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Abstract. In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of 9 

the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the 10 

advent of remotely-sensed data based ET algorithms and distributed hydrological models has provided improved 11 

spatially-upscaled ET estimates. However, information on the performance of these methods at various spatial 12 

scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the 13 

ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth 14 

Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models were further 15 

compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are 16 

performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-17 

2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31%, 19%,15% ,11% 18 

and 9% were observed at respectively 1 km2, 4 km2, 9 km2, 16 km2 and 25 km2   spatial resolutions. Based on 19 

the results of the study, a spatial scale of confidence of 4 km2 for catchment scale evapotranspiration is 20 

suggested in complex terrain. Land cover differences, HRU parameterization in AWRA-L and catchment-scale 21 

averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of 22 

weaker correlations at higher spatial resolution.  23 

 24 
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1    Introduction 28 

In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water 29 

balance (Nachabe et al., 2005) and yet the most difficult to estimate particularly over complex terrain (Wilson and 30 

Guan, 2004). In arid and semi-arid environments ET is a significant sink of groundwater with ET often exceeding 31 

precipitation (Domingo et al., 2001;Cooper et al., 2006;Scott et al., 2008;Raz-Yaseef et al., 2012). Reliable 32 

estimation of ET is integral to environmental sustainability, conservation, biodiversity and effective water 33 

resource management (Cooper et al., 2006;Boé and Terray, 2008;Zhang et al., 2008a;Tabari et al., 2013). 34 

Moreover, ET will be one of the most severely impacted hydrological components of the water cycle alongside 35 

precipitation and runoff as a consequence of global climate change (Abtew and Melesse, 2013). 36 

Reliable, cheap and generally accessible methods of estimating ET are essential to understand its role in catchment 37 

processes. ET is principally measured and estimated using ground based measurement tools and/or through 38 

various modelling techniques often involving remote sensing (Drexler et al., 2004;Tabari et al., 2013). Ground 39 

based measurement methods such as the Bowen Ratio Energy Balance (BREB), Eddy Covariance (EC), Large 40 

Aperture Scintillometers (LAS) and lysimeters have been regarded as the most accurate and reliable ET 41 

determination methods (Kim et al., 2012a;Rana and Katerji, 2000;Liu et al., 2013), but they are spatially and/or 42 

temporally limited (Wilson et al., 2001;Glenn et al., 2007). Despite the relative reliability of ground based 43 

measurement methods, there are inherent uncertainties associated with the different methods, which affect the 44 

accuracy of ET measurements (Baldocchi, 2003;Brotzge and Crawford, 2003;Drexler et al., 2004;Zhang et al., 45 

2008a). Ground based measurement methods are particularly prone to significant errors related to instrument 46 

installation (Allen et al., 2011). Mu et al. (2011) observed that multiple EC towers on a site can have uncertainties 47 

ranging between 10-30% and Liu et al. (2013) documented uncertainty ranges of over 27% between EC and LAS 48 

measurements over the same site on an annual scale. EC towers have also been observed to encounter energy 49 

balance closure challenges (Wilson et al., 2002), while other challenges of the EC method such as inaccuracies 50 

due to complex terrains have been documented by Feigenwinter et al. (2008). Furthermore, Kalma et al. (2008), 51 

conducted a review of 30 remote sensing ET modelling results relative to ground based measurements and 52 

contended that the ground based measurement methods were not incontrovertibly more reliable than the remote 53 

sensing ET modelling methods. Moreover, most of the ground based measurement methods are usually cost 54 

intensive thereby constraining measurements over large areas and thus making spatial extrapolation difficult 55 

(Moran and Jackson, 1991;Verstraeten et al., 2008;Melesse et al., 2009;Fernandes et al., 2012).  56 

 57 
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In more recent years, the spatial challenges associated with ET estimations are being eased by the increased 58 

availability of remotely-sensed data. The use of remotely-sensed input data in many surface energy balance 59 

algorithms and highly parameterized hydrological models have been extensively documented (Kalma et al., 60 

2008;Hu et al., 2015;Zhang et al., 2016). The advances in remote sensing have seen these methods become 61 

prominent in water resource assessment studies (Sun et al., 2009;Vinukollu et al., 2011;Anderson et al., 62 

2011;Long et al., 2014;Zhang et al., 2016).  63 

 64 

Several hydrological models and remotely-sensed based surface energy balance models are currently used in ET 65 

simulations globally (Zhao et al., 2013;Chen et al., 2014;Larsen et al., 2016;López López et al., 2016;Webster et 66 

al., 2017). However, the relative accuracy of these models relative to one another should be extensively explored 67 

to improve our understanding of the ET estimation from these algorithms. Two of the more prominent ones will 68 

be comprehensively evaluated in this study at various spatial scales – The Soil and Water Assessment Tool 69 

(SWAT) (Neitsch et al., 2011) and the MODIS ET product (Mu et al., 2013) derived from remotely-sensed data 70 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics 71 

and Space Administration (NASA) Aqua and Terra satellites. The evapotranspiration product of a third model, 72 

the Australian Water Resource Assessment model (AWRA_L) with a coarser resolution will also be evaluated at 73 

the catchment scale. 74 

 75 

The MODIS ET (MOD16) is based on the Penman-Monteith equation, the AWRA-L uses the Penman equation, 76 

while the SWAT ET algorithm also has the Penman-Monteith equation as one of the three user-selectable methods 77 

of estimating ET. In this study, the Penman-Monteith method in SWAT is used for a direct comparison with the 78 

MOD16 and the AWRA-L.  Moreover, the Penman-Monteith equation is regarded as one of the most reliable 79 

methods for ET estimation over various climates and regions (Allen et al., 2005;Allen et al., 2006). While both 80 

the MOD16 and SWAT ET use the Penman-Monteith equation, the methods for estimating the parameters of the 81 

equation are significantly different between them. For instance, the SWAT Penman-Monteith implementation 82 

requires wind speed data for the computation of the aerodynamic resistance, while the MOD16 Penman-Monteith 83 

variant does not require wind speed data but instead uses the Biome-BGC model (Thornton, 1998) to estimate the 84 

aerodynamic resistance. This study does not seek to evaluate the individual accuracy of any method, but rather to 85 

compare the ET results from the water balance-based hydrological models AWRA-L and SWAT and the energy 86 

balance-based model (MOD16) over a complex terrain catchment. Two different land cover products are used in 87 
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the SWAT model in this study (The Geoscience Australia and the MODIS land cover products). The rationale for 88 

this is to analyse the effect of land cover on the ET modelling in SWAT and also the use of the MODIS land cover 89 

allows for a direct comparison with the MOD16 which uses the same land cover product.  The results will be 90 

compared temporally on catchment scale and spatio-temporally on sub-catchment scales to identify the effects of 91 

input data and other drivers of ET estimation in the MOD16 and SWAT ET algorithms.  92 

 93 

While the MODIS evapotranspiration has been widely studied and compared to other methods, this is much less 94 

the case for SWAT ET (Table 1) and the AWRA-L. Moreover, a graduated spatial scale comparison of the SWAT 95 

and MOD16 ET products is yet to be documented over a complex terrain. The objectives of this study are 96 

therefore: (1) To simulate and compare the results of the evapotranspiration of SWAT, AWRA-L and MOD16 97 

over a complex terrain at a catchment scale in a semi-arid climate; (2) To analyse and determine the spatial scale 98 

at which the SWAT and MOD16 ET models tend towards agreement to enhance the confidence in ET estimation 99 

in a complex terrain.  100 

 101 

Table 1: Literature studies of MODIS and SWAT evapotranspiration (see Table 2 for climate classification) 102 
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Study Type Reference Method Climate Land Cover 
Cover 

Spatial & temporal extents 

  
 
MOD16 vs 
micrometeorological 
methods 

 
 
Ruhoff et al. 
(2013) 

 
 
EC 
validation at 
2 sites 

 
 
Cwa, Cfa 

 
 
 Savanna 

 
 
3 km x 3 km area, 8 day 

Liu et al. 
(2013) 

LAS 
validation at 
3 sites 
 

Dwa, Cwa Orchards, 
Croplands 
 

1 km x 1 km, annual 

Mu et al. 
(2011) 

EC 
validation at 
46 site 

Global Global Various 

Kim et al. 
(2012b) 

EC 
validation at 
17 sites 

Af, Dfb, 
Dwa, Cfa, 
Bsk, Am, 
ET, Aw, 
Dwc, Dfc, 
Dfd  

Forest, 
croplands, 
grassland 

3 km x 3 km area, 8 day, 
2000-2006 

Velpuri et al. 
(2013) 

