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Abstract: Hydroclimate system is changing non-monotonically and identifying its trend 23 

pattern is a great challenge. Building on the discrete wavelet transform theory, we develop a 24 

discrete wavelet spectrum (DWS) approach for identifying non-monotonic trend patterns in 25 

hydroclimate time series and evaluating their statistical significance. After validating the 26 

DWS approach using two typical synthetic time series, we examined the temperature and 27 

potential evaporation over China from 1961-2013, and found that the DWS approach detected 28 

both the “warming” and the “warming hiatus” in temperature, and the reversed changes in 29 

potential evaporation. Further, the identified trend patterns showed stable significance when 30 

the time series was longer than 30 years or so (i.e., the widely defined “climate” timescale). 31 

Our results suggest that non-monotonic trend patterns of hydroclimate time series and their 32 

significance should be carefully identified, and the DWS approach proposed has the potential 33 

for wide use in hydrological and climate sciences. 34 

 35 
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1. Introduction 45 

Climate and hydrological system are exhibiting great variability (Allen and Ingram, 2002; 46 

Trenberth et al., 2014). Quantitatively, identifying human-induced climate change signals in 47 

the usually changing hydroclimate system is of great socioeconomic significance 48 

(Diffenbaugh et al., 2008; IPCC, 2013), and remains a big challenge to both scientific and 49 

social communities. The simplest way to identify changes in the hydroclimate system would 50 

be to fit a monotonic (e.g., linear) trend at long time scales, at which a significance level 51 

would be assigned by a statistical test. Among the methods used for detection of trends, the 52 

Mann-Kendall non-parametric test is most widely used and has been successfully applied in 53 

climate change and its impact studies, when the time series is almost monotonic as required 54 

(Burn and Hag Elnur, 2002; Yue et al., 2002). However, due to its nonlinear and 55 

nonstationary nature, the hydroclimate system is changing and developing in a more 56 

complicated way rather than a monotonic trend way (Cohn and McMahon, 2005; Milly et al., 57 

2008). For example, a debate on the recent change of global air temperature is receiving 58 

enormous public and scientific attention that the global air temperature increased during 59 

1980-1998 passing most statistical significance tests and then stabilized afterwards till now, 60 

widely called “global warming hiatus” (Kosaka and Xie, 2013; Roberts et al., 2015; Medhaug 61 

et al., 2017). Another known example is “evaporation paradox” (Brutsaert and Parlange, 1998; 62 

Roderick and Farquhar, 2002) that potential evaporation has worldwide declined from the 63 

1960s, again passing most statistical significance tests, but then reversed after the 1990s. In 64 

practice, for the hydroclimate time series, the non-monotonicity is more the rule rather than 65 

the exception (Dixon et al., 2006; Adam and Lettenmaier, 2008; Gong et al., 2010). Therefore, 66 
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identifying the non-monotonic trend pattern hidden in those hydroclimate time series and 67 

assessing its statistical significance presents a significant research task for understanding 68 

hydroclimatic variability. 69 

Among those methods presently used in time series analysis, the wavelet method has the 70 

superior capability of handling the nonstationary characteristics of time series (Percival and 71 

Walden, 2000; Labat, 2005), so it may be more suitable for identifying non-monotonic trend 72 

patterns in hydroclimate time series. In a seminal work, Torrence and Compo (1998) placed 73 

the continuous wavelet transform in the framework of statistical analysis by formulating a 74 

significance test. Since then, the continuous wavelet method has become more applicable and 75 

rapidly developed to estimate the significance of variability in climate and hydrological 76 

studies. However, in the continuous wavelet results of time series, a known technical issue is 77 

the “data redundancy” (Gaucherel, 2002; Nourani et al., 2014), which is the redundant 78 

information across timescales leading to more uncertainty. 79 

On the contrary, the other type of wavelet transform, i.e., the discrete wavelet method, 80 

has the potential to overcome that problem of data redundancy, in that those wavelets used for 81 

discrete wavelet transform must meet the orthogonal properties. Therefore, the discrete 82 

wavelet method can be more effective to identify the non-monotonic trend pattern in time 83 

series (Almasri et al., 2008; de Artigas et al., 2006; Kallache et al., 2005; Partal and Kucuk, 84 

