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Dear Editor and Reviewers,  

We would like to thank you for the detailed comments on our discussion paper “Intercomparison of 

different uncertainty sources in hydrological climate change projections for an alpine catchment 

(Upper Clutha River, New Zealand)”. We addressed all of the specific comments of the reviewers and 

tried to clarify the geographical focus of this study throughout the entire manuscript. Please find 

below our response to the comments of the two reviewers (as published in the open discussion) and 

the revised version of the manuscript in track changes mode.  

Best regards,  
Andreas Jobst (on behalf of all co-authors) 
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We would like to thank the reviewer for her/his thoughtful comments. We believe that they have 

substantially improved the manuscript. Please find attached the responses to the reviewer’s 

comments. 

Interactive comment on “Intercomparison of different uncertainty sources in hydrological climate 

change projections for an alpine catchment (Clutha River, New Zealand)” by Andreas M. Jobst et al. 

Anonymous Referee #1 Received and published: 29 November 2017 >  

General comments: The study evaluates different sources of uncertainty in hydrological projections 

with focus on the impact of the snow model. The experiments were carried out for a subcatchment 

of the Clutha River, New Zealand. It is nicely demonstrated that the snow model contributes to the 

uncertainty of seasonal variations and high inter-annual variability. Despite that the choices of the 

global climate model, emission scenario, and bias correction method generally have more impact on 

the total uncertainty, the results show that the uncertainty linked to the snow model should not be 

neglected in alpine catchments. It is a compact study with a good structure. The manuscript is clearly 

written, and I enjoyed reading it. Some minor comments might be considered to clarify a few parts. 

Including: 

(1) Study area: The studied area is called the “Clutha catchment” and is introduced as a “major” and 

“large-scale New Zealand catchment”. But – according to Chapter 2.1 – the analysis was carried out 

only for the most north-western sub-catchment (outlet Chards Rd). To clarify the whole study, the 

authors should please rephrase those parts of the manuscript (see also technical corrections) which 

lead to the misunderstanding that the results represent the whole Clutha catchment.  

Response: In the paper we now state more clearly that a hydrological model was developed for the 

entire Clutha (as described in Jobst 2017) and that this paper focuses on the unmanaged north-

western part of the Clutha. Outflow of the Kawarau sub-catchment (focus of this study) is highly 

correlated with the other unmanaged headwater tributaries and as most of the central Clutha 

catchment is characterised by a dry climate (with comparably little additional streamflow generated) 

the results for the Kawarau can be considered broadly representative of the main stem of the Clutha 

(including the outlet Balclutha, Figure 1). 

However we agree that the main focus of this study is on the Kawarau sub-catchment and therefore  

“Clutha catchment” has been replaced with north-western sub-catchment or similar in most parts of 

the document. Corresponding changes were made to the following lines in the paper: 

-P1 L12 
-P3 L5, L10, L11, L23-24, L27-28 and L30-32 
-P6 L22 
-P8 L16 
-P11 L12 
 
Further, Figures 5,6 and 9 (note old figure number plus 1) were updated as they showed data for the 

entire Clutha catchment. They now show averaged data for the sub-catchment (Chards Rd) only. The 

relative signals shown in the updated figures are very similar to the previous ones for the entire 

Clutha and therefore only minor edits had to be added to the results sections of this document. 
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(2) Catchment characteristics: Please provide some information about i.e. elevation range, glacier 

extent, vegetation of the sub-catchment (outlet Chards Rd).  

Response: The requested statistics and catchment characteristics have been added to the document 

(P3 L32 – P4 L4) 

“Most of the Kawarau sub-catchment is covered by indigenous tussock grassland followed by low 

producing exotic grassland and indigenous forest. The elevation of the sub-catchment ranges 

between 300 and 2800 m with an ice cover of approximately 84 km2 which corresponds to 55% of the 

Clutha catchment’s ice cover (New Zealand’s Land Cover Database v3.0 as published by Landcare 

Research in 2012).” 

(3) Snow models: The study focusses on snowmelt uncertainty for hydrological projections and 

should therefore give more details about the two types of snow models used here. For example, it 

would be helpful to know if all snow is gone after the summer (except for glaciers) or if snow 

accumulates from year to year.  

Response: A new figure has been added that shows the seasonal variation of SWE and how some of 

the snow persists over summer and into autumn (Figure 3). 

 

Some more details about the snow models have been added to 2.2 (P4 L15-19) 

“The Tindex model calculates the melting rate via a degree-day factor multiplied by the difference 

between actual temperature and the melting point temperature. The Anderson model is more 

complex as it computes four separate melt fractions and accounts for radiation by using a seasonal 

melt factor. Further the Anderson approach also models the refreezing of liquid water stored in the 

snow pack if the actual temperature is below melting point.” 

 (4) Baseline: Please introduce the baseline model in “Data and methods”. How has it been 

calibrated?  

Response: We decided not to add any more detail on this matter because of the following reason. 

The calibration of the hydro model has already been described as part of 2.2 (P4 L20-31). The 

baseline simulations presented in 3.1 were not calibrated per se but are the product of WaSiM being 

forced by the bias corrected and downscaled meteorological variables of the RCM simulations. 

(5) Results – Baseline simulations: Apart from the graphs, values of model efficiency would 

strengthen the results. 

Response: A new figure has been added (Figure 3) showing daily simulations of discharge forced by 

the observed meteorology during the validation period. A new table (Table 2) with more NSE values 

was also added to the document. Also see second Reviewer’s comment 3.   
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River Gauge 
Cal (1.4.2008-31.3.2012) Val (1.4.1992-31.3.2008) 

NSE NSElog NSEmo NSE NSElog NSEmo 

Dart 
The Hillocks (1996-
2012) 

0.77 
(0.77) 

0.77 
(0.78) 

0.92 
(0.92) 

0.64 
(0.65) 

0.64 
(0.68) 

0.78 
(0.79) 

Shotover Peat's Hut (1996-2012)  
0.64 

(0.65) 
0.67 

(0.70) 
0.81 

(0.82) 
0.60 

(0.62) 
0.65 

(0.70) 
0.76 

(0.79) 

Kawarau Chards Rd 
0.87 

(0.88) 
0.88 

(0.87) 
0.89 

(0.90) 
0.87 

(0.85) 
0.86 

(0.86) 
0.89 

(0.87) 

Matukituk
i West Wanaka 

0.67 
(0.67) 

0.64 
(0.65) 

0.80 
(0.80) 

0.62 
(0.62) 

0.72 
(0.72) 

0.83 
(0.82) 

 

 

(6) The climate change signals: Please clarify in the text (and legends) “temperature signal” / 

“change in Tmean”.  

Response: Mean air temperature has been abbreviated with Tmean throughout the document 

(7) Streamflow signal: Some parts could better be included in the discussion.  

Response: To avoid unnecessary repetitions and to keep this paper concise we would like to leave 

section 3.3.1 as it currently is. Adding individual sentences to the discussion would require 

reintroducing the figure and what the data points depict. 

> Technical corrections:  

(8) P.3, l. 4 : makes it 

Changed as suggested 

 (9) P.5, l. 13 : runoff regime  

Changed as suggested 

(10) P.6, l. 11 : Clutha catchment or north-western sub-catchment?  

Changed as suggested 

 (11) P.6, l. 30 : most striking transformation for the 2090s 

Changed as suggested 
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 (12) P.7, l. 18 : Clutha catchment or north-western sub-catchment?  

Changed as suggested 

 (13) P.8, l. 28 – 32 : see (7)  

See comment under (7) 

(14) Table 1 : provide units to the reader 

Units were added to the table as suggested 

(15) Figure 1b : increase the size of the coordinates and the catchment border  

Changed as suggested 

(16) Figure 1c : show the sub-catchments used for the calibration of the snow model  

Changed as suggested 

(17) Figure 3 : rescaling of the y-axis (2 to 6mm/d) and different colors for the single lines would help 

the reader  

Changed as suggested. As the focus is on the groupings (i.e. A1B and A2 emission scenario runs) the 

same colors are supposed to be used for each grouping, while different colors for the individual lines 

would make these figures even harder to read. 

