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Abstract: Hydroclimate system is changing non-monotonically and identifying its trend 23 

pattern is a great challenge. Building on the discrete wavelet transform theory, we develop a 24 

discrete wavelet spectrum (DWS) approach for identifying non-monotonic trend patterns in 25 

hydroclimate time series and evaluating their statistical significance. After validating the 26 

DWS approach using two typical synthetic time series, we examined the temperature and 27 

potential evaporation over China from 1961-2013, and found that the DWS approach detected 28 

both the “warming” and the “warming hiatus” in temperature, and the reversed changes in 29 

potential evaporation. Interestingly, the identified trend patterns showed stable significance 30 

when the time series was longer than 30 years or so (i.e., the widely defined “climate” 31 

timescale). Our results suggest that non-monotonic trend patterns of hydroclimate time series 32 

and their significance should be carefully identified, and the DWS approach has the potential 33 

for wide use in hydrological and climate sciences. 34 

 35 

Key words: trend identification; discrete wavelet spectrum; decadal variability; statistical 36 

significance; Mann-Kendall test 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-6, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 1 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



3 
 

1. Introduction 45 

Climate and hydrological system are exhibiting great variability (Allen and Ingram, 2002; 46 

Trenberth et al., 2014). Quantitatively, identifying human-induced climate change signals in 47 

the usually changing hydroclimate system is of great socioeconomic significance 48 

(Diffenbaugh et al., 2008; IPCC, 2013), and remains a big challenge to both scientific and 49 

social communities. The simplest way to identify changes in the hydroclimate system would 50 

be to fit a monotonic (e.g., linear) trend at long time scales, at which a significance level 51 

would be assigned by a statistical test. Among the methods used for detection of trends, the 52 

Mann-Kendall non-parametric test is most widely used and has been successfully applied in 53 

climate change and its impact studies, when the time series is almost monotonic as required 54 

(Burn and Hag Elnur, 2002; Yue et al., 2002). However, due to its nonlinear and 55 

nonstationary nature, the hydroclimate system is changing and developing in a more 56 

complicated way rather than a monotonic trend way (Cohn and McMahon, 2005; Milly et al., 57 

2008). For example, a debate on the recent change of global air temperature is receiving 58 

enormous public and scientific attention that the global air temperature increased during 59 

1980-1998 passing most statistical significance tests and then stabilized afterwards till now, 60 

widely called “global warming hiatus” (Kosaka and Xie, 2013; Roberts et al., 2015). Another 61 

known example is “evaporation paradox” (Brutsaert and Parlange, 1998; Roderick and 62 

Farquhar, 2002) that potential evaporation has worldwide declined from the 1960s, again 63 

passing most statistical significance tests, but then reversed after the 1990s. In practice, for 64 

the hydroclimate time series, the non-monotonicity is more the rule rather than the exception 65 

(Dixon et al., 2006; Adam and Lettenmaier, 2008; Gong et al., 2010). Therefore, 66 
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identifying the non-monotonic trend pattern hidden in those time series and assessing its 67 

statistical significance presents a significant research task. 68 

Among those methods presently used in time series analysis, the wavelet method has the 69 

superior capability of handling the nonstationary characteristics of time series (Percival and 70 

Walden, 2000; Labat, 2005), so it may be more suitable for identifying non-monotonic trend 71 

patterns in hydroclimate time series. In a seminal work, Torrence and Compo (1998) placed 72 

the continuous wavelet transform in the framework of statistical analysis by formulating a 73 

significance test. Since then, the continuous wavelet method has become more applicable and 74 

rapidly developed to estimate the significance of variability in climate and hydrological 75 

studies. However, in the continuous wavelet results of time series, a known technical issue is 76 

the “data redundancy” (Gaucherel, 2002; Nourani et al., 2014), which is the redundant 77 

information across timescales leading to more uncertainty. 78 

On the contrary, the other type of wavelet transform, i.e., the discrete wavelet method, 79 

has the potential to overcome that problem of data redundancy, in that those wavelets used for 80 

discrete wavelet transform must meet the orthogonal properties. Therefore, the discrete 81 

wavelet method can be more effective to identify the non-monotonic trend pattern in time 82 

series. The discrete wavelet-aided identification of trend is usually influenced by some factors, 83 

such as choice of wavelet and decomposition level, and the uncertainty evaluation of results 84 

