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Abstract. This work aims to assess the estimation of surf@atemetric soil moisture (VSM) using the Global\Wgation
Satellite System Interferometric Reflectometry (GNIR) technique. Year-round observations were aeduirom a
grassland site in southwestern France using ammaateonsecutively placed at two contrasting heighisve the ground
surface (3.3 or 29.4 m). The VSM retrievals are garad with two independent reference datasetsturobservations of
soil moisture, and numerical simulations of soilistre and vegetation biomass from the ISBA (Irtgoas between Soil,
Biosphere and Atmosphere) land surface model. 8cdgM estimates can be retrieved throughout the yeaoving
vegetation effects by the separation of growth semkscence periods and by the filtering of the GNRS&bservations that
are most affected by vegetation. Antenna heightrimasignificant impact on the quality of VSM estiesm Comparisons
between the VSM GNSS-IR retrievals and the in ¥i8M observations at a depth of 5 cm show a goodeagent R =
0.86 and RMSE = 0.04 Tm®). It is shown that the signal is sensitive to ¢nass litter water content and that this effect
triggers differences between VSM retrievals anditn VSM observations at depths of 1 cm and 5 @peeially during

light rainfall events.

1 Introduction

Soil moisture is a key component in the hydrologaele and in the soil-plant-atmosphere continultns also important
for irrigation management and flood prediction (Rgdez-lturbe and Porporato, 2007). However, in sibservations of
soil moisture are very sparse and with small sampliolumes. On the other hand, L-band satellitévddrproducts, for
example, from the soil moisture active passive ($Waission or the soil moisture and ocean saliy1OS) mission,
have a coarse resolution of tens of kilometers (Cétaal., 2016; Kerr et al., 2001). These prodwcissist in surface
volumetric soil moisture (VSM) and concern the sajil layer (from the soil surface to a depth ob5tcm). There is a need
to monitor VSM at the local scale in order to vatiel model simulations, and satellite-derived pré¢glu€he International

Soil Moisture Network (Dorigo et al., 2013) has bewollecting such in situ observations. The Consriton Earth
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Observation Satellites (CEOS) Land Product Valalatgroup has recommended expanding the soil meigiatworks
(Morisette et al., 2006). In particular, developimev automatic monitoring techniques to measure \¥Shkeeded.

The Global Navigation Satellite System InterferomceReflectometry (GNSS-IR) technique has demotstraa strong
potential to monitor VSM using ground-based recesivi&hew et al., 2014). GNSS antennas measureighal glirectly
emitted by the GNSS satellites, together with tiymad reflected by the surface surrounding the ramte The GNSS-IR
technique allows relating the reflected signal e tharacteristics of the reflecting surface andetoieve geophysical
variables. Over land, variables such as soil mmstanow depth and vegetation parameters can bervalas using this
technique (Larson et al., 2008; Small et al., 2Qt0son and Nievinski, 2013; Wan et al., 2015; bars2016; Roussel et
al., 2016; Zhang et al., 2017). GNSS satellitest extiive L-band microwave signals (between 1.2 aidGHz). The L-
band signal is less affected by vegetation effdw@a shorter wavelengths, which is an asset tevetisurface soil moisture
(Kerr et al., 2001). The GNSS-IR footprint can coup to thousands of square meters, dependingeoarttenna height and
on the satellite elevation angle (Larson et all,®0/ey et al., 2016).

In addition to a specially designed antenna toivecthe reflected GNSS signal from the land surfé&avorotny et al.,
2014), classical geodetic-quality GNSS antennasbeansed to estimate VSM (Larson et al., 2008)h&utennas have an
antenna gain pattern optimised for Right Hand Qéacuolarization (RHCP) and minimized for Left Ha@ircular
Polarization (LHCP). A GNSS network called PlateuBdary Observatory (PBO).B with geodetic-quality antennas on
ground in western USA is currently used to moni&M (Larson et al., 2013; Larson, 2016; Chew et2016) and snow
depth (Larson et al., 2009). The basic observatsad in this technique is the signal-to-noise rg&NR) which is related to
temporal changes in the interference between ttextdand the reflected GNSS signals. Each GlobaltiBning System
(GPS) satellite repeats the same orbital cycle fooe day to another (offset of a few tenths of mb&tween two adjacent
cycles). This property permits monitoring surfadermges through time of the environmental conditismsounding the
receiving antenna.