(18) Figure 5 : see point (6)  

Caption changed to: “mean temperature (Tmean) signal” 

(19) Figure 8 : provide a legend for the different shapes  

The different shapes are shown in Figure 8a to make this more obvious “The legend corresponding to 

all eight subplots is shown in Figure 8a.” has been added to the caption. 

(20) Figure 9 : Please increase the size of the circles and/or change the colors since it is really hard to 

distinguish between the colors. 

Changed as suggested and we have also adjusted the layout of the figure 
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We would like to thank the second reviewer for the constructive comments. As already explained 

under our response to reviewer one we have clarified the geographical domain of this modelling 

study throughout the document and believe that the geographical focus of this study is now more 

obvious. We have also provided more detail about the snow models used, and presented more results 

from the validation of the hydrological model including some more performance criteria. Please see 

below for our individual responses. 

H. McMillan (Referee) hmcmillan@sdsu.edu Received and published: 7 January 2018 Review of 

“Intercomparison of different uncertainty sources in hydrological climate change projections for an 

alpine catchment (Clutha River, New Zealand)” by Jobst et al. This paper is an exploration of the 

potential impacts of climate change on precipitation, snowpack and river flow in a sub-catchment of 

the Clutha River in New Zealand. The paper is well written and comprehensive, and I recommend it 

for publication after the 

minor revisions outlined below.  

1. The start of the paper makes much of the large size and representativeness of the Clutha 

catchment. Given that the study is actually only carried out on a sub catchment (less than one 

quarter area) of the Clutha, which does not include any of the drier Otago climate described, I 

suggest this section be revised for relevance.  

Response: See answers to comment 1 of reviewer 1. 

2. p5 L15 The authors should define in the text what they mean by the “observed regime” (i.e. 

monthly flow values averaged across all years) so that the readers are clear what is being evaluated. 

Similarly the meaning of “summer climate change signal” should be defined.  

Response: Sentence has been changed to: “The regimes (i.e. monthly flow values averaged across all 

years) of the eight RCM driven simulations…” 

The following sentence has also been added P7 L5-6 “The climate change signals of Tmean and 

precipitation that are presented in the following section correspond to the mean change of the 

spatio-temporal average between a future (either 2050s or 2090s) and the reference period.” 

3. Section 2.2. The largest comment that I have on the paper is that there is insufficient 

information/discussion to convince the reader that the WaSim hydrology model does a good job of 

representing the catchment. Trust in this model is essential for the uncertainty analysis and 

conclusions of the paper. There is a brief mention of Nash Sutcliffe values at p4 L20, but the addition 

of a hydrograph plot showing modelled/observed values for some suitable period would make this 

more convincing. Especially given that Fig 3 shows significant under prediction of winter flow, and it 

is unclear what causes this problem.  

Response: A new figure showing the hydrographs has been added (i.e. Figure 3) to 2.2 with an 

additional table that lists some more performance statistics for several hydro gauges. The description 

of the model performance is now also covered in more detail P4 L31 – P5 L15: “While daily NSE 

values were lower for the three tributaries (Dart, Shotover and Matukituki River), monthly NSE values 

indicated a good performance (Table 2). For the Matukituki River the validation of both WaSiM 

versions revealed a substantially better performance (monthly NSE of 0.83 and 0.82, respectively) 

when compared to the TopNet based modelling study of Gawith et al. (2012) (monthly NSE of 0.68).  

For Chards Rd the performance of both WaSiM-Anderson and WaSiM-Tindex revealed a strong 

performance at the daily and monthly time scale, with NSE values between 0.85 and 0.90 across all 

model versions, timescales and time periods (Table 2).  The hydrographs of WaSiM-Anderson and 
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WaSiM-Tindex (Figure 3) further indicate a realistic representation of observed daily runoff at Chards 

Rd (only the first four years of the validation period are shown for clarity). Obvious inaccuracies of 

both WaSiM versions are an underestimation of larger flow events during the melt period (e.g. 

November-December 1994) and an overestimation during autumn (e.g. April-May 1994). The likeliest 

explanation is that not enough snow is being accumulated from autumn to early winter and 

consequently the main melt peaks are under-simulated. Inaccuracies are generally larger with 

WaSiM-Tindex as can be seen in December 1994 (Figure 3). Compared to WaSiM-Anderson the snow 

pack melts slower which causes a greater underestimation of runoff during the main melt period. 

Overall the visually better performance of WaSiM-Anderson for the 1992-1996 period is 

substantiated by the daily NSE values which correspond to 0.91 and 0.87 for WaSiM-Anderson and 

WaSiM-Tindex, respectively.” 

 

River Gauge 
Cal (1.4.2008-31.3.2012) Val (1.4.1992-31.3.2008) 

NSE NSElog NSEmo NSE NSElog NSEmo 

Dart 
The Hillocks (1996-
2012) 

0.77 
(0.77) 

0.77 
(0.78) 

0.92 
(0.92) 

0.64 
(0.65) 

0.64 
(0.68) 

0.78 
(0.79) 

Shotover Peat's Hut (1996-2012)  
0.64 

(0.65) 
0.67 

(0.70) 
0.81 

(0.82) 
0.60 

(0.62) 
0.65 

(0.70) 
0.76 

(0.79) 

Kawarau Chards Rd 
0.87 

(0.88) 
0.88 

(0.87) 
0.89 

(0.90) 
0.87 

(0.85) 
0.86 

(0.86) 
0.89 

(0.87) 

Matukituk
i West Wanaka 

0.67 
(0.67) 

0.64 
(0.65) 

0.80 
(0.80) 

0.62 
(0.62) 

0.72 
(0.72) 

0.83 
(0.82) 

 

The range of simulations in the paper do not envelope the observed flow – so there is some 

uncertainty that is unaccounted for in the paper and I am left wondering where it is? Some 

additional discussion is warranted here, including discussion of potential uncertainty in hydrologic 

model parameters.  

Response: See above and the following sentence (P13 L23-25) “Model parameter uncertainty was 

not accounted for in this study but should be part of future work, which could help to understand and 

potentially improve misrepresentations in the historic streamflow regime.” 

P10 L20-31:“ Overall the baseline analysis showed that the individual sub-ensembles performed 

differently and that the observed regime was not always enveloped by the corresponding range of 

simulations. This introduces some additional uncertainty into the projections that could not be 

quantified or accounted for in this study. A potential explanation is that neither snow model was 

able to accurately represent all of the spatio-temporal variation in the snowmelt process across the 

catchment, and that some driving processes (i.e. radiation induced events) are also not represented 

adequately in either snow model. Either improved empirical relationships or a greater physical 

component to snowmelt modelling would be beneficial in this respect for future research. 
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Inaccuracies in the meteorological fields (METEOOBS) that were used for the bias correction could 

also have caused some of the seasonal over- and underestimations in the hydrological regime. As 

discussed in Jobst et al. (2017) the climate network in the upper Clutha is sparse with very few sites 

located in medium to high elevations. Notwithstanding the improved representation of temperature 

provided by the Jobst et al. (2017) dataset compared to other products, the remaining biases in this 

temperature field would have also propagated into the bias corrected RCM fields and the 

corresponding hydrological baseline simulations. 

4. Section 2.3. Worth noting that the climate scenarios used for New Zealand have now been 

superseded by 6 RCM*4 RCP Scenarios with CMIP-5 GCMs and a new bias correction that improves 

on quantile correction. See: http://ccii.org.nz/wpcontent/uploads/2016/10/RA1-Synthesis-

report.pdf For the next paper perhaps!  

Response: We appreciate the suggestion of the author and have added the following comment to the 

conclusion section as part of future work P13 L12-15:” Since the completion of this study additional 

RCM simulations based on RCP (Representative Concentration Pathways) scenarios and CMIP-5 

GCMs have been generated for the New Zealand domain (Ministry for the Environment, 2016), which 

could be used to enlarge the existing ensemble of hydro-climatic projections for the Clutha.” 

5. Fig 6. I don’t understand the comment about different y-axes.  

Response: Comment was unnecessary, agreed and deleted. 