2006; Nalley et al., 2012). The discrete wavelet-aided identification of trend is usually 85 

influenced by some factors, such as choice of wavelet and decomposition level; moreover, the 86 

uncertainty evaluation of results should also be carefully considered. To overcome these 87 

problems, Sang et al. (2013) discussed the definition of trend, and further proposed a discrete 88 
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wavelet energy function-based method for the identification of trend by comparing the 89 

difference of wavelet results between hydrological data and noise. The method used proper 90 

confidence interval to assess the statistical significance of the identified trend, in which the 91 

key equation for quantifying trend’s significance is based on the concept of quadratic sum. 92 

However, the practice of quadratic sum disobeys the common practice of computing variance 93 

in spectral analysis, and sometimes cannot reasonably assess the significance of 94 

non-monotonic trend, because it neglects the big influence of trend’s mean value. For instance, 95 

for those trends with small variation but big mean value, the quadratic sums are big values, 96 

based on which the statistical significance of trends would inevitably be over-assessed. 97 

Therefore, the evaluation of statistical significance of a non-monotonic trend in a time series 98 

should be based on its own variability but not other factors. 99 

By combining the advantages of the discrete wavelet method and successful practice in 100 

the spectral analysis methods, this study aims at developing a practical but reliable discrete 101 

wavelet spectrum approach for identifying non-monotonic trend patterns in hydroclimate time 102 

series and quantifying their statistical significance, and further improving the understanding 103 

of non-monotonic trends by investigating their variation with data length increase. To do that, 104 

Section 2 presents the details of the newly developed approach building on the wavelet theory 105 

and spectrum analysis. In Section 3, we use both synthetic time series and annual time series 106 

of air temperature and potential evaporation over China as examples to investigate the 107 

applicability of the approach, which is followed by the discussion and conclusion in the final 108 

section. 109 

2. A discrete wavelet spectrum approach 110 
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Here we develop an approach, termed as “discrete wavelet spectrum approach,” for 111 

identifying non-monotonic trend pattern in hydroclimate time series, in which the discrete 112 

wavelet transform (DWT) is used first to separate the trend pattern, and its statistical 113 

significance is then evaluated by using the discrete wavelet spectrum, whose confidence 114 

interval is quantified and described through the Monte-Carlo test. 115 

Following the wavelet analysis theory (Percival and Walden, 2000), the discrete wavelet 116 

transform of a time series f(t) can be expressed as: 117 

* / 2
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where t is a time order, and ψ
*
(t) is the complex conjugate of mother wavelet ψ(t); a0 and b0 are 119 

constants, and integer k is a time translation factor; Wf(j,k) is the discrete wavelet coefficient 120 

under the decomposition level j (i.e., time scale a0
j
). In practice, the dyadic DWT is used 121 

widely by assigning a0=2 and b0=1: 122 

* / 2

, ,( , ) ( )       2 2 )j j

f j k j kW j k f t t dt with t t k  


 


   ( ) ( ) (                 (2) 123 

The highest decomposition level M can be calculated as log2(L) (Foufoula-Georgiou and 124 

Kumar, 2014), where L is the length of series f(t). The sub-signal fj(t) in the original series f(t) 125 

under each level j (j = 1, 2, …, M) can be reconstructed as: 126 

*( ) ( , ) (2 )j

j fk
f t W j k t k                            

(3) 127 

where the sub-signal fj(t) at the highest decomposition level (when j = M) defines the 128 

non-monotonic trend pattern of the series f(t), as generally understood. However, it should be 129 

noted that a meaningful trend closely depends on the temporal scale concerned. If the 130 

variability of series f(t) on certain smaller time scale K (K<L) is concerned, the proper 131 
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decomposition level can be determined as log2(K); then, the sum of those sub-signals at the 132 

time scales bigger K can be the non-monotonic trend pattern identified. 133 

Sang (2012) discussed the influence of wavelet and decomposition level choice and 134 

noise type on the discrete wavelet decomposition of time series, and further proposed some 135 

methods to solve them. By doing Monte-Carlo experiments, he found that those seven 136 

wavelet families used for DWT can be divided into three types, and recommended the first 137 

type, by which wavelet energy functions of various types of noise are stable and thus have 138 

little influence on the wavelet decomposition of time series. Specifically, one chooses an 139 

appropriate wavelet, according to the relationship of statistical characteristics among the 140 

original series, de-noised series and removed noise, chooses a proper decomposition level by 141 

analyzing the difference between energy function of the analyzed series and that of noise, and 142 

then identifies the deterministic components (including trend) by conducting significance 143 

testing of DWT. These methods are built on the composition and variability of hydroclimate 144 

time series at different time scales. They were used here to accurately identify the 145 

non-monotonic trend pattern in a time series and assess its statistical significance. 146 