The present day Block Il R-M (Replenishment Modeedi) and Block Il F (Follow-on) GPS satellites nmansmit a L2C
(1227.60 MHz) civilian signal. Power and precisifrthe L2C signal are higher than for the L1 C/§rsil (1575.42 MHz)
transmitted by all GPS satellites. Several previstuslies, such as Larson et al. (2008), Larsor. §2@10), Chew et al.
(2014), Chew et al. (2016) and Small et al. (208)lusively analyzed the SNR data from the GPS ERfBal to retrieve
soil moisture. The Block Il F satellites also tramisthe latest L5 signal (1176.45 MHz) as well, efhfeatures even higher
power, greater bandwidth and an advanced signafjde$Shere are now seven Block Il R-M satellitesg®do-Random
Noise (PRN) numbers 5, 7, 12, 15, 17, 29 and 3ntifying each satellite) and twelve Block Il Feddtes (PRN 1, 3, 6, 8,
9, 10, 24, 25, 26, 27, 30 and 32).

Due to the motion of the satellites, the direct aeffiected signals cause an interference pattef@NR data. The SNR
oscillations depend on known attributes such asdhellite elevation angle, signal wavelength amérana height. The SNR
amplitude and phase can be solved by using thé¢ $emmre estimation (LSE) method (Larson et alQ82@hew et al.,
2016). Larson et al. (2008) and Larson et al. (2@hdpirically showed that phase correlates withr1seaface soil moisture,
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with values of the coefficient of determinatid®’) ranging from 0.76 to 0.90. This property was usgdhew et al. (2014)
to develop an algorithm to estimate surface soiktace (top 5 cm) for bare soil. They used a phajssarface scattering and
dielectric permittivity model to derive a relatidmig between the phase and soil moisture, in voltimenits (nf m?®). Vey
et al. (2016) validated this algorithm, using fieldservations acquired during the 2008-2014 pdrimt a site presenting a
high percentage of bare soil. They obtained thieviohg R? and root mean square error (RMSE) scores for V&iievals:
R? = 0.80, and RMSE = 0.05%m. However, for vegetated soil the phase of the $\&lso affected by vegetation. Chew
et al. (2016) showed that seasonal vegetationtsffat phase have to be considered for soil moigstienation. They also
observed that amplitude decreased as vegetation grenodel database for the SNR from L2C signal wsed to remove
most significant vegetation effects. Small et aDX6) compared different algorithms of GNSS-IR sadisture retrieval in
the presence of vegetation.

Zhang et al. (2017) used the GNSS-IR techniqua feheat field throughout the growth and senescpaded in 2015. The
L1 C/A signal was acquired over a wheat field dgrinperiod of about 7 months using a Leica GR26ivec, and a Leica
AR10 antenna at a constant height of 2.5 m abowesdlil surface. They showed that VSM could notdigaved when the
vegetation canopy is too dense, i.e. plant heigbtsimulated dry above-ground biomass larger thenwavelength (~19
cm for L1) and 0.08 kg i respectively. On the other hand, relative plagight could be retrieved in such conditions. In
this study, both L2C and L5 signals were acquireer @ meadow during a rather long period of timalodut 15 months
using the same equipment (GR25 receiver, AR10 aajest contrasting heights (3.3 or 29.4 m) aboeestiil surface.

The objectives of this study are to (1) investiget®M estimation over a meadow, in contrasting ctods of plant
phenology (growth, senescence, after and befotengyt(2) compare the use of L2C and L5 signa3,assess the impact
of a major change in the height of the receivinteana above the soil surface, in relation to thd&R&dmpling interval.
Investigating the impact of the sampling interval \dSM retrievals is needed due to the fact thatliseaenpling intervals
(e.g. 1 s) generate a large amount of data (~10@&lmay for GPS satellites). Larger sampling ider may be defined to
reduce the amount of daily data.