6. Fig 9. Please include an explanation of what a radar chart shows. 

Response: Added: “Based on the permutations for each season the radar charts show the mean 

contributions [%] of the four model components to the overall uncertainty as well as the standard 

deviations [%].” 

7. p9 It would be useful to reference this paper: Hendrikx, J., Hreinsson, E.Ö., Clark, M.P. and Mullan, 

A.B., 2012. The potential impact of climate change on seasonal snow in New Zealand: part IâA˘Tan 

analysis using 12 ˇ GCMs. Theoretical and Applied Climatology, 110(4), pp.607-618. 

Response: Agreed paper has been added to document P10 L29-31 : “In a New Zealand wide study 

Hendrikx et al. (2012) also modelled substantial reductions in the peak snow accumulations along the 

Southern Alps, which they attributed to decreases in the fraction of solid precipitation due to 

increases in air temperature.” 

General/additional response: We have also made some minor modifications throughout the 

document in order to avoid confusion related to the terminology of runoff/streamflow. As modelled 

streamflow (m3/s) was converted to runoff (mm) for better comparison with other studies we have 

consistently replaced the term streamflow with runoff in the main document when we are referring 

to the actual results (as presented in the corresponding figures). 
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Intercomparison of different uncertainty sources in hydrological 

climate change projections for an alpine catchment (Upper Clutha 

River, New Zealand) 

Andreas M. Jobst1, Daniel G. Kingston1, Nicolas J. Cullen1 and Josef Schmid2 

1Department of Geography, University of Otago, Dunedin, PO Box 56, New Zealand 5 
2Department of Geography, University of Munich (LMU), Munich, Germany 

Correspondence to: Andreas M. Jobst (andreas.jobst@otago.ac.nz) 

Abstract. As climate change is projected to alter both temperature and precipitation, snow controlled mid-latitude catchments 

are expected to experience substantial shifts in their seasonal regime, which will have direct implications for water 

management. In order to provide authoritative projections of climate change impacts, the uncertainty inherent to all 10 

components of the modelling chain needs to be accounted for. This study assesses the uncertainty in potential impacts of 

climate change on the hydro-climate of a headwater sub-catchment of New Zealand’s largest catchment (the Clutha River) 

using a fully distributed hydrological model (WaSiM) and unique ensemble encompassing different uncertainty sources: 

General Circulation Model (GCM), emission scenario, bias correction and snow model. The inclusion of snow models is 

particularly important, given that (1) they are a rarely considered aspect of uncertainty in hydrological modelling studies, and 15 

(2) snow has a considerable influence on seasonal patterns of river flow in alpine catchments such as the Clutha. Projected 

changes in river flow for the 2050s and 2090s encompass substantial increases in streamflow from May to October, and a 

decline between December and March. The dominant drivers are changes in the seasonal distribution of precipitation (for the 

2090s +295 to +8476% in winter) and substantial decreases in the seasonal snow storage due to temperature increase. A 

quantitative comparison of uncertainty identified GCM structure as the dominant contributor in the seasonal streamflow signal 20 

(44-57%) followed by emission scenario (16-49%), bias correction (4-22%) and snow model (3-10%). While these findings 

suggest that the role of the snow model is comparatively small, its contribution to the overall uncertainty was still found to be 

noticeable for winter and summer. 

1 Introduction 

Over recent decades climate change has had a considerable impact on the Earth’s freshwater resources (Jiménez Cisneros et 25 

al., 2014), causing, amongst others, changes in the amount of runoff (Piao et al., 2010), the timing of peak discharge (Hidalgo 

et al., 2009), a reduction in glacier volume (Rosenzweig et al., 2007) and an increase in flood risk (Pall et al., 2011). Future 

impacts under mid and late 21st century climate change are projected to intensify, affecting both the main processes and stores 

of the water cycle. The impacts include an increase of potential evapotranspiration (PET) over most land areas, a further 
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shrinkage of glaciers and changes in the runoff regime of snowmelt affected basins (Jiménez Cisneros et al., 2014). Thus 21st 

century climate change is expected to have substantial implications for water users and operators alike, which makes robust 

projections of potential changes in the seasonality and magnitude of streamflow essential.  

While General Circulation Model (GCM) land surface schemes can be used for climate change impact assessments (e.g. 

Haddeland et al., 2011; Gudmundsson et al., 2012), their coarse resolution makes them inadequate for modelling studies at the 5 

small and meso scale. Thus, climate change impact studies typically use a cascade of models and processing steps to move 

between the scales of the lower resolution climate models and a separate higher resolution hydrological model (Maraun et al., 

2010; Muerth et al., 2013).  

As discussed by Muerth et al. (2013), the hydro-climatic model chain typically consists of the following components: emission 

scenario, GCM, Regional Climate Model (RCM) or statistical downscaling, bias correction and hydrological model. All of 10 

these components constitute a potential uncertainty source, and as such all need to be examined to provide a truly 

comprehensive understanding of the uncertainty associated with hydrological impact assessments (Teutschbein and Seibert, 

2010). The uncertainty associated with the individual components of the model chain has been investigated by an increasing 

number of studies. Typically, GCM structure is identified as the dominant source of uncertainty (e.g. Graham et al., 2007; 

Prudhomme and Davies, 2009; Hagemann et al., 2011; Dobler et al., 2012). There is little agreement on the second most 15 

important source of uncertainty between the downscaling method (Wilby and Harris, 2006; Prudhomme and Davies, 2009; 

Dobler et al., 2012), the bias correction (Vormoor et al., 2015) or the emission scenario (Bennett et al., 2012). A common 

finding is that hydrological model uncertainty is less important than other uncertainty sources (i.e. GCM), but cannot be ignored 

(Prudhomme and Davies, 2009; Teng et al., 2012; Thompson et al., 2013; Velázquez et al., 2013). However, for certain 

hydrological indicators (e.g. high flow events) hydrological models can be associated with a comparable uncertainty range to 20 

the driving climate projections (e.g. Ludwig et al., 2009; Muerth et al., 2012).  

As an alternative to an ensemble of different hydrological models varying in their representation of spatial variation (i.e. 

lumped, semi-distributed, fully distributed) and process descriptions (i.e. stochastic, conceptual or physically oriented), some 

studies have explored uncertainty associated with particular routines within a single model. Examples include the sensitivity 

of climate change impacts on the PET method used (e.g. Kay and Davies, 2008; Thompson et al., 2014; Kay and Davies, 25 

2008). However, in  snowmelt affected mid latitude catchments PET-related uncertainty is often relatively small (e.g. Koedyk 

and Kingston, 2016), with uncertainty linked to snow-related processes more important. For example, Troin et al. (2016) 

investigated the uncertainty introduced by the snow melt routine in a hydrological model for three Canadian catchments. For 

a number of snow indicators (e.g. snow water equivalent (SWE)), most of the uncertainty was found to be caused by natural 

climate variability. For temporal indices (e.g. duration of snow pack) however, the different snow models showed a greater 30 

variability. Troin et al. (2016) did not look at the implications of snow model uncertainty for river flow, but the greater 

uncertainty associated with temporal indices could be indicative of significant implications on the timing of snowmelt and so 

the annual streamflow regime. Thus, the choice of the snow model as a potential uncertainty source and its implications on 

streamflow needs to be explored further, particularly in alpine catchments. 
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The aim of this present study is to investigate the contribution of the snow model and three more commonly studied uncertainty 

sources (i.e. GCM, emission scenario and bias correction method) to the climate change signal in hydrological projections. 

New Zealand’s largest catchment, the Clutha, was selected for this purpose as its highly complex hydro-climate, including 

snow affected headwaters, makes it a particularly interesting case study. To this end, the fully distributed hydrological model 

WaSiM (Schulla, 2012) was implemented for the Clutha an alpine sub-catchment of the Clutha, with a total of 32 separate 5 

hydrological simulations produced. These comprised two emissions scenarios, four GCMs, two bias correction methods and 

two snow models. Although previous New Zealand studies (including for the Clutha) have examined multiple GCM scenarios 

(e.g. Poyck et al., 2011; Gawith et al., 2012; Caruso et al., 2016), none have used an ensemble covering the present range of 

uncertainty sources. Furthermore, in using WaSiM this will be the first application of a fully distributed and grid-based 

hydrological model for this purpose in a medium to large-scale New Zealand catchment. Consequently, this study will generate 10 

the most complete assessment of climate change impacts on river flow and associated uncertainty for an alpine major New 

Zealand catchment. Importantly, the study will also speak more widely to the issue of snowmelt uncertainty under climate 

change in alpine catchments. 

