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Title: A discrete wavelet spectrum approach to identifying non-monotonic trend pattern of 

hydroclimate data 

 

Response: 

 

The authors appreciate the Editor and Reviewers for helpful and constructive comments that 

improved our original manuscript submitted to HESS. 

 

Response to Editor’s comments: 

 

While Reviewer #1 felt that the paper could be published "as is", Reviewer #2 did not feel that 

revision to address the novelty of this paper's contribution was addressed in a sufficient way. 

After looking over the revised track-changes manuscript, the authors' proposed responses, 

and the reviewer comments, I concur with Reviewer #2. For example, the authors noted in 

their proposed responses that they would, "carefully rewrite and add many contents in the 

revised manuscript, and add some new references about the use of DWT for trend 

identification, mainly to more clearly explain the DWS approach proposed and emphasize the 

advantage of the approach." In examining the track changes version of the revised discussion 

paper, the only change I was able to observe is that a few more references have been added to 

the introduction. Since neither reviewer recommended rejection, I will not overrule this 

recommendation. However, I do hope to see the comments of Reviewer #2 fully addressed in 

this next revision. The discussion paper will once again be sent back out for review before 

making a final decision on publication. 

 

Reply: Thank you very much for giving these helpful comments. We have revised the 

manuscript following your comments and suggestions. As you can find in the revised 

manuscript, we added some new contents to clarify the novelty of the study. To be specific, 

we added those contents in lines 81-83 to describe the wide use of the continuous wavelet 

transform and the continuous wavelet spectrum in hydrology studies, and further added those 

contents in lines 91-94 to emphasize the lack of an effective discrete wavelet spectrum 

approach in the wavelet methodology: “However, there lacked an effective discrete wavelet 

spectrum in the wavelet methodology. Without it, uncertainty in the discrete wavelet-aided 

identification of trend cannot be accurately estimated, and the significance level of the 

identified trend cannot be quantitatively evaluated, either”. Therefore, we proposed the 

discrete wavelet spectrum (DWS) approach for detecting non-monotonic trends in 

hydroclimate time series, as an important basis of understanding the variability of 

hydroclimate process at large time scales. 

 

Moreover, we added those contents in lines 339-370 and the new Figure 6 to describe the 

spatial distribution of significance of trends in potential evaporation over China, and found 

the big different results gotten from the DWS approach proposed and the Mann-Kendall (MK) 



test. We found that the MK test underestimated the significant of those trends (at 150 stations 

among total 520 stations) with non-monotonic variations, which is unfavorable for accurately 

understanding the temporal and spatial variability of potential evaporation and hydroclimate 

process in China. Therefore, we think that the DWS approach performs better for detection of 

non-monotonic trends in hydroclimate time series, and it is the novelty of this study. 

 

More details can be found in the following point-to-point response. 

 

Response to Reviwer#2’s comments: 

 

Comment 1. DWS is a well established approach and has been widely applied, especially in 

signal analysis. I simply cannot see the novelty despite the authors stated they developed a 

new DWS approach. The novelty should be further elaborated and highlighted should the 

authors consider to revise and resubmit to another journal.  

 

Reply: Thanks for giving this helpful comment. We know that the wavelet methodology, 

including both continuous and discrete wavelet transform, has been widely used for 

hydrology studies. And the continuous wavelet spectrum (i.e., continuous wavelet variance) 

was also established to detect those significant variabilities in the hydroclimate process. 

However, there is a “data redundancy” problem in continuous wavelet transform. 

Comparatively, the discrete wavelet transform can overcome the problem, and can also 

describe the trend pattern using those sub-signals of the original series at large time scales, so 

it can be more suitable for trend identification. However, there lacked an effective discrete 

wavelet spectrum in the wavelet methodology. Without it, uncertainty in the discrete 

wavelet-aided identification of trend cannot be accurately estimated, and the significance 

level of the identified trend cannot be quantitatively evaluated, either. Therefore, we proposed 

the DWS approach in the manuscript, and it is the main novelty of the study. 

 

Following the helpful comments, we added those contents in lines 81-83 to describe the wide 

use of the continuous wavelet transform and the continuous wavelet spectrum in hydrology 

studies, and then added those contents in lines 88-94 to emphasize the lack of an effective 

discrete wavelet spectrum approach in the wavelet methodology. It is the incentive of 

proposing the DWS approach in the study. Moreover, we added those contents in lines 

339-370 (new Figure 6) to more clearly verify the better performance of the DWS approach 

compared with the MK test used widely for trend identification, and also to describe the 

necessity of the study for detecting non-monotonic trends. 

 

Comment 2. Application of DWS is limited on time series trend identification. Data 

interpretation is indeed important to understand the hydro-climate system. However, it would 

be much practically useful if the application can be extended to trend/data forecasting.  

 

Reply: Thanks for giving this favorable comment. We agree the opinion, that is, detection of 

variability (including trend) in hydroclimate process is an important basis of hydrological 

simulation and prediction at large time scales, as a practical guide for water resources 



planning and management. Considering that hydrological prediction is another big issue and 

is related to many other issues, we didn’t discuss it too much here. However, following the 

favorable comment, we added some contents in the manuscript (in lines 49-50, 308-309 and 

367-368) to briefly clarify the importance of the issue and its relationship with this study. 