A key difference between this study and Zhang e{2017) is related to the type of observed vegetatanopy. The
meadow considered in this study and the wheat fieltsidered by Zhang et al. (2017) present comigasharacteristics.
The meadow is cut once a year and consists of t-spgcies permanent grassland incorporating ex litbmposed of dead
leaves. On the other hand, the wheat crop in Zletad) (2017) consisted of a single plant speciés mo litter.

Past microwave remote sensing studies (e.g. Salah,2007) have shown that permanent grasslaatiave differently
from crops. Because permanent grasslands incogparditter composed of dead leaves, they can ieperprecipitation
considerably more than annual crops. The short iggpwycle of annual crops does not allow the acdation of large
amounts of litter material. This property of permangrasslands can have a major effect on the mére signal and can
perturb the retrieval of VSM, even at GPS L-bandl€B et al., 2007). Also, the structure of grag®pées differs from the
structure of crops such as wheat and this has padtron the attenuation of the microwave signavédgetation (Wigneron
et al., 2002).
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GPS SNR data from both L2C and L5 signals are néthusing a geodetic-quality GNSS antenna. SNRysisalising the
GNSS-IR technique is used to retrieve VSM overetdfcovered with grass using the normalization méthased on the
newly-established scaled wetness index proposedhlayg et al. (2017). Another point to underlinghie impact of the
antenna height (here 2 levels: 3.3 and 29.4 m abimveoil surface) on the VSM retrieval. Moreowvtte VSM retrievals
from two kinds of GPS signal wavelengths (24.45 @40 cm for L2C and L5, respectively) are comgangth field
observations. We analyze the vegetation effectsv8M retrieval accuracy. Another important addressegic is the
influence of the sampling interval on the VSM esties. As the SNR period changes depending on ttesran height,
satellite elevation angle, elevation angle charmge and GNSS signal wavelength, the sampling iatdras to be adjusted
accordingly in order to maintain the VSM retrieagkcuracy.

Data are described in Section 2 and methods indpe8t The obtained soil moisture retrievals arespnted in Section 4
and compared with independent VSM estimates. Resar¢ discussed in Section 5. And the main coraissiare

summarized together with prospects for furtherasgein Section 6.

2 Siteand data
2.1 Sitedescription and validation data

The study site is located at the premises of M&t@mce in Toulouse, France, over an experimerelal iovered with grass
(43°34'26"N, £22'27"E). Since 2012, this instrumented site idefisoil moisture profile observations from thefae
down to a depth of 2.2 m. Other measurements ssi¢hraulent fluxes are made in the framework of Meteopole-Flux
project (https://www.umr-cnrm.fr/spip.php?articld®iang=en) and ICOS (Integrated Carbon Observat®ystem,
https://icos-eco.fr/). The soil fine earth in theperimental field at a depth of 5 cm consists d¥b54and, 14.5% clay and
34.5% silt.

The grass height did not exceed 0.3 m during tipe@mxent time period. This is much lower than maximheight of the
wheat crop (~ 1 m) in Zhang et al. (2017). A ladifference could also be noticed in maximum aboraigd dry biomass
values: less than 0.5 kg frfor grass (this study), about 1 kg?or wheat (Zhang et al., 2017). The grass waswice
during the study period. The cutting process toskesal days and the grass was fully cut on: 7 Gut@®15 and 9 July
2016, for the 29.4 and 3.3 m antenna observingsareapectively.