2 Data and methods 

2.1 The study areaClutha catchment 15 

The Clutha/Mata-Au is the largest catchment (20586 km2) in New Zealand and is situated in the lower half of the South Island, 

extending eastwards from the Southern Alps (Figure 1). It has the highest average streamflow of any river in New Zealand 

(approximately 570 m3 s−1) and drains 6% of the South Island’s water (Murray, 1975). The catchment is characterized by a 

highly variable hydro-climate ranging from very humid alpine headwaters dominated by seasonal snow accumulation and 

melt, to substantially drier areas in the central catchment. The Clutha catchment can thus be considered broadly representative 20 

of most of the South Island’s hydrologic and climatic domain, and so an ideal candidate for investigating climate change 

impacts.  

As described in Jobst (2017) WaSiM was implemented for the entire Clutha catchment as a tool for climate change impact 

modelling. Most of the upper and lower Clutha catchment are under extensive water management (particularly for hydro-

electric dams and water abstractions), except for the north-western part (gauge Chards Rd in Figure 1), which is characterised 25 

by natural flow conditions. As the focus of this climate change impact study is on potential changes in natural streamflow and 

seasonal snow, the results are presented forfocus mostly on the Kawarau River sub-catchment  (Chards Rd gauge) only (see 

Jobst (2017) for model simulations at the other key sites of the Clutha). The catchment area at Chards Rd is 4541 km2 (22% 

of entire Clutha basin) and with a mean discharge of 212 m3 s-1 is the largest component of the upper Clutha basin, comprising 

36% of flow at the catchment outlet. Snowmelt contributes approximately 20% of annual flow. Streamflow at Chards Rd is 30 

also highly correlated with the headwater sub-catchment of Lake Wanaka (located to the east of the Kawarau sub-catchment), 

while the outflow of Lake Hawea is controlled by a dam for hydropower generation further downstream.  
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Most of the Kawarau sub-catchment is covered by indigenous tussock grassland followed by low producing exotic grassland 

and indigenous forest. The elevation of the sub-catchment ranges between 300 and 2800 m with an ice cover of approximately 

84 km2 which corresponds to 55% of the Clutha catchment’s ice cover (New Zealand’s Land Cover Database v3.0 as published 

by Landcare Research in 2012).  

2.2 The WaSiM model of the Clutha 5 

The fully distributed and physically-oriented hydrological model WaSiM-Richards (version 9.06.10) was implemented at a 

spatial resolution of 1 km and at a daily time step. The main components of this implementation of WaSiM are described 

briefly here – for a more detailed description see Schulla (2012). The modelling of PET is solved by the Penman Monteith 

approach, while actual evapotranspiration (ET) is a function of the simulated soil water content. Soil and groundwater 

processes are described by finite differencing of the 1D-Richards equation combined with a 2D groundwater model. In 10 

addition, WaSiM’s dynamic glacier model was used to describe the glacial processes for the ice-covered cells located in the 

upper catchment. 

WaSiM was parameterised using both remotely sensed data (i.e. MODIS-15A2-1km for leaf area index) and values obtained 

from the literature. Two versions of this WaSiM implementation were set up, one with a simple temperature index (Tindex) 

snow melt routine (Schulla, 2012) and the other with the conceptual energy balance model of Anderson (1973). The Tindex 15 

model calculates the melting rate via a degree-day factor multiplied by the difference between actual temperature and the 

melting point temperature. The Anderson model is more complex as it computes four separate melt fractions and accounts for 

radiation by using a seasonal melt factor. Further the Anderson approach also models the refreezing of liquid water stored in 

the snow pack when the actual temperature is below melting point. 

Station-based meteorological observations of mean daily air temperature (Tmean), precipitation, solar radiation, relative 20 

humidity and wind speed were interpolated (Jobst, 2017; Jobst et al., 2017) and served as input to WaSiM during the calibration 

(2008-2012) and validation (1992-2008) periods. The last four hydrological years of the reference period were chosen for 

calibration because of the higher density of weather stations compared to previous years and a better consistency of the 

streamflow records.  

The individual submodels of WaSiM (unsaturated zone, groundwater, snow and glacier model) were calibrated iteratively 25 

using a combination of auto-calibration and manual parameter optimization (see Jobst (2017) for a detailed description of the 

calibration process). Particle swarm optimization (Kennedy and Eberhart, 1995) was used for auto-calibration due to its 

effective performance during the first iterations and fast operation (Jiang et al., 2010), allowing for an adequate compromise 

between processing time and efficiency. The two snow models were calibrated for three separate headwater sub-catchments 

(gauges: The Hillocks, Peat’s Hut and West Wanaka as shown in Figure 1c) against monthly streamflow with the Nash-30 

Sutcliffe criterion of efficiency (NSE) as the objective function. The resulting parameter sets were then averaged resulting in 

a global parameter set for each of the two snow models respectively (Table 1). The performance of both WaSiM-Anderson 

and WaSiM-Tindex during the calibration and validation periods revealed a strong performance at the daily and monthly time 
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scale, with NSE values between 0.85 and 0.90 across all model versions, timescales and time periods.While daily NSE values 

were lower for the three tributaries (Dart, Shotover and Matukituki River), monthly NSE values indicated a good performance 

at these sites (Table 2). For the Matukituki River the validation of both WaSiM versions revealed a substantially better 

simulation of monthly streamflow (NSE of 0.83 and 0.82, respectively) when compared to the TopNet based modelling study 

of Gawith et al. (2012) (NSE of 0.68).  These NSE values compare favourably with previous modelling studies in the Clutha 5 

catchment (e.g. Poyck et al., 2011; Gawith et al., 2012). For Chards Rd the validation of WaSiM-Anderson and WaSiM-Tindex 

revealed a strong performance at the daily and monthly time scale, with NSE values between 0.85 and 0.90 across all model 

versions, timescales and time periods (Table 2).  The hydrographs of WaSiM-Anderson and WaSiM-Tindex (Figure 3) further 

indicate a realistic representation of observed daily runoff at Chards Rd (only the first four years of the validation period are 

shown for clarity). Obvious inaccuracies of both WaSiM versions are an underestimation of larger flow events during the melt 10 

period (e.g. November-December 1994) and an overestimation during autumn (e.g. April-May 1994). The likeliest explanation 

is that not enough snow is being accumulated from autumn to early winter and consequently the main melt peaks are under-

simulated. Inaccuracies are generally larger with WaSiM-Tindex as can be seen in December 1994 (Figure 3). Compared to 

WaSiM-Anderson the snow pack melts slower which causes a greater underestimation of runoff during the main melt period. 

Overall the visually better performance of WaSiM-Anderson for the 1992-1996 period is substantiated by the daily NSE values 15 

which correspond to 0.91 and 0.87 for WaSiM-Anderson and WaSiM-Tindex, respectively. 

2.3 The model cascade 

Most existing impact studies in the New Zealand domain (Poyck et al., 2011; Srinivasan et al., 2011; Zammit and Woods, 

2011; Zemansky et al., 2012) have been based on statistically downscaled GCM simulations provided by the National Institute 

of Water and Atmospheric Research (NIWA) (Ministry for the Environment, 2008). More recently a small ensemble of four 20 

GCMs (CM2.1-GFDL, ECHAM5, HadCM3 and MK3.5-CSIRO) based on the A1B and A2 SRES emissions scenarios has 

been dynamically downscaled for the New Zealand domain using the HadRM3P RCM (Ackerley et al., 2012), and it is this 

ensemble of eight dynamically downscaled GCM simulations that forms the data set for the current study.  