should also be considered. To overcome these problems, Sang et al. (2013) discussed the 85 

definition of trend, and further proposed a discrete wavelet energy function-based method for 86 

the identification of trend by comparing the difference of wavelet results between 87 

hydrological data and noise. The method used proper confidence interval to assess the 88 
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statistical significance of the identified trend, in which the key equation for quantifying 89 

trend’s significance is based on the concept of quadratic sum. However, it disobeys the 90 

common practice of spectral analysis, and sometimes cannot reasonably assess the 91 

significance of non-monotonic trend, because it neglects the big influence of trend’s mean 92 

value. For instance, for those trends with small variation but big mean value, the quadratic 93 

sums are big values, based on which the statistical significance of trends would inevitably be 94 

over-assessed. Therefore, the evaluation of statistical significance of a non-monotonic trend in 95 

a time series should be based on its own variability but not other factors. 96 

By combining the advantages of the discrete wavelet method and successful practice in 97 

the spectral analysis methods, this study aims at developing a practical but reliable discrete 98 

wavelet spectrum approach for identifying non-monotonic trend patterns in hydroclimate time 99 

series and quantifying their statistical significance, and further improving the understanding 100 

of non-monotonic trends by investigating their variation with data length increase. To do that, 101 

Section 2 presents the details of the newly developed approach building on the wavelet theory 102 

and spectrum analysis. In Section 3, we use both synthetic time series and annual time series 103 

of air temperature and potential evaporation over China as examples to investigate the 104 

applicability of the approach, which is followed by the discussion and conclusion in Section 105 

4. 106 

2. A discrete wavelet spectrum approach 107 

Here we develop an approach, termed as “discrete wavelet spectrum approach,” for 108 

identifying non-monotonic trend pattern in hydroclimate time series, in which the discrete 109 

wavelet transform (DWT) is used first to separate the trend pattern, and its statistical 110 
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significance is then evaluated by using the discrete wavelet spectrum, whose confidence 111 

interval is described through the Monte-Carlo test. 112 

Following the wavelet analysis theory (Percival and Walden, 2000), the discrete wavelet 113 

transform of a time series can be expressed as: 114 

* / 2
, , 0 0 0( , ) ( )       )j j

f j k j kW j k f t t dt with t a a t b kψ ψ ψ
+∞ − −

−∞
= = −∫ ( ) ( ) (

              
(1) 115 

where f(t) is the series to be analyzed with a time order t, and ψ*(t) is the complex conjugate of 116 

mother wavelet ψ(t); a0 and b0 are constants, and integer k is a time translation factor; Wf(j,k) is 117 

the discrete wavelet coefficient under the decomposition level j. In practice, the dyadic DWT is 118 

used widely by assigning a0=2 and b0=1: 119 

* / 2
, ,( , ) ( )       2 2 )j j

f j k j kW j k f t t dt with t t kψ ψ ψ
+∞ − −

−∞
= = −∫ ( ) ( ) (                 (2) 120 

The highest decomposition level M can be calculated as log2(L), where L is the length of 121 

series. The sub-signal fj(t) in the original series f(t) under each level j (j = 1, 2, …, M) can be 122 

reconstructed as: 123 

*( ) ( , ) (2 )j
j fk

f t W j k t kψ −= −∑                         
(3) 124 

where the sub-signal fj(t) at the highest decomposition level (when j = M) defines the 125 

non-monotonic trend pattern of the series f(t). Sang (2012) discussed the influence of wavelet 126 

and decomposition level choice and noise type on the discrete wavelet decomposition of 127 

series, and further proposed some methods to solve them. By doing Monte-Carlo experiments, 128 

he found that those seven wavelet families used for DWT can be divided into three types, and 129 

recommended the first type, by which wavelet energy functions of various types of noise are 130 

stable and thus have little influence on the wavelet decomposition of time series. Specifically, 131 

one chooses an appropriate wavelet, according to the relationship of statistical characteristics 132 
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among the original series, de-noised series and removed noise, chooses a proper 133 

decomposition level by analyzing the difference between energy function of the analyzed 134 

series and that of noise, and then identifies the deterministic components (including trend) by 135 

conducting significance testing of DWT. These methods are based on the hydroclimate time 136 

series itself, and thus are reliable and reasonable. They were used here to accurately identify 137 

the non-monotonic trend pattern in a time series and assess its statistical significance. 138 