EC 
validation at 
60 sites 

Bsk, Cfa, 
Csa, Csb, 
Dfa, Dfb, 
Dfc 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 
Shrubland, 
Urban 

Point scale at EC sites across 
the United States of America, 
monthly, 2001 - 2007 
 

MOD16 vs energy 
balance models 

Jia et al. 
(2012) 

MOD16 
validation of 
ETWatch 
system 

Dwa, Cwa Farmland, 
Forest, 
Grassland,Shr
ub Forest, 
Beach land, 
Bare land, 
Urban, Paddy 
field  

(1 km x 1 km grid over 
318,000 km2 ), annual , 2002-
2009 

Velpuri et al. 
(2013) 

MOD16 vs 
Gridded 
Fluxnet ET 
(GFET) 

Bsk, Cfa, 
Csa, Csb, 
Dfa, Dfb, 
Dfc 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 
Shrubland, 
Urban 

50km, monthly, over the 
entire United States of 
America 

MOD16 vs hydrological 
models 

Ruhoff et al. 
(2013) 

MOD16 vs 
MGB-IPH 
model 

Cwa, Cfa Forest, 
Shrubland, 
Savanna, 
Woody 
Savanna, 
Grassland, 
Cropland, 
Urban, Barren 
land 

(1 km x 1 km grid over 
145,000 km2 ), 8 day, 2001 

Trambauer et 
al. (2014) 

MOD16 vs 
GLEAM, 
ERAI, 
ERAL, 
PCR-
GLOBWB, 
PCR-PM, 
PCR-
TRMM, 
PCR-Irrig 

Various  Various 1km2, 0.25o, 0.5o, and ~0.7o 
resolutions over most of the 
African continent, daily and 
monthly, 2000 -2010 
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 103 

 104 

Table 2: Köppen-Geiger Climate Classification system (Kottek et al., 2006) 105 

Main climate Precipitation Temperature 
A – equatorial W – desert h – hot arid  
B – arid S – steppe k – cold arid 
C – warm temperate f – fully humid a – hot summer 
D – snow s – summer dry b – warm summer 
E – polar w – winter dry c – cool summer 
 m – monsoonal d – extremely continental 
  F – polar frost 
  T – polar tundra 

e.g Cwa – Warm temperate, winter dry, hot summer 106 

2    Model Description 107 

2.1    SWAT Model 108 

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed hydrological model 109 

designed on the water balance concept. SWAT simulates catchment processes such as evapotranspiration, runoff, 110 

crop growth, nutrient and sediment transport on basis of meteorological, soil, land cover data and operational land 111 

management practices (Neitsch et al., 2011). The SWAT model has been used in hydrological modelling from 112 

sub-catchment scales of under 1 km2 (Govender and Everson, 2005) to sub-continental scales (Schuol et al., 2008). 113 

The model discretises a catchment into sub-catchments and further into hydrological response units (HRU), which 114 

represent unique combinations of land cover, soil type and slope. The discretisation method employed by SWAT 115 

enables the model to simulate catchment processes in detail and to understand the response of unique HRU’s on 116 

hydrological processes. Evapotranspiration is simulated at the HRU scale. A comprehensive outline of ET 117 

calculations in SWAT is included in Appendix A and Fig. 1 summarizes in a flowchart the SWAT ET algorithm. 118 

Where PET is the potential evapotranspiration, Ecan is the evaporation from canopy surface, Et is the transpiration, 119 

Esoil  is the evaporation from the soil and Revap is the amount of water transferred from the underlying shallow 120 

aquifer to the unsaturated zone in response to water demand for evapotranspiration. 121 

 122 

Velpuri et al. 
(2013) 

MOD16 vs 
Water 
Balance ET 
(WBET) 

Bsk, Cfa, 
Csa, Csb, 
Dfa, Dfb, 
Dfc 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 
Shrubland, 
Urban 

 (1 km x 1 km over the entire 
United States of America), 
Annual, 2002-2009,  

SWAT vs energy balance 
models 

Gao and Long 
(2008) 

SWAT vs 
SEBS, 
SEBAL, P-
TSEB, S-
TSEB 

Dwb Woodland, 
Grassland, 
Cropland 

1850 km2 , 23 June 2005 and 
25 July 2005 ( 2 days only) 
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   123 

Figure 1: SWAT ET flowchart (Penman-Monteith method) 124 

 125 

2.2    MOD16 Model 126 

The MOD16 provides evapotranspiration estimates for 109.03 × 106 km2 of global vegetated land area at 1 km2 127 

spatial resolution at 8 day, monthly and yearly temporal resolutions since the year 2000 (Mu et al., 2013). The 128 

initial version of the MOD16 algorithm used MODIS imagery as part of a Penman-Monteith method as described 129 

in Cleugh et al. (2007). The MOD16 algorithm was significantly improved by the inclusion of a sub-algorithm 130 

for estimating soil evaporation as a component of total ET (Mu et al., 2007). Further improvements on the MOD16 131 

algorithm such as the calculation and inclusion of night time evapotranspiration, partitioning of evaporation from 132 

moist and wet soils were incorporated in the new algorithm (Mu et al., 2011). In this study, the ET products from 133 

the new algorithm are used. Details of ET calculations in MOD16 are included in Appendix B while Fig. 2 134 

summarizes in a flowchart the MOD16 ET algorithm. 135 

 136 
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 137 

Figure 2: Flowchart of the MOD16 ET algorithm (Mu et al., 2011) 138 

 139 

2.3    AWRA-L Model 140 

The AWRA-L is a daily 25km2 grid based hydrological model designed on the water balance concept over 141 

Australia. The model conceptualises each grid as two distinct HRU’s; shallow-rooted vegetation HRU and deep-142 

rooted vegetation HRU. The shallow-rooted vegetation corresponds to grass while the deep-rooted vegetation 143 

corresponds to trees. The model conceptualises the soil into three layers with water storage capacity. The soil 144 

surface storage with a 0.1m depth, the shallow storage from 0.1m to 1m and the deep storage from 1m to 6m. 145 

The principal difference between the two HRU’s is that the shallow-rooted vegetation HRU can only access the 146 

first two soil storage layers while the deep-rooted vegetation HRU can access the 3 layers. The AWRA-L model 147 

simulates catchment hydrological processes such as evapotranspiration, infiltration, runoff, drainage, interflow, 148 

recharge amongst others. 149 

Evapotranspiration in the AWRA-L is a sum of six processes; canopy evaporation from intercepted 150 

precipitation, evaporation from soil surface, groundwater evaporation, shallow storage transpiration, deep 151 

storage transpiration and groundwater transpiration. The evaporation in the model is constrained by the 152 

Penmann equation (Penman, 1948). For a detailed structure of the AWRA-L model, see Viney et al. (2014).  153 

 154 

2.4    Penman-Monteith Algorithm Parameterization 155 
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The MOD16 and SWAT ET algorithm, which are both based on the Penman-Monteith equation but parameterized 156 

differently, suggests there will be similarities and differences in the results from both methods. Both algorithms 157 

are principally limited on temporal timescales by the available energy to convert liquid water to atmospheric water 158 

vapour. Their transpiration and soil evaporation algorithms are also very dependent on vegetation/biome type, 159 

VPD, and the soil moisture constraint parameterization (Fig. 3).  160 

 161 

Figure 3: MOD16 and SWAT ET parameterization (Q: discharge, BPLUT: biome properties lookup table; VPD: 162 

vapour pressure deficit). 163 

 164 

 In the SWAT ET algorithm, the VPD significantly impacts the transpiration through the constraining of the 165 

stomatal conductance. Detailed soil data on HRU scale such as layer depth, number of layers, unsaturated 166 

hydraulic conductivity and water capacity are crucial for constraining the soil moisture content, which in turn 167 

regulates the percolation and recharge into the system. Similarly, the calculated MOD16 ET is significantly 168 

impacted by the biome properties lookup table (BPLUT) and the soil moisture constraint function. The BPLUT 169 

was calibrated using the response of biomes on flux tower sites globally. The BPLUT contains information on the 170 

stomatal response of each biome to temperature, VPD and biophysical parameters. The soil moisture constraint 171 

function is applied in the estimation of the soil evaporation and is an important parameter in regions where the 172 

saturated zone is close to the ground surface such as our study area. 173 

 174 

 175 
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3    Data and Methods 176 

3.1    Study Area 177 

The study area is the Sixth Creek Catchment of South Australia, located in the western part of the Mount Lofty 178 

Ranges, which is a range of highlands separating the Adelaide Plains in the west from the Murray-Darling basin 179 

in the east. The western part of the Mount Lofty Ranges runs 90 km north to south, its summit is at 680 mAHD 180 

(metres Australian Height Datum) (Sinclair, 1980). It extends from the southernmost part at McLaren Vale on the 181 

Fleurieu Peninsula to Freeling in the north over an area of 2189 km2. The Sixth Creek Catchment is a complex 182 

area, with acute elevation changes over few hundred metres (Fig. 4). The catchment is located close to the summit 183 

of the Western Mount Lofty Ranges. 184 

 185 

Figure 4: Digital elevation model of the Sixth Creek Catchment study area (Gallant et al., 2011),  186 

 187 

It covers an area of 44 km2 between 34◦52′6.098″ to 34◦57′54.541″S and 138◦42′55.855″ to 138◦49′27.174″E and 188 

has an elevation range of 140 - 625 mAHD (Fig. 4). The land cover consists of 95% forestland with significant 189 

deep-rooted Eucalyptus plantation and 5% pasture, shrubs and grasslands (Fig. 5b).  Most of the native vegetation 190 
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is under conservation. The climate is Mediterranean, with warm dry summers and cool wet winters, and is of the 191 

type “Csb” according to the Köppen-Geiger classification. The Sixth Creek is a perennial stream with mean annual 192 

discharge of 0.25m3/s which accounts for 20 – 25 % of the mean annual rainfall in the catchment. The Sixth Creek 193 

did however experience a total of 35 days of no flow in the 13-year period of this study (2000 – 2013) which 194 

encompasses the “millennium drought years” (2000 – 2009) in Australia. The Sixth Creek is a gaining stream 195 

with groundwater discharging into the stream and sustaining it especially during the dry summer months. The 196 

depth to groundwater varies greatly across the complex terrain catchment, from less than 1 m to over 20 m across 197 

the seasons. 198 

 199 

The Sixth Creek Catchment’s complex terrain plays a significant role in its hydrology, with highly localised 200 

precipitation events recorded from the two weather stations in the catchment within the study period. The weather 201 

stations are located 4.5 km apart with elevation difference of over 200 metres (Fig. 4). Differences in annual 202 

rainfall of over 400 mm have been recorded between the two weather stations.   203 

The annual precipitation for the period 2002 till 2016 for Station A ranges between 500 – 900 mm and 750-1500 204 

mm for Station B, while the temperature ranges between 10.5 oC and 22.2 oC in the summer months and 3.4 oC 205 

and 10 oC in the winter months.   206 

(a)  (b)  207 

Figure 5: (a) MOD12 land cover used in MOD16 (Friedl et al., 2010); (b) Geoscience Australia land cover 208 

(Lymburner et al., 2010) 209 

 210 

 211 
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3.2    Input datasets 212 

The GIS interfaced version of SWAT (ArcSWAT) was used in the hydrological modelling. A 30 m Digital 213 

Elevation Model (DEM) (Dowling et al., 2011) of the Sixth Creek Catchment was used to extract the stream 214 

network and the catchment area. A detailed soil properties database for the catchment was created from the soil 215 

data obtained from the Australian Soil Resource Information System (Johnston et al., 2003). The 250 m land cover 216 

map of Australia from Geoscience Australia’s Dynamic Land Cover database (Fig. 5b) is typically preferred to 217 

be used in the SWAT model ahead of the 500 m MOD12 land cover map (Fig. 5a) due to its finer spatial resolution 218 

and better biome match with local field knowledge but for direct comparison with MOD16, both maps are used 219 

to run separate SWAT models. In this study, the 0.01o × 0.01o wind speed data (McVicar et al., 2008), and the 220 

0.05o × 0.05o relative humidity, temperature, rainfall, solar radiation (Jeffrey et al., 2001), were preferred to 221 

weather station data. Four 0.05o × 0.05o gridded data cells fall within the boundaries of the catchment and are 222 

therefore comparable to the climate components of the two weather stations in the catchment. Moreover, the 223 

gridded data used in this study are calibrated using the weather stations across Australia including the two weather 224 

stations in the Sixth Creek Catchment, thus maintaining excellent correlation when compared to the weather 225 

stations’ measured data. Details of the gridded data methodology and algorithm used in this study can be found 226 

in Jeffrey et al. (2001) and McVicar et al. (2008). The daily gridded climate datasets were simply averaged over 227 

the Sixth Creek Catchment, to obtain values used in this study.  228 

 229 

The monthly MOD16 datasets for the years 2000 to 2013, at 1 km2 spatial resolution were used in this study (Mu 230 

et al., 2013). Catchment averages were calculated by simple averaging of all the 1 km2 cells that fall within the 231 

catchment area.   232 

 233 

3.3    SWAT Model Setup and Calibration 234 

The soil, land cover and DEM derived slope data were classified into classes and used to create 124 and 119 235 

unique HRU’s for the Geoscience Australia and MOD12 land covers respectively, ranging from 0.001 km2 to 6 236 

km2 in area. While each unique HRU has specific set of properties several small areas with the same land cover, 237 

slope and soil type make up the total area of a single HRU. The properties of each unique HRU determine how it 238 

responds to precipitation, and how different hydrological processes such as streamflow, runoff, lateral flow and 239 

evapotranspiration are modelled in the catchment. The runoff from each HRU is accumulated and routed through 240 
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the river network to the outlet of the catchment. Driven by the meteorological input, the model simulates 241 

catchment hydrological processes with a daily time step for the period 2000 to 2013.  242 

 243 

The SWAT model is calibrated by fitting simulated streamflow to observed streamflow with the SUFI-2 244 

algorithm. This semi-automatic Latin hypercube sampling algorithm optimizes SWAT model parameters while 245 

attempting to fit the simulated data as close as possible to the observed data using the user preferred objective 246 

function from those detailed below  as measurement of simulation accuracy (Abbaspour, 2007).  Although a single 247 

user objective function is used in the calibration and validation, the results of the other objective functions are 248 

also recorded for the optimal model run. 249 

 250 

Nash Sutcliffe Efficiency (𝑁𝑁𝑆𝑆𝑆𝑆) (Nash and Sutcliffe, 1970), 251 

𝑁𝑁𝑆𝑆𝑆𝑆  = 1 − ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )2

 ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

          (1) 252 

where 𝑄𝑄𝑛𝑛 (m3s-1) is the measured discharge at time 𝑛𝑛, 𝑄𝑄𝑛𝑛�  (m3s-1) is the simulated discharge at time 𝑛𝑛, 𝑄𝑄 (m3s-1) 253 

is the mean measured discharge and 𝑁𝑁 is the number of time steps. 254 

 255 

Ratio of root mean squared error to the standard deviation of measured data (𝑅𝑅𝑆𝑆𝑆𝑆) (Moriasi et al., 2007),  256 

𝑅𝑅𝑆𝑆𝑆𝑆  =
�∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2

�∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

           (2) 257 

 258 

Percent bias (𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵),  259 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 100  ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )

 ∑ 𝑄𝑄𝑛𝑛𝑁𝑁
𝑛𝑛=1

           (3) 260 

 261 

Coefficient of determination (R2), 262 

𝑅𝑅2 = � �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
�

2

        (4) 263 

where Qn�  (m3s-1) is the mean simulated discharge. 264 

 265 

Kling-Gupta Efficiency (𝐾𝐾𝐺𝐺𝐺𝐺) (Gupta et al., 2009), 266 

𝐾𝐾𝐺𝐺𝐺𝐺 = 1 −  �(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝜔𝜔 − 1)2        (5) 267 
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where 𝑟𝑟 is the linearcorrelation coefficient between the simulated and measured variable, 𝜔𝜔 = Qn�  
Q

  , 𝛼𝛼 = 𝜎𝜎𝑠𝑠
𝜎𝜎𝑚𝑚

, 𝜎𝜎𝑠𝑠 268 

and 𝜎𝜎𝑚𝑚 are the standard deviation of simulated and measured data.  269 

 270 

 After obtaining a satisfactory fit between the simulated and observed streamflow data during calibration, the 271 

model is validated by running the model for a different time period using the same parameters from the calibration 272 

period. SUFI-2 further incorporates the unitless P and R-factor metric, which gives an indication of the confidence 273 

in the calibration exercise. The P-factor which is also referred to as the 95 Percent Prediction Uncertainty (95PPU), 274 

is the percentage fraction of observed data captured which falls between the 2.5 and 97.5 percentiles, while the 275 

R-factor is the width of the 95PPU. The P and R-factors are iteratively determined using Latin Hypercube 276 

Sampling. For streamflow calibration and validation to be considered reliable, combined satisfactory values 277 

should be obtained of P-factor (> 0.7), R-factor (< 1) (Abbaspour, 2007) and of one of the objective functions, 278 

𝑁𝑁𝑆𝑆𝑆𝑆 (> 0.5), 𝑅𝑅𝑆𝑆𝑆𝑆 (≤ 0.7) and 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (±25%) (Moriasi et al., 2007). In this study, the NSE objective function 279 

combined with the P and R factors are used. The result of the other objective functions at the optimal NSE are 280 

also recorded. For a comprehensive explanation of the SUFI-2 algorithm, see Abbaspour (2007). 281 

 282 

The calibration process was conducted on daily timescales for the years 2000 to 2005 while the validation was 283 

conducted for the years 2007 to 2013. A warm up period of 5 years between 1995 and 1999 was used in the SWAT 284 

model to equilibrate the model mass budget and internal reservoirs. The relatively long periods of streamflow 285 

calibration and validation on daily timescales were specifically used to address the potential problem of 286 

equifinality of parameters to be optimized. The principle of equifinality has been known to affect semi-distributed 287 

models such as SWAT (Qiao et al., 2013). Nevertheless, the use of many observation points has been observed to 288 

effectively constrain it (Tobin and Bennett, 2017). In this study, 21 sensitive SWAT model parameters (Table 3) 289 

are optimized with SUFI-2 to fit simulated streamflow to the observed streamflow data. In the SUFI-2 algorithm 290 

preparation for calibration, an “r_” and a “v_” prefix before a SWAT model parameter (Table 3) are indicative of 291 

a relative change (a percentage increase or decrease in the SWAT modelled value) and replacement change of the 292 

original SWAT modelled values respectively. The relative change is often used to fine tune parameters that have 293 

been modelled within the acceptable range while the replacement change is used when modelled parameter values 294 

are at odds with local field knowledge or established values. 295 

 296 
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The resultant SWAT simulated ET was compared with the MOD16 ET using the root mean square error (𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀), 297 

mean difference (𝑀𝑀𝐷𝐷), Pearson’s correlation coefficient (R) and coefficient of determination (R2) metrics. 298 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ (𝑥𝑥1,𝑛𝑛
𝑁𝑁
𝑛𝑛=1 −𝑦𝑦1,𝑛𝑛)2

𝑁𝑁
           (6) 299 

Where 𝑥𝑥1 and 𝑦𝑦1 are SWAT and MOD16 monthly ET values respectively. 300 

𝑀𝑀𝐷𝐷 = �𝑥𝑥1+𝑥𝑥2…𝑥𝑥𝑁𝑁
𝑁𝑁

� − �𝑦𝑦1+𝑦𝑦2…𝑦𝑦𝑁𝑁
𝑁𝑁

�          (7) 301 

𝑅𝑅 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
          (8) 302 

 303 

Table 3: Optimized SWAT parameters and their final range 304 

P

 

 

Parameter Description Final Parameter Range 
r

_

 

SCS Runoff Curve Number for moisture 

condition II 

[1 + (−0.048 −  0.122)]  × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

v

 

Baseflow recession constant (days) 0.58 −  0.93 

v

 

Groundwater delay time (days) 1.89 −  3.70 

v

 

Groundwater “Revap” coefficient 0.12 −  0.2 

v

 

Soil evaporation compensation factor 0.2 −  0.5 

v

_

 

Manning’s “n” value for the main channel 0.05 −  0.15 

r

 

Surface runoff lag coefficient [1 + (0.22 −  1.2)]  × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

v

_

 

Baseflow alpha factor for bank storage (days)  0.5 −  1 

v

_

Available water capacity of the soil layer 

(mm/mm)  

0.24 −  0.71 

r

_

Saturated hydraulic conductivity (mm/hr) [1 + (−0.99 −  −0.39)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

r Moist bulk density (g/cm3) [1 + (−0.37 −  −0.04)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

r

_

Depth from soil surface to bottom of layer (mm) [1 + (−0.25 −  −0.04)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

v Plant uptake compensation factor 0.77 –  1 

v

_

Threshold depth of water in the shallow aquifer 
required for return flow to occur (mm) 

0 −  500 
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v

_

  

Initial depth of water in the shallow aquifer (mm) 20000 −  30000 

v

_

 

Initial depth of water in the deep aquifer (mm) 10000 −  20000 

r

 

Average slope steepness (m/m) [1 + (−0.24 −  0.15)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

r

 

Manning’s “n” value for overland flow [1 + (−0.84 −  −0.05)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

r

 

Average slope length (m) [1 + (−0.9 −  −0.24)] × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉   

v

 

Threshold depth of water in the shallow aquifer 
required for Revap to occur (mm) 

0 −  100 

v

_

 

Effective hydraulic conductivity in main channel 
alluvium (mm/hr) 

6 −  30 

 305 

4    Results  306 
4.1    Streamflow 307 

The streamflow was calibrated and validated on daily timescales according to the guidelines set out in Moriasi et 308 

al. (2007) and Abbaspour (2007) (Table 4, Fig. 6). The result indicates an observed data bracketing of between 309 

87% and 89% for both calibration and validation with R-factors under 1.  310 

Table 4: Streamflow calibration and validation results 311 

Model  P-factor R-factor 𝑁𝑁𝑆𝑆𝑆𝑆 R2 𝐾𝐾𝐺𝐺𝐺𝐺 𝑅𝑅𝑆𝑆𝑆𝑆 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

SWAT with Geoscience Land    

Cover 

Calibration 0.89 0.66 0.61 0.62 0.71 0.62 -11.1 

Validation 0.87 0.91 0.78 0.78 0.88 0.47 -0.1 

SWAT with MOD12 Land 

Cover 

Calibration 0.88 0.69 0.62 0.64 0.74 0.61 -13.5 

Validation 0.87 0.98 0.79 0.80 0.87 0.46 -6.5 

 312 

Table 4 shows better results for the validation than calibration for the 𝑁𝑁𝑆𝑆𝑆𝑆, R2, 𝐾𝐾𝐺𝐺𝐺𝐺  and 𝑅𝑅𝑆𝑆𝑆𝑆 metrics, however 313 

slightly lower for the P-factors. The results of the calibration and validation exercise on daily timescales show 314 

that the model effectively represents the high and low flow periods (Fig. 6).  315 

 316 
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 317 

Figure 6: Streamflow calibration (2000-2005) and validation (2007-2013)  318 

4.2    Sub-catchment scale evapotranspiration  319 

The SWAT ET model is calculated at the HRU scale (Fig. 7a & 7b), however for direct comparison with the 320 

MOD16 ET (Fig. 7c), the HRU ET results were reprocessed into 1 km2 cells using simple averaging. For cells on 321 

the boundary which do not aggregate up to the 1km2 resolution, a percentage weighting based on the area covered 322 

is applied. Figure 7d shows the mean annual difference between both SWAT models (the SWAT model with 323 

Geoscience land cover as SWATGEO and the SWAT model with MOD12 land cover as SWATMOD12) over 324 

the validation period at the 1 km2 spatial resolution. The SWATMOD12 and the MOD16 maps (Fig. 7b and 7c) 325 

can be seen to show some spatial semblance in the north, south, east and west corners of the catchment principally 326 

due to the use of the MOD12 map in both models. Generally, a trend of higher ET in the north-east and central 327 

part of the catchment is seen while lower ET is observed in the south-western parts of the catchment. The spatially 328 

distributed mean annual ET difference of the SWAT models compared to the MOD16 show about 40% of the 329 
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catchment with a difference of ±100 mm/year at the 1 km2 spatial scale. Clear spatial difference between the 330 

SWAT models are seen at the HRU scale but at the 1 km2 resolution, the maximum mean annual difference 331 

between the SWAT models is 12%.  332 

  333 

                                           334 

(a) (b) 

(d) (c) 
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                    335 

  336 

Figure 7: (a) HRU scale SWATGEO mean ET (2007-2013); (b) HRU scale SWATMOD12 mean ET (2007-2013; (c) 1 337 

km2 grid MOD16 mean ET (2007-2013); (d) Mean difference between SWATGEO and SWATMOD12 for 338 

corresponding 1 km2 grid cells (2007-2013); e) Mean difference between MOD16 and SWATGEO  for corresponding 339 

1 km2 grid cells (2007-2013); (f) Mean difference between MOD16 and SWATMOD12 for corresponding 1 km2 grid 340 

cells (2007-2013) 341 

                    342 

Further analyses were carried out to determine the effect of spatial aggregation on the correspondence between 343 

the ET methods. For the spatial aggregation analysis, the SWATGEO model was used due to its improved land 344 

cover accuracy based on field knowledge. The box and whisker plot in Fig. 8 shows the spread of the difference 345 

between the SWAT ET and the MOD16, with the bottom, middle and top of the box indicating the 25th, 50th and 346 

75th quartiles of the distribution. The lowest and highest bars in the plot indicate the minimum and maximum 347 

differences between the ET products at the different spatial scales.  Figure 8 show that with increasing cell 348 

aggregation the difference in the ET between SWAT and MOD16 decreases. At 1 km2, 4 km2, 9 km2, 16 km2 and 349 

25 km2 the maximum cell difference between the SWAT and MOD16 ET are 31%, 19%, 15%, 11% and 9% 350 

respectively. 351 

(e) (f) 
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 352 

Figure 8: Differences between SWATGEO ET and MOD16 for spatial aggregations between 1 and 25 km2. The 353 

bottom, middle and top of the whisker indicate the 25th, 50th and 75th quartiles of the distribution, the lowest and 354 

highest bars indicate the minimum and maximum differences. 355 

 356 

 357 

The grand variances for the monthly data of the three models were calculated and partitioned into the spatial and 358 

temporal components at the 1 km2, 4 km2, 9 km2, 16 km2 and 25 km2 resolutions (Table 5) using the Time-First 359 

formulation described in Sun et al. (2010). The partitioning presents the average of the temporal variances for 360 

each of the regions in the catchment as the temporal component and the spatial variance of the 361 

evapotranspiration as the spatial component shows the spatial component consistently higher across the three 362 

models. The partitioning shows that at the finer resolution the variance in the evapotranspiration in the models 363 



  

21 
 

are principally associated with the spatial component but the temporal component of the variance increases with 364 

spatial aggregation. 365 

 366 

 367 

 368 

 369 

Table 5: Variance partitioning into space and time components at various spatial resolutions   370 

Spatial Resolution Model Spatial Component in mm2 

(%) 

Temporal Component in mm2 

(%) 

1 km2 SWATMOD12 74.4 (80.9) 17.6 (19.1) 

SWATGEO 75.5 (80.6) 18.2 (19.4) 

MOD16 82.5 (84.9) 14.7 (15.1) 

    

4 km2 SWATMOD12 239.9 (79.8) 60.6 (20.2) 

SWATGEO 241.1 (79.4) 62.72 (20.6) 

MOD16 265.0 (84.04) 50.34 (16.0) 

    

9 km2 SWATMOD12 434.4 (77.7) 124.9 (22.3) 

SWATGEO 434.8 (77.2) 128.4 (22.8) 

MOD16 479.2 (82.0) 105.1 (18.0) 

    

16 km2 SWATMOD12 586.2 (74.8) 198.0 (25.2) 

SWATGEO 590.7 (74.3) 204.8 (25.7) 

MOD16 637.3 (80) 159.4 (20) 

    

25 km2 SWATMOD12 665.9 (68.3) 308.7 (31.7) 

SWATGEO 669.9 (67.6) 320.6 (32.4) 

MOD16 738.8 (73.5) 266.4 (26.5) 

 371 

 372 
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 373 

4.3    Catchment Scale Evapotranspiration 374 

At catchment scale, the mean annual ET of the SWATGEO, SWATMOD12 and the MOD16 models are 873, 864 375 

and 865mm respectively.  The means show better agreement between the SWATMOD12 and MOD16 models 376 

which is attributed to the use of the same land cover in both models. 377 

To compare the temporal dynamics of the MOD16, the SWAT ET and the AWRA-L ET, the data were aggregated 378 

to catchment scale. As both SWAT models tend towards unity at the catchment scale with less than 1% difference 379 

in their annual mean ET, only the SWATGEO model is evaluated at catchment scale as the more accurate model 380 

to keep with the philosophy of the study. 381 

 Monthly MOD16 ET and AWRA-L ET values at 1 km2 and 25 km2 resolution respectively were averaged to 382 

catchment scale values using the spatial analyst tools in ArcGIS, while ET values from the validated SWAT model 383 

on catchment spatial extent and daily timescales were aggregated to monthly timescales. Using the 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀   and R2 384 

metrics the analysis shows a good correspondence between the models (Fig. 9). The SWAT and MOD16 methods 385 

at catchment scale has a maximum annual ET difference and mean ET difference of respectively less than 13 and 386 

6 percent for the period from 2007 to 2013.The MOD16 and the AWRA-L show similar temporal patterns, but 387 

the AWRA-L ET was significantly lower than both the MOD16 and SWAT ET results (Fig. 9). A direct 388 

comparison between the AWRA-L ET and the SWAT ET without the Revap component shows very high 389 

correlation and agreement between both models with maximum annual ET difference and mean ET difference of 390 

respectively 10 and 2 percent for the period from 2007 to 2013. 391 
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 392 

         393 

Figure 9:  Monthly Comparison of SWAT, AWRA-L and MOD16 ET at catchment scale.  394 

 395 

5    Discussion 396 

5.1    Spatial Aggregation Analysis 397 

The mean annual graduated spatial scale analysis across the SWAT models and the MOD16 for 2007-2013 398 

exhibits a wide spread at the 1km2 spatial resolution with a maximum cell difference of 31%. When the data was 399 

aggregated to 4 km2 using the simple averaging method, the maximum difference reduced to an acceptable 19%. 400 
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Further aggregation to 9 km2 reduced the maximum difference by a further 4% but also sees a significant 401 

degradation in the resolution of the evapotranspiration data. Table 5 also shows the impact of the spatial 402 

aggregation on the variance of the monthly ET data across the SWAT and MOD16 models. It is observed that the 403 

aggregation from 1 km2 to 4 km2 altered the percentage variance between the spatial and temporal by about 1% 404 

across the three models but beyond the 4 km2 resolution the spatial component of the variance which accounts for 405 

the larger portion of the variance begins to degrade further. Hence our spatial scale of confidence for small 406 

catchment scale ET analysis is the 4 km2 resolution based on the comparison of the SWAT and MOD16 ET over 407 

a complex terrain. 408 

The differences between regions in the catchment are more significant at finer spatial resolutions due to the diverse 409 

input data and their associated errors, these impacts become less significant as the outputs are up-scaled (Fig. 8). 410 

This trend was also observed by Hong et al. (2009). The simple averaging method was preferred in this study over 411 

the bilinear, cubic and other methods as the simple averaging method has been observed to be the best in flux 412 

aggregation after a study of various methods (Ershadi et al., 2013).  413 

5.2    Sources of differences across the three models 414 

The recognized principal sources of differences between the three ET methods are associated with land cover, the 415 

Revap component in SWAT and the HRU parameterization in the AWRA-L; they are discussed in the following 416 

sections. 417 

5.2.1    Land Cover 418 

The land cover is an important parameter in the MOD16 and SWAT ET algorithms as it determines the values 419 

allocated to biophysical properties such as leaf conductance and boundary layer resistance, which significantly 420 

impact ET calculations. The impact of the land cover on the SWAT models is evident from the spatially divergent 421 

high-resolution SWAT models (Fig. 9a and 9b), at the HRU scale, though the streamflow calibration and 422 

validation parameters and results were similar. With the spatial aggregation of the SWAT models to 1 km2 423 

resolution, the obvious spatial differences at the HRU scale reduces significantly and begins to disappear beyond 424 

the 1 km2 resolution. Differences in the land cover in the SWAT models were responsible for the difference spatial 425 

distribution of the ET across the catchment between the models. The effect of the land cover on the MOD16 was 426 

not evaluated, however, the SWATMOD12 model with the same land cover expectedly showed better agreement 427 

when compared with the MOD16 with mean for the period of 2007-2013 within 1mm at the catchment scale. The 428 

Geoscience Land cover map has 95% percent forests, while the MOD12 has a classification of 67% forests and 429 

24 % woody savanna, with most of the region misclassified as woody savanna having some similar properties of 430 
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the forests. At catchment scale, the data averaging contributes to the convergence of the MOD16 and SWAT ET 431 

results albeit with closer agreement between the MOD16 and SWATMOD12 which share land cover. 432 

 433 

5.2.2    Revap 434 

The Revap component of the AET in SWAT is mostly significant in forested catchments with deep rooted trees 435 

that can access the saturated zone and as such are governed by land use parameters (Neitsch et al., 2011). However, 436 

the relative accuracy of the Revap component of the ET on HRU scales has been questioned (Liu et al., 2015) due 437 

to the linear relationship between the Revap coefficient and potential evapotranspiration in SWAT (see Eqn. A23). 438 

The Revap component in this study appears consistent with the studies by Benyon et al. (2006) in south-eastern 439 

Australia with similar climatic condition as the Sixth Creek Catchment. Benyon et al. (2006) observed that under 440 

the combined conditions of highly permeable soils, available groundwater resources of low salinity (<2000 mg/L), 441 

a high transmissivity aquifer and groundwater of depths up to 6 m, annual groundwater ET contribution to total 442 

ET ranged from 13 – 72% for sampled Eucalyptus tree species. The Sixth Creek Catchment is principally 443 

underlain by the highly transmissive and permeable Aldgate Sandstone aquifer, with salinity levels well below 444 

2000 mg/L (Gerges, 1999). Monitoring bores in the Sixth Creek Catchment have recorded standing water levels 445 

of less than 1.5 metres at the end of the rainy winter months in parts of the catchment. The Sixth Creek Catchment 446 

has been identified as one of the principal recharge zones in the Western Mount Lofty Ranges based on the 447 

catchment geology and hydrochemical analysis (Green and Zulfic, 2008). A significant portion of the 95% 448 

forested part of the Sixth Creek Catchment is a mosaic of various Eucalyptus tree species, thereby corroborating 449 

the results of Benyon et al. (2006). The AWRA-L ET model does not appear to include a separate groundwater 450 

ET model in its algorithm such as is found in the SWAT model (A23-26), hence the correlation and strong 451 

agreement between the AWRA-L model when the Revap is unaccounted for in the SWAT ET. The results suggest 452 

the Revap is a significant contributor to ET in the Sixth Creek Catchment (Fig. 10) with mean annual contribution 453 

of 20% for the years 2007 – 2013, while monthly contributions ranged from 15 – 52 % over the same period. The 454 

possibility exists that the linear relationship with PET employed in its calculation on HRU scale may be 455 

contributory to the higher range of ET fluctuation seen in the SWAT model on the 1 km2 scale when compared to 456 

the MOD16, however, that is beyond the scope of this study.  457 

 458 
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 459 

      Fig 10. Monthly comparison of Revap component of the ET and total ET in SWAT. 460 

 461 

On catchment scale, the results show that MOD16 simulates higher ET in the winter periods while SWAT 462 

simulates higher ET during the summer periods (Fig. 9). Generally, the agreement between the products is more 463 

consistent during the winter seasons when ET is lower. The lesser correlation during higher ET seasons may be 464 

related to the linearly determined Revap component of the ET, which is a more dominant process in the summer 465 

months when the demand for soil evaporation, plant transpiration and groundwater ET is significantly higher. 466 

5.2.3    HRU parameterization in AWRA-L 467 
 468 

The HRU parameterization method in AWRA-L significantly impacts the evapotranspiration modelling process. 469 

While the AWRA-L does not use a robust land cover product that distinguishes between vegetation including 470 

trees, it uses a fraction of tree cover product to parameterise the HRU. AWRA-L discretises each 5 km2 grid cell 471 

into two HRU’s; the shallow-rooted HRU and the deep-rooted HRU. The determination of the area of the grid 472 

apportioned as deep-rooted and shallow rooted HRU are solely based on the satellite derived product of the 473 
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persistent and recurrent photosynthetically active absorbed radiation ( 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝) from the Advanced Very High 474 

Resolution Radiometer (AVHRR) (Donohue et al., 2008). The fraction of the persistent  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 is regarded as the 475 

fraction of tree cover, hence it is used as the fraction of the deep-rooted HRU in each grid cell. The discretisation 476 

of the AWRA-L HRU in the Sixth Creek catchment which suggests under 60% tree cover in the Sixth Creek 477 

Catchment severely limits the access of the model to the deep soil storage and groundwater ET computation in 478 

the catchment, hence the close correlation and agreement of the AWRA-L model with the SWAT model when 479 

the Revap (groundwater ET) is unaccounted for is reasonable.  480 

5.3     Input data Challenges 481 

The SWAT ET and the MOD16 methods both have challenges associated with input data, which are subsequently 482 

propagated through the algorithm. In semi-arid environments such as the Sixth Creek Catchment, high intensity 483 

rainfall events are common occurrences, which impacts hydrologic processes such as infiltration and 484 

evapotranspiration differently from if the precipitation were evenly distributed through the day (Syed et al., 2003). 485 

Yang et al. (2016) observed that the use of hourly rainfall in SWAT significantly improved the modelling of 486 

streamflow and hydrological processes. In this study, due to the unavailability of hourly precipitation data, daily 487 

precipitation data were used thus neglecting the impact of high intensity precipitation events in the catchment.  488 

 489 

Another challenge encountered with the SWAT model is associated with the semi-distributed model methodology.  490 

The use of a single value for wind speed, relative humidity and solar radiation for a sub-catchment with spatial 491 

scale, which could be in the order of tens of square kilometres, affects the accuracy of hydrological processes at 492 

the HRU scale. The “elevation band” method of temperature and precipitation distribution with respect to 493 

elevation changes across a catchment was introduced into the SWAT algorithm to attenuate orographic effects in 494 

complex terrain catchments (Neitsch et al., 2011). The elevation band algorithm in SWAT has performed well in 495 

predominantly snowy, complex terrain catchments, which are significantly larger than the Sixth Creek Catchment 496 

with elevation changes in the order of kilometres (Abbaspour et al., 2007;Zhang et al., 2008b;Pradhanang et al., 497 

2011). However, the application of the elevation band algorithm in the non-snowy Odiel River basin (Spain) with 498 

Mediterranean climate similar to the Sixth Creek Catchment yielded less than satisfactory results (Galván et al., 499 

2014). In the non-snowy Sixth Creek Catchment, the orographic effects are a dominant atmospheric process when 500 

winds are moving from the lower elevations in the north of the catchment to the higher elevations in the South 501 

particularly during the winter months. The orographic lift leads to significantly higher precipitation in the south-502 
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westerly direction in the Sixth Creek Catchment, which the elevation band algorithm in SWAT would not 503 

represent accurately in non-snowy catchments. 504 

The various meteorological and remote sensing input data used in the processing of the MOD16 all have their 505 

inherent uncertainties, with cloud cover challenges and coarse resolution resampling (Mu et al., 2011), while 506 

errors have been associated with the land cover product used (Ruhoff et al., 2013). The land cover map (MOD12) 507 

used in MOD16 (Fig. 5a ), in conjunction with the calibrated biome properties lookup table (BPLUT) significantly 508 

influences the ET output from the various land covers under different climatic conditions. A more detailed map 509 

and local knowledge of the Sixth Creek Catchment indicates that the MOD12 land cover spatially mismatches 510 

some biomes (Fig. 5a and 5b). Besides the obvious land cover mismatches that were observed between the input 511 

data of the two models, the variety of accepted national, regional and global land cover classification system 512 

contributes to the challenges of hydrological modelling. In this MOD12, the “mixed forest” category covered over 513 

50% of the catchment while the category does not exist in the local field map land cover classification. The global 514 

standardization and harmonization of land cover maps and biome classification at high resolution may improve 515 

model performance. 516 

 517 

6    Conclusion 518 

The main objectives of this paper are to compare three ET products (SWAT, MOD16 and AWRA-L) on catchment 519 

scale, while also evaluating the two finer resolution products (SWAT and MOD16) on graduated spatial scale. 520 

We also attempted to determine the spatial scale at which the models tend towards agreement. while also seeking 521 

to understand the sources of disagreements between the models. 522 

 523 

The calibrated SWAT model using the SUFI-2 algorithm and various objective functions could simulate ET to 524 

within 6% of the MOD16 on catchment scale, annually. The P and R factors metrics were observed to be very 525 

reliable indicators of a good calibration exercise. Abbaspour (2007) proposed P and R factor minimum 526 

benchmarks of >0.7 and <1 respectively for streamflow calibration, in this study the P and R factors >0.8 and <1 527 

were found to produce reliable ET estimates on catchment scales. We observed that at a spatial scale of 4 km2 we 528 

obtained cell differences of under 20% annually which gave confidence to our study in the complex terrain that 529 

our 4 km2 aggregation is a good scale of confidence.  530 

 531 
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The SWAT and MOD16 show good correlation on catchment scale while, the AWRA-L and the SWAT model 532 

without the inclusion of the groundwater ET component of the SWAT model showed good agreement. Biome 533 

differences and input spatial scale contribute to poor agreement at finer spatial scales. The challenge of the lack 534 

of a globally accepted and harmonised land cover classification system at high resolution was encountered in the 535 

study, with two products derived from the MODIS satellite data classifying land cover differently and thus 536 

impacting the results from the SWAT models. The use of different land covers with different classification systems 537 

and parameters are observed to have limited impact on evapotranspiration modelling at coarse spatial resolutions 538 

due to spatial averaging. Nevertheless, the tree cover fraction used in place of a land cover product in the AWRA-539 

L is also observed to impact the ET modelling, particularly in a groundwater dependent catchment like our study 540 

area.  The inherent differences and uncertainties associated with these land cover products will continue to be 541 

propagated through the models, thereby promoting divergence in the drive towards more accurate and finer 542 

resolution evapotranspiration data products.  While many concerted research efforts have been made in the past 543 

(Latham, 2009;Friedl et al., 2010), a globally accepted harmonised world land cover database at high resolution 544 

can significantly improve correlation and confidence in high resolution ET products.  545 

 546 

 The result of the spatial resolution analysis corroborates the view that prevailing ET algorithms and measurement 547 

methods will have certain degree of variability due to the complexity of ET estimation and various drivers of the 548 

contributory processes. The study shows that correlation at catchment scale does not necessarily translate to 549 

correlation at finer spatial scales. The study also highlights the possible challenges of the semi-distributed SWAT 550 

ET algorithm in a complex terrain as the input climate data can be a challenge due to spatial resolution and climate 551 

variability. 552 

 553 
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 555 

 556 
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Appendix A: Evapotranspiration in SWAT 782 
SWAT provides the user with three options of modelling ET at the HRU scale and at daily temporal resolution 783 

(Penman-Monteith, Hargreaves or Priestly-Taylor methods). In this study, the Penman-Monteith method is used. 784 

SWAT initially calculates the potential evapotranspiration (PET) for a reference crop (Alfalfa) using the Penman-785 

Monteith equation for well-watered plants (Jensen et al., 1990): 786 

 𝜆𝜆𝜆𝜆0 =
∆(𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐺𝐺)+𝜌𝜌.𝑐𝑐𝑝𝑝.𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 −𝑒𝑒

𝑟𝑟𝑎𝑎
∆+𝛾𝛾(1+𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎

)
          (A1) 787 

 788 

where λ is the latent heat of vaporization (MJ kg-1); 𝐸𝐸0 is the potential evapotranspiration rate (mm/d); ∆ is the 789 

slope of the saturation vapor pressure vs temperature curve (kPa oC-1); 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 is the net radiation at the surface (MJ 790 

m-2 d-1); 𝐺𝐺 is the heat flux density to the ground (MJ m-2 d-1); 𝜌𝜌 is the air density (kg m-3); 𝑐𝑐𝑝𝑝 is the specific heat of 791 

dry air at constant pressure (J kg-1 K-1); P is the atmospheric pressure (kPa); esat is saturation vapor pressure of air 792 

(kPa); 𝑒𝑒 is water vapor pressure (kPa); 𝑟𝑟𝑎𝑎 is the aerodynamic resistance (s m-1); 𝛾𝛾 is the psychometric constant 793 

(kPa oC-1) and 𝑟𝑟𝑐𝑐 is the canopy resistance (s m-1).  794 

 795 

Total ET (AET) in SWAT is made up of four components: canopy evaporation, transpiration, soil evaporation 796 

and groundwater ET (Revap). Revap is the movement of water from the saturated zone into the overlying 797 

unsaturated zone to supplement the water need for evapotranspiration. The Revap process may be insignificant in 798 

regions where the saturated zone is much deeper than the root zone and as such the result is separately reported 799 

from the ET result in the SWAT result database. As SWAT calculates Revap separately, for a calculation of AET 800 

in regions where the saturated zone is within the root zone, the user should add the Revap result column to the ET 801 

calculations. The AET components are calculated from the PET starting with the canopy evaporation. For this 802 

first component the following storage equations are used in determining the volume of water available for 803 

evaporation from the wet canopy in SWAT  804 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 =  𝐶𝐶𝑚𝑚𝑚𝑚  � 𝐿𝐿𝑎𝑎𝑎𝑎
𝐿𝐿𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚

�          (A2) 805 

when R′day ≤ Cday − Rint(i): 806 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) =  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) +  𝑅𝑅′𝑑𝑑𝑑𝑑𝑑𝑑 ;𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 = 0        (A3) 807 

when  R′
day > Cday −  Rint(i): 808 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) =  𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑;  𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑅𝑅′𝑑𝑑𝑑𝑑𝑑𝑑 − � 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)�       (A4) 809 
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where 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 is the maximum amount of water that can be stored in the canopy on a given day (mm); 𝐶𝐶𝑚𝑚𝑚𝑚 is the 810 

amount of water that can be stored in the canopy when the canopy is fully matured (mm); 𝐿𝐿𝑎𝑎𝑎𝑎 is the leaf area index 811 

on a given day (); 𝐿𝐿𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚 is the maximum leaf area index when the plant is fully matured (-); 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) is the initial 812 

amount of free water available in the canopy at the beginning of the day (mm); 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) is the final amount of free 813 

water available in the canopy at the end of the day (mm); 𝑅𝑅′𝑑𝑑𝑑𝑑𝑑𝑑 is the amount of precipitation on a given day 814 

before accounting for canopy interception (mm); and 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 is the amount of precipitation reaching the soil on a 815 

given day (mm). 816 

 817 

The SWAT ET algorithm initially evaporates as much water as can be accommodated in the PET from the wet 818 

canopy. If the total volume of water in canopy storage equals or exceeds PET for the day, then ET is calculated 819 

as;  820 

𝐸𝐸𝑎𝑎 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸0            (A5) 821 

where 𝐸𝐸𝑎𝑎 is AET (mm d-1); 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 is evaporation from canopy constrained by 𝐸𝐸0, i.e. PET (mm d-1). However, if 822 

the water in canopy storage is less than the PET for the day, transpiration, soil evaporation and Revap are 823 

constrained by 𝐸𝐸0′ , which is the potential evapotranspiration adjusted for the evaporation of the water on the 824 

canopy surface (mm d-1). 825 

𝐸𝐸0′ = 𝐸𝐸0 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐            (A6) 826 

The second AET component (transpiration) of SWAT is calculated using the following equations; 827 

𝜆𝜆𝜆𝜆𝑡𝑡_𝑚𝑚𝑚𝑚𝑥𝑥 =
∆(𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐺𝐺)+𝛾𝛾K(0.622.𝜆𝜆.𝜌𝜌

𝑃𝑃 )𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 −𝑒𝑒
𝑟𝑟𝑎𝑎

∆+𝛾𝛾(1+𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎
)

         (A7) 828 

𝑊𝑊𝑧𝑧 = �𝐸𝐸𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚
1−𝑒𝑒−𝜏𝜏

�  × �1 − 𝑒𝑒(−𝜏𝜏 ×( 𝑧𝑧𝑧𝑧𝑧𝑧)�         (A8) 829 

𝑊𝑊′𝑙𝑙 = 𝑊𝑊𝑙𝑙 + (𝑊𝑊𝑑𝑑 × 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝)           (A9) 830 

𝑊𝑊"𝑙𝑙 =  𝑊𝑊′𝑙𝑙  ×  𝑒𝑒
�5×�

𝑆𝑆𝑤𝑤𝑤𝑤
�0.25×𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤�

−1��
 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤𝑤𝑤 < 25% 𝑜𝑜𝑜𝑜 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤                 (A10) 831 

𝑊𝑊"𝑙𝑙 =  𝑊𝑊′𝑙𝑙 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤𝑤𝑤 > 25% 𝑜𝑜𝑜𝑜 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤                   (A11) 832 

𝐸𝐸𝑡𝑡,𝑙𝑙 =   min [𝑊𝑊"𝑙𝑙 , �𝑆𝑆𝑤𝑤𝑤𝑤 −𝑊𝑊𝑝𝑝𝑝𝑝�]                    (A12) 833 

𝐸𝐸𝑡𝑡 = ∑ 𝐸𝐸𝑡𝑡,𝑙𝑙
𝑛𝑛
𝑙𝑙=1                       (A13) 834 

where  𝐸𝐸𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum transpiration rate (mm/d); 𝐾𝐾 =  8.64 × 104; P is the atmospheric pressure (kPa); 835 

𝑊𝑊𝑧𝑧 is the potential water taken up by plant from the soil surface to a specific depth (mm/d) 𝑧𝑧; τ is the plant water 836 

consumption distribution function; 𝑧𝑧 is the depth from soil surface (mm); 𝑧𝑧𝑟𝑟 is the plant root depth from soil 837 
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surface (mm); 𝑊𝑊𝑙𝑙 is the potential water consumption by plant in the soil layer 𝑙𝑙 (mm); 𝑊𝑊′𝑙𝑙 is the potential water 838 

consumption by plant in the layer 𝑙𝑙 adjusted for demand (mm); 𝑊𝑊𝑑𝑑 is the plant water consumption demand deficit 839 

from overlying soil layers (mm); 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 is the plant water consumption compensation factor (-); 𝑊𝑊"𝑙𝑙 is the potential 840 

plant water consumption adjusted for initial soil water content (mm); 𝑆𝑆𝑤𝑤𝑤𝑤 is the soil water content of layer 𝑙𝑙 in a 841 

day (mm); 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤 is the available water capacity of layer 𝑙𝑙 (mm); 𝑊𝑊𝑝𝑝𝑝𝑝 is soil water content of layer 𝑙𝑙 at wilting point 842 

(mm); 𝐸𝐸𝑡𝑡,𝑙𝑙 is the actual transpiration water volume from layer 𝑙𝑙 in a given day (mm/d); 𝐸𝐸𝑡𝑡 is the total actual 843 

transpiration by plants in a given day (mm/d). Plant transpiration parameters such as stomatal conductance, 844 

maximum leaf area index and maximum plant height are retrieved from a SWAT database while climate data 845 

required by the Penman-Monteith method are sourced from input data. 846 

 847 

The third AET SWAT component, the soil evaporation on a given day, is a function of the transpiration, degree 848 

of shading and potential evapotranspiration adjusted for canopy evaporation. The maximum soil evaporation on 849 

a given day (𝐸𝐸𝑠𝑠) (mm d-1) is calculated as  850 

𝐸𝐸𝑠𝑠 = 𝐸𝐸0′𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠                      (A14) 851 

𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒(−5.0 10−5𝐶𝐶𝐶𝐶)                     (A15) 852 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 is the soil cover index (-) and 𝐶𝐶𝐶𝐶 is the aboveground biomass for the day (kg/ha). The maximum 853 

possible soil evaporation in a day is then subsequently adjusted for plant water use (𝐸𝐸𝑠𝑠′) (mm d-1) 854 

𝐸𝐸𝑠𝑠′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐸𝐸𝑠𝑠, 𝐸𝐸𝑠𝑠 𝐸𝐸0′

𝐸𝐸𝑠𝑠+ 𝐸𝐸𝑡𝑡
 �                     (A16) 855 

The SWAT ET algorithm then partitions the evaporative demand between the soils layers, with the top 10 mm of 856 

soil accounting for 50% of soil water evaporated. Equation 17 and 18 are used to calculate the evaporative demand 857 

at specific depths and evaporative demands for soil layers respectively.  858 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧 = 𝐸𝐸𝑠𝑠′′
𝑧𝑧

𝑧𝑧 + 𝑒𝑒(2.374−(0.00713 𝑧𝑧))                       (A17) 859 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧𝑧𝑧 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧𝑧𝑧. 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠                    (A18) 860 

𝐸𝐸′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙  ×  𝑒𝑒
�2.5×�

𝑆𝑆𝑤𝑤𝑤𝑤−𝐹𝐹𝑐𝑐𝑐𝑐
�𝐹𝐹𝑐𝑐𝑐𝑐−𝑊𝑊𝑝𝑝𝑝𝑝�

−1��

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤𝑤𝑤 < 𝐹𝐹𝑐𝑐𝑐𝑐                 (A19) 861 

𝐸𝐸′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑤𝑤𝑤𝑤 > 𝐹𝐹𝑐𝑐𝑐𝑐                    (A20) 862 

𝐸𝐸"𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 =   min [𝐸𝐸′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 , 0.8�𝑆𝑆𝑤𝑤𝑤𝑤 −𝑊𝑊𝑝𝑝𝑝𝑝�]                   (A21) 863 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝐸𝐸"𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑛𝑛
𝑙𝑙=1                      (A22) 864 
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where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧 is the water demand for evaporation at depth 𝑧𝑧 (mm);  𝐸𝐸𝑠𝑠′′ is the maximum possible water to be 865 

evaporated in a day (mm);  𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 is the soil evaporation compensation factor;  𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 is the water demand for 866 

evaporation in layer 𝑙𝑙 (mm); 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧𝑧𝑧 is the evaporative demand at the lower boundary of the soil layer (mm); 867 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑧𝑧𝑧𝑧 is the evaporative demand at upper boundary of the soil layer (mm); 𝐹𝐹𝑐𝑐𝑐𝑐 is the water content of the soil 868 

layer 𝑙𝑙  at field capacity (mm) and 𝐸𝐸"𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙 is the volume of water evaporated from soil layer 𝑙𝑙 (mm/d); 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 869 

total volume of water evaporated from soil on a given day (mm/d).  870 

 871 

The fourth component of the ET calculations in SWAT is referred to as “Revap”. Revap in SWAT is the amount 872 

of water transferred from the hydraulically connected shallow aquifer to the unsaturated zone in response to water 873 

demand for evapotranspiration. The Revap component in SWAT is akin to ET from groundwater. Revap is often 874 

a dominant catchment process in a groundwater dependent ecosystem and it is calculated at the HRU scale. Revap 875 

is estimated as a fraction of the potential evapotranspiration (PET) and it is dependent on a threshold depth of 876 

water in the shallow aquifer which is set by the user.  877 

𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚  =  𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸0                     (A23)  878 

𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  =  𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚 − 𝑎𝑎𝑡𝑡ℎ𝑟𝑟   if 879 

 𝑎𝑎𝑡𝑡ℎ𝑟𝑟 <  𝑎𝑎𝑠𝑠ℎ < (𝑎𝑎𝑡𝑡ℎ𝑟𝑟 + 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚)                                 (A24) 880 

𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0           if 𝑎𝑎𝑠𝑠ℎ ≤ 𝑎𝑎𝑡𝑡ℎ𝑟𝑟                                (A25) 881 

𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚         if 𝑎𝑎𝑠𝑠ℎ ≥ (𝑎𝑎𝑡𝑡ℎ𝑟𝑟 + 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚)                            (A26) 882 

where 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚 is the maximum volume of water transferred to the unsaturated zone in response to water 883 

shortages for the day (mm);  𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the Revap coefficient (-); 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the actual volume of water transferred 884 

to the unsaturated zone to supplement water shortage for the day (mm); 𝑎𝑎𝑠𝑠ℎ is the water volume stored in the 885 

shallow aquifer at the beginning of the day (mm); and the 𝑎𝑎𝑡𝑡ℎ𝑟𝑟 is the threshold water level in the shallow aquifer 886 

required for Revap to occur (mm) (Neitsch et al., 2011).  887 

  888 
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Appendix B: MODIS Evapotranspiration 889 

 890 

ET in the MOD16 is a summation of three components: wet canopy evaporation, plant transpiration and soil 891 

evaporation. Wet canopy evaporation (𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐) in MOD16 is calculated using a modified version of the Penman-892 

Monteith equation,  893 

𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 =
(𝛥𝛥𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛  𝐹𝐹𝐶𝐶)+𝜌𝜌𝑐𝑐𝑝𝑝(𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 −𝑒𝑒)

 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑎𝑎

 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤

𝛥𝛥+�
𝑃𝑃 𝐶𝐶𝑝𝑝 𝑟𝑟𝑣𝑣𝑣𝑣
𝜆𝜆  𝜀𝜀  𝑟𝑟𝑎𝑎

�
         (B1) 894 

Where the parameters are as earlier defined, 𝜆𝜆𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 is the latent heat flux (Wm-2); 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 is net radiation relative to 895 

canopy (Wm-2);  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 is the fraction of absorbed photosynthetically active radiation ; 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤 is the fraction of the 896 

soil covered by water; 𝑟𝑟𝑣𝑣𝑣𝑣 is the resistance to latent heat transfer (s m-1);  and 𝜀𝜀 is the emissivity.  897 

 898 

The plant transpiration (𝜆𝜆𝜆𝜆𝑡𝑡) is calculated using another variation of the Penman-Monteith equation,  899 

𝜆𝜆𝜆𝜆𝑡𝑡 =
(𝛥𝛥𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛  𝐹𝐹𝐶𝐶)+𝜌𝜌𝑐𝑐𝑝𝑝(𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 −𝑒𝑒) 𝐹𝐹𝐶𝐶

𝑟𝑟𝑎𝑎
(1− 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤)

∆+𝛾𝛾�1+ 𝑟𝑟𝑐𝑐 
 𝑟𝑟𝑎𝑎

� 
         (B2) 900 

The soil evaporation (𝜆𝜆𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is a summation of the potential soil evaporation (𝜆𝜆𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑃𝑃𝑃𝑃𝑃𝑃) limited by the soil 901 
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