A model chain was constructed (Figure 2) to process the raw RCM runs (from 1990 to 2099) and generate high resolution 

climate change projections at the hydrological model scale. Two different bias correction methods, linear transformation (LT; 25 

as described in Lenderink et al. (2007)) and quantile mapping (QM; as described in Mpelasoka and Chiew (2009)), were used 

to correct the RCM data. Both methods have been successfully used by a number of studies (e.g. Boé et al., 2007; Chen et al., 

2013; Gutjahr and Heinemann, 2013) and were selected here to allow for a direct comparison between a simple correction 

method based on additive or multiplicative correction terms (LT) and the more complex distribution baseddistribution-based 

QM approach. 30 

To bridge the gap between the RCM grid (∼27 km) and the hydrological model grid (1 km) an additional statistical downscaling 

step was required. The downscaling of precipitation (and the remaining three variables) is based on the topographical scaling 

approach of Frueh et al. (2006), while maximum and minimum air temperature are scaled via monthly lapse rate models (as 
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described in Jobst et al. (2017) but excluding the thin plate spline layer). As part of the downscaling, additional processing 

steps were adopted from Marke (2011) to ensure the conservation of mass and energy when transforming the RCM data 

between the model scales. 

3. Results 

3.1 Baseline simulations 5 

For the historic analysis, the ensemble was divided into four sub-ensembles composed of the two bias correction methods and 

the two snow models (i.e. QM-Anderson, QM-Tindex, LT-Anderson and LT-Tindex). The regimes (i.e. monthly runoff values 

averaged across all years) of the eight RCM driven simulations of each sub-ensemble were compared to the observed runoff 

regime (OBS) and the modelled runoff regime forced byusing the observed meteorology (MOD-METEOOBS). 

The skill in reproducing the observed historic regime varies substantially depending on both the bias correction method and 10 

the snowmelt routine (Figure 3Figure 4). Overall QM-Anderson gave the most realistic approximation of the observed regime, 

although still with some overestimation in May (late autumn) followed by an underestimation during July and August (winter). 

QM-Tindex and LT-Anderson also underestimate the main peak, however the general fit of their RCM members is still 

relatively close to the observed regime. The largest discrepancies occurred with LT-Tindex, with a substantially flatter regime, 

mainly due to too much flow being generated between May and September leading to an underestimation of the main peak 15 

(November to January).  Overall the LT method shows a lower skill in reproducing the observed regime, which is especially 

pronounced in combination with Tindex. This behaviour points to a high sensitivity of the modelled regime towards the bias 

correction method and generally speaking the meteorological forcing.  

The RCM driven runs agree more closely with MOD-METEOOBS than with the observed regime, as monthly over- and 

underestimations of MOD-METEOOBS have propagated into the RCM driven WaSiM simulations. This was expected as the 20 

RCM climate data have been tuned (i.e. bias corrected) to the station-interpolated meteorology that was used to drive MOD-

METEOOBS.  

Regarding the water balance (Table 23), the observed annual precipitation of the KawarauClutha sub-catchmentbasin 

(20071427 mm) was underestimated by both the QM (19261386 mm) and the LT sub-ensemble (19311391 mm) during the 

reference period. A small part of that difference is caused by the shorter 360-day calendar of the RCM runs. Compared to 25 

MOD-METEOOBS, ET was modelled almost identically by QM-Anderson and QM-Tindex, with slightly larger discrepancies 

(-1.2%) under LT-Anderson and LT-Tindex. Regarding runoffstreamflow, QM and LT resulted in an underestimation of -65 

and -53%, respectively, while the choice of the snow model had only a negligible impact. 

In terms of the seasonal SWE volume, the QM-Anderson runs agree more closely with MOD-METEOOBS than the other sub-

ensembles. The differences in the seasonal SWE volumes during summer and autumn are almost identical, whilerange from 30 

3% in spring to 6% in autumn in winter and spring they are underestimated by 4 and 6%, respectively. Compared to MOD-

METEOOBS For LT-Tindex the modelled SWE volumes of LT-Tindex were almost identical for summer and autumn but 
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substantially lower compared to MOD-METEOOBS (-25% in winter and -26% in spring) for winter (-18%) and spring (-16%). 

Thus, the poor agreement between the observed streamflow runoff regime and the LT-Tindex runs (Figure 3Figure 4) can very 

likely be explained by too much melt being modelled between winter and early spring. The latter results in a reduced SWE 

volume, which is insufficient to supply streamflow with enough snowmelt during late spring and summer. 

3.2 The climate change signals of precipitation and air temperature 5 

The climate change signals of Tmean and precipitation that are presented in the following section correspond to the mean 

change of the spatio-temporal average between a future period (either 2050s or 2090s) and the reference period. For 

precipitation, the spread of the 2050s summer climate change signal (Figure 4Figure 5a, left box) is almost completely caused 

by the GCM structure. Both the emission scenario and bias correction method have negligible effects on the extent of the signal 

range and median, with the latter showing a near zero change in precipitation. Regarding the 2090s summer, the median change 10 

is more negative, while both the emission scenario and bias correction cause a slight increase in the uncertainty range. A 

different situation can be seen for the 2050s winter (Figure 4Figure 5c), where the extent of the range is largely determined by 

the emission scenario. For the 2090s winter, all three components have a considerable impact on the uncertainty range. Here, 

the GCM spread is the largest of all seasons and future periods. It can also be seen that the precipitation signal is noticeably 

higher for the A2 sub-ensemble (mainly caused by ECHAM5-A2). In addition, the selection of the bias correction method 15 

considerably increases the extent of the whole ensemble, resulting in a total uncertainty range spanning 55.351.7 percentage 

points (i.e. from a 284.5% to 83.876.2% increase from the baseline).  

For all seasons the uncertainty in the temperature Tmean signals during the 2050s is predominantly caused by the GCM 

structure (Figure 5Figure 6). The selection of the emission scenario becomes a major source of uncertainty in the 2090s with 

most of the A2 members projecting a stronger signal than their corresponding A1B members. However, this only holds for 20 

members stemming from the same GCM (e.g. ECHAM5-A1B and ECHAM5-A2), as can be seen for the 2090s winter, where 

an A1B member (MK3.5-CSIRO) has a greater warming signal than two of the A2 members (HadCM3 and CM2.1-GFDL). 

3.3 The hydrological signals 

3.3.1 StreamflowRunoff 

For both future periods the historic melt-driven December peak in the annual regime is projected to move earlier in the year 25 

(Figure 6Figure 7). In the 2050s, the highest monthly mean flow is projected to occur between October and November, with a 

further shift for the 2090s (to September and October). The most striking transformation for the 2090s is the dramatic 

enhancement of monthly flows during winter and spring, with uninterrupted increases from May to October. 

In order to specifically compare the contribution of the snow model with the remaining sources of uncertainty, the seasonal 

signals in streamflow runoff are shown separately for WaSiM-Anderson and WaSiM-Tindex (Figure 7Figure 8). It can be seen 30 

that the influence of the snowmelt routine on seasonal flows is comparatively small for both periods and during all seasons. 
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The most noticeable difference is an enhancement of the decrease during summer (Figure 7Figure 8a, e) and a more pronounced 

increase during winter (Figure 7Figure 8c, g) when using the Anderson model. Compared to the snow model the effect of the 

bias correction on the overall spread is more important. Positive signals were found to be enhanced by the QM method and 

vice versa for negative signals. Further, the influence of bias correction becomes visibly more important in the 2090s (except 

for autumn). 5 

While both the bias correction and the snow model contribute to the overall spread, the GCM and the choice of the emission 

scenario appear to be the dominant sources of uncertainty. In most seasons the GCM range differs substantially depending on 

the underlying emission scenario. In the 2050s period this becomes especially apparent for the autumn season (Figure 7Figure 

8b), during which the A2 runs show a much greater spread than the A1B runs. Regarding the 2090s period (Figure 7Figure 8e-

h), differences between the A2 and the A1B runs become more pronounced and the most extreme signals are all represented 10 

by an A2 member. 