Mean in situ VSM observations at 5 and 1 cm deptire performed using precise Delta-T ML2x Thetalesodnd low-cost
Decagon EC-5 VSM sensors, respectively. Three Phetees measured VSM at a depth of 5 cm and weageldavithin a
few meters of each other (red star in Fig. 1). Wean value was derived from these probes to repréise in situ VSM
observations at 5 cm. Only one EC-5 sensor was tasateasure VSM at 1 cm. Precipitation measuremeate made in
the experimental field by one rain gauge closéhtinh situ soil moisture sensors. A small fractidrihe precipitation time

series was missing. Missing data were replacecéyptecipitation data obtained from the SAFRAN apie@ric analysis
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(Durand et al., 1993, 1999). Additionally, scale8N observations at a depth of 1 cm and scaled ViaMlations for the
top 1 cm thick soil layer were used as indepentdenthmarks for validation.

VSM simulations for the top 1 cm were produced gsime ISBA (Interactions between Soil, Biospherg] Atmosphere)
land surface model within the SURFEX (version 8x@)deling platform (Masson et al., 2013). In additim VSM,
simulations included the soil iced water conterd #me vegetation above-ground dry biomass. The 18®Alel used the
atmospheric forcing data produced by the SAFRANoapheric analysis of Météo-France. The model veraged in this
study was designed for generic country-scale sitioulg over France at a spatial resolution of 8 ki® km. It was not
calibrated for this particular site. Sub-grid vedietn types are represented and soil moisture aiidesnperature profiles
are simulated for each vegetation type, indepehgeit other vegetation types. In this study, the @assland plant
functioning type and a multilayer representatiotthaf soil hydrology are considered. The model defth is 12 m, with 15
layers and the layer thickness increases fromdpestirface layer to the deepest layers (Decharraé,e2011). It must be
noted that the SAFRAN precipitation forcing is bdhsm ground observations and is quite realisticif@mna-Segui et al.,
2008). The ISBA configuration and the SAFRAN atruesfic analysis used to force the model are deatiibéafont et al.
(2012).

2.2 GNSSdata

In this study, GNSS SNR data were acquired usingiaa GR25 multi-constellation and multi-band getoxeeceiver
equipped with an AR10 antenna during more thany@a&. Two measurement configurations were expl@ragl 1). First,
from 1 August 2015 to 5 June 2016, the antennapleaced at the top of a building close to the stuidjeassland, at a height
of 29.4 m above the soil surface {88'30"N, £22'26"E). Second, from 8 June to 6 October 2016 antenna was moved
on top of a small technical shed located within tieadow, close to the in situ sensors, at a heifjAt3 m above the soil
surface. During the first 29.4 m antenna heighteeixpent, the SNR sampling interval was reduced fidhto 1 s on 19
March. When the antenna height was changed frorh 893.3 m, the sampling interval remained at aiwalf 1 s. GNSS
SNR data were missing for 24 days: from 1 to 1day) from 17 to 26 May, and on 1, 6 and 7 June&6201

In this study, both L2C and L5 SNR data from theS@?ock Il R-M and Block Il F satellites were us@dhe ascending and
descending parts of the same satellite were predes=parately and were considered as independelitsdracks (Roussel
et al., 2015, 2016).

The valid SNR segment for each ascending or degugsdtellite track was limited based on the awddaatellite elevation
angle range (90° being defined as zenith). FoBtBam antenna height, the multipath signature waelsat elevation angles
above 30° or below 7°, and the reflecting regiarsi(fFresnel zone, FFZ) often included both groamd surrounding
obstructions. Therefore, only data correspondinglévation angles ranging from 7 to 30° were cogr@d. For a given
satellite track, the field observation area wasuai390 nf, and the observing duration was about one houl€Ta). The
range of instantaneous FFZ areas is indicated bieTa. After sorting elevation angles, 36 and 2telite tracks were

available for L2C and L5 SNR data, respectivelye Tdorresponding reflecting points and FFZ areasiobd using a
5
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reflection location model for GNSS-R (Roussel et, &014), are shown in Fig. 1. The successive éxpeatal
configurations are listed in Table 2 and shownim E.