Further, to establish the discrete wavelet spectrum (DWS) of time series, we need to 147 

specify a spectrum value E(j) for each sub-signal fj(t) (in Eq. 3), based on which we can 148 

quantitatively evaluate its importance and statistical significance. Here we define E(j) at the 149 

jth level by taking the variance of fj(t) following the general practice in conventional spectral 150 

analysis methods (Fourier transform, maximum entropy spectral analysis, etc.): 151 

( ) var( ( ))jE j f t                             (4) 152 
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It can accurately quantify the intensity of variation of sub-signals (including trend) by 153 

eliminating the influence of their mean value, which is different from the quadratic sum-based 154 

method proposed in Sang et al. (2013). For hydroclimate time series, both stochastic and 155 

deterministic components generally have different characteristics from purely noise 156 

components (Sang et al., 2012; Rajaram et al., 2015). Due to the grid of dyadic DWT (Partal 157 

and Cigizoglu, 2008), discrete wavelet spectra Er(j) of various noise types strictly follow an 158 

exponentially decreasing rule with base 2 (Sang 2012): 159 

𝐸𝑟(𝑗) = 2−𝑗                                (5) 160 

The discrete wavelet spectra of deterministic components and that of noise are different. 161 

Hence, we define the DWS of noise as the “reference discrete wavelet spectrum (RDWS)”, 162 

based on which we evaluate the statistical significance of the non-monotonic trend pattern of 163 

a time series. 164 

To be specific, we design a technical flowchart to show how we develop the DWS 165 

approach for identifying the non-monotonic trend pattern of time series, and also for 166 

evaluating the statistical significance of that trend pattern (see the detail in Figure 1): 167 

(1) For the series f(t) normalized with length L, we analyze it using the DWT in Eq. (2) 168 

and (3), and calculate its discrete wavelet spectrum by Eq. (4); 169 

(2) For the comparison purpose, we then use the Monte-Carlo method to generate the 170 

normalized noise data N with the same length as the series f(t), and determine its 171 

RDWS by Eq. (4). Considering that discrete wavelet spectra of various types of noise 172 

just consistently follow Eq. (5), here we generate the noise data following the standard 173 

normal distribution; 174 
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(3) We repeat the above step for 5000 times, and calculate the mean value and variance of 175 

the spectrum values (in Eq. 4) of the normalized noise data N at each decomposition 176 

level j, based on which we can estimate an appropriate confidence interval of RDWS at 177 

the concerned confidence level. In this study we mainly considered the 95% 178 

confidence level; 179 

(4) In comparing the discrete wavelet spectrum of the series f(t) and the confidence 180 

interval generated by that of the noise (i.e., the RDWS), we can easily identify the 181 

deterministic components under the highest level as the non-monotonic trend pattern of 182 

the series, and determine whether it is significant. Specifically, if the spectrum value of 183 

the analyzed series’ sub-signal under the highest level is above the confidence interval 184 

of RDWS, it is thought that the non-monotonic trend pattern is statistically significant; 185 

otherwise, if the spectrum value of the sub-signal under the highest level is in the 186 

confidence interval of RDWS, it is not statistically significant; 187 

(5) If a smaller time scale K is concerned, we can use the decomposition level log2(K), 188 

instead of M, and then repeat the steps (1-4) to identify the non-monotonic trend 189 

pattern at that time scale. 190 

In the following section, we mainly investigate the applicability of the DWS approach 191 

for identifying non-monotonic trend and its significance, and further investigate the variation 192 

of non-monotonic trend with data length increase to improve our understanding of trend. 193 

< Figure 1> 194 

3. Results 195 

3.1 Synthetic series analysis 196 
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To test and verify the applicability of the developed discrete wavelet spectrum (DWS) 197 

approach for identifying non-monotonic trend pattern of a time series, we consider the general 198 

hydrological situations and use two synthetic data, generated with known signals and noise a 199 

priori. For investigating the variation of non-monotonic trend with data length increase, we 200 

set the length of the two series as 200, and the noise in them follows a standard normal 201 

distribution. The first synthetic series S1 consists of an exponentially increasing line and a 202 

periodic curve (the periodicity is 200) with some noise content (Figure 2, left panel); and the 203 

second synthetic series S2 is generated by including a hemi-sine curve, a periodic curve (the 204 

periodicity is 50) and some noise content (Figure 2, right panel). Using the MK test, series S1 205 

shows a significant increase but the trend of series S2 is not significant. 206 

In the DWS approach (Figure 1), we concern the time scale as data length, and use the 207 