Regarding the climate change signal derived from the overall ensemble mean, the largest changes were projected for winter 

and summer. For the 2090s (2050s) summer streamflow runoff is projected to decrease by -24% (-10%), with a substantial 

increase of 71% (29%) during winter. The overall ensemble spread becomes largest for the 2090s winter season, ranging from 

40 to 116%. 15 

3.3.2 Snow water equivalent 

The future simulations of the monthly SWE storage averaged over the KawarauClutha sub-catchment (gauge Chards Rd) are 

depicted in Figure 8Figure 9 for the four sub-ensembles. The historic monthly SWE volumes (blue envelope) vary considerably 

for the four sub-ensembles (as expected from the seasonal values in Table 23), with the lowest and highest volumes modelled 

by LT-Tindex and QM-Anderson, respectively. Despite these differences in the historic envelope, the relative changes are 20 

similar between the four sub-ensembles and thus the results are primarily discussed for the QM-Anderson sub-ensemble. A 

general observation is that the larger spread in the precipitation signal of the QM runs (Figure 4Figure 5) has clearly propagated 

into the uncertainty range of the monthly SWE volume, while the LT envelopes are visibly narrower during both time periods. 

(particularly for the 2090s). 

For the 2050s period (Figure 8Figure 9a), the A1B envelope predominantly lies within the upper and lower bounds of the A2 25 

envelope, with the latter showing a substantially greater spread. The proportion of the two envelopes becomes reversed in the 

2090s period, when the A1B envelope surpasses the A2 envelope in all months (Figure 8Figure 9e).  

Although the 2090s envelopes of the four sub-ensembles have a relatively large overlapping area during winter and spring, all 

of the A2 members have a lower SWE volume than their A1B counterparts. It is however noticeable that the A1B member 

MK3.5-CSIRO has a lower SWE volume than the ECHAM5wo A2 members, which is (HadCM3 and CM2.1-GFDL) that are 30 

associated with a greaterweaker warming signal during winter and spring (Figure 5Figure 6). A closer inspection of the 

corresponding climate signals revealed that the MK3.5-CSIRO-A1B signal can be primarily attributed to less precipitation 

(second smallest increase in winter precipitation of the ensemble), which combined with a relatively strong warming signal 
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(strongest of all A1B members) would have resulted in less snowfall and therefore less snow accumulating. This indicates that 

despite the warming signal being a key driver of SWE changes in the future, the precipitation signal also plays an important 

role, which in this case led to an enhancement of the negative SWE signal. 

3.4 Quantifying the uncertainty in the seasonal streamflow runoff signal 

In order to quantify the uncertainty induced by the individual components of the model chain compared to the overall 5 

uncertainty in streamflow runoff projections, the approach of Muerth et al. (2012) was adopted.  First, the approach is 

exemplified for the uncertainty quantification of the winter streamflow runoff signal (Figure 9Figure 10a). An uncertainty 

component (e.g. GCM) is selected and all possible permutations between the selected and the remaining three model 

components are computed, resulting in 32 combinations (4 • 2 • 2 • 2). In the next step, the currently selected component is 

varied (four GCMs = four circles), while the other three components (emission scenario, bias correction and hydrological 10 

model) are fixed to a certain combination of their members. As such, all of the four circles spanning the first bar (Figure 

9Figure 10a, left, first segment) have the emission scenario fixed to A1B (orange quarter), the bias correction method fixed to 

QM (white quarter) and the snow model fixed to Anderson (dark-blue quarter), while the fourth quarter, which corresponds to 

one of the four GCM members (CM2.1-GFDL, ECHAM5, HadCM3 and MK3.5-CSIRO), is varied. Thus, the effect of the 

GCM has been isolated by fixing the other components to one particular combination. This step is repeated for all the possible 15 

combinations between the three remaining components, translating to a total of eight combinations (eight bars). As each of the 

eight bars in the GCM segment (Figure 9Figure 10a, first segment) contains four circles, all 32 possible permutations have 

been accounted for. The same procedure is then repeated for the remaining three uncertainty components. The mean 

contributions to the overall uncertainty (including the standard deviations) of the individual components are then displayed in 

a radar chart (Figure 9Figure 10b). 20 

The uncertainty analysis (Figure 9Figure 10b-e) identified the GCM as the primary source of uncertainty across all seasons 

(44-57% change in streamflowrunoff). The selection of the emission scenario was the second largest contributor (16-49%), 

except for winter when the choice of bias correction was greater (22% vs. 16%). The uncertainty induced by the emission 

scenario showed a pronounced seasonal variation and was found to be largest during summer (33%) and autumn (49%). A 

likely explanation for the latter are the significantly different Tmeantemperature signals under A1B and A2 (Figure 5Figure 25 

6), which translate to different ET rates and consequently variable changes in streamflowrunoff. This is supported by the fact 

that the most extreme decreases in summer and autumn streamflow runoff occurred under the A2 scenario (not shown here). 

The contribution of bias correction to the overall uncertainty ranged from 4% in autumn to 22% in winter and was higher 

(except for autumn) than the relative contribution of the snow model (3-10%).  

As described in Muerth et al. (2012) the standard deviation associated with the relative uncertainty contribution of an individual 30 

component indicates its degree of dependence on the other model components. Here the standard deviation was clearly largest 

for the emission scenario and the GCM. The standard deviations of both components also varied seasonally and were found to 

be largest during spring and autumn (Figure 9Figure 10c, e). Thus, it can be stated that, during spring and autumn the 
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uncertainty induced by the GCM (same holds for emission scenario) is associated with a relatively large dependence on the 

other variables. 

4. Discussion 

Before the climate change uncertainty assessment was carried out, the hydrological simulations were analysed during the 

reference period. Performance in reproducing the observed regime varied depending on both the selection of the snow model 5 

and the bias correction method. The bias correction method was expected to only have a minor effect on the simulated monthly 

streamflow runoff during the reference period, which made the observed sensitivity somewhat unexpected. A potential 

explanation could be related to the predominant air temperature during mature precipitation events along the main divide. At 

Brewster Glacier (located just outside the Clutha catchment, along the main divide west of Lake Hawea – Figure 1), Cullen 

and Conway (2015) found air temperature to be frequently around the rain-snow threshold during events with major solid 10 

precipitation, which led to the conclusion that the accumulation of snow in areas along the main divide is vulnerable to small 

variations in air temperature. The relatively large variability during the reference period was therefore seen as a first indicator 

for a potentially high sensitivity of the modelled snow storage and streamflow runoff to projected warming. The historic 

analysis also showed that the observed regime was captured more realistically by WaSiM-Anderson opposed to WaSiM-

Tindex. Studies targeting the controlling processes of snowmelt in the Southern Alps (Prowse and Owens, 1982; Sims and 15 

Orwin, 2011) identified net radiation as an important driver of snowmelt (in addition to sensible heat). Thus, the better 

performance of the conceptual energy balance method (WaSiM-Anderson) compared to the Tindex model can likely be 

explained by the advances of accounting for individual melt fractions and using a seasonal radiation melt factor (see Anderson 

(1973) or Schulla (2012)). 

Overall the baseline analysis showed that the individual sub-ensembles performed differently and that the observed regime 20 

was not always enveloped by the corresponding range of simulations. This introduces some additional uncertainty into the 

projections that could not be quantified or accounted for in this study. A potential explanation is that neither snow model was 

able to accurately represent all of the spatio-temporal variation in the snowmelt process across the catchment, and that some 

driving processes (i.e. radiation induced events) are also not represented adequately in either snow model. Either improved 

empirical relationships or a greater physical component to snowmelt modelling would be beneficial in this respect for future 25 

research. Inaccuracies in the meteorological fields (METEOOBS) that were used for the bias correction could also have caused 

some of the seasonal over- and underestimations in the hydrological regime. As discussed in Jobst et al. (2017) the climate 

network in the upper Clutha is sparse with very few sites located in medium to high elevations. Notwithstanding the improved 

representation of temperature provided by the Jobst et al. (2017) dataset compared to other products, the remaining biases in 

this temperature field would have also propagated into the bias corrected RCM fields and the corresponding hydrological 30 

baseline simulations. 
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For the two future periods (2050s and 2090s) the projections revealed substantial increases in streamflow runoff from May to 

October, and a decline between November and March. The dominant drivers behind this regime shift were changes in the 

seasonal distribution of precipitation (for the 2090s-winter +295 to +8476%) and a rise in air temperature causing decreases 

in the seasonal snow storage. These findings are mostly consistent with previous New Zealand based climate change impact 

assessments. In a New Zealand wide study Hendrikx et al. (2012) also modelled substantial reductions in the peak snow 5 

accumulations along the Southern Alps, which they attributed to decreases in the fraction of solid precipitation due to increases 

in air temperature.  

Using a semi-distributed hydrological model (TopNet) and ensemble of 12 CMIP-3 GCMs (including the four used herein), 

Poyck et al. (2011) and Gawith et al. (2012) found a similar ensemble-mean increase in winter streamflow in the 2090s (for 

Balclutha and the upper Clutha – Matukituki catchment), although only relatively small decreases in summer river flow. In the 10 

upper Waitaki catchment (9490 km2, located north-east of the Clutha and also with headwaters bordering the Main Divide of 

the Southern Alps), Caruso et al. (2017) found comparable large increases in lake inflows during winter (i.e. 76% for August) 

and a noticeable decease in summer (i.e. -13% for February) using the same hydrological model and GCM ensemble as Poyck 

et al. (2011). An increase in winter precipitation was also identified as the main driver for the Waitaki.  

Globally, similar changes in streamflow have been reported for many alpine catchments, for example in British Columbia 15 

(Mandal and Simonovic, 2017), Oregon (Chang and Jung, 2010) and the Austrian Alps (Laghari et al., 2012). In addition to 

increased winter precipitation, a reduction in solid precipitation is often reported to lead to an earlier melt peak and further 

enhanced winter flow (Kundzewicz, 2008). Here, a decrease in the proportion of solid precipitation combined with an 

intensification of snowmelt was also found to contribute to more flow being generated during winter and spring, but the main 

driver remained the increase in winter precipitation.    20 

Analysis of the uncertainty in the hydrological projections for the upper Clutha (Figure 9Figure 10) showeds that although the 

total spread of hydrological projections was large (i.e. increase of 40-116% for winter), for most seasons (except autumn) the 

direction of change was found to be consistent amongst individual members (increases in winter and spring, decreases in 

summer). The main contributors to the spread in the projections for seasonal flow were (in ascending order): snow model (3-

10%), bias correction method (4-22%), emission scenario (16-49%) and GCM (44-57%). As in this study, a large body of 25 

existing hydrological impact studies also identified GCM structure as the dominant source of uncertainty (e.g. Kingston and 

Taylor, 2010; Hughes et al., 2011; Teng et al., 2012; Thompson et al., 2014). It should be noted that the four GCMs constitute 

a subset of a total of 12 GCMs which had been previously selected by NIWA on the basis of a performance assessment for the 

South-Pacific region (Ministry for the Environment, 2008). In terms of Tmeantemperature signal (A1B) the four GCMs had 

the 5th, 10th, 11th and 12th 1st, 2nd, 3rd and 8th highest warming– hence the A1B projections used in this study are at the lower 30 

end of the “full” GCM envelope. 

 A large part of the GCM related uncertainty was found to be caused by the precipitation signal, which became especially 

uncertain during the winter season. This finding is in agreement with a number of studies targeting alpine catchments such as 

the Hindu-Kush-Himalayan region (Palazzi et al., 2014; Lutz et al., 2016), the Pacific Northwest of the US (Jung et al., 2012), 



12 

 

Western Oregon (Chang and Jung, 2010) and the Southern Alps of New Zealand (Zammit and Woods, 2011). Hence 

constraining and accounting for the uncertainty associated with the precipitation output of GCMs and RCMs remains a major 

research challenge in hydrological impact studies.   

Emission uncertainty was identified as the second most important source during most seasons, while in winter bias correction 

was found to introduce a similar level of uncertainty. These findings generally agree with the study of Prudhomme and Davies 5 

(2009), in which emission scenario and downscaling (RCM vs. statistical method) uncertainty were of a comparable 

magnitude, but still considerably smaller when compared to GCM uncertainty. For alpine catchments in British Columbia the 

ranking order of uncertainty sources computed by Bennett et al. (2012) was also led by the GCM, followed by the emission 

scenario and in third hydrological parameter uncertainty. 

As described in Kay and Davies (2008) and Thompson et al. (2014), different versions of the same hydrological model can be 10 

developed that differ in one particular routine (i.e. PET) allowing for a process specific uncertainty analysis. In the upper 

Clutha catchment, the high precipitation intensity in the headwaters combined with the relatively high proportion of snowmelt 

(~20%) means that the seasonal regime of the Clutha is largely controlled by the process of snowmelt rather than PET, which 

made the upper Clutha an appropriate candidate for the snow model specific uncertainty analysis. By using the two WaSiM 

versions that only differ in their snowmelt routine the contribution of that process to the overall uncertainty could be assessed 15 

in isolation.  

As expected, the contribution of the snow model was highest for winter (10%). However interestingly, the contribution of the 

snow model was still relatively high during summer (8%), a time of year when the influence of melt processes on streamflow 

were expected to be minor. This can likely be explained by the larger SWE volume that was modelled by Tindex (compared 

to Anderson) during the summer reference period (Table 23). Thus, the Tindex SWE storage had the potential to release more 20 

melt water (compared to baseline) under the projected warming, which translated into an attenuation of the decrease in summer 

streamflowrunoff. This is supported by the fact that the negative changes in summer streamflow runoff are consistently less 

pronounced for the Tindex model (not shown here). For autumn and spring, the snow model only added a small proportion (5 

and 3%, respectively) to the overall uncertainty. Considering that spring is (historically) the main melt period, projections were 

expected to vary more depending on the choice of the snow model. Hence for the spring season the results suggest that under 25 

the projected warming the effect of the snow model can be considered negligible especially when compared to the GCM and 

the emission scenario. At 10% of overall uncertainty in winter, the effect of the snow model is noticeable but substantially 

smaller than the variation caused by the GCM output (48%) (uncertainty of bias correction and emission scenario corresponds 

to 22 and 16%, respectively).  

The study of Troin et al. (2016), which focused on the direct output of the snow model (i.e. SWE or duration of snow pack), 30 

came to comparable conclusions in the sense that hydrological models are not the major source of uncertainty for SWE 

projections. In their study, natural variability had a far greater effect on the projections for the individual snow indicators as 

the snow model component, which was shown here in a similar way for GCM structure. 
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5. Conclusions 

The implementation of WaSiM for the Clutha River constitutes the first application of a fully distributed and grid-based 

hydrological model for climate change impact assessment in a large scale New Zealand catchment. The model chain that was 

built here to force WaSiM with RCM simulations can be regarded as an important contribution to the existing body of climate 

change impact studies targeting snowmelt affected mid-latitude alpine catchments. The projections for the end of the 21st 5 

century encompass substantial increases in streamflow runoff for winter (71%) and spring (35%), while summer streamflow 

runoff is projected to decrease (-24%). The key drivers behind the changes in the regime were found to be an increase in winter 

precipitation and a reduction in the SWE storage between winter and spring. The changes in the regime will likely impact the 

capacity of the two hydropower schemes (Clyde and Roxburgh; Figure 1) located downstream of Chards Rd, where production 

can be expected to increase from winter to early spring, and decrease during the summer months.  10 

Adopting the approach of Muerth et al. (2012), this study allowed the contribution of the individual uncertainty sources to be 

quantified in a more objective way opposed to a mere visual interpretation of results. For the first time the role of the rarely 

investigated snowmelt routine was explored together with three of the key uncertainty sources in hydrological impact studies 

(i.e. GCM, emission scenario and bias correction method). While all components contributed to the total ensemble uncertainty, 

the selection of the GCM introduced the biggest spread to the range of streamflow runoff projections during all seasons. When 15 

looking at the climate signals (Figure 4Figure 5 and 65) it becomes obvious that the uncertainty stemming from the 

precipitation signal (especially during winter) is the primary driver behind the large uncertainty in the hydrological projections 

and should therefore be the focus of future studies. In this context combining the limited number of RCM simulations with 

sophisticated statistical techniques (e.g. the use of probability density functions as described in Tait et al. (2016)) could help 

to more fully explore the uncertainty range associated with the precipitation signal. Further, since the completion of this study 20 

additional RCM simulations based on RCP (Representative Concentration Pathways) scenarios and CMIP-5 GCMs have been 

generated for the New Zealand domain (Ministry for the Environment, 2016), which could be used to enlarge the existing 

ensemble of hydro-climatic projections for the Clutha.   