Further, to establish the discrete wavelet spectrum (DWS) of time series, we need to 139 

specify a spectrum value E(j) for each sub-signal fj(t) (in Eq. 3). Here we define E(j) at the jth 140 

level by taking the variance of fj(t) following the general practice in conventional spectral 141 

analysis methods (Fourier transform, maximum entropy spectral analysis, etc.): 142 

( ) var( ( ))jE j f t=                             (4) 143 

It can accurately quantify the intensity of variation of sub-signals (including trend) by 144 

eliminating the influence of their mean value, which is obviously different from the quadratic 145 

sum-based method proposed in Sang et al. (2013). For hydroclimate time series, deterministic 146 

components generally have different characteristics from purely noise components (Sang et 147 

al., 2012; Rajaram et al., 2015). Interestingly, due to the grid of dyadic DWT (Partal and 148 

Cigizoglu, 2008), discrete wavelet spectra Er(j) of various noise types strictly follow an 149 

exponentially decreasing rule with base 2 (Sang 2012): 150 

𝐸𝑟(𝑗) = 2−𝑗                                (5) 151 

The discrete wavelet spectra of deterministic components and that of noise are different. 152 

Hence, we define the DWS of noise as the “reference discrete wavelet spectrum (RDWS),” 153 
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based on which we evaluate the statistical significance of the non-monotonic trend pattern of 154 

a time series. 155 

To be specific, we design a technical flowchart to show how we develop the DWS 156 

approach for identifying the non-monotonic trend pattern of time series, and also for 157 

evaluating the statistical significance of that trend pattern (see the detail in Figure 1): 158 

(1) For the series f(t) normalized with length L, we analyze it using the DWT in Eq. (2), 159 

and calculate its discrete wavelet spectrum by Eq. (4); 160 

(2) For the comparison purpose, we then use the Monte-Carlo method to generate the 161 

normalized noise data N with the same length as the series f(t), and determine its 162 

RDWS by Eq. (4). Considering that discrete wavelet spectra of various types of noise 163 

just consistently follow Eq. (5), here we generate the noise data following the standard 164 

normal distribution; 165 

(3) We repeat the above steps for 5000 times, and calculate the mean value and variance of 166 

the spectrum values (in Eq. 4) of the normalized noise data N at each decomposition 167 

level j, based on which we can estimate an appropriate confidence interval of RDWS at 168 

the concerned confidence level. In this study we mainly considered the 95% 169 

confidence level; 170 

(4) In comparing the discrete wavelet spectrum of the series f(t) and the confidence 171 

interval generated by that of the noise (i.e., the RDWS), we can easily identify the 172 

deterministic components under the highest level as the non-monotonic trend pattern of 173 

the series, and determine whether it is significant. Specifically, if the spectrum value of 174 

the analyzed series’ sub-signal under the highest level is above the confidence interval 175 
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of RDWS, it is thought that the non-monotonic trend pattern is statistically significant; 176 

otherwise, if the spectrum value of the sub-signal under the highest level is in the 177 

confidence interval of RDWS, it is not statistically significant. 178 

Because the DWS approach fits well the common idea of spectral analysis, and its 179 

superiority compared to the method in Sang et al. (2013) can be clearly understood, but they 180 

are not compared here. In the following section, we mainly investigate the applicability of the 181 

DWS approach for identifying non-monotonic trend and its significance, and further 182 

investigate the variation of non-monotonic trend with data length increase to improve our 183 

understanding of trend. 184 

< Figure 1> 185 

3. Results 186 

3.1 Synthetic series analysis 187 

To test and verify the applicability of the developed discrete wavelet spectrum (DWS) 188 

approach for identifying non-monotonic trend pattern of a time series, we consider the general 189 

hydrological situations and use two synthetic data, generated with known signals and noise a 190 

priori. For investigating the variation of non-monotonic trend with data length increase, we 191 

set the length of the two series as 200, and the noise in them follows a standard normal 192 

distribution. The first synthetic series S1 consists of an exponentially increasing line and a 193 

periodic curve (the periodicity is 200) with some noise content (Figure 2, left panel); and the 194 

second synthetic series S2 is generated by including a hemi-sine curve, a periodic curve (the 195 

periodicity is 50) and some noise content (Figure 2, right panel). Using the MK test, series S1 196 