Measurements from the antenna at a height of 29wkra affected by surrounding obstructions (budgimnd impervious
areas like car park, roads, etc.) and by an uralepbng issue at a sampling interval of 10 s (seet.31.2). In order to cope
with these problems, only 6 satellite tracks weseduto retrieve VSM from L2C SNR data (GPS PRN0JF3,08, 17, 25 and
26), and 4 satellites tracks from L5 SNR data (GRBl 03, 08, 25 and 26). Satellite track charadtesignd instantaneous
FFZ areas are given in Table 1. The selection tdllge tracks and elevation angles was performgadmparing VSM
retrievals with the in situ VSM observations dedsed in Sect. 2.1. It must be noted that this litiata only affected
measurements at a height of 29.4 m and was caystn lmore complex experimental constraints in toisfiguration (e.qg.
possible parasitic signal reflection on buildingsyr the low antenna configuration (3.3 m), thigiidnal data sorting was
not needed and all available satellite tracks w@itbomplete elevation angle range (between 7 anyl\86€fe used. As a
result, a larger variety of satellite tracks cob&lused for the antenna at a height of 3.3 m wihs&ampling. With a higher
antenna, the size of the observed reflecting serfaarkedly increase (Larson et al., 2010). Althotlgh elevation angle
range used for the antenna at 29.4 m is smaller finathe antenna at 3.3 m (Table 1), a much laddeserving area is
obtained for each satellite track. More details uibthe elevation range, the observing time period approximate
observing area for each satellite track are shawdable 1. The SNR data are typically convertednfriheir native
logarithmic units (dB-Hz) to a linear scale (V*\V(Vey et al., 2016). For a static receiver, theRSiN governed to a large
extent by the interference pattern (IP). The IBgBned as the coherent summation of direct andatefl GNSS signals on
the in-phase and quadrature space (Zavorotny eR@l4). This coherent summation generates an IBrevhigh and
intermediate frequencies distinct from noise fragues, are related to the difference of travellsthatice between direct and
reflected waves. The IP can be characterized Witl$& receivers using either (1) two antennas (eodriBuez-Alvarez et
al., 2011) or (2) one antenna (e.g. Larson e28D8; Chew et al., 2014; Zhang et al., 2017). is $tudy we used the one-
antenna IP technique as illustrated by Fig. 1 irsta et al. (2016) for a simple planar and horiabgtound reflection. A
low order polynomial curve is fitted to SNR dataoitler to retain only the multipath IP (Bilich ét, 2008).

3 Methods

The modulation of the SNR by the multipath frequeocan be expressed as (Larson et al., 2008, 2di®y @t al., 2016):
AH, .
NR = Acos#"sm@—qp) (1)

whereA is the amplitude of the modulation agds thephase offsetd is the satellite elevation anglejs the GNSS signal
wavelengthHy is a fixed a priori effective antenna height facke satellite track, which is not known and halsacestimated
from the SNR data in snow-free and sparse vegetatoditions (Chew et al., 2016). Based on Eq.$NR phased) can
be solved by LSE method, and then this estimateai be used to retrieve VSM.

6
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Due to the good linear relationship betwgesnd in situ surface VSM, VSM can be estimatedefich satellite track (Chew
et al., 2016):

VM = SH@-@,,) *VIM, 4 @)

The Sparameter (in mm* degred) is defined using the a priori value. A valueSsf 0.0148 mm® degre& was proposed
by Chew et al. (2016) for the PBO,® network. This value is adapted to situationsoof Vegetation density or cover and is
valid for the Trimble antennas used in the PB§@Hhetwork. In this equation, thetime series is zeroed using a minimum
phase valueg,,) for each satellite track. This procedure is ustfuensure compatibility among different satellitacks.
dmin IS the mean of the lowest 15%gfalues for each satellite track during the congideime segment and VS)yis the

residual (minimum) volumetric soil moisture value.