The uncertainty linked to the snow model, which showed a pronounced seasonal variation (ranging from 3% in spring to 10% 

in winter), was found to be smaller when compared to the other components, but the findings of this study suggest that it should 25 

not be ignored as its effect was shown to be significant for both winter and summer streamflowrunoff. Another important 

finding from this study is that the contribution of the snow model and the other model components to the overall uncertainty 

possesses a high inter-annual variability. While there was consistency regarding the main uncertainty source (i.e. GCM 

structure), the second largest contributor varied between emission scenario and bias correction for the individual seasons. 

Future work should investigate if the selection of the snow model has a stronger impact in other regions or catchments of 30 

different size (i.e. small headwater sub-catchments). Model parameter uncertainty was not accounted for in this study but 

should be investigated as part of future work, which could help to understand and potentially improve misrepresentations in 
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the historic runoff regime.  The use of other hydrological indicators (i.e. low and high flow) should also be explored as the 

effect of the individual components of the model chain might differ for such alternative metrics. 
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Figure 1 Maps showing (a) the location of New Zealand in the Southern Ocean, (b) New Zealand with the Clutha catchment located 

in the lower South Island and (c) the Clutha catchment with some of the key sites (including natural storages and water 5 
management).  

(a) 

(c) (b) 
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Figure 2 The model cascade is depicted with the individual members of each component listed on the right. Permuting the members 

of all components (Downscaling I and II are only shown for the sake of completeness) results in a total of 32 hydrological projections. 

 

 5 

Figure 3 Observed and modelled (WaSiM-Anderson and WaSiM-Tindex) daily runoff at Chards Rd during the first four years of 

the validation period (1992-1996). The snow water equivalent (SWE) is also plotted for the Tindex and Anderson simulations, 

respectively. 
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Figure 3Figure 4 RCM driven mean daily runoff simulations for the 1/4/1992–30/3/2011 period at Chards Rd. Simulations are 

compared with the observed regime (grey line)  and the modelled (WaSiM forced with observed meteorology) regime (blue line) for 

the four subensembles: QM-Anderson (a), QM-Tindex (b), LT-Anderson (c) and LT-Tindex (d). 5 
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Figure 4Figure 5 The uncertainty range of the precipitation signal (domain average) is shown for the entire ensemble and the four 

seasons: summer (a), autumn (b), winter (c) and spring (d). Each plot contains two uncertainty boxes (for 2050s and 2090s). For 

each box the uncertainty range is broken down into the two emission scenarios and the two bias correction methods. The red line 

represents the median of all 16 members within a box. 5 

 

 

Figure 5Figure 6 The uncertainty range of the Tmeanmean temperature signal is shown for the entire ensemble and the four seasons: 

summer (a), autumn (b), winter (c) and spring (d). Each plot contains two uncertainty boxes (for 2050s and 2090s). For each box the 

uncertainty range is broken down into the two emission scenarios and the two bias correction methods. The red line represents the 10 
median of all 16 members within a box.  
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(a) (b) 
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Figure 6Figure 7 Mean daily Mmodelled runoff (orange envelope = A1B and grey envelope = A2) at Chards Rd during the 2050s (a) 

and 2090s (b) is compared with the historic simulations (blue). All simulations are based on the QM-Anderson subensemble (note 

different y-axes). 

 5 

(a) (b) 
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Figure 7Figure 8 The uncertainty range of the seasonal runoff signal is shown for Chards Rd. Each plot contains an uncertainty box 

for WaSiM-Anderson and WaSiM-Tindex simulations, respectively. In each box (red line = median) the uncertainty range is broken 

down into the two emission scenarios (LT and QM) and the two bias correction methods (LT and QM)  (red line = median). The 5 
results are shown for the 2050s (a-d) and the 2090s (e-h). 
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Figure 8Figure 9 The monthly SWE storage (km3) is depicted for the 2050s period (a-d) and the 2090s period (e-h). The results are 

shown for the four subensembles QM-Anderson, QM-Tindex, LT-Anderson and LT-Tindex, respectively. In each plot the individual 

members are augmented by the A1B envelope, the A2 envelope and the ensemble mean (dashed line). The blue envelope represents 

the range of SWE volume simulations during the baseline period. 

 5 

 

Figure 9Figure 10 (a) Uncertainty by varied model component exemplified for winter and relative contribution to the overall 

uncertainty for the simulated changes in seasonal streamflow runoff for (b) winter, (c) spring, (d) summer and (e) autumn. Based 

on the permutations for each season the radar charts show the mean contributions [%] of the four model components to the overall 

uncertainty as well as the standard deviations [%]. 10 
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Table 1 Parameters of the two snow melt routines as determined by the calibration routine. T0 and CWH are mutual parameters of 

both models. The snow accumulation parameters are based on the findings of Auer (1974). 

Anderson and Tindex   

Threshold temperature for snowmelt (T0)  0.00 

Water holding capacity of snow (CWH)  0.29 

 Tindex   

Temperature dependent DDF (c0)  1.91 

 Anderson   

Temperature dependent DDF (c1)  0.63 

Wind dependent DDF (c2)  0.08 

Minimum radiation melt factor (RMFMAX)  3.13 

Maximum radiation melt factor (RMFMIN)  0.36 

Snow accumulation  
  

Temperature, at which 50% of precipitation are falling as snow (TR/S)  3.00 

Half of the temperature-transition range from snow to rain (Ttrans)  3.00 

 

Table 2 Nash Sutcliffe values based on daily (NSE), logarithmic (NSElog) and monthly streamflow data during the calibration (Cal) 

and validation (Val) periods calculated for the WaSiM-Anderson and WaSiM-Tindex (in brackets) simulations. Note the different 5 
validation periods for The Hillocks and Peat’s Hut due to shorter records. 

 

River Gauge 
Cal (1.4.2008-31.3.2012) Val (1.4.1992-31.3.2008) 

NSE NSElog NSEmo NSE NSElog NSEmo 

Dart The Hillocks (1996-2012) 0.77 (0.77) 0.77 (0.78) 0.92 (0.92) 0.64 (0.65) 0.64 (0.68) 0.78 (0.79) 

Shotover Peat's Hut (1996-2012)  0.64 (0.65) 0.67 (0.70) 0.81 (0.82) 0.60 (0.62) 0.65 (0.70) 0.76 (0.79) 

Kawarau Chards Rd 0.87 (0.88) 0.88 (0.87) 0.89 (0.90) 0.87 (0.85) 0.86 (0.86) 0.89 (0.87) 

Matukituki West Wanaka 0.67 (0.67) 0.64 (0.65) 0.80 (0.80) 0.62 (0.62) 0.72 (0.72) 0.83 (0.82) 

 

 

Table 2 3 The historic (1/4/1992 – 30/3/2011) water balance terms of the MOD-METEOOBS run compared with the corresponding 10 
(depending on snow model) RCM ensemble means (QM and LT). The seasonal and annual SWE volumes are also shown. 

Anderson 
P ET Q SWE [km3] 

[mm] [mm] [mm] DJF MAM JJA SON YEAR 

MOD-METEOOBS 2007 471 1512 0.53 0.15 0.83 1.30 0.70 

QM 1926 473 1425 0.56 0.14 0.80 1.26 0.69 

LT 1931 466 1443 0.53 0.15 0.68 1.09 0.61 

                     Tindex 

MOD-METEOOBS 2007 473 1509 0.65 0.24 0.82 1.25 0.74 

QM 1926 475 1422 0.65 0.20 0.78 1.19 0.70 

LT 1931 468 1441 0.57 0.19 0.63 0.98 0.59 
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