shows a significant increase but the trend of series S2 is not significant. 197 
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In the DWS approach (Figure 1), we decompose series S1 into seven (i.e., <log2200) 198 

sub-signals using Eq. (2) and Eq. (3), and take the sub-signals under the seventh level as the 199 

defined non-monotonic trend pattern. As shown in Figure 2 (left panel), the identified 200 

non-monotonic trend pattern in series S1 is similar to the true trend pattern. Interestingly, the 201 

linear fitting curve (a monotonic curve) could not capture the detail of the trend pattern. The 202 

same approach applies to series S2 in Figure 2 (right panel) and the conclusion is not changed. 203 

Moreover, for series S2 with large variation at long time scales, the linear fitting curve or 204 

other monotonic curves may not be physically meaningful. 205 

< Figure 2> 206 

We compute the discrete wavelet spectra of the two synthetic series using Eq. (4), and 207 

use the reference discrete wavelet spectrum with 95% confidence interval to evaluate the 208 

statistical significance of their trend patterns. Using our DWS approach, the trend pattern of 209 

series S1, which is quasi-monotonic, is found significant (Figure 3a) as in the MK test (Figure 210 

3c), but the non-monotonic series S2 shows a significant trend pattern (Figure 3b), which is 211 

different from the MK test (Figure 3d). 212 

In Figure 3, we also present the significance of the identified trend patterns of the two 213 

series using both our DWS approach and the MK test and we change the length of the series 214 

to investigate the stability of the statistical significance. Generally, it would have more 215 

uncertainty when evaluating the statistical significance of trend pattern with a shorter length, 216 

corresponding to a bigger 95% confidence interval. Using our DWS approach, the 95% 217 

confidence interval for evaluating the statistical significance of trend pattern generally 218 
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decreases with the length of data, as expected. However, in the MK test, the significance is 219 

always determined by the constant thresholds of +/-1.96, regardless of the data length. 220 

One would expect that if the trend pattern of a series at a certain length is identified 221 

statistically significant, the significance may be more stable with a larger length of data 222 

considered. Using our DWS approach, the trend pattern of series S1 is significant when the 223 

data length is larger than 55 (Figure 3a), being similar to the result of the MK test (Figure 3c). 224 

Interestingly, using our DWS approach, the trend pattern of the series S2 is statistically 225 

significant when the data length is larger than 75 (Figure 3b), but using the MK test, the 226 

monotonic trend pattern of series S2 is significant only when the data length is between 40 227 

and 185 (Figure 3d). In summary, the significance of trend pattern identified by our DWS 228 

approach is more stable than that detected by the MK test, demonstrating the advantage of the 229 

DWS approach in dealing with non-monotonic hydroclimate time series. 230 

< Figure 3> 231 

3.2 Observed data analysis 232 

We use the annual time series of mean air temperature (denoted as TEM) and potential 233 

evaporation (denoted as PET) over China to further verify the applicability of our developed 234 

DWS approach for identifying non-monotonic trend pattern of a time series. The two series 235 

were obtained from the hydroclimate data measured at 740 meteorological stations over China, 236 

with the same measurement years from 1961 to 2013. The data have been quality-checked to 237 

ensure their reliability for scientific studies. The PET series was calculated from the 238 

Penman-Monteith approach (Chen et al., 2005). 239 
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Given the general nonstationary nature of observed hydroclimate time series, linear 240 

trends or more generally monotonic curves could not capture the trend pattern with large 241 

decadal variations and therefore are not particularly physically meaningful. In Figure 4 (left 242 

panel), we present the annual TEM time series visually showing nonstationary characteristics 243 

and non-monotonic variation. The TEM series decreases till the 1980s with fluctuations and 244 

then sharply rises till the 2000s, followed by a decreasing tendency. The large fluctuation of 245 

the mean air temperature after late 1990s is the known phenomenon of the “global warming 246 

hiatus” (Roberts et al., 2015). The linear fitting curve obviously missed out the more 247 

complicated trend pattern of the observed time series. Using our DWS approach, we 248 

decompose the TEM series into five (i.e., <log253) sub-signals using Eq. (2) and Eq. (3), and 249 

take the sub-signals under the fifth level as the trend pattern, which realistically presents the 250 

nonstationary variability of temperature over China (Figure 4, left panel). 251 

We also apply this DWS approach to the annual PET time series. In the time series of 252 

PET (Figure 4, right panel), there was a decreasing trend for the period from 1961 to the 253 

1990s, which is the known “evaporation paradox” leading to controversial interpretations 254 

continuing over the last decade on hydrological cycles (Brutsaert and Parlange, 1998; 255 

Roderick and Farquhar, 2002). That decreasing trend was then followed by an abrupt increase 256 

in around the 1990s, almost the same time when solar radiation was observed to be reversing 257 

its trend, widely termed as “global dimming to brightening” (Wild, 2009). Interestingly, after 258 

the mid-2000s, PET starts to decrease again (Figure 4, right panel). Sometimes, one would 259 

propose to fit linear curves for separate periods. Again, linear curves could not capture the 260 

overall trend pattern of the PET series. Using the same DWS approach, we identify 261 
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non-monotonic trend pattern of the PET series (Figure 4, right panel), which captures the two 262 

turning points of the changing trends in the 1990s and the 2000s. 263 

< Figure 4> 264 

The changes of trends in terms of magnitudes and signs for different periods lead to the 265 

difficulty in assessing and interpreting the significance of trends. For example, the PET time 266 

series shows a significant decrease using the MK test (-3.76 < -1.96) during 1961-1992 267 

(Figure 5d). At that moment before the reversed trend reported, the significant decrease could 268 

be literally interpreted as that PET has significantly declined and might be declining in the 269 

future. However, the PET time series reversed after the 1990s and again in the 2000s, coming 270 

with an insignificant overall trend for the whole period of 1961-2013. For the more or less 271 

monotonic time series of the TEM series (1961-2013), the MK test detects a significant 272 

increase (6.00 > 1.96) (Figure 5c), which leads to the surprise when air temperature was 273 

reported to have stopped increasing after late the 1990s. In summary, it becomes vital to 274 

develop an approach for testing the significance of trend pattern, which is suitable for 275 

non-monotonic time series. 276 

In this study, building on the discrete wavelet transform theory, we propose an 277 

operational approach, i.e., the DWS, for evaluating the significance of non-monotonic trend 278 

pattern in the TEM (Figure 5a) and PET (Figure 5b) series. For comparison purpose, we also 279 

conduct the significance test for the two time series using the MK test (Figure 5c and 5d). 280 

Similar to Figure 3, we change the data length to investigate the stability of statistical 281 

significance (Figure 5). Again, the result indicates that the 95% confidence interval for 282 

evaluating the statistical significance generally decreases with the data length, which is 283 
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different from the constants +/-1.96 adopted in the MK test. The significance test using our 284 

DWS approach appears to be more stable with the data length than the MK test (Figure 5). 285 

Interestingly, using our DWS approach the trend pattern in the TEM series becomes 286 

significant when the data length is 30 and the significance is more stable when it is greater 287 

than 35 (Figure 5a). For the case of the PET series, the trend pattern becomes statistically 288 

significant when the data length is larger than 25 (Figure 5b). The findings here have 289 

important implications for non-monotonic hydroclimate time series analysis, in that the 290 

timescale of defining climate and climate change by the World Meteorological Organization 291 

is usually 30 years (Arguez and Vose, 2011) and in hydrological practice it is between 25-30 292 

years. 293 

For the whole time series investigated here, whose length is larger than 30 years, we are 294 

able to examine the significance using the developed DWS approach. Combining the trend 295 

pattern in Figure 4 (left panel) and the significance test in Figure 5a, we can confirm that the 296 

trend pattern of the TEM time series from 1961-2013 identified in this study is significant at 297 

the 95% confidence interval. Similarly, the trend pattern in PET is also significant (Figure 4 298 

right panel and Figure 5b). The significance test results suggest that the three main stages of 299 

the series (red lines, Figure 4) are detectable as the overall trend pattern from the variability of 300 

the series and are vital to understanding how the temperature and the PET series are changing. 301 

In particularly, the reversed changes in PET and its significance can be revealed by our DWS 302 

approach, which can provide more useful and physically meaningful information. Our results 303 

suggest that the non-monotonic trend pattern of hydroclimate time series and its significance 304 

should be carefully identified and evaluated. 305 
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< Figure 5> 306 

4. Summary and Conclusion 307 

Climate and hydrological system are changing non-monotonically. Identification of 308 

linear (or monotonic) trends in hydroclimate time series, as a common practice, cannot 309 

capture the detail of the trend pattern in the time series at long time scales, and then can lead 310 

to misinterpreting climatic and hydrological changes. Therefore, revealing the trend pattern of 311 

the time series and assessing its significance from the usually varying hydroclimate system 312 

remains a great challenge. To that end, we develop the discrete wavelet spectrum (DWS) 313 

approach for identifying the non-monotonic trend in hydroclimate time series, in which the 314 

discrete wavelet transform is used first to separate the trend pattern, and its statistical 315 

significance is then evaluated by using the discrete wavelet spectrum (Figure 1). Using two 316 

typical synthetic time series, we examine the developed DWS approach, and find that it can 317 

precisely identify non-monotonic trend pattern in the synthetic time series (Figure 2) and has 318 

the advantage in significance testing (Figure 3). 319 

Using our DWS approach, we identify the trend pattern in the annual time series of 320 

average temperature and potential evaporation over China from 1961-2013 (Figure 4). The 321 

identified non-monotonic trend patterns precisely describe how temperature and PET are 322 

changing. Of particularly interest here is that the DWS approach can help detect both the 323 

“warming” and the “warming hiatus” in the temperature time series, and reveal the reversed 324 

changes and the latest decrease in the PET time series. The DWS approach can provide other 325 

aspects of information on the trend pattern in the time series, i.e., the significance test. Results 326 

show that the trend pattern becomes more significant and the significance test becomes more 327 
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stable when the time series is longer than a certain period like 30 years or so, the widely 328 

defined “climate” time scale (Figure 5). Using the DWS approach, in both time series of mean 329 

air temperature and potential evaporation, the identified trend patterns are found significant 330 

(Figure 5). 331 

In summary, our results suggest that the non-monotonic trend pattern of hydroclimate 332 

time series and its statistical significance should be carefully identified and evaluated, and the 333 

DWS approach developed in this study has the potential for wide use in hydrological and 334 

climate sciences. 335 
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Figures 417 

 418 

 419 

 420 

Figure 1. Technical flowchart for identification of the non-monotonic trend pattern in a time 421 

series using the discrete wavelet spectrum approach developed. In the figure, “DWT” is 422 

the discrete wavelet transform, “DWS” is the discrete wavelet spectrum, “RDWS” is the 423 

reference discrete wavelet spectrum, “DL” is the decomposition level, and “CI” is the 424 

confidence interval. 425 

 426 
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 428 

Figure 2. Non-monotonic trend patterns in the synthetic series S1 and S2 identified by the 429 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 430 

Synthetic series S1 is generated as: S1=1.1120.1t+0.8×sin(0.01πt)+α; and synthetic series 431 

S2 is generated as: S2=sin(0.04πt)+2×sin(π+0.005πt)+α, where α is a random process 432 

following the standard normal distribution. 433 

 434 
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 436 
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 438 

Figure 3. Evaluation of statistical significance of non-monotonic trend patterns in the 439 

synthetic series S1 (a) and S2 (b) with different data length by the discrete wavelet 440 

spectrum (DWS) approach, and the results by the Mann-Kendall (MK) test (c and d). In 441 

figure a and b, the blue line is the reference discrete wavelet spectrum (RDWS) with 95% 442 

confidence interval under each data length; and in figure c and d, the two black dash lines 443 

indicate 95% confidence interval (CI) with the thresholds of +/- 1.96 in the MK test. 444 
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 446 

Figure 4. Non-monotonic trend patterns in the annual time series of the mean air temperature 447 

(TEM) and the potential evaporation (PET) over China from 1961-2013 identified by the 448 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 449 
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 455 

Figure 5. Evaluation of statistical significance of non-monotonic trend patterns in the annual 456 

time series of the mean air temperature (TEM, a) and the potential evaporation (PET, b) 457 

over China with different data length by the discrete wavelet spectrum (DWS) approach, 458 

and the results by the Mann-Kendall (MK) test (c and d). In figure a and b, The blue line 459 

is the reference discrete wavelet spectrum (RDWS) with 95% confidence interval under 460 

each data length; and in figure c and d, the two black dash lines indicate 95% confidence 461 

interval (CI) with the thresholds of +/- 1.96 in the MK test. 462 
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