3.1 A new normalized SNR phase method (Zhang et al., 2017)

In this study, the method proposed by Zhang ef28117) is used. Normalizing time series ensures compatibility among
different satellite tracks (Zhang et al., 2017)réjé is normalized with zero minimum in order to obt#ie scaled wetness
indeX @ingex as the following:

¢ - ¢min (3)
qqnax - (Dmin

wheredni, andgna are the mean of the lowest and highest 15% ofthtstical distribution of for each satellite track

Wndex =

during the considered time segment (TS), respdgtiviEhis averaging procedure is used in order k@rfiout outliers
corresponding to abnormally high or l@westimates. Negatiug,q.x values are replaced by zero.

Moreover gingex Can be used to estimate VSM as follows:

VSVI = Wnda [Q\/SVI obs _max _VSVI )+VSVI obs _min (4)

obs _min
Similarly to phase computation and to avoid art8ad/SMyps min@nd VSMys maxare the mean of the lowest and highest
15% of daily mean in situ VSM observations at atdegf 5 cm during the considered time segment, eetbgely. The
median VSM estimate from all available satellitgcls is considered as the final VSM estimate pgr baorder to better
correct for vegetation effects, vegetation growtld genescence were considered as independentagnegests instead of

applying Egs. (3-4) to the whole period.

3.2 Assessment of vegetation effects

SNR amplitude &) is affected by vegetation, which can be usedssess whether or not vegetation effects are sogmifi
Chew et al. (2016) defined the normalized amplit@de,) as the ratio of amplitude to the average of the 20%
amplitude valuesA,, (dimensionless) values below 0.78 indicate thajetation effects are significant and cannot be
neglected. When vegetation effects are significdugtS parameter value may depart from the value usétin2). A way

to cope with this issue is to apply the Zhang e{2017) method for a given time segment preserdongistent vegetation
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properties. Phase is scaled & not needed. The time series in this study paisged into four time segments: (1) TS1,
from 1 August 2015 to 18 March 2016 (a vegetatmmescence and dormancy period with data acquioed tihe antenna at
29.4 m using a 10 s sampling interval), (2) TS2mrl9 March to 5 June 2016 (a vegetation growingodewith data
acquired from the antenna at 29.4 m using a 1 plsagninterval), (3) TS3, from 8 June to 8 July BO(a vegetation
growing period with data acquired from the anteana.3 m antenna using a 1 s sampling interval)(@phd S4, from 9 July
to 6 October 2016 (after the grass cutting witlagatquired from the antenna at 3.3 m using a inplgag interval).

Another step is to select relevant satellite traokder significant vegetation effects. This is jgatarly challenging in dense
vegetation conditions. Even in conditions presensignificant vegetation effects, some satellitclis can be selected to
retrieve VSM. This occurs during TS3, correspondimdpow Ao vValues (Fig. 2). In order to select satellite ke such
conditions, only tracks presenting a continuityV&M retrievals with the following vegetation senesce period (TS4) are
kept. Only tracks giving similar VSM estimates {ditnce lower than 0.06°m?) at the end of TS3 and at the beginning of
TS4 are used for TS3. This procedure eliminategrdeks corresponding to the most densely vegetateals in the grass
field.

4 Results
4.1 VSM estimates

Figure 2 presents the VSM estimates derived froth be L2C and L5 SNR data using the normalized $R&se method
(see Sect. 3.1) and the vegetation correction mefsee Sect. 3.2). Results are shown for the wéxgperiment period from

1 August 2015 to 6 October 2016, and for all theesinental configurations of antenna height, sangpinterval, and grass
cutting (time segments).

The first grass cutting event occurs during TS1Hag no effect oA,,m because the above-ground biomass is relatively low
(less than 0.25 kg ), as shown in Fig. 2. On the other hand, the sganriting occurring before 9 July 2016 has a
significant effect o\, because, at that time, vegetation is not yet semégabove-ground biomass is about 0.50 Ky. m
Another reason to separate TS3 and TS4 is that 2@, values are significantly smaller during TS3 (06l 0.94
for TS3 and TS4, respectively).