 

Comment 3. The analyzed hydro-climate data are averaged time series over 740 

meteorological stations over China, if I understand correctly. By averaging, the features 

related to different climatic regimes. geological characteristics and geographical locations, 

etc. will be filtered out. To analyze the time series with different features would be of more 

interest and revealing than just to analyze the averaged data. Also, I don’t think a time series 

with 53 annual value is long enough to detect the reliable trend 

 

Reply: Thanks very much for giving the valuable comment. Following the comment, we 

added those contents in lines 339-370 and the new Figure 6 to describe the spatial distribution 

of significance of trends in potential evaporation (PET) in China, based on which we further 

verify the better performance of the DWS approach proposed.  

 

Interestingly, we found that when using the MK test, the monotonic trends were detected as 

significant in those annual PET time series measured at 230 stations (in lines 344-351), 

however, the significant non-monotonic trends in PET time series can be detected at 380 

stations throughout China. That means, those annual PET time series measured at 150 stations 

(28.8% of the total stations and mainly in the south part of China) mainly indicated 

non-monotonic variations rather than monotonic trends at interdecadal scales, with similar 

phenomena as shown in Figure 4 (right panel), and their significance was underestimated by 

the MK test (in lines 352-357). Following previous studies, we know that potential 

evaporation process was influenced by more physical factors (precipitation, air temperature, 

wind speed, relative humidity, etc) in the south part of China rather than the north part; thus, 

potential evaporation process in South China presented more complex variability, and was 

more difficult to detect and attribute its physical causes (in lines 357-362). 

 

Therefore, from the results in Figure 6 we can further verify the better performance and 

effectiveness of the DWS approach proposed for the detection of non-monotonic trends in 

hydroclimate time series, and suggest that the non-monotonic trend pattern of hydroclimate 

time series and its significance should be carefully identified and evaluated. 

 

Besides, we think that detection of trend is closely related to the time scales concerned. In this 

study, we mainly used the observed hydroclimate data with 53 years to investigate the 

variability of TMP and PET process at interdecadal scales. 

 

 

Thank you very much! 

 

Best Regards! 

Yan-Fang Sang 
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 23 

 24 

Abstract: The hHydroclimate system  process is changing non-monotonically and 25 

identifying its trend pattern is a great challenge. Building on the discrete wavelet transform 26 

theory, we developed a discrete wavelet spectrum (DWS) approach for identifying 27 

non-monotonic trend patterns in hydroclimate time series and evaluating their statistical 28 

significance. After validating the DWS approach using two typical synthetic time series, we 29 

examined the annual temperature and potential evaporation over China from 1961-2013, and 30 

found that the DWS approach detected both the “warming” and the “warming hiatus” in 31 

temperature, and the reversed changes in potential evaporation. Interestingly, tFurther, the 32 

identified non-monotonic trend patterns showed stable significance when the time series was 33 

longer than 30 years or so (i.e., the widely defined “climate” timescale). The significance of 34 

trends in potential evaporation measured at 150 stations in China, with an obvious 35 

non-monotonic pattern, was underestimated and was not detected by the Mann-Kendall test. 36 

Comparatively, the DWS approach can overcaome the problem and detected those significant 37 

non-monotonic trends at 380 stations, which is favorable for understanding and interpreting 38 

the  spatiotemporal variability of the hydroclimatice process. Our results suggest that 39 

non-monotonic trend patterns of hydroclimate time series and their significance should be 40 

carefully identified, and the DWS approach proposed has the potential for wide use in 41 

hydrological and climate sciences. 42 

 43 
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 52 

1. Introduction 53 

Climate and hydrological systemprocesses are exhibiting great variability (Allen and 54 

Ingram, 2002; Trenberth et al., 2014). Quantitatively, identifying human-inducedthose 55 

changing climate change signals in the usually changing the hydroclimate system process is 56 

of great socioeconomic significance (Diffenbaugh et al., 2008; IPCC, 2013), ), as an 57 

important basis for of hydrological modelling, understanding the future hydroclimate regimes, 58 

and water resources planning and management. However, andit remains a big challenge to 59 

both scientific and social communities. The simplest and the most straightforward way to 60 

identify changes in the hydroclimate system process would be to fit a monotonic (e.g., linear) 61 

trend at a long time scalescertain time period, at which a significance level would be assigned 62 

by a statistical test. Among the methods used for detection of trends, the Mann-Kendall 63 

non-parametric test is most widely used and has been successfully applied in studies on 64 

climate change and its impact studies, when the time series is almost monotonic as required, 65 
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and a statistical threshold of ±1.96 is set to judge the significance of trends at 95% confidence 66 

level  (Burn and Hag Elnur, 2002; Yue et al., 2002). ). However, due to its nonlinear and 67 

nonstationary nature, the hydroclimate system process is changing and developing in a more 68 

complicated way rather than a monotonic trend way at large time scales (Cohn and McMahon, 69 

2005; Milly et al., 2008). For example, a debate on the recent change of global air temperature 70 

is receiving enormous public and scientific attention that the global air temperature increased 71 

during 1980-1998 passing most statistical significance tests and then stabilized afterwards till 72 

now, widely called “global warming hiatus” (Kosaka and Xie, 2013; Roberts et al., 2015; 73 

Medhaug et al., 2017). Another known example is “evaporation paradox” (Brutsaert and 74 

Parlange, 1998; Roderick and Farquhar, 2002) that potential evaporation has worldwide 75 

declined from the 1960s, again passing most statistical significance tests, but then reversed 76 

after the 1990s. In practice, for the hydroclimate time series, the non-monotonicity is more the 77 

rule rather than the exception (Dixon et al., 2006; Adam and Lettenmaier, 2008; Gong et al., 78 

2010). Therefore, identifying the non-monotonic trend pattern hidden in those hydroclimate 79 

time series and assessing its statistical significance presents a significant research task for 80 

understanding hydroclimatic variability and changes at large time scales. 81 

Among those methods presently used in time series analysis, the wavelet method, 82 

including both continuous and discrete wavelet transforms, has the superior capability of 83 

handling the nonstationary characteristics of time series at multi-time scales (Percival and 84 

Walden, 2000; Labat, 2005), so it may be more suitable for identifying non-monotonic trend 85 

patterns in hydroclimate time series at large time scales. In a seminal work, Torrence and 86 

Compo (1998) placed the continuous wavelet transform in the framework of statistical 87 

带格式的: 字体: (默认) Times
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analysis by formulating a significance test. Since then, the continuous wavelet method has 88 

become more applicable and rapidly developed to estimate the significance of variability in 89 

climate and hydrological studies. Especially, the continuous wavelet spectrum (i.e., 90 

continuous wavelet variance) was established to detect those significant variabilities in the 91 

hydroclimate process (Labat et al., 2000). However, in the continuous wavelet results of a 92 

time series, a known technical issue is the “data redundancy” (Gaucherel, 2002; Nourani et al., 93 

2014), which is the redundant information across timescales leading to more uncertainty. 94 

On the contrary, the other type of wavelet transform, i.e., the discrete wavelet 95 

methodtransform, has the potential to overcome that problem of data redundancy, in that 96 

those wavelets used for discrete wavelet transform must meet the orthogonal properties. 97 

Therefore, the discrete wavelet method can be more effective to identify and describe the 98 

non-monotonic trend pattern in a time series (Almasri et al., 2008; de Artigas et al., 2006; 99 

Kallache et al., 2005; Partal and Kucuk, 2006; Nalley et al., 2012). However, there lacked an 100 

effective discrete wavelet spectrum in the wavelet methodology . Wwithout which it, 101 

uncertainty in the discrete wavelet-aided identification of a trend cannot be accurately 102 

estimated, and the significance level of the identified trend cannot be quantitatively evaluated, 103 

either. The discrete wavelet-aided identification of trend is usually influenced by some factors, 104 

such as choice of wavelet and decomposition level, and; moreover, the uncertainty evaluation 105 

of results should also be carefully considered. ToFor overcomeovercoming these problems, 106 

Sang et al. (2013) discussed the definition of trend, and further proposedtried to proposed a 107 

discrete wavelet energy function-based method for the identification of trends, with the a 108 

basic idea of by comparing the difference of discrete wavelet results between hydrological 109 
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data and noise. The method used a proper confidence interval to assess the statistical 110 

significance of the identified trend, in which the key equation for quantifying trend’s 111 

significance iwas based on the concept of quadratic sum. However, it the practicecomputation 112 

of quadratic sum disobeys the common practicecustomary practice of computing variance in 113 

of spectral analysis, . and By using the quadratic sum, the significance of a non-monotonic 114 

trend cannot be reasonably assessed, because it neglects the big influence of trend’s mean 115 

value. sometimes cannot reasonably assess the significance of non-monotonic trend, because 116 

it neglects the big influence of trend’s mean value. For instance, for those trends with small 117 

variations but big mean values, the quadratic sums are big values, based on which the 118 

statistical significance of trends would inevitably be over-assessed. Therefore, the evaluation 119 

of statistical significance of a non-monotonic trend in a time series should be based on its own 120 

variability, and the influence of other factors should also be eliminated but not other factors. 121 

By combining the advantages of the discrete wavelet method transform and successful 122 

practice in the spectral analysis methods, this study aimeds at developing a practical but 123 

reliable discrete wavelet spectrum approach approach for identifying non-monotonic trend 124 

patterns in hydroclimate time series and quantifying their statistical significance, and further 125 

improving the understanding of non-monotonic trends by investigating their variation with 126 

data length increase. To do that, Section 2 presents the details of the newly developed 127 

approach building on the wavelet theory and spectrum analysis. In Section 3, we use both 128 

synthetic time series and annual time series of air temperature and potential evaporation over 129 

China as examples to investigate the applicability of the approach, which is followed by the 130 

discussion and conclusion in the final Ssection 4. 131 
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2. A discrete wavelet spectrum approach 132 

Here we develop an approach, termed as “discrete wavelet spectrum approach,” for 133 

identifying non-monotonic trend patterns in hydroclimate time series, in which the discrete 134 

wavelet transform (DWT) is used first to separate the trend pattern at large time scales, and its 135 

statistical significance is then evaluated by using the discrete wavelet spectrum, whose 136 

confidence interval is quantified and described through the Monte-Carlo test. 137 

Following the wavelet analysis theory (Percival and Walden, 2000), the discrete wavelet 138 

transform of a time series f(t) with a time order t can be expressed as: 139 

* / 2

, , 0 0 0( , ) ( )       )j j

f j k j kW j k f t t dt with t a a t b k  


 


   ( ) ( ) (

              
(1) 140 

where where f(t)t  is the series to be analyzed with a time order t, and ψ
*
(t) is the complex 141 

conjugate of mother wavelet ψ(t); a0 and b0 are constants, and integer k is a time translation 142 

factor; Wf(j,k) is the discrete wavelet coefficient under the decomposition level j (i.e., time 143 

scale a0
j
). In practice, the dyadic DWT is used widely by assigning a0=2 and b0=1: 144 

* / 2

, ,( , ) ( )       2 2 )j j

f j k j kW j k f t t dt with t t k  


 


   ( ) ( ) (                 (2) 145 

The highest decomposition level M is determined by the length L of series f(t), and can be 146 

calculated as log2(L) (Foufoula-Georgiou and Kumar, 2014), ). where L is the length of series 147 

f(t). The sub-signal fj(t) in the original series f(t) under each level j (j = 1, 2, …, M) can be 148 

reconstructed as: 149 

*( ) ( , ) (2 )j

j fk
f t W j k t k                            

(3) 150 

where the sub-signal fj(t) at the highest decomposition level (when j = M)  defines and 151 

describes the non-monotonic trend pattern of the series f(t), as generally understood. However, 152 

it should be noted that a meaningful trend closely depends on the temporaltime scale 153 
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concerned. If the variability of series f(t) on a certain smaller time scale K (K<L) is concerned, 154 

the proper decomposition level can be determined as log2(K), ; then, the sum of all those 155 

sub-signals at the time scales equal to and bigger than MK can be the non-monotonic trend 156 

pattern identified..  157 

Sang (2012) discussed the influence of the choice of mother wavelet and decomposition 158 

level, as well as choice and noise types, on the discrete wavelet decomposition of time series, 159 

and further proposed some methods to solve them. By doing conducting Monte-Carlo 160 

experiments, he found that those seven wavelet families (126 mother wavelets) used for DWT 161 

can be divided into three types, and recommended the first type, by which wavelet energy 162 

functions of various typesdiverse types of noise data are keep stable and thus have little 163 

influence on the wavelet decomposition of time series. Specifically, one chooses an 164 

appropriate wavelet, according to the relationship of statistical characteristics among the 165 

original series, de-noised series and removed noise, chooses a proper decomposition level 166 

level by analyzing the difference between energy function of the analyzed series and that of 167 

noise, and then identifies the deterministic components (including trend) by conducting 168 

significance testing of DWT. These methods are closely  based built on the composition and 169 

variability of hydroclimate time series itselfat different time scales., and thus are reliable and 170 

reasonable. They were used here to accurately identify and describe the non-monotonic trend 171 

pattern in a time series, and assess its statistical significance. 172 

Further, to establish the a reliable discrete wavelet spectrum (DWS) of time series, we 173 

need to specify a spectrum value E(j) for each sub-signal fj(t) (in Eq. 3), based on which we 174 

can quantitatively evaluate its importance and statistical significance. Following the general 175 
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practice in conventional spectral analysis methods (Fourier transform, maximum entropy 176 

spectral analysis, etc.), Hhere we define E(j) at the jth level by taking the variance of fj(t) 177 

following the general practice in conventional spectral analysis methods (Fourier transform, 178 

maximum entropy spectral analysis, etc.): 179 

( ) var( ( ))jE j f t                             (4) 180 

It can accurately quantify the intensity of variation of sub-signals (including trend) by 181 

eliminating the influence of their mean values, which is obviously  different from the 182 

quadratic sum-based method proposed by in Sang et al. (2013). For hydroclimate time series, 183 

both stochastic and deterministic components generally have different 184 

characteristicsdistinctive characteristics from purely noise components (Sang et al., 2012; 185 

Rajaram et al., 2015). Interestingly, dDue to the grid of dyadic DWT (Partal and Cigizoglu, 186 

2008), discrete wavelet spectra Er(j) of various noise types strictly follow an exponentially 187 

decreasing rule with a base 2 (Sang 2012): 188 

𝐸𝑟(𝑗) = 2−𝑗                                (5) 189 

The discrete wavelet spectra of deterministic components and that of noise are obviously 190 

different. Hence, we define the DWS of noise data as the “reference discrete wavelet 191 

spectrum (RDWS),”, based on which we evaluate the statistical significance of the 192 

non-monotonic trend pattern of a time series. 193 

To be specific, we design a technical flowchart to show how we develop the DWS 194 

approach for identifying the non-monotonic trend pattern of time series, and also for 195 

evaluating the statistical significance of that trend pattern (see the detail in Figure 1): 196 
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(1) For the series f(t) normalized with length L to be analyzed, we normalize it, and 197 

decompose itanalyze it using the DWT method in Eq. (2) and (3), ); 198 

(1)(2) We and calculate its the discrete wavelet spectrum of the series f(t) by Eq. (4); 199 

(2)(3) For the comparison purpose, we then use the Monte-Carlo method to generate the 200 

normalized noise data N with the same length as the series f(t), and determine compute 201 

its RDWS by Eq. (4). Considering that discrete wavelet spectra of various typesdiverse 202 

types of noise data just consistently follow Eq. (5), here we generate the noise data 203 

following the standard normal probabilisty ic distribution; 204 

(3)(4) We repeat the above steps step for 5000 times, and calculate the mean value and 205 

variance of the spectrum values (in Eq. 4) of the normalized noise data N at each 206 

decomposition level j. Based on it,, based on which we can estimated an appropriate 207 

confidence interval of RDWS at the concerned confidence level. In this studystudy, we 208 

mainly considered the 95% confidence level; 209 

(5) In comparing the discrete wavelet spectrumDWS of the series f(t) and the confidence 210 

interval generated by that of the noise (i.e., the RDWS), we can easily identifiedy the 211 

deterministic components under the highest decomposition level as the non-monotonic 212 

trend pattern of the series, and determine judged whether it wais significant. 213 

Specifically, if the spectrum value of the analyzed series’ sub-signal under the highest 214 

level wais above the confidence interval of RDWS, it wais considered thought that the 215 

non-monotonic trend pattern was is statistically significant; otherwise, if the spectrum 216 

value of the sub-signal under the highest level is infiall s into the confidence interval of 217 

RDWS, it wais not statistically significant; 218 
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(4)(6) If a smaller time scale K is concerned, we can use the decomposition level log2(K), 219 

instead of M, and then repeat the steps (1-45) to identify the non-monotonic trend 220 

pattern at that time scale.. 221 

Because the DWS approach fits well the common idea of spectral analysis, and its 222 

superiority compared to the method in Sang et al. (2013) can be clearly understood, but they 223 

are not compared here. In the following section, we mainly investigate the applicability and 224 

reliability of the DWS approach for identifying the non-monotonic trend and assessing its 225 

significance, and further investigate the variation of the non-monotonic trend with data length 226 

increase to improve our understanding of trend at large time scales. 227 

< Figure 1> 228 

3. Results 229 

3.1 Synthetic series analysis 230 

To test and verify the applicability reliability of the developed discrete wavelet spectrum 231 

(DWS) approach for identifying the non-monotonic trend pattern of a time series, we 232 

considered the general hydrological situations and use generated two synthetic series data, 233 

generated with known signals and noise a priori. For investigating the variation of 234 

non-monotonic trend with data length increase, we set the length of the two synthetic series as 235 

200, and the noise in them followeds a standard normal probability stic distribution. The first 236 

synthetic series S1 consisteds of an exponentially increasing line and a periodic curve (the 237 

with a periodicity is of 200) with some noise content (Figure 2, left panel); and the second 238 

synthetic series S2 wais generated by including a hemi-sine curve, a periodic curve (the with a 239 

periodicity is of 50) and some noise content (Figure 2, right panel). Using the MK test and 240 
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considering monotonic trends, series S1 showeds a significant increase but the trend of series 241 

S2 wais not significant. 242 

In When using the DWS approach (Figure 1), we concerned the time scale as data length, 243 

and used the Daubechies (db8) wavelet to decompose series S1 into seven (i.e., <log2200) 244 

sub-signals using Eq. (2) and Eq. (3), and. Then, we took take the sub-signals under the 245 

seventh level as the defined non-monotonic trend pattern. As shown in Figure 2 (left panel), 246 

the identified non-monotonic trend pattern in series S1 wais similar to the true trend pattern. 247 

InterestinglyHowever, the linear fitting curve (a monotonic curve) could not capture the detail 248 

of the non-monotonic trend pattern. The same approach applieds to series S2 in Figure 2 249 

(right panel) and the conclusion did is not changed. Moreover, for series S2 with large 250 

variation variability at long large time scales, the linear fitting curve or other monotonic 251 

curves may not be physically meaningful. 252 

< Figure 2> 253 

We computed the discrete wavelet spectra of the two synthetic series using Eq. (4), and 254 

used the reference discrete wavelet spectrum with 95% confidence interval to evaluate the 255 

statistical significance of their non-monotonic trend patterns. That is, if the red point at a 256 

certain data length wais above the 95% confidence bar, described by the blue line in Figure 3, 257 

it wais considered thought that the trend pattern wais significant at 95% confidence level. 258 

Using our the DWS approach, the trend pattern of series S1, which wais quasi-monotonic, 259 

wais found significant (Figure 3a) as in the MK test (Figure 3c), but the non-monotonic series 260 

S2 showeds a significant trend pattern (Figure 3b), which wais greatly different from the MK 261 

test (Figure 3d). 262 

带格式的: 非突出显示



13 
 

In Figure 3, we also presented the significance of the identified trend patterns of the two 263 

series using both our DWS approach and the MK test, and we changed the data length of the 264 

series to investigate the stability of the statistical significance of the non-monotonic trend 265 

pattern. Generally, it would have more uncertainty when evaluating the statistical significance 266 

of trend pattern with a shorter length, corresponding to a bigger 95% confidence interval. 267 

Using our DWS approach, the 95% confidence interval (i.e., the height of blue bars in Figure 268 

3) for evaluating the statistical significance of trend pattern generally decreaseds with the 269 

increase of data length of data, , as expected. However, in the MK test, the significance wais 270 

always determined by the constant thresholds of +/-1.96, regardless of the data length. 271 