Daubechies (db8) wavelet to decompose series S1 into seven (i.e., <log2200) sub-signals 208 

using Eq. (2) and Eq. (3). Then, we take the sub-signals under the seventh level as the defined 209 

non-monotonic trend pattern. As shown in Figure 2 (left panel), the identified non-monotonic 210 

trend pattern in series S1 is similar to the true trend pattern. However, the linear fitting curve 211 

(a monotonic curve) could not capture the detail of the trend pattern. The same approach 212 

applies to series S2 in Figure 2 (right panel) and the conclusion is not changed. Moreover, for 213 

series S2 with large variation at long time scales, the linear fitting curve or other monotonic 214 

curves may not be physically meaningful. 215 

< Figure 2> 216 

We compute the discrete wavelet spectra of the two synthetic series using Eq. (4), and 217 

use the reference discrete wavelet spectrum with 95% confidence interval to evaluate the 218 
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statistical significance of their trend patterns. That is, if the red point at certain data length is 219 

above the 95% confidence bar, described by the blue line in Figure 3, it is thought that the 220 

trend pattern is significant at 95% confidence level. Using our DWS approach, the trend 221 

pattern of series S1, which is quasi-monotonic, is found significant (Figure 3a) as in the MK 222 

test (Figure 3c), but the non-monotonic series S2 shows a significant trend pattern (Figure 3b), 223 

which is different from the MK test (Figure 3d). 224 

In Figure 3, we also present the significance of the identified trend patterns of the two 225 

series using both our DWS approach and the MK test and we change the length of the series 226 

to investigate the stability of the statistical significance. Generally, it would have more 227 

uncertainty when evaluating the statistical significance of trend pattern with a shorter length, 228 

corresponding to a bigger 95% confidence interval. Using our DWS approach, the 95% 229 

confidence interval (i.e., the height of blue bars in Figure 3) for evaluating the statistical 230 

significance of trend pattern generally decreases with the increase of data length, as expected. 231 

However, in the MK test, the significance is always determined by the constant thresholds of 232 

+/-1.96, regardless of the data length. 233 

In the DWS results in Figure 3, the significance levels of the trend patterns do not 234 

consistently decrease with data length, but show some fluctuation, as the proportions of 235 

different components (including trend) in the original series vary with data length. 236 

Furthermore, one would expect that if the trend pattern of a series at a certain length is 237 

identified statistically significant, the trend pattern would extend with the increase of data 238 

length, thus its significance may be more stable with a larger length of data considered. Using 239 

our DWS approach, the trend pattern of series S1 is significant when the data length is larger 240 
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than 55 (Figure 3a), being similar to the result of the MK test (Figure 3c); the trend pattern of 241 

the series S2 is statistically significant when the data length is larger than 75 (Figure 3b). 242 

However, using the MK test, the monotonic trend pattern of series S2 is significant only when 243 

the data length is between 40 and 185 (Figure 3d). In summary, the significance of trend 244 

pattern identified by our DWS approach is more stable than that detected by the MK test, 245 

demonstrating the advantage of the DWS approach in dealing with non-monotonic 246 

hydroclimate time series. 247 

< Figure 3> 248 

3.2 Observed data analysis 249 

We use the annual time series of mean air temperature (denoted as TEM) and potential 250 

evaporation (denoted as PET) over China to further verify the applicability of our developed 251 

DWS approach for identifying non-monotonic trend pattern of a time series. The two series 252 

were obtained from the hydroclimate data measured at 740 meteorological stations over China, 253 

with the same measurement years from 1961 to 2013. The data have been quality-checked to 254 

ensure their reliability for scientific researches. The PET series was calculated from the 255 

Penman-Monteith approach (Chen et al., 2005). 256 

Given the general nonstationary nature of observed hydroclimate time series, linear 257 

trends or more generally monotonic curves could not capture the trend pattern with large 258 

decadal variations and therefore are not particularly physically meaningful. In Figure 4 (left 259 

panel), we present the annual TEM time series visually showing nonstationary characteristics 260 

and non-monotonic variation. The TEM series decreases till the 1980s with fluctuations and 261 

then sharply rises till the 2000s, followed by a decreasing tendency. The large fluctuation of 262 
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the mean air temperature after late 1990s is the known phenomenon of the “global warming 263 

hiatus” (Roberts et al., 2015). The linear fitting curve obviously missed out the more 264 

complicated trend pattern of the observed temperature time series. Using our DWS approach, 265 

we decompose the TEM series into five (i.e., <log253) sub-signals using Eq. (2) and Eq. (3), 266 

and take the sub-signals under the fifth level as the trend pattern, which realistically presents 267 

the nonstationary variability of temperature over China (Figure 4, left panel). 268 

We also apply this DWS approach to the annual PET time series. In the time series of 269 

PET (Figure 4, right panel), there was a decreasing trend for the period from 1961 to the 270 

1990s, which is the known “evaporation paradox” leading to controversial interpretations 271 

continuing over the last decade on hydrological cycles (Brutsaert and Parlange, 1998; 272 

Roderick and Farquhar, 2002). That decreasing trend was then followed by an abrupt increase 273 

in around the 1990s, almost the same time when solar radiation was observed to be reversing 274 

its trend, widely termed as “global dimming to brightening” (Wild, 2009). Surprisingly, after 275 

the mid-2000s, PET starts to decrease again (Figure 4, right panel). Sometimes, one would 276 

propose to fit linear curves for separate periods. Again, linear curves could not capture the 277 

overall trend pattern of the PET series. Using the same DWS approach, we identify 278 

non-monotonic trend pattern of the PET series (Figure 4, right panel), which captures the two 279 

turning points of the changing trends in the 1990s and the 2000s. 280 

< Figure 4> 281 

The changes of trends in terms of magnitudes and signs for different periods lead to the 282 

difficulty in assessing and interpreting the significance of trends. For example, the PET time 283 

series shows a significant decrease using the MK test (-3.76 < -1.96) during 1961-1992 284 
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(Figure 5d). At that moment before the reversed trend reported, the significant decrease could 285 

be literally interpreted as that PET has significantly declined and might be declining in the 286 

future. However, the PET time series reversed after the 1990s and again in the 2000s, coming 287 

with an insignificant overall trend for the whole period of 1961-2013. For the more or less 288 

monotonic time series of the TEM series (1961-2013), the MK test detects a significant 289 

increase (6.00 > 1.96) (Figure 5c), which leads to the surprise when air temperature was 290 

reported to have stopped increasing after late the 1990s. In summary, it becomes vital to 291 

develop an approach for testing the significance of trend pattern, which is suitable for 292 

non-monotonic time series. 293 

In this study, building on the discrete wavelet transform theory, we propose an 294 

operational approach, i.e., the DWS, for evaluating the significance of non-monotonic trend 295 

pattern in the TEM (Figure 5a) and PET (Figure 5b) series. For comparison purpose, we also 296 

conduct the significance test for the two time series using the MK test (Figure 5c and 5d). 297 

Similar to Figure 3, we change the data length to investigate the stability of statistical 298 

significance (Figure 5). Again, the result indicates that the 95% confidence interval for 299 

evaluating the statistical significance generally decreases with the data length, which is 300 

different from the constants +/-1.96 adopted in the MK test. The significance test using our 301 

DWS approach appears to be more stable with the data length than the MK test (Figure 5). 302 

Using our DWS approach the trend pattern in the TEM series becomes significant when the 303 

data length is 30 and the significance is more stable when it is greater than 35 (Figure 5a). For 304 

the case of the PET series, the trend pattern becomes statistically significant when the data 305 

length is larger than 25 (Figure 5b). The findings here have important implications for 306 
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non-monotonic hydroclimate time series analysis, in that the timescale of defining climate and 307 

climate change by the World Meteorological Organization is usually 30 years (Arguez and 308 

Vose, 2011) and in hydrological practice it is between 25-30 years. 309 

For the whole time series investigated here, whose length is larger than 30 years, we are 310 

able to examine the significance using the developed DWS approach. Combining the trend 311 

pattern in Figure 4 (left panel) and the significance test in Figure 5a, we can confirm that the 312 

trend pattern of the TEM time series from 1961-2013 identified in this study is significant at 313 

the 95% confidence interval. Similarly, the trend pattern in PET is also significant (Figure 4 314 

right panel and Figure 5b). The significance test results suggest that the three main stages of 315 

the series (red lines, Figure 4) are detectable as the overall trend pattern from the variability of 316 

the series and are vital to understanding how the temperature and the PET series are changing. 317 

In particularly, the reversed changes in PET and its significance can be revealed by our DWS 318 

approach, which can provide more useful and physically meaningful information. Our results 319 

suggest that the non-monotonic trend pattern of hydroclimate time series and its significance 320 

should be carefully identified and evaluated. 321 

< Figure 5> 322 

4. Summary and Conclusion 323 

Climate and hydrological system are changing non-monotonically. Identification of 324 

linear (or monotonic) trends in hydroclimate time series, as a common practice, cannot 325 

capture the detail of the trend pattern in the time series at long time scales, and then can lead 326 

to misinterpreting climatic and hydrological changes. Therefore, revealing the trend pattern of 327 

the time series and assessing its significance from the usually varying hydroclimate system 328 
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remains a great challenge. To that end, we develop the discrete wavelet spectrum (DWS) 329 

approach for identifying the non-monotonic trend in hydroclimate time series, in which the 330 

discrete wavelet transform is used first to separate the trend pattern, and its statistical 331 

significance is then evaluated by using the discrete wavelet spectrum (Figure 1). Using two 332 

typical synthetic time series, we examine the developed DWS approach, and find that it can 333 

precisely identify non-monotonic trend pattern in the synthetic time series (Figure 2) and has 334 

the advantage in significance testing (Figure 3). 335 

Using our DWS approach, we identify the trend pattern in the annual time series of 336 

average temperature and potential evaporation over China from 1961-2013 (Figure 4). The 337 

identified non-monotonic trend patterns precisely describe how temperature and PET are 338 

changing. Of particularly interest here is that the DWS approach can help detect both the 339 

“warming” and the “warming hiatus” in the temperature time series, and reveal the reversed 340 

changes and the latest decrease in the PET time series. The DWS approach can provide other 341 

aspects of information on the trend pattern in the time series, i.e., the significance test. Results 342 

show that the trend pattern becomes more significant and the significance test becomes more 343 

stable when the time series is longer than a certain period like 30 years or so, the widely 344 

defined “climate” time scale (Figure 5). Using the DWS approach, in both time series of mean 345 

air temperature and potential evaporation, the identified trend patterns are found significant 346 

(Figure 5). 347 

In summary, our results suggest that the non-monotonic trend pattern of hydroclimate 348 

time series and its statistical significance should be carefully identified and evaluated, and the 349 
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DWS approach developed in this study has the potential for wide use in hydrological and 350 

climate sciences. 351 
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Figure 1. Technical flowchart for identification of the non-monotonic trend pattern in a time 464 

series using the discrete wavelet spectrum approach developed. In the figure, “DWT” is 465 

the discrete wavelet transform, “DWS” is the discrete wavelet spectrum, “RDWS” is the 466 

reference discrete wavelet spectrum, “DL” is the decomposition level, and “CI” is the 467 

confidence interval. 468 
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 471 

Figure 2. Non-monotonic trend patterns in the synthetic series S1 and S2 identified by the 472 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 473 

Synthetic series S1 is generated as: S1=1.112
0.1t

+0.8×sin(0.01πt)+α; and synthetic series 474 

S2 is generated as: S2=sin(0.04πt)+2×sin(π+0.005πt)+α, where α is a random process 475 

following the standard normal distribution. 476 
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 481 

Figure 3. Evaluation of statistical significance of non-monotonic trend patterns in the 482 

synthetic series S1 (a) and S2 (b) with different data length by the discrete wavelet 483 

spectrum (DWS) approach, and the results by the Mann-Kendall (MK) test (c and d). In 484 

figure a and b, the blue line is the reference discrete wavelet spectrum (RDWS) with 95% 485 

confidence interval under each data length; if the red point at certain data length is above 486 

the blue bar, it is thought that the trend pattern is significant at 95% confidence level. In 487 

figure c and d, the two black dash lines indicate 95% confidence interval (CI) with the 488 

thresholds of +/- 1.96 in the MK test. 489 
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 491 

Figure 4. Non-monotonic trend patterns in the annual time series of the mean air temperature 492 

(TEM) and the potential evaporation (PET) over China from 1961-2013 identified by the 493 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 494 
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 500 

Figure 5. Evaluation of statistical significance of non-monotonic trend patterns in the annual 501 

time series of the mean air temperature (TEM, a) and the potential evaporation (PET, b) 502 

over China with different data length by the discrete wavelet spectrum (DWS) approach, 503 

and the results by the Mann-Kendall (MK) test (c and d). In figure a and b, The blue line 504 

is the reference discrete wavelet spectrum (RDWS) with 95% confidence interval under 505 

each data length; and in figure c and d, the two black dash lines indicate 95% confidence 506 

interval (CI) with the thresholds of +/- 1.96 in the MK test. 507 