The scaled wetness indexégde,) and VSM estimates are obtained for each of tiiesetime segments. The VSM scores
for the four separated time segments are recomiéthble 2. The mean absolute error (MAE), RMSE Rhdcores for
senescent, dormant or cut vegetation (TS1 and aB4petter than during the vegetation growing pe(ibS2 and TS3).
Scatter plot of the in situ VSM observations (N@9% at a depth of 5 cm versus GNSS VSM retrievalshown in Fig. 3.
The RMSE and the standard deviation of differeq&BD) scores are: RMSE = 0.038 m® and SDD = 0.035 inm?®,
respectively. Thé&? score is equal to 0.86 for merged L2C and L5 Sldfa.dAbout the same value is found using only L2C
data R = 0.85). The mean bias (0.02 m®) is positive, because the VSM estimates are gydaager than in situ VSM

observations at 5 cm depth.
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Figure 2 shows that the GNSS VSM retrievals areensansitive to light rainfall events than in sit8M observations at 5
cm depth. Such events occur during the summer andna of 2016. It can be observed that while GNS/Mestimates

peak at the same time as light rains, the diffusiowater in the soil does not reach the probésah depth. This is why the
GNSS VSM tends to be larger than in situ VSM. Tdifference reduces the correlation and increasegtiors and can be
attributed to a GNSS-IR sensing depth less tham §Ghew et al., 2014 ; Shellito et al., 2016),dfation to vegetation litter
effects (see Sect. 5.3).

In the following sub-sections, more detailed corngmars are presented for antenna heights of 29.48 znoh.

4.2 VSM estimates from a GNSS antenna at 29.4 m above the soil

In most previous studies, VSM was retrieved fromS&N\antennas at about 2 or 3 m above the soil surfacreasing the
antenna height can significantly expand the sizh@fobserved areas. In this study, the impacsiofgua 29.4 m antenna on
VSM retrievals is assessed using TS1 and TS2 @ia.whole observation area for each track is aB00t nf or even
larger. The grass is cut in TS1, before 7 Octoltd52 Before grass cutting, the maximum simulatedvaiyround dry
biomass is about 0.25 kg™nFig. 2). For TS1A,om values are more often than not above 0.78 (FigA)ve this threshold
value, the vegetation effects are not signific&tigw et al., 2016). From mid-August to mid-Septemn{before the start of
grass cutting)Anerm is slightly smaller than the threshold value, ¥8M can be estimated at these dates. Moreoverfassg
cutting effects are observed in thg,, values, which also shows that vegetation effeotsret significant. The VSM
retrievals, using the L2C SNR data, are comparddgn4 with in situ VSM observations at a depttbafm. Figure 5 shows
that VSM retrievals tend to be larger than theiin sbservations. Similar results are obtained fttvn L5 SNR data (Fig.
5). The L2C and L5 VSM retrieval scores are presgint Table 3.

Fig. 5 and Table 3 show that VSM retrievals usifigSNR data are very close to those derived from BENR data. The
retrieval accuracies from L2C and L5 SNR data arglar (Table 3), showing that both L2C and L5 SN&a can be used
to retrieve VSM. In Table 2, L2C and L5 SNR data eombined. Results for TS1 in Table 2 show sligintiproved scores
with respect to those in Table 3. This can be émpth by the larger number of available satelliecks per day. It is
interesting to note that results very similar tosth presented in Fig. 5 can be obtained by muiltiglpy 0.6 the S value
used by Chew et al. (2016) (not shown).

Overall, the scores obtained during TS1, at a hedfi29.4 m and a sampling interval of 10 s are parable to those
obtained in other time segments, including TS2 widampling interval of 1 s. The scores (Tablen2)$2 are similar to the
scores in TS1. This does not mean that there ieffext from the sampling interval because vegetatonditions are
different in TS1 and TS2. TS2 corresponds to ataige growing period. Vegetation growth impacts tkflecting surface
and has an impact on the SNR data as illustratetthdyast decrease éf,m values in Fig. 2. Moreover, the SNR data in
TS4 (after grass cutting) are used to assess thacinof changing the sampling interval, without i@ in vegetation

conditions. This is discussed in Section 5.4.
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4.3 Removing vegetation growth effectsfrom VSM retrievals

Substantial vegetation effects are observed dur$®, at the end of the growing season of 2016. iBhevidenced by,om
values lower than 0.78 (Fig. 2). Grass is cut atethd of TS3 (before 9 July 2016). After grassiegttthe SNRAom values
gradually raise to a relative large value (abow&).For example, the daily mean L2¢,,, values are 0.67, 0.69, 0.75 and
0.86 from 6 to 9 July 2016, respectively.

In order to remove vegetation effects, the SNR dafare and after cutting are considered as distiatasets (see Sects. 3.1
and 3.2). SNR data are used, time segment by &geant, to obtain soil wetness index and then VStilmates. For L2C
(L5), 10 (6) satellite tracks out of 36 (21) aréested for use during TS3. Figure 6a shows the \f8ivlevals for each time
segment TS3 and TS4 for L2C SNR data after remowvaggtation effects by applying the Zhang et @1{ method. The
corresponding scores are listed in Table 4. Sinnédaults are obtained for L5 and both L2C and L5RShata (Table 4).
Results obtained by applying the Zhang et al. (2@48thod to the merged time segments (TS3 and fi842C SNR data
are also shown in Fig. 6 and in Table 4. In thisec&NR-derived VSM are too dry before the cutéing too wet after the
cutting (Fig. 6b).

5 Discussion
5.1 Why should growth and senescence be treated separately?

While VSM could not be retrieved by Zhang et alDX2) after wheat tillering, i.e. for plant heigltrder than 0.2 m, we
could retrieve scaled VSM values throughout timgnsents of the grass growing and senescence phisegever,
retrieving VSM values in fhm® was challenging and required a seasonal rescalimgcount for vegetation effects (see
Fig. 7).

Section 4.3 showed that the VSM retrieval from StdRa during TS3 is of lower quality than during T8d. after cutting
the vegetation. Not all satellite tracks can beduSeable 1) and skill scores are systematicallysediTable 2). Moreover,
Figure 6 shows that a specific calibration (seet.S&2) of the retrieval method is needed for TB8cause the retrieval
method is based on the minimum phase which iseelat the vegetation height and density, the ldak mriori information
about this factor is likely to trigger marked dispancies.

Based on Eq. (1), SNR amplitudeand SNR phasé are calculated using the LSE method, assumingttieatrelative
antenna heighty) for each satellite track is constant across datesignoring the impact of the elevation anglencfeainA
(Larson et al., 2008; Larson et al., 2010). Theiaredalue of the derived effective antenna heightnfthe SNR data by the
Lomb-Scargle periodogram method is considered evalue of the a prioti, for each satellite track (Chew et al., 2016).
This hypothesis is only valid for the dates whem $lrface is not covered with snow or dense veagatahlthough the real
effective antenna height may vary from one dayrtotlaer, a constant value Hf is used through time for a given satellite

track. This assumption is made in order to enswgeconsistency af time series across dates. The a pifyrivalue affects
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the sinusoid fit, and might cause a systematic biasand¢ across dates. When there are significant vegetafiects, the
vegetation height affects the effective antennalitefZzhang et al., 2017). This explains why theaot#td VSM retrieval
time series with merged time segments are not wootis (Fig. 6). Segment by segment normalizatiarseful to remove
such systematic biases and to remove vegetatientsffrom VSM retrieval. It can be considered aggetation correction
method.

Figure 7 illustrates the improvement associatetihéovegetation correction. The systematic biasexhiby the mismatch in
Ho is shown. Without vegetation correction, the VSattievals do not correlate with the observed V&¥1=£ 0.03). On the
other hand, the vegetation correction removes iffierences between TS3 and TS4 caused by usingaimeH, in both
time segments and the VSM retrievals are more sterdi & = 0.55). Figure 7 clearly shows that using GNSSWR
retrieve VSM values in inm® when significant changes in vegetation effectsuois challenging. The need to harