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Abstract. For much of the last century, forecasting centers around the world have offered seasonal streamflow 12 

predictions to support water management. Recent work suggests that the two major avenues to advance seasonal 13 

predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of 14 

climate information. This study investigates the marginal benefits of a variety of methods using IHC and/or climate 15 

information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the U.S. 16 

Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches – statistical 17 

regression against IHCs, and model-based ensemble streamflow prediction (ESP) – and then systematically inter-18 

compare WSFs across a range of lead times. Additional methods include: (i) statistical techniques using climate 19 

information either from standard indices or from climate reanalysis variables; and (ii) several hybrid/hierarchical 20 

approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection 21 

signals are strong, and when watershed predictability is low, climate information alone provides considerable 22 

improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more 23 

effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but 24 

greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies 25 

within a trace weighting framework.  Lower complexity techniques were competitive with more complex methods, 26 

and the hierarchical expert regression approach introduced here (HESP) provided a robust alternative for skillful and 27 

reliable water supply forecasts at all initialization times. Three key findings from this effort are: (1) objective 28 

approaches supporting methodologically consistent hindcasts open the door to a broad range of beneficial forecasting 29 

strategies; (2) the use of climate predictors can add to the seasonal forecast skill available from IHCs; and (3) sample 30 

size limitations must be handled rigorously to avoid over-trained forecast solutions. Overall, the results suggest that 31 

despite a rich, long heritage of operational use, there remain a number of compelling opportunities to improve the skill 32 

and value of seasonal streamflow predictions. 33 
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1 Introduction 34 

The operational hydrology community has long grappled with the challenge of producing skillful seasonal 35 

streamflow forecasts to support water supply operations and planning. Proactive water management has become 36 

critical for many regions in the world that are susceptible to water stress associated with the intensification of the 37 

water cycle. Paradoxically, although we have seen important technological advances – including increased computing 38 

power, the broader availability to climate reanalysis, forecasts and reforecasts, and more complex process-based 39 

hydrologic models (Pagano et al., 2016), the skill of operational seasonal runoff predictions in the US, termed water 40 

supply forecasts (WSFs), has shown little or no improvement over time (e.g., Pagano et al., 2004; Harrison and Bales, 41 

2016). Hence, there is both a scientific and practical need to understand the potential of new datasets, modeling 42 

resources and methods to accelerate progress towards more skillful and reliable operational seasonal streamflow 43 

forecasts. 44 

There is general consensus in the research community on the main opportunities to improve seasonal streamflow 45 

prediction skill (e.g., Maurer et al., 2004; Wood and Lettenmaier, 2008; Yossef et al., 2013). These include improving 46 

knowledge of: (i) the amount of water stored in the catchment – hereinafter referred to as initial hydrologic conditions 47 

(IHCs), and (ii) weather and climate outcomes during the forecast period. Our ability to leverage the first predictability 48 

source (i.e., hydrologic predictability) depends on the accuracy of watershed observations and models, including 49 

model input forcings (e.g., precipitation and temperature), process representations, and the effectiveness of hydrologic 50 

data assimilation (DA) methods. Our ability to leverage the second source (climate predictability) depends both on 51 

how well we can characterize and predict the state of the climate and on how effectively we can incorporate this 52 

information into streamflow forecasting methods. This idea has been explored in different frameworks using standard 53 

indices – e.g., Niño3.4, the Pacific Decadal Oscillation (PDO) – and/or custom (i.e., watershed-specific) climate 54 

indices derived from climate reanalyses (e.g., Grantz et al., 2005; Bradley et al., 2015), or using seasonal climate 55 

forecasts to run hydrologic model simulations (e.g., Wood et al., 2005; Yuan et al., 2013). 56 

Despite generally promising findings from this body of work and from a number of agency development efforts 57 

(Weber et al., 2012; Demargne et al., 2014), current operational practice in the US still takes little to no advantage of 58 

large-scale climate information for real-time seasonal streamflow forecasting. Clear examples can be found in the 59 

western United States, a large snowmelt dominated region where official WSFs are produced via two main approaches: 60 

(i) statistical models leveraging in situ watershed moisture measurements such as snow water equivalent (SWE), 61 

accumulated precipitation and streamflow (Garen, 1992; Pagano et al., 2004); and (ii) outputs from the National 62 

Weather Service (NWS) Ensemble Streamflow Prediction method (ESP; Day, 1985; Crochemore et al., 2016), based 63 

on watershed modeling. These approaches rely solely on the predictability from IHCs and do not leverage any type of 64 

large-scale current or future climate state information that might influence the forecasted hydrologic outcomes. 65 

This paper presents an assessment of several seasonal streamflow prediction approaches in harnessing both 66 

watershed and climate related predictability. The methods are applied to seasonal WSFs and span a range of 67 

complexity, from purely statistical to purely dynamical and hybrid statistical/dynamical approaches. In this paper, 68 

‘increased complexity’ indicates a gradient from purely data-driven techniques (e.g., linear regression) to the use of 69 

dynamical watershed models (Plummer et al., 2009), the outputs of which may be further processed using additional 70 
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statistical approaches. Although most of the techniques evaluated here are not new, the intercomparison offers new 71 

insights for researchers and developers in the operational community because: (1) the experiment is broader than prior 72 

efforts and benchmarks alternative methods against current operational ones; and (2) the methods are chosen to be 73 

operationally feasible, avoiding the use of data that cannot be obtained in real-time. In addition, the work uses a 74 

hindcast/verification framework and follows more rigorous standards for cross-validation than were used in some of 75 

the prior studies. 76 

The remainder of this paper is organized as follows. Section 2 describes prior methodological work and context 77 

for statistical, dynamical and hybrid approaches to seasonal streamflow forecasting. The study domain is described in 78 

Section 3. Datasets, experimental design, individual methods, and forecast verification measures are detailed in 79 

Section 4. Results and discussion are presented in Section 5, followed by the main conclusions of this study (Section 80 

6). 81 

2 Background 82 

Seasonal streamflow forecasting methods can be categorized as dynamical, statistical, or hybrid, and span 83 

different degrees of complexity and information requirements. Dynamical methods use time-stepping simulation 84 

models to represent hydrologic processes. They describe future climate using either historical meteorology or inputs 85 

derived from seasonal climate forecasts (e.g., Beckers et al., 2016). On the other hand, statistical or purely data-driven 86 

methods rely on empirical relationships between seasonal streamflow volumes, and large-scale climate variables 87 

and/or in situ watershed observations. Several statistical approaches can be found in the literature, encompassing 88 

different degrees of complexity (e.g., Garen, 1992; Piechota et al., 1998; Grantz et al., 2005; Tootle et al., 2007; Wang 89 

et al., 2009; Moradkhani and Meier, 2010). Other studies have tested multi-model combination techniques for purely 90 

statistical seasonal forecasts, using objective performance criteria (e.g., Regonda et al., 2006), both performance and 91 

predictor state information (Devineni et al., 2008), and Bayesian model averaging (e.g., Mendoza et al., 2014), among 92 

others. 93 

Hybrid methods strive to combine the strengths from both dynamical and statistical techniques. For instance, 94 

uncertainties in dynamical predictions indicate that dynamical forecasts can benefit from statistical post-processing 95 

(e.g., Wood and Schaake, 2008). One line of research has examined the potential benefits of using simulated watershed 96 

state variables – either from hydrologic or land surface models – as predictors for statistical models (e.g., Rosenberg 97 

et al., 2011; Robertson et al., 2013). Another popular technique consists in incorporating climate information within 98 

ESP frameworks, either deriving input sequences of mean areal precipitation and temperature from current climate or 99 

climate forecast considerations (e.g., Werner et al., 2004; Wood and Lettenmaier, 2006; Luo and Wood, 2008; Gobena 100 

and Gan, 2010; Yuan et al., 2013) – referred to as pre-ESP –, or ESP weighting (also referred to as post-ESP) based 101 

on climate information (e.g., Smith et al., 1992; Werner et al., 2004; Najafi et al., 2012; Bradley et al., 2015). Werner 102 

et al. (2004) found that the post-ESP method (termed ‘trace weighting’) was more effective than pre-ESP to improve 103 

forecast skill. 104 

The combination of outputs from different models has also been shown to benefit seasonal hydroclimatic 105 

forecasting (e.g., Hagedorn et al., 2005). Although several studies have demonstrated that statistical multimodel 106 
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techniques applied on dynamical models tend to outperform the ‘best’ single model (e.g., Georgakakos et al., 2004; 107 

Duan et al., 2007), fewer insights have been gained on combining statistical or dynamical models in seasonal 108 

streamflow forecasting. Recently, Najafi and Moradkhani (2015) tested multimodel combination techniques of 109 

different complexities from both statistical and dynamical forecasts, concluding that model combination generally 110 

outperforms the best individual forecast model. Many sophisticated seasonal forecasting frameworks can be found in 111 

the literature, some of which incorporate DA techniques (e.g., Dechant and Moradkhani, 2011), a topic not discussed 112 

here.  For this reason, the hydrology community may benefit from a broad assessment of the marginal benefits of 113 

choices made in a range of seasonal streamflow forecasting frameworks. 114 

3 Study Domain 115 

Our test domain is the U.S. Pacific Northwest (PNW) region (Figure 1), which relies heavily on winter snow 116 

accumulation and spring snowmelt to fulfill water needs during spring and summer (e.g., Mote, 2003; Maurer et al., 117 

2004; Wood et al., 2005). We select catchments contributing to five reservoirs: Dworshak (DWRI1), Howard Hanson 118 

(HHDW1), Hungry Horse (HHWM8), Libby (LYDM8) and Prineville (PRVO). Two of them – Hungry Horse and 119 

Prineville reservoirs – are owned and operated by the U.S. Bureau of Reclamation (USBR), while the rest are operated 120 

by the U.S. Army Corps of Engineers (USACE). 121 

The main physical and hydroclimatic characteristics of the case study basins are summarized in Table 1. These 122 

basins cover a wide range of runoff efficiencies (from 0.13 at Prineville to 0.78 at Howard Hanson) and dryness indices 123 

(from 0.63 at Howard Hanson to 3.83 at Prineville). Relatively high basin-averaged elevations condition a pronounced 124 

seasonal temperature pattern, with minimum values below the freezing point between December and February, and 125 

maximum temperatures during June-September (not shown). These topographic and hydroclimatic features favor 126 

snowpack development in the months October-April, stressing the seasonal behavior of other water storages and 127 

fluxes. This is illustrated in Figure 2, including model precipitation (i.e., observed precipitation with a snow correction 128 

factor, SCF) and monthly averages of hydrologic variables simulated with the Sacramento Soil Moisture Accounting 129 

(SAC-SMA, Burnash et al., 1973) and SNOW-17 (Anderson, 1973) watershed models (see Section 4). Although 130 

seasonal precipitation patterns may differ, water starts accumulating in October as snow water equivalent (SWE) 131 

and/or soil moisture (SM) in all basins. Increases in SM and runoff in most basins are driven by snowmelt at the 132 

beginning of spring with the exception of Howard Hanson, where the bulk of annual streamflow occurs in November-133 

May. Among these basins, Dworshak, Hungry Horse and Libby share similar SWE, soil moisture, and runoff cycles, 134 

although precipitation is relatively uniform in the last one throughout the year. 135 

The hydroclimatology of the PNW region is affected by a number of large-scale climate teleconnections. The 136 

warm (cold) phase of El Niño Southern Oscillation (ENSO) is typically associated with above (below) average 137 

temperatures and below (above) average precipitation during winter (e.g., Redmond and Koch, 1991), and therefore 138 

decreased (increased) snowpack (Clark et al., 2001) and spring/summer runoff (e.g., Piechota et al., 1997). The Pacific 139 

Decadal Oscillation (PDO; Mantua et al., 1997) – which reflects the dominant mode in decadal variability of SSTs – 140 

has also been found a relevant driver for the hydroclimatology of the PNW (e.g., McCabe and Dettinger, 2002). The 141 

joint influence of ENSO and PDO on North American climate conditions, snowpack and spring/summer runoff has 142 
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been also well recognized and documented (e.g., Hamlet and Lettenmaier, 1999). As a consequence, many authors 143 

have explored the incorporation of large-scale climate information for seasonal streamflow forecasting in the PNW – 144 

using either standard indices (e.g., Hamlet and Lettenmaier, 1999; Maurer et al., 2004), custom indices from reanalysis 145 

fields (e.g., Opitz-Stapleton et al., 2007; Tootle et al., 2007), both (Moradkhani and Meier, 2010), or downscaled 146 

climate forecasts (Wood et al., 2005) – finding improved predictability for lead times longer than 2 months, and 147 

particularly in years of strong anomalies in climate oscillations such as ENSO.  148 

4 Approach 149 

4.1 Experimental Design 150 

We use several decades of seasonal streamflow hindcasts to assess a suite of methods (Figure 3), focusing on 151 

April-July streamflow (runoff) volume, the most common western US water supply forecast predictand.  Probabilistic 152 

(ensemble) WSFs for this period are generated the first day of each month from October to April, in every year of the 153 

hindcast period 1981-2015. For the methods involving statistical prediction, we use a leave-three-out cross validation 154 

at all stages of the forecast process. This procedure is repeated for consecutive 3-year periods (e.g., 1984-1986, 1987-155 

1989, 1990-1992, etc.), except for the last time window (2014-2015). 156 

The techniques assessed here are categorized as follows. The first group, IHC-based methods, includes two 157 

approaches (referred to as benchmark methods) – ESP and IHC-based statistical – currently used operationally in the 158 

western U.S. (both harnessing only IHC information), and a very simple ESP post-processor to reduce systematic 159 

biases. A second group, climate-only methods, includes statistical techniques harnessing climate information from 160 

two different sources – standard indices (e.g., Niño3.4, PDO, AMO), or variables extracted from the Climate System 161 

Forecast Reanalysis (CFSR; Saha et al., 2010). A third group of hybrid or hierarchical methods includes subgroups 162 

of techniques that: (i) combine watershed predictors (IHCs) and climate predictors (either indices or CFSR variables) 163 

within a statistical framework, (ii) use climate information to post-process outputs from a dynamical method (i.e., 164 

ESP), or (iii) combine purely climate-based ensembles with purely watershed-based ensembles.   165 

In operational practice, ESP produces an ensemble of streamflow estimates whereas statistical water supply 166 

forecasting yields a statistical distribution.  In this study, we generate ensembles of the final predictand for all methods. 167 

An ensemble size 500 is used – wherein the members are generated through a resampling (in some cases weighted) 168 

of the predictive distributions – except for the ESP and bias-corrected ESP methods, for which 32 members are 169 

generated (i.e., 35 total historical years less the three out of sample test years). In the statistical approaches, seasonal 170 

flows are log-transformed and predictor and predictand data are normalized before training statistical method 171 

parameters or weights.  The statistical models were then applied in log-standard-normal space for forecast generation, 172 

and predictands are transformed back to streamflow space. 173 
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4.2 Forecasting Methods 174 

4.2.1 IHC-based methods 175 

Ensemble Streamflow Prediction (ESP) 176 

The traditional ESP method (Day, 1985) relies on deterministic hydrologic model simulations forced with 177 

observed meteorological inputs up to the initialization time of the forecast. The approach assumes that meteorological 178 

data and model are perfect – i.e., there are no errors in IHCs, and that historical meteorological conditions during the 179 

simulation period can be used to represent climate forecast conditions. For hindcast verification purposes, the 180 

meteorological input traces associated with forecast years must be excluded. 181 

The hydrology models used in this study were the NWS Snow-17, SAC-SMA and a unit-hydrograph routing 182 

model, all implemented in lumped fashion with 2-3 snow elevation zones per watershed. The models were calibrated 183 

via an automated multi-objective parameter estimation to reproduce observed daily streamflow. Hydrologic model 184 

forcings were drawn from a 1/16 degree real-time implementation of the ensemble forcing generation method 185 

described in Newman et al. (2015). Naturalized flow data was obtained from a combination of sources, including the 186 

Bonneville Power Administration (BPA, 2011), the USBR Hydromet historical data access system, and the USACE 187 

Data Query System. 188 

Figure 4 shows simulated and observed monthly time series of streamflow for the period Oct/1990 – Sep/2000. 189 

With the exception of Prineville, where neither meteorology nor flow are well measured, all basins show values of 190 

NSE and r higher than 0.76 and 0.87, respectively. Further, the climatological seasonality of streamflow is reproduced 191 

well in all basins. 192 

Statistical forecasting using initial hydrologic conditions (Stat-IHC) 193 

This method mimics the approach of the U.S. Natural Resources Conservation Service (NRCS), but differs in 194 

using model-simulated basin-averaged SWE and SM as surrogates for ground-based observations of SWE, 195 

precipitation and streamflow used operationally by the NWS and NRCS (as demonstrated in Rosenberg et al., 2011). 196 

A linear regression equation is developed between log-transformed seasonal runoff and IHCs represented by the sum 197 

of simulated basin-averaged SWE and SM. The training period equations are used to issue a deterministic runoff 198 

volume prediction for each year left out, and ensembles are generated by adding 500 Gaussian random numbers with 199 

zero mean and a standard deviation equal to the standard error of the individual prediction. The predictions are then 200 

exponentiated. 201 

Bias Corrected Ensemble Streamflow Prediction (BC-ESP) 202 

ESP predictions often exhibit a systematic bias due to inadequate model parameters and/or other sources or error 203 

(e.g., input forcing selection, model structure). If the ESP approach provides a consistent hindcast, as it does here, 204 

post-processing in the form of a simple bias-correction (BC-ESP) can be applied. This is achieved by multiplying the 205 

raw ESP forecasts by a mean scaling factor that is obtained by computing the ratio between the mean of observed 206 

seasonal runoff volumes (i.e., the predictand) and the mean of ESP forecast median volumes, for each initialization 207 

time. Each scaling factor calculation and application is cross-validated. 208 
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4.2.2 Statistical forecasting harnessing only climate information 209 

Multiple linear regression (MRL) using standard climate indices (Stat-Ind) 210 

This method evaluates 12 standard climate indices as candidate predictors (Table 2). For each initialization time 211 

(e.g., November 1) and climate index (e.g., Niño3.4), the 3-month time window that maximizes the correlation 212 

coefficient between a preceding seasonal (e.g., August-October) predictor average and seasonal streamflow volume 213 

over the training period is selected. Once this procedure is repeated for all potential predictors, the best possible time 214 

series are obtained for the 12 climate indices, and ensemble forecasts are produced for a given initialization through 215 

the following steps: 216 

1. Several combinations of predictors are selected subject to the constraint that no pairs of predictors with an 217 

inter-correlation larger than Cthresh = 0.3 should be included. 218 

2. Stepwise MLR models are fit for all combinations of predictors identified in Step 1, and the set of predictors 219 

that minimizes the Bayesian Information Criterion (BIC) score (Akaike, 1974) over the training period is 220 

selected. 221 

3. An ensemble forecast is generated (as for Stat-IHC) with the MLR model from Step 2.  222 

We choose MLR over more parameterized regression methods (e.g., local polynomial regression) since these 223 

were found to perform poorly in cross-validation, mainly due to the limited samples sizes available in the seasonal 224 

hydrologic prediction context. 225 

Partial Least Squares Regression using reanalysis fields (Stat-CFSR) 226 

The teleconnections captured in off-the-shelf climate indices are not influential everywhere. Therefore, we also 227 

assess the potential of custom climate predictor indices derived from reanalysis data. Following Tootle et al. (2007), 228 

we use Partial Least Squares Regression (PLSR; Wold, 1966) to extract information from climate fields.  PLSR 229 

decomposes a set of independent variables X and dependent variables Y into a small number of principal components 230 

that explain as much covariance as possible between the two variable sets (Abdi, 2010). PLSR components are formed 231 

from CFSR 700 mb geopotential height (Z700) and sea surface temperatures (SSTs) over the domain 20°S–80°N; 232 

130°E–10°W. For dates beyond 2010, we merged the 1979-2010 CFSR data with monthly analysis fields from the 233 

Climate Forecast System version 2 (CFSv2; Saha et al., 2014), aggregating the latter product to 2.0° × 2.0° horizontal 234 

resolution. Similar to the Stat-Ind method, we use 3-month averages of these variables. The seasonal forecasts are 235 

generated for each initialization by following these steps: 236 

1. Compute principal components from the combined SST and Z700 gridded values for each training sample 237 

and the left-out prediction years.  238 

2. Fit a regression model to the resulting PLSR components (predictors), accepting each additional component 239 

only when its mean partial correlation with volume runoff is above a threshold.  We used a threshold of 0.30 240 

throughout the study after finding that nearby values – e.g., 0.25, 0.35 – did not substantially change the 241 

results. The small sample size and low predictability supported at most two components. 242 

3. Compute a mean runoff volume forecast using the regression model obtained in Step 2, and generate an 243 

ensemble by adding 500 Gaussian random numbers with zero mean and a standard deviation equal to the 244 
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root mean squared error of prediction (RMSEP) obtained from leave-three-out cross validation within the 245 

training period. 246 

The main implication of developing PLSR components and the subsequent estimation of regression coefficients 247 

in cross validation – as conducted here – is that climate information from the target prediction period is not used at 248 

all, as is the case in real-time systems. This is a key methodological difference versus past studies that used all 249 

historical available information to define custom reanalysis predictor fields (e.g., Grantz et al., 2005; Regonda et al., 250 

2006; Bracken et al., 2010; Mendoza et al., 2014), yielding a moderate yet erroneous boost in predictability. 251 

4.2.3 Hybrid/hierarchical methods combining watershed and climate information 252 

Stepwise MLRs using IHCs and climate predictors 253 

We applied two statistical methods that combine climate and dynamical watershed model predictors:  Stat-Ind-254 

IHC (which uses climate indices and IHCs), and Stat-CFSR-IHC (which uses CFSR-based PLSR components and 255 

IHCs). These approaches are implemented in identical fashion to Stat-Ind, except that IHCs are added to the potential 256 

suite of climate predictors. 257 

Hierarchical Ensemble Streamflow Prediction (HESP) 258 

The underlying idea of HESP is that the two main sources of predictability – watershed IHCs and climate – may 259 

best be addressed sequentially to ensure that only climate uncertainty is related to climate predictors. This may not the 260 

case if a climate variable enters first into a regression model that attempts to explain streamflow variance from both 261 

IHCs and climate, possibly leading to a sub-optimal predictor selection. HESP is thus a hierarchical regression 262 

approach in which streamflow is first related to IHCs by fitting Q = f(IHC predictors) + εclimate, given sufficient IHC 263 

predictor strength. The residual uncertainty is then related to climate predictors (again if possible) by fitting εclimate 264 

= g(climate predictors) + εresidual, such that the final forecast equation takes the form: 265 

𝑄 =  𝑓(IHC predictors)  +  𝑔(climate predictors)  + 𝜀𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙      (1) 266 

Here the predictor pool used to explain εclimate may include standard climate indices or reanalysis PLSR 267 

components, depending on the performance obtained during the training period. Absent IHC predictability, HESP is 268 

equivalent to Stat-Ind or Stat-CFSR; whereas without climate predictability, it defaults to Stat-IHC. Lacking both IHC 269 

and climate predictability, HESP defaults to climatology – i.e., an ensemble forecast is issued by resampling from 270 

historical observations over the training period. 271 

ESP Trace Weighting Scheme (TWS) 272 

A well-known strategy for incorporating climate information into ESP forecasts is called ‘trace weighting’ 273 

(Smith et al., 1992; Werner et al., 2004), where forecasted flow probabilities are corrected by weighting each ensemble 274 

member according to the similarity between a climate-related feature of the current year (e.g., PDO) and the 275 

meteorological year used to generate that member. Here, for a given basin and forecast period, either climate indices 276 

or CFSR-based components are selected based on their training period performance (i.e., RMSE) and used to weight 277 

each trace obtained from BC-ESP (see Section 7.1 for further details). 278 
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Equally weighted ensembles (EWE) and RMSE-weighted ensembles (RWE) 279 

EWE combines the best-performing climate-only hindcast (i.e., Stat-Ind or Stat-CFSR, based on RMSE over the 280 

training period) with the best watershed-only hindcast (either Stat-IHC or BC-ESP), resampling ensemble members 281 

equally from each source to form a new 500-member ensemble forecast. A variation of this combination approach 282 

(RWE) instead performs a weighted resampling from the two forecast sources according to their skill during the 283 

training period:  i.e., the weights equal 1/RMSE, where RMSE the root mean squared error of the ensemble median. 284 

Bayesian Model Averaging (BMA) and Quantile model averaging (QMA) 285 

These methods combine the best-performing climate-only hindcast with the best performing watershed-only 286 

hindcast. While BMA (Raftery et al., 2005) attempts to provide a weighted average of forecast probability densities, 287 

QMA (Schepen and Wang, 2015) applies a weighted average to forecast values (quantiles) for a given cumulative 288 

probability. A notable difference between the two approaches is that QMA produces smoother and consistently 289 

unimodal distributions compared to potentially bimodal BMA outputs (Schepen and Wang, 2015). More details on 290 

these techniques are provided in section 7.2.  291 

4.3 Forecast evaluation 292 

Forecast method performance was evaluated using the metrics listed in Table 3. These include some standard 293 

metrics used in hydrology, such as correlation coefficient (r), root mean squared error (RMSE), and percent bias, and 294 

also probabilistic measures to assess skill and reliability. Skill is obtained using the continuous ranked probability 295 

score (CRPS; Hersbach, 2000), which measures the temporal average error between forecast CDF with that from the 296 

observation. Forecast reliability – i.e., adequacy of the forecast ensemble spread to represent the uncertainty in 297 

observations – is evaluated using an index from the predictive quantile-quantile (QQ) plot (Renard et al., 2010). QQ 298 

plots compare the empirical CDF of forecast p-values (i.e. Pi(oi), where Pi and oi are the forecast CDF and observation 299 

at year i) with that from a uniform distribution U[0,1] (Laio and Tamea, 2007). 300 

Confidence intervals for the verification statistics are created using bootstrapping with replacement. In each 301 

resampling step, N pairs of ensemble forecasts and observations were resampled from the original joint distribution 302 

(N is the total number of events for which probabilistic forecasts are available). This process is repeated 1000 times, 303 

and all statistics are then computed for each realization and ranked in order to obtain 95 % confidence limits. 304 

5 Results and discussion 305 

5.1 Deterministic evaluation 306 

We first compare methods using the WSF median, a critical predictand for many water decisions (e.g., Lake 307 

Powell releases on the Colorado River in the western US). Figure 5 displays correlation coefficients (r) between 308 

forecast median and observed April-July runoff volumes for the five case study basins. As expected, near-zero or 309 

negative r values were obtained for October 1 and November 1 WSFs with the IHC-based methods.  Negative 310 

correlation scores arise in very low-skill situations as an artifact of cross-validation (e.g., leaving a high predictand 311 

out of a training sample biases the resulting prediction in the opposite direction).  The seasonality of SM and SWE in 312 
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the basins of interest (Figure 2) does not yield watershed moisture accumulations with predictive power until 313 

December or January. In contrast, r values as high as 0.48 for Dworshak and 0.49 for Hungry Horse could be attained 314 

on October 1 using only information from climate indices (Stat-Ind). Generally, but not everywhere, methods 315 

harnessing predictability from the climate (with the exception of TWS) enhance skill in comparison to IHC-based 316 

methods at initializations early in the water year. TWS is unable to shift the parent ESP distribution sufficiently to 317 

impart much climate skill at this time of year.   318 

After January, the hydrologic model begins to capture a useful moisture variability signal from the watershed, 319 

thus IHCs start to become a dominant source of predictability in all basins. Indeed, watershed information is 320 

particularly relevant at Libby and Prineville (Figure 5d and 5e), where correlations within the range 0.39-0.47 are 321 

achieved as early as December 1 with the three IHC-based techniques. In these basins, standard climate indices do not 322 

provide useful long-lead predictability, although CFSR-based predictors do support a consistent improvement. For 323 

example, the correlation from Stat-Ind for Libby (Prineville) on December 1 is -0.23 (0.02), while the r value from 324 

Stat-CFSR is 0.19 (0.30). These differences between Stat-Ind and Stat-CFSR remain at these basins for subsequent 325 

monthly initializations. 326 

Figure 5 reveals several notable outcomes that are evident in many of the results plots. First, a linear regression 327 

against IHCs can provide similar r values than the more computationally expensive ESP method, especially at late 328 

initializations (i.e. March 1 or April 1). Likewise, straightforward ensemble combination techniques (e.g., EWE or 329 

RWE) may outperform more complex methods such as BMA (e.g., February 1 – April 1) at all basins. From a 330 

correlation skill perspective, on the other hand, ESP generally outperforms the rest of the methods in late winter and 331 

spring. For example, ESP provides the highest r values for Dworshak (0.82) and Howard Hanson (0.67) on April 1. 332 

Notably, EWE was found to be the best method on April 1 for Hungry Horse (r = 0.88) and Prineville (r = 0.79) based 333 

on correlation. This indicates that, although simple post-processing can provide substantial forecast improvement, the 334 

small sample size available for training during the cross-validation process results in noisy parameter estimates that 335 

can undermine the potential correlation skill achievable with techniques that are more complex. 336 

Root mean squared errors (RMSE) for ensemble forecast medians (Figure 6) show that despite some 337 

discrepancies between techniques, inter-method differences are not as large as for correlation. In most basins, errors 338 

can be reduced at earlier initializations (i.e., Oct 1 and Nov 1) by introducing climate information. For instance, on 339 

October 1, Stat-Ind and Stat. Ind+IHC generate respective reductions in RMSE of 10% and 13% at Dworshak, 23% 340 

and 16% at Howard Hanson, and 14% and 12% at Hungry Horse, relative to the best IHC-based method in each basin. 341 

These benefits are seen in most initializations and catchments except at Libby, where the best results were mostly 342 

achieved using ESP (Oct 1) and Stat-IHC (Dec 1, and Feb 1 – Apr 1). In agreement with Beckers et al. (2016), this 343 

study was unable to find encouraging climate teleconnections at Libby, despite its relative proximity to Hungry Horse. 344 

Figure 6 underscores that from a median error perspective, intuitive ensemble combinations approaches (i.e., 345 

EWE and RWE, shown in dark green) can be effective for reducing forecast errors once the watershed begins to 346 

provide useful predictability (i.e. after January 1). For instance, EWE was the best performing method in Hungry 347 

Horse and Prineville for forecasts initialized on March 1 and Apr 1. Further, Figure 6 illustrates that the best (or worst) 348 

techniques when looking at RMSE vary with each basin, although it is clear that TWS and only-climate methods 349 
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perform poorly at early and late initializations, respectively. The joint inspection of Figures 5 and 6 shows that inter-350 

method agreement in correlation does not necessarily translate into similar forecast median errors. For example, while 351 

ESP and HESP provide close r values at Dworshak (0.74 and 0.73) on March 1, larger discrepancies are obtained in 352 

RMSE, with values of 0.58 million-acre-feet (MAF) and 0.79 MAF for ESP and HESP, respectively. 353 

Another interesting result is that no substantial reductions in RMSE were achieved at Howard Hanson between 354 

October 1 and April 1, in contrast to the gradual growth of hydrologic predictability to support forecast skill in other 355 

basins. Indeed, the best performing techniques for October 1 (Stat-Ind) and April 1 (BC-ESP) forecasts provide similar 356 

RMSE values (~0.064 and 0.065 MAF, respectively). This outcome can be attributed to the relatively more rainfall-357 

dominated hydrograph of Howard Hanson in comparison to the rest of the catchments (Table 1; Figure 2), and 358 

sustained runoff variability generated by seasonally high SM and fall-winter precipitation. 359 

Figure 7 (forecast median bias) shows that raw ESP outputs have the largest biases through most initializations 360 

at Howard Hanson, Libby and Prineville. In particular, absolute biases at Prineville – which is the worst simulated 361 

basin in the group – increase to 53% on October 1 before decreasing to 20% on April 1. Further, relatively large biases 362 

(in comparison to the rest of techniques) were obtained at late initializations in Dworshak and Hungry Horse. 363 

Excepting Prineville, inter-method differences were not substantial, and none of the methods exceeded a 16% bias at 364 

any initialization. The simple bias correction applied in this study was able to reduce absolute biases to less than +/-365 

3% at Prineville, and less than +/-1% at the rest of the basins. Hence, from a bias reduction perspective, BC-ESP was 366 

the best technique for most basins/initializations, with the exceptions of Dworshak on Feb 1 and Prineville on Mar 1 367 

and Apr 1, for which Stat. CFSR+IHC and TWS provided the best results. 368 

5.2 Probabilistic verification 369 

Figure 8 displays continuous ranked probability skill scores computed with mean climatology as a reference 370 

(CRPSSclim). Consistent with the correlation analysis results (Figure 5), better skill values are obtained for long lead 371 

times (i.e. Oct 1 and Nov 1) if climate predictors are incorporated in the forecasting framework. For example, Stat. 372 

(Ind+IHC) augments skill by 56% in HHDM1 and 7% in Hungry Horse with respect to Stat-IHC (i.e., the best 373 

benchmark in terms of CRPSSclim) when forecasts are initialized on November 1. The skill of IHC-based methods 374 

generally increases from October 1 to April 1. Nevertheless, at late initializations it is still possible to outperform these 375 

techniques in some basins (e.g., Stat (CFSR+IHC) and EWE in Hungry Horse provide skill increases of 7% and 5% 376 

in April 1 forecasts over the best IHC-based technique). For late season initializations – when IHC predictability is 377 

strong –, it is expected that climate-only forecasts underperform other methods. 378 

The results from Figure 8 corroborate several findings alluded to in Section 5.1. Climate predictors applied to 379 

low-skilled (BC-)ESP forecasts in a TWS framework are less effective than when applied in a separate statistical 380 

method. Additionally, less complex multi-model schemes can perform better than more complex approaches (e.g., 381 

BMA), supporting previous findings by Najafi and Moradkhani (2015). Among the three hybrid regression methods 382 

(Figure 3), Stat-CFSR-IHC was in most cases the worst performer. This result may be determined by the relative 383 

strength of standard (in particular ENSO) indices for the PNW region. Namely, there is less of an opportunity for 384 

custom predictor components to fill a climate influence gap, and the parameter estimation cost of the CFSR-PLSR 385 
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relative to an off-the-shelf index may be more exposed. It should also be noted that skill results – especially those 386 

making use of ESP output – are subject to large uncertainties due to limited sample size (i.e., only 35 years for forecast 387 

generation and verification). 388 

Overall, the results presented in Figures 5 and 8 suggest a division of the study basins into two groups showing 389 

different relative predictabilities – i.e., driven by watershed conditions versus climate – from October to January. The 390 

first group is formed by Dworshak, Howard Hanson and Hungry Horse, where the state of the climate is the dominant 391 

source of predictability from Oct 1 to Dec 1, and IHCs start providing useful information on Jan 1. The second group 392 

is formed by Libby and Prineville, where little or no skill can be found from any source until Dec 1, when some 393 

predictability can be harnessed from IHCs. This is illustrated in Figure 9, where time series with cross-validated 394 

seasonal streamflow forecasts – initialized on December 1, period 1981-2015 – are shown for two IHC-based methods 395 

(BC-ESP and Stat-IHC), and two climate-based statistical methods (i.e. Stat-Ind and Stat-CFSR). At such 396 

initialization, there is not enough information in the watershed (IHCs) to predict interannual variations in April-July 397 

streamflow at Dworshak (Figure 9a) or Howard Hanson (Figure 9b); nevertheless, climate predictors are more 398 

successful, a result that is also reflected in positive correlation results (Figure 5) and skill scores (e.g., CRPSSclim 399 

increases from 0.23 with Stat-IHC to 0.39 with Stat-Ind at Howard Hanson). For the particular case of Hungry Horse 400 

(Figure 9c), some predictability is provided by watershed information alone (i.e., BC-ESP), although with smaller 401 

correlation and skill than Stat-Ind or Stat-CFSR. Finally, the ensemble forecast time series displayed for Libby (Figure 402 

9d) and Prineville (Figure 9e) portray the relative predictive power of IHCs in these basins compared to climate 403 

predictors alone. Indeed, at the December 1 initialization in these basins, watershed information alone supports r 404 

values of 0.43 (Libby) and 0.39 (Prineville) from BC-ESP, and r values of 0.47 from Stat-IHC. 405 

Forecast reliability can be critical to support risk-based decision making, in which actions may be tied to the 406 

forecast distribution rather than the median. The reliability index α (Figure 10), which measures the closeness between 407 

the empirical CDF of forecast p-values with a theoretical CDF of U[0,1] (Table 3) shows that – although (BC-)ESP 408 

forecast correlation (Figure 5) and skill (Figure 8) generally increase during the year, forecast reliability from the ESP 409 

methods degrades (i.e. toward lower α) as the initializations approach Apr 1. Because TWS is constrained by ESP 410 

spread, it cannot provide substantial enhancements to poor late-season reliability indices obtained with (BC-)ESP. 411 

In general, forecasts involving statistical calibration (which helps to improve spread and bias) are most reliable. 412 

Indeed, regression-based forecasting methods (e.g., Stat-IHC, Stat-Ind, Stat. Ind+IHC) stand out in all basins, 413 

suggesting that the ensemble generation approach used in this paper (based on the standard error of the cross-validated 414 

hindcasts) is capable of providing statistically consistent ensembles. Multi-model techniques appear to inherit this 415 

characteristic, with only small discrepancies apparent between them (green lines in Figure 10). Similar inter-method 416 

differences across multiple initializations were found when looking at the ε reliability index (not shown) defined by 417 

Renard et al. (2010). 418 

Although HESP was only found to be the ‘most reliable’ method in a limited number of cases (e.g., α = 0.95 at 419 

Dworshak on Oct 1; α = 0.96 at Libby on Apr 1), relatively high α values were consistently attained in all basins and 420 

forecast lead times. This suggests – in conjunction with the results shown in Figures 5-8 – that HESP has strong 421 

potential for operational streamflow forecasting at all initialization dates, since it is capable of flexibly harnessing 422 
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seasonally varying sources of predictability. Figure 11 illustrates this idea through time series of cross-validated 423 

ensemble forecasts obtained with HESP for three initialization times (Oct 1, Jan 1, and Apr 1). Forecasts issued on 424 

Oct 1 provide positive skill with respect to climatology in Dworshak, Howard Hanson and Hungry Horse, and although 425 

CRPSS relative to ESP does not necessarily improve, the associated correlation coefficients (0.42, 0.37 and 0.47, 426 

respectively) are a clear enhancement over negative r values obtained from IHC-based methods. The lower 427 

probabilistic skill and near-zero correlation in Libby and Prineville reflect the lack of predictability from either the 428 

watershed or climate conditions at such a long lead time. Higher values of CRPSSclim for ensemble forecasts initialized 429 

on Jan 1 and Apr 1 reflect the increasing power of IHCs, while smaller (and sometimes negative) CRPSSesp values in 430 

some basins reflect the increasing difficulty to outperform ESP as IHCs provide more forecast signal. Overall, HESP 431 

provides positive skill with respect to mean climatology in all cases, relatively high r values, and statistically consistent 432 

forecast ensembles. 433 

5.3 Wet/dry year forecasts 434 

Summary statistics provide an overview of forecast performance, but additional insights can be gained from 435 

exploring extreme years in the record – in which forecasts can have disproportionate value to help water managers 436 

negotiate atypical challenges – and from visualizing the behavior of the forecasting methods as individual seasons 437 

progress. We therefore performed a retrospective comparison of all techniques for two regionally wet (1997 and 2011) 438 

and dry (1987 and 2001) water years at Hungry Horse (Figure 12), one of the most teleconnected basins in our study 439 

domain. Figure 12 illustrates how SWE and SM, the primary sources of predictability for IHC-based methods, 440 

progressively gain influence on ensemble forecasts (e.g., HESP and TWS outputs) as the beginning of the snowmelt 441 

season approaches (i.e. April 1). These single-year forecast evolution plots highlight the contrast for late season (i.e. 442 

Feb 1 onwards) between overconfident predictions exhibiting poor reliability (e.g., ESP, BC-ESP, TWS), and under-443 

confident forecasts (e.g. EWE and RWE). 444 

Figure 12a,b show that climate information is required to reduce forecast errors in wet years at very long lead 445 

times (i.e., Oct 1 and Nov 1), either alone or combined with watershed information through hybrid approaches. For 446 

example, the technique that provided the smallest forecast median error on Oct. 1 1997 was TWS. For shorter lead 447 

times (i.e., forecasts initialized on March 1 or Apr 1) and WY 1997, the incorporation of IHCs helps to provide a 448 

better match with observations compared to methods that only use climate information. Interestingly, reanalysis fields 449 

at Hungry Horse provide considerable predictive power for WY 2011 (Figure 12b) at short lead times (e.g., Stat-CFSR 450 

provides a forecast median error of 2.7 % on March 1). 451 

In the two dry years, Figure 12c illustrates that climate predictors alone had considerable predictive power at 452 

long lead times (i.e., Oct 1 and Nov 1) in WY 1987. However, this was not the case for WY 2001 (Figure 12d), when 453 

the method providing smallest forecast median volume errors at all initialization times (i.e., either BC-ESP or TWS) 454 

always required knowledge on watershed moisture conditions. This was also the case for other pilot study basins (not 455 

shown). 456 

The above results suggest that despite the value of large-scale climate information for this study domain, 457 

enhanced hydrologic predictability is critical for accurate streamflow volumes in snowmelt-dominated regions under 458 
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extreme climatic conditions, especially during dry years. Past and ongoing efforts aimed to improve basin-scale 459 

meteorological forcing datasets, pursue realistic process representations in hydrologic models, advance parameter 460 

calibration, and improve DA techniques for better IHC estimates have built a robust platform to accelerate progress 461 

in this area. However, a long-term retrospective implementation (that is consistent with the real-time deployment) of 462 

these various modeling decisions and sources of information is critical to understand their performance, and 463 

benchmark methodological choices. 464 

6 Conclusions 465 

Generating accurate water supply forecasts is an ongoing challenge for improving water resources operations 466 

and planning. Despite substantial work on seasonal streamflow forecasting methods applied worldwide, the marginal 467 

value of increased complexity and combining different sources of information via different strategies has not been 468 

systematically assessed. In this paper, we compare a range of techniques that leverage predictability from watershed 469 

hydrologic conditions and/or large-scale climate information. The forecast intercomparison showed that hybrid 470 

techniques that leverage hindcasts to combine both sources of predictability could lead to improved skill compared to 471 

current operational approaches. Additional key findings that may be relevant beyond the study domain – due to the 472 

inclusion of both teleconnected and non-teleconnected basins – are as follows: 473 

 In basins showing strong teleconnections between large-scale climate and local meteorology, the use of large-474 

scale climate information can be an effective strategy to improve seasonal streamflow predictability, 475 

potentially providing skillful forecasts at times when watershed predictability is limited.  476 

 Standard climate indices provide useful information, and custom climate predictors from reanalyses were 477 

also an effective complementary strategy for extracting the signal from climate fields (e.g., SST and 478 

geopotential height). 479 

 The relative importance of watershed IHC versus climate information to predict streamflow was found to 480 

vary even within a small region, depending on sub-domain catchment hydroclimatological characteristics. 481 

 The ESP trace weighting method only provided promising results at forecast lead times where ESP raw 482 

forecasts contained moderate skill, indicating that climate information cannot adequately shift the prior ESP 483 

forecast if it lacks forecast resolution or contains significant bias. 484 

 Increasing methodological complexity does not necessarily translate into better ensemble forecast quality 485 

(e.g., Stat-IHC versus BC-ESP; EWE versus BMA), in part because the small sample sizes associated with 486 

seasonal hindcasts preclude reliable parameter estimation for more elaborate methods. There can be a trade-487 

off between improving one forecast characteristic (e.g., bias) and degrading another (e.g., correlation skill). 488 

 Cross-validation is an essential part of seasonal forecast development and implementation, particularly where 489 

multiple predictions may be combined based on their purported relative strengths and predictive uncertainty 490 

must be accurately estimated. In the small-sample context of seasonal streamflow prediction, cross-validation 491 

reveals significant limitations in the supportable complexity of statistical forecasting elements. 492 
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The often equivocal comparison of methods through multiple verification metrics (e.g., correlation, reliability) 493 

for individual wet and dry years, and for different basins, starkly illustrated the challenge of selecting a single method 494 

that will provide optimal results for all forecast initialization dates. There is a significant tension between optimizing 495 

forecast qualities through a mixture of methods and data sources that vary seasonally and across basins, and an oft-496 

stated preference from forecasters and users for a consistent forecasting methodology. With this in mind, we developed 497 

HESP as a flexible data-driven framework to harness skill across varying predictability regimes, although it admittedly 498 

departs from the constraint of predictor uniformity.  499 

A notable omission from this intercomparison study is the derivation of climate predictors from global climate 500 

model forecasts, a strategy that has also been pursued in this context (e.g., see Crochemore et al. 2016). The experiment 501 

summarized here did assess the skill of CFSv2 9-month climate forecasts at an earlier stage, but such evaluation has 502 

been excluded from this paper because the results did not show significantly higher skill from the CFSv2 forecasts 503 

than the CFSR-based empirical predictions, as is consistent with prior skill assessments (e.g., Yuan et al., 2011). 504 

Nonetheless, the topic of augmenting hydrologic predictability from dynamical climate forecasts remains an appealing 505 

area for future study and comparison, as does the potential for including IHC data assimilation to enhance watershed 506 

model-based predictability (e.g., Dechant and Moradkhani, 2011; Huang et al., 2016). Future work can also explore 507 

alternative methodological choices such as multiple hydrological models, different climate datasets or smaller details 508 

such as alternative variable transformations in statistical approaches (e.g., Wang et al., 2012). 509 

Finally, this work is part of a larger project that explores the potential of an automated (i.e. ‘over-the-loop’) 510 

forecasting workflow as a viable strategy for operational streamflow prediction that can open the door to potential 511 

scientific and technical advances in streamflow forecasting (Pagano et al., 2016). In this context, a critical lesson is 512 

that the entire study, in particular the assessment of approach alternatives, depends on the automation of the forecast 513 

workflow to enable the generation of hindcasts that are consistent with real-time forecasts. Demonstrating that such 514 

over-the-loop methods – all of which were implemented in real-time by the authors during the study period (2015-515 

2017) – can yield credible predictions should be regarded as a strong argument for exploring this objective paradigm 516 

in real-world operational agency settings. 517 

7 Appendix  518 

7.1 ESP trace weighting 519 

The trace weighting scheme used here involves the following steps (Werner et al., 2004): 520 

1. Compute a vector D of distances between the vector with climate predictors for the target water year (
tx ), 521 

and the vectors with predictors for the training period (
ix ): 522 

D = (𝑑1, 𝑑2, … , 𝑑𝑛)      (A1) 523 

𝑑𝑖 = ‖𝑥𝑡 − 𝑥𝑖‖      (A2)  524 

2. Sort the vector D from lowest to highest: 525 

𝐷̃ = (𝑑(1), 𝑑(2), … , 𝑑(𝑛)), 𝑑(1) ≤ 𝑑(2) ≤ ⋯ ≤ 𝑑(𝑛)  (A3) 526 

3. Compute weights using the following equation: 527 
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𝑤𝑖 = [1 −
𝑑(𝑖)

𝑑(𝑘)
]

𝜆

, 𝑑(𝑖) ≤ 𝑑(𝑡)     (A4) 528 

𝑤𝑖 = 0,                  𝑑(𝑖) > 𝑑(𝑡)     (A5) 529 

k = 𝑁𝐼𝑁𝑇 (
𝑛

𝛼
)      (A6) 530 

where λ is a distance-sensitive weighting parameter, α is a parameter that influences the k nearest neighbors 531 

used, and NINT refers to the nearest integer operator. In this paper, we set λ = 2 and α = 1 after conducting 532 

several experiments (not shown). 533 

4. Normalize weights and construct a cumulative distribution function (CDF) based on these values and the 534 

ESP hindcast. 535 

5. Resample from the CDF obtained in step 4 using 500 uniform random numbers. 536 

7.2 BMA and QMA 537 

The principle of BMA (Raftery et al., 2005) is that given an ensemble forecast with M members, each ensemble 538 

member fi (i = 1,2,...,M) is associated with a conditional PDF hi(y|fi), which can be interpreted as the PDF of the 539 

variable y given fi. Thus, the BMA predictive model is: 540 

p(y|𝑓1, … , 𝑓𝑀) = ∑ 𝑤𝑖ℎ𝑖(𝑦|𝑓𝑖)
𝑀
𝑖=1     (A7) 541 

where the BMA weight wi is the posterior probability of forecast i and is obtained based on its relative 542 

performance during the training period. Therefore, the weights wi’s are nonnegative and add up to 1, i.e. ∑ 𝑤𝑖
𝑀
𝑖=1 =1 543 

(Raftery et al., 2005). 544 

In this paper, the weights for the two models (best climate-based and best watershed-based) are estimated by 545 

maximum likelihood, assuming that the conditional PDFs of log(Q) are approximated by a normal distribution. The 546 

likelihood is maximized using the expectation-maximization (EM) algorithm (Dempster et al., 1977) which is 547 

implemented in the R package ensembleBMA (https://cran.r-548 

project.org/web/packages/ensembleBMA/ensembleBMA.pdf) at the public domain statistical software R 549 

(http://www.rproject.org/). Prior information (i.e., initial weights) is provided by weights computed as 1/RMSE. 550 

Finally, the BMA forecast ensemble is obtained by sampling a fraction of members from each model equal to the 551 

weight wi. 552 

The quantile model averaging (QMA) forecast values are obtained from the weighted average of forecast 553 

quantiles from all models. Schepen and Wang (2015) recently found that nearly identical skill results can be obtained 554 

with BMA and QMA, and that very similar performance can be achieved either by calibrating QMA weights or by 555 

using BMA weights within a QMA framework. Therefore, we obtain the QMA forecast using the same weights 556 

obtained from the BMA calibration, by sorting the ensemble members from the best climate and best watershed 557 

forecast approaches, and computing the weighted average of equally ranked ensemble members from the two sources. 558 
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Table 1: List of basin characteristics. Hydrologic variables correspond to the period October 1980 to September 2015. P, 767 
R, PE, RR, and DI denote basin-averaged mean annual values of precipitation, runoff, potential evapotranspiration, runoff 768 
ratio, and dryness index, respectively. 769 

  Dworshak Howard Hungry Libby Prineville 

    Hanson Horse     

Symbol DWRI1 HHDW1 HHWM8 LYDM8 PRVO 

Area (km²) 6300 570 4200 23270 6825 

Basin average elevation (m.a.s.l.)  1290 905 1773 1648 1301 

Mean annual precipitation, P (mm/yr) 1182 1890 1043 813 349 

Mean annual runoff, R (mm/yr) 761 1483 676 408 47 

Mean annual PE* (mm/yr) 1362 1191 1272 990 1338 

Mean annual RE (R/P) 0.64 0.78 0.65 0.50 0.13 

Mean annual DI (PE/P) 1.15 0.63 1.22 1.22 3.83 

*Potential evapotranspiration using the Priestley-Taylor method 770 

 771 

 772 

 773 

Table 2: List of climate indices included as potential predictors 774 

Index Pattern 

Niño 3.4 East Central Tropical Pacific sea surface temperature (SST) 

Niño 1+2 Extreme Eastern Tropical Pacific SST 

Niño 3 Eastern Tropical Pacific SST 

Niño 4 Central Tropical Pacific SST 

AMO Atlantic Multidecadal Oscillation 

NAO North Atlantic Oscillation 

PDO Pacific Decadal Oscillation 

PNA Pacific North American Index 

SOI Southern Oscillation Index 

MEI Multivariate ENSO index 

WP Western Pacific Index 

TNA Tropical Northern Atlantic Index 

775 
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Table 3: Performance metrics used to assess and compare seasonal streamflow forecasting methods. 776 

Notation Name Equation Description 

r Correlation coefficient 
,1

2 2

,1 1

(q q )(o o)

(q q ) (o o)

N

m i m ii

N N

m i m ii i

r 

 

 


 



 
  

Deterministic metric that varies [-1,1] with a perfect score of 1. It 

measures the linear association between forecasts and observations 

independent of the mean and variance of the marginal distributions. 

%Bias Percent bias 
,1

1

(q o )
% 100

o

N

m i ii

N

ii

Bias 




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


 

Deterministic metric that varies (-∞, ∞), with perfect score of 0. It 

measures the difference between the mean of the forecasts and the mean of 

observations. 

RMSE Root mean squared error  2

,1

1
(q o )

N

m i ii
RMSE

N 
 

 

Deterministic metric that varies [0,∞), with perfect score of 0. 

CRPSS Continuous ranked 

probability skill score 1
fcst

ref

CRPS
CRPSS

CRPS
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 
2

1

1
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CRPS F F dq
N
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0,
(q)
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o
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F

q o


 

  

Probabilistic metric that varies (-∞,1], with perfect score of 1. It measures 

the skill of CRPS relative to a reference forecast (Hersbach, 2000). CRPS 

quantifies the difference between the cumulative distribution (CDF) 

function of a forecast (F), and the corresponding CDF of the observations 

(Fo). 

α α reliability index 
1

1
1 2 P (o ) (o )

N

i i ii
U

N




 
   
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

 

Probabilistic metric that varies [0,1]. It quantifies the closeness between 

the empirical CDF of sample p-values with the CDF of a uniform 

distribution. A value of 0 is the worst, and 1 reflects perfect reliability 

(Renard et al., 2010). 

,iqm : Forecast ensemble median for year i. 777 

qm
: Temporal average over forecast ensemble medians. 778 

oi : Observation for year i. 779 

o : Temporal average of observations. 780 

P (o )i i : Non-exceedance probability of oi using ensemble forecasts at year i. 781 

(o )i iU : Non-exceedance probability of oi using the uniform distribution U[0,1]. 782 

 783 
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 785 

Figure 1: Location map with the pilot basins included in this study. 786 
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 789 

Figure 2: Corrected precipitation P (i.e. observed precipitation multiplied by a snow correction factor SCF) and simulated 790 
water balance variables—active SM, SWE, and runoff (RO)—for the five study basins: (a) Dworshak Reservoir inflow 791 
(DWRI1), (b) Howard Hanson reservoir inflow (HHDW1), (c) Hungry Horse reservoir inflow (HHWM8), (d) Libby dam 792 
inflow (LYDM8), and (e) Prineville reservoir inflows (PRVO). For model SM, we subtract the lowest mean monthly value 793 
of the year so that the plotted values show only the active range of variation.  794 
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 795 

Figure 3: Schematic figure showing all seasonal streamflow forecasting methods included in the inter-comparison 796 
framework. The benchmark methods are operationally implemented in the Western United States, and they are solely 797 
based on hydrologic predictability. 798 
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 801 

Figure 4: Monthly streamflow simulations (red) and observations (black) for the period Oct/1980 – Sep/2000. Left panels 802 
display monthly time series, with NSE and r denoting the Nash-Sutcliffe efficiency and correlation, respectively. Right 803 
panels show simulated and observed seasonal streamflow cycles. Results are displayed for (a) Dworshak Reservoir inflow 804 
(DWRI1); (b) Howard Hanson reservoir inflow (HHDW1); (c) Hungry Horse reservoir inflow (HHWM8); (d) Libby dam 805 
inflow (LYDM8); and (e) Prineville reservoir inflows (PRVO). 806 
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 808 

Figure 5: Correlation coefficients of forecast ensemble medians versus observations obtained from all methods at different 809 
initialization dates. The error bars define 95% confidence limits obtained through bootstrapping with replacement. Results 810 
are displayed for (a) Dworshak Reservoir inflow (DWRI1); (b) Howard Hanson reservoir inflow (HHDW1); (c) Hungry 811 
Horse reservoir inflow (HHWM8); (d) Libby dam inflow (LYDM8); and (e) Prineville reservoir inflows (PRVO). 812 
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 813 

Figure 6: Same as in Figure 5, but for root mean squared error (RMSE) of ensemble forecast medians versus observations. 814 
See text for further details. 815 
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 817 

Figure 7: Same as in Figure 5, but for percent bias (% bias) in forecast ensemble medians versus observations. See text for 818 
further details. 819 
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 821 

Figure 8: Continuous Ranked Probability Skill Score of the forecast ensembles with respect to mean observed climatology 822 
(CRPSSclim). See text for further details. 823 
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 824 

Figure 9: Time series with cross-validated hindcasts initialized on December 1, obtained with two watershed-based methods (BC-ESP and Stat-IHC) and two climate-825 
based techniques (Stat-Ind and Stat-CFSR) for the five case study locations (a-e). The verification metrics CRPSSclim and CRPSSesp denote continuous ranked probability 826 
skill scores using the mean climatology and raw ESP output as the reference, respectively. Black dashed lines represent 10%, 50% and 90% flows from the observed 827 
climatology, and boxplots show the 10th, 30th, 50th, 70th and 90th hindcast percentiles. 828 
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 829 

Figure 10: The α reliability index for the hindcast ensembles for five case study locations. See text for further details. 830 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-60, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 10 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



36 

 

 831 

Figure 11: Time series with cross-validated hindcasts obtained with the Hierarchical Ensemble Streamflow Prediction 832 
(HESP) approach, initialized on (left) October 1, (center) January 1, and (right) April 1. Results are displayed for the five 833 
case study locations: (a) Dworshak Reservoir inflow (DWRI1); (b) Howard Hanson reservoir inflow (HHDW1); (c) Hungry 834 
Horse reservoir inflow (HHWM8); (d) Libby dam inflow (LYDM8); and (e) Prineville reservoir inflows (PRVO). Black 835 
dashed lines represent 10%, 50% and 90% flows from the observed climatology, and boxplots show the 10th, 30th, 50th, 70th 836 
and 90th hindcast percentiles. 837 
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 840 

Figure 12: April-July water supply forecasts obtained at the Hungry Horse reservoir (HHWM8) with different methods for 841 
two wet years – (a) 1997, and (b) 2011 – and two dry years – (c) 1987, and (d) 2001. The red dashed line represents the 842 
observed flow, while black dashed lines represent 10%, 50% and 90% flows from observed climatology, and boxplots show 843 
the 10th, 30th, 50th, 70th and 90th hindcast percentiles. 844 
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