In the DWS results in Figure 3, the significance levels of the non-monotonic trend 272 

patterns did o not consistently decrease with data length, but showed some fluctuation, One 273 

would expect that as the proportions of different components (including trend) in the original 274 

series variedy with data length. Furthermore, one would expect that if the trend pattern of a 275 

series at a certain length wais identified statistically significant, the trend pattern would 276 

extend with the increase of data length, thus itsthe significancee  may be more stable with a 277 

larger length of data considered. Using our DWS approach, the trend pattern of series S1 wais 278 

significant when the data length wais larger than 55 (Figure 3a), being similar to the result of 279 

the MK test (Figure 3c). Interestingly, using our DWS approach,;. the The trend pattern of the 280 

series S2 wais statistically significant when the data length wais larger than 75 (Figure 3b), ). 281 

However,but using the MK test, the monotonic trend pattern of series S2 wais significant only 282 

when the data length wais between 40 and 185 (Figure 3d). In summary, the significance of 283 

trend pattern identified by our DWS approach wais more stable than that detected by the MK 284 
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test, demonstrating the advantage of the DWS approach in dealing with non-monotonic 285 

variation of hydroclimate time series. 286 

< Figure 3> 287 

3.2 Observed data analysis 288 

We used the annual time seriestime series of mean air temperature (denoted as TEM) and 289 

potential evaporation (denoted as PET) over China to further verify the applicability of our 290 

developed DWS approach for identifying non-monotonic trend patterns of a time series. The 291 

twoThese series time series were obtained from the hydroclimate data measured at 520 292 

meteorological stations over China, with the same measurement years from 1961 to 2013. The 293 

data have been quality-checked to ensure their reliability for scientific studiesresearches. The 294 

PET series data were was calculated from the Penman-Monteith approach (Chen et al., 2005). 295 

The average time series of TEM and PET measured at 520 stations weare first 296 

considered. Given the general nonstationary nature of observed hydroclimate time series, 297 

linear trends or more generally monotonic curves could not capture the trend pattern with 298 

large interdecadal variations and therefore weare not particularly physically meaningful. In 299 

Figure 4 (left panel), we presented the average annual TEM time series visually showing 300 

nonstationary characteristics and non-monotonic variation. The TEM series decreaseds till the 301 

1980s with fluctuations and then sharply roises till the 2000s, followed by a decreasing 302 

tendency. The large fluctuation of the mean average air temperature after the late 1990s is the 303 

well-known phenomenon of the “global warming hiatus” (Roberts et al., 2015). The linear 304 

fitting curve obviously missed out the more complicated trend pattern of the observed 305 

temperature time series. Using our DWS approach, we decomposed the TEM series into five 306 
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(i.e., <log253) sub-signals using Eq. (2) and Eq. (3), and took ake the sub-signals under the 307 

fifth level as the trend pattern, which realistically presenteds the nonstationary variability of 308 

temperature over China at large time scales (Figure 4, left panel). 309 

We also applied y this the DWS approach to the average annual PET time series. In the 310 

time series of PET (Figure 4, right panel), there was a decreasing trend for the period from 311 

1961 to the 1990s, which is the well-known “evaporation paradox” leading to controversial 312 

interpretations continuing over the last decade ofn hydrological cycles (Brutsaert and 313 

Parlange, 1998; Roderick and Farquhar, 2002). That decreasing trend was then followed by an 314 

abrupt increase in around the 1990s, almost the same time when solar radiation was observed 315 

to be reversing its trend, widely termed as “global dimming to brightening” (Wild, 2009). 316 

InterestinglySurprisingly, after the mid-2000s, PET starteds to decrease again (Figure 4, right 317 

panel). Sometimes, one would propose to fit linear curves for separate time periods. Again, 318 

linear curves could not capture the overall non-monotonic trend pattern of the PET series. 319 

Using the same DWS approach, we identified y the non-monotonic trend pattern of the PET 320 

time series (Figure 4, right panel), which captureds the two turning points of the changing 321 

trends in the 1990s and the 2000s. 322 

< Figure 4> 323 

The changes of trends in terms of magnitudes and signs for different periods lead to the 324 

difficulty in assessing and interpreting the significance of trends. For example, the PET time 325 

series showeds a significant decrease using the MK test (-3.76 < -1.96) during 1961-1992 326 

(Figure 5d). At that moment before the reversed trend reported, the significant decrease could 327 

be literally interpreted as that PET hads significantly declined and might be declining in the 328 
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future. However, the PET time series reversed after the 1990s and again in the 2000s, coming 329 

with an insignificant overall trend for the whole period of 1961-2013. For the more or less 330 

monotonic time series of the TEM series (1961-2013), the MK test detecteds a significant 331 

increase (6.00 > 1.96) (Figure 5c), which leads to the surprise when air temperature was 332 

reported to have stopped increasing after late the 1990s. In summary, it becomes vital to 333 

develop an approach for testing the significance of trend pattern, which is suitable for 334 

non-monotonic time series, as it is an important basis and prerequisite for hydrological 335 

simulation and prediction at decadal scales. 336 

In this study, building on the discrete wavelet transform theory, we proposed an 337 

operational approach, i.e., the DWS, for evaluating the significance of non-monotonic trend 338 

pattern in the TEM (Figure 5a) and PET (Figure 5b) series. For comparison purpose, we also 339 

conducted the significance test for the two time series using the MK test (Figure 5c and 5d). 340 

Similar to Figure 3, we changed the data length to investigate the stability of statistical 341 

significance (Figure 5). Again, the result indicateds that the 95% confidence interval for 342 

evaluating the statistical significance of non-monotonic trend pattern generally decreaseds 343 

with the data length, which wais different from the constant thresholds +/-1.96 adopted in the 344 

MK test. The significance test using our DWS approach appeareds to be more stable with the 345 

data length than the MK test (Figure 5). Interestingly, uUsing our DWS approach, the trend 346 

pattern in the TEM series becaomes significant when the data length is increaseds to 30 and 347 

the significance wais more stable when it wais greater than 35 (Figure 5a). For the case of the 348 

PET series, the trend pattern becaomes statistically significant when the data length wais 349 

larger than 25 (Figure 5b). The findings here have important implications for non-monotonic 350 
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hydroclimate time series analysis, in that the timescale of defining climate and climate change 351 

by the World Meteorological Organization is usually 30 years (Arguez and Vose, 2011) and 352 

in hydrological practice it is between 25-30 years. 353 

For the whole time series investigated here, whose length wais larger than 30 years, we 354 

weare able to examine the significance using the developed DWS approach. Combining the 355 

trend pattern in Figure 4 (left panel) and the significance test in Figure 5a, we can confirmed 356 

that the trend pattern of the TEM time series from 1961-2013 identified in this study wais 357 

significant at the 95% confidence interval. Similarly, the trend pattern in PET wais also 358 

significant (Figure 4 right panel and Figure 5b). The significance test results suggested that 359 

the three main stages of the series (red lines, Figure 4) weare detectable as the overall trend 360 

pattern from the variability of the series and weare vital to understanding how the temperature 361 

and the PET series weare changing at interdecadal scales. In particularly, the reversed changes 362 

in PET and its significance can be revealed by our DWS approach, which can provide more 363 

useful and physically meaningful information. Our results suggest that the non-monotonic 364 

trend pattern of hydroclimate time series and its significance should be carefully identified 365 

and evaluated. 366 

< Figure 5> 367 

We further detected and evaluated the significance of non-monotonic trends of the PET 368 

time series measured at 520 stations for investigating their spatial difference. Because the 369 

trends in annual TEM time series weare quasi-monotonic, and they weare statistically 370 

significant at most of the all stations, no matter using our DWS approach or the MK test, 371 

more details of TEM data were not repeated here. As for the trend patterns in the PET data, 372 
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the results gotten from our DWS approach (Figure 6, left panel) and those in the MK test 373 

presented substantial differences. When conducting the statistical significance test using the 374 

MK test, the monotonic trends were detected as significant in those annual PET time series 375 

measured at 230 stations. Significant downward monotonic trends were mainly found in the 376 

southern part of the Songliao River basin, the Haihe River basin, the Huaihe River basin, 377 

some regions in South China, and the Northwest China. Significant upward monotonic trends 378 

were mainly found in the northern part of the Songliao River basin, the upper reach of the 379 

Yellow River basin, the southwest corner of China, and some regions in the Yangtze River 380 

Delta.  381 

Comparatively, the significant non-monotonic trends in the PET time series were can be 382 

detected at 380 stations throughout China. That means that , those annual PET time series 383 

measured at 150 stations (28.8% of the total stations and mainly in the south part of China) 384 

mainly indicated non-monotonic variations rather than monotonic trends at interdecadal scales, 385 

with similar phenomena as shown in Figure 4 (right panel), and their significance was 386 

underestimated by the MK test, which can only handle monotonic trends. Previous studies 387 

(Zhang et al., 2016; Jiang et al., 2007) indicated that potential evaporation process was 388 

influenced by more physical factors (precipitation, air temperature, wind speed, relative 389 

humidity, etc.) in the southern part of China rather than the northern part; thus, potential 390 

evaporation process in South China presented a more complex variability, and was more 391 

difficult to detect and attribute its physical causes. As a result, it is known here that annual 392 

potential evaporation process in most part of China indicated significance variability at 393 

interdecadal scales, but it was underestimated by the conventional MK test; moreover, only 394 
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considering monotonic trends would cause a great difficulty in accurately understanding the 395 

temporal and spatial variability of potential evaporation and hydroclimate process in China, 396 

and also would be is unfavorable for hydrological prediction at interdecadal scales. Our 397 

results suggest that the non-monotonic trend pattern of hydroclimate time series and its 398 

significance should be carefully identified and evaluated. 399 

< Figure 6> 400 

4. Summary and Conclusion 401 

Climate and hydrological system processes are changing non-monotonically. 402 

Identification of linear (or monotonic) trends in hydroclimate time series, as a common 403 

practice, cannot capture the detail of the non-monotonic trend pattern in the time series at long 404 

large time scales, and then can lead to misinterpreting climatic and hydrological changes. 405 

Therefore, revealing the trend pattern of the time series and assessing its significance from the 406 

usually varying hydroclimate system process remains a great challenge. To that end, we 407 

develop the discrete wavelet spectrum (DWS) approach for identifying the non-monotonic 408 

trend in hydroclimate time series, in which the discrete wavelet transform is used first to 409 

separate the trend pattern, and its statistical significance is then evaluated by using the 410 

discrete wavelet spectrum (Figure 1). Using two typical synthetic time series, we examine the 411 

developed DWS approach, and find that it can precisely identify non-monotonic trend pattern 412 

in the synthetic time series (Figure 2) and has an the advantage in significance testing (Figure 413 

3). 414 

Using our DWS approach, we identify the trend pattern in the annual time series of 415 

average temperature and potential evaporation over China from 1961-2013 (Figure 4). The 416 
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identified non-monotonic trend patterns precisely describe how temperature and PET are 417 

changing at interdecadal scales. Of particularly interest here is that the DWS approach can 418 

help detect both the “warming” and the “warming hiatus” in the temperature time series, and 419 

reveal the reversed changes and the latest decrease in the PET time series. The DWS approach 420 

can provide other aspects of information on the trend pattern in the time series, i.e., the 421 

significance test. Results show that the trend pattern becomes more significant and the 422 

significance test becomes more stable when the time series is longer than a certain period like 423 

30 years or so, the widely defined “climate” time scale (Figure 5). Using the DWS approach, 424 

in both time series of mean air temperature and potential evaporation, the identified trend 425 

patterns are found significant (Figure 5). Moreover, significance of trend patterns in the PET 426 

time series obtained gotten from the DWS approach and the MK test has obviously different 427 

spatial distributions (Figure 6). Variability of hydroclimate process at large time scales, 428 

especially for non-monotonic trend patterns, would be underestimated by the MK test, which 429 

causes a great difficulty in understanding and interpreting the spatiotemporal variability of 430 

hydroclimate process. Comparatively, the developed DWS approach can quantitatively assess 431 

the statistical significance of non-monotonic trend pattern in the hydroclimate process, and so 432 

can meet practical needs much better.  433 

In summary, our results suggest that the non-monotonic trend pattern of hydroclimate 434 

time series and its statistical significance should be carefully identified and evaluated, and the 435 

DWS approach developed in this study has the potential for wider use in hydrological and 436 

climate sciences. 437 
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Figure 1. Technical flowchart for identification of the non-monotonic trend pattern in a time 561 

series using the discrete wavelet spectrum approach developed. In the figure, “DWT” is 562 

the discrete wavelet transform, “DWS” is the discrete wavelet spectrum, “RDWS” is the 563 

reference discrete wavelet spectrum, “DL” is the decomposition level, and “CI” is the 564 

confidence interval. 565 
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 567 

 568 

Figure 2. Non-monotonic trend patterns in the synthetic series S1 and S2 identified by the 569 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 570 

Synthetic series S1 is generated as: S1=1.112
0.1t

+0.8×sin(0.01πt)+α; and synthetic series 571 

S2 is generated as: S2=sin(0.04πt)+2×sin(π+0.005πt)+α, where α is a random process 572 

following the standard normal distribution. 573 
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 578 

Figure 3. Evaluation of statistical significance of non-monotonic trend patterns in the 579 

synthetic series S1 (a) and S2 (b) with different data length by the discrete wavelet 580 

spectrum (DWS) approach, and the results by the Mann-Kendall (MK) test (c and d). In 581 

figure a and b, the blue line is the reference discrete wavelet spectrum (RDWS) with 95% 582 

confidence interval under each data length; if the red point at certain data length is above 583 

the blue bar, it is thought that the trend pattern is significant at 95% confidence level.; and 584 

i In figure c and d, the two black dash lines indicate 95% confidence interval (CI) with the 585 

thresholds of +/- 1.96 in the MK test. 586 
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 588 

Figure 4. Non-monotonic trend patterns in the annual time series of the mean air temperature 589 

(TEM) and the potential evaporation (PET) over China from 1961-2013 identified by the 590 

discrete wavelet spectrum (DWS) approach, and the linear trends in the two series. 591 
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 597 

Figure 5. Evaluation of statistical significance of non-monotonic trend patterns in the annual 598 

time series of the mean air temperature (TEM, a) and the potential evaporation (PET, b) 599 

over China with different data length by the discrete wavelet spectrum (DWS) approach, 600 

and the results by the Mann-Kendall (MK) test (c and d). In figure a and b, The blue line 601 

is the reference discrete wavelet spectrum (RDWS) with 95% confidence interval under 602 

each data length; and in figure c and d, the two black dash lines indicate 95% confidence 603 

interval (CI) with the thresholds of +/- 1.96 in the MK test. 604 
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 610 

Figure 6. Spatial distribution of the significance of trends in the annual potential evaporation 611 

data during 1961-2013 and measured at 520 weather stations over China. The result 612 

above was gotten from the Mann-Kendall (MK) test. The result below was gotten from 613 

the discrete wavelet spectrum (DWS) approach developed, in which significant trend-I 614 

means those significant trends (at 230 stations) can be identified by both the DWS 615 

approach and the MK test, but significant trend-II means those significant trends (at 150 616 

stations) can only be identified by the DWS approach but not the MK test. 1, the 617 

Northwest Inland River basin; 2, the Southwest River basin; 3, the Yellow River basin; 4, 618 

the Songliao River basin; 5, the Haihe River basin; 6, the Huaihe River basin; 7, the 619 

Yangtze River basin; 8, the Southeast River basin; and 9, the Pearl River basin. 620 
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