnerability to climatic changes (e.g., Sulman et al., 2012; Sonnentag et al., 2008), the reduced computational

demands of HMC could facilitate incorporating these important dynamics into macroscale simulations.

6 Conclusions

A robust representation of the influence of the multi-scale physical environment on the coupled terrestrial water, energy, and

biogeochemical cycles remains a persistent challenge in Earth System models. One of the principal obstacles is the oversim-25

plification of the observed complex heterogeneity within these models. This is primarily due to a limited understanding of how

to use the available petabytes of environmental data effectively and efficiently in macroscale models.

Unsupervised machine learning, and more specifically cluster analysis, provides a path forward by capitalizing on the ob-

served landscape similarity to extract the underlying defining features (i.e., clusters) from available environmental data. The

hierarchical multivariate clustering (HMC) approach presented here takes this a step further by taking advantage of these30

clustering techniques while also ensuring physically consistent surface and subsurface interactions between clusters through

discretized characteristic hillslopes.
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A series of different tile configurations computed via HMC is used within the LM4-HB model to quantify its added-benefits

to macroscale models. The model experiments over a 1/4 degree grid cell in central California show that: 1) the observed

similarity over the landscape makes it possible to robustly account for the role of multi-scale heterogeneity in the macroscale

states and fluxes with a relatively minimal number of sub-grid land model tiles; 2) assembling the sub-grid tiles from the

observed high-dimensional environmental data can lead to important differences in the macroscale water, energy, and carbon5

cycles; 3) connecting the fine-scale grid to the model tiles via HMC makes it possible to circumvent the scale discrepancies

between the macroscale and field-scale estimates—this has significant implications for how Earth Systems models are evaluated

and applied.

HMC illustrates a path towards improving the representation of land heterogeneity in ESMs by harnessing the available

petabytes of environmental data. However, HMC only scratches the surface of what is possible. Moving forward, these ap-10

proaches could be extended beyond natural systems to managed systems (urban areas, croplands, reservoirs, and pumping,

among others). Clustering techniques could also be applied for non-soil systems including lakes and glaciers. Furthermore,

although using hillslopes as the governing hydrologic structures is appropriate for the domain used in this study, this will not

be true everywhere (e.g., flat terrain). In these cases, the hierarchical approach could be relaxed or extended to include other

structures including stream orders and basins.15

Finally, the volume and complexity of data available today pales in comparison to what will be available in the coming

decades (McCabe et al., 2017). These data will provide unique opportunities for Earth System science; however, unless methods

are developed that can harness these data, their intrinsic value to improve our understanding of the Earth System will be limited.

We encourage the Earth system modeling community to pursue the use of clustering techniques to ensure these data are used

effectively and efficiently in macroscale models.20
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Figure 1. Test-bed site in the foothills of southern Sierra Nevada in California used to develop, implement, and test the HMC algorithm. The

region is characterized by strong heterogeneity in topography, climate, and soil properties leading to a complex multi-scale ecosystem spatial

structure.
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Figure 2. Schematic representation of a characteristic hillslope. Each characteristic hillslope is divided into height bands; which in turn are

partitioned into intra-band tiles. Each tile interacts via the subsurface flow of water with the tiles in its same height band and with all the tiles

in the height bands below and above.
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Figure 3. The characteristic hillslopes are defined by: 1) delineating the hillslopes from the elevation data, 2) calculating a suite of properties

for each hillslope from environmental data, and 3) using the hillslope properties and the k-means clustering algorithm to define k characteristic

hillslopes.
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Figure 4. The profile of each characteristic hillslope is constructed by fitting h = H
[
1− (1− (x/L)a)b

]
to the combined profiles of all

its corresponding hillslopes. The characteristic profile is then discretized into dHi/∆he height bands. Finally, the HAND and characteristic

hillslope maps are combined with the discretized profiles to assign a unique height band to each fine-scale grid cell. In the height bands

image, each band of each characteristic hillslope is represented by a different color.
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Figure 5. For each height band of each characteristic hillslope, the corresponding fine-scale grid cells are clustered into p intra-band tiles

according to their land cover and soil properties.
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Figure 6. As an exploratory simulation, the LM4-HB model is run between 2002 and 2014 using 14 tiles assembled via HMC. The tile

simulations are shown for evapotranspiration (ET), sensible heat flux (SH), baseflow (Rb), and root zone soil moisture (SM) for 2005; the

time series are color-coded to correspond with the 30-meter map of tiles. Each tile has a corresponding id ti,j,k, where i is the characteristic

hillslope, j is the height band, and k is the intra-band cluster. For each variable, the tile weighted average time series (macroscale estimate)

is superimposed on the tile simulations for comparison.
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Figure 7. Using the exploratory simulation, the tile simulated daily evapotranspiration (ET) values for June 16th, 2005 are mapped onto the

30-meter fully distributed grid using the HMC-assembled fine-scale map of tiles.
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Figure 8. Visual comparison of the mapped annual mean (2002-2014) of simulated evapotranspiration for the 9 model experiments in Table

1.
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Figure 9. Comparison of the model experiments in Table 1. For each experiment, the spatial mean and spatial standard deviation for all water

years (October 1st - September 30th) between 2003 and 2014 are plotted for a suite of states and fluxes. The corresponding values for each

water year are color-coded according to their precipitation. The black line shows the annual mean.
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Figure 10. Visual comparison of the mapped annual mean (2002-2014) of simulated runoff (R), 2 meter root zone soil moisture (SM), leaf

area index (LAI), and soil temperature (Ts) for the 5 model experiments in Table 2.
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Figure 11. Comparison of the model experiments in Table 2. For each experiment, the spatial mean and spatial standard deviation for all

water years between 2003 and 2014 are plotted for a suite of states and fluxes. The corresponding values for each water year are color-coded

according to their precipitation. The black line shows the annual mean.
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Table 1. Through a series of model experiments, the HMC parameters are adjusted to assess their role in the modeled heterogeneity. ek,∆h,p

is the experiment id, k is the number of characteristic hillslopes, ∆h is the difference in height between adjacent height bands, p is the

number of intra-band clusters, and ntiles is the resulting number of tiles.

ek,∆h,p k ∆h p ntiles

e1,1000,1 1 1000 1 1

e2,1000,1 2 1000 1 2

e10,1000,1 10 1000 1 10

e10,50,1 10 50 1 28

e10,20,1 10 20 1 70

e10,10,1 10 10 1 139

e10,10,2 10 10 2 278

e10,10,3 10 10 3 417

e10,10,5 10 10 5 695
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Table 2. Through a series of model experiments, the heterogeneity of model parameters and forcing data are turned on (heterogeneous) and

off (homogeneous). For simplicity, the parameters and forcing data are grouped into soil, hillslope, land cover, and meteorology groups.

eid Soil Hillslope Land cover Meteorology

B Off Off Off Off

S On Off Off Off

SH On On Off Off

SHL On On On Off

SHLM On On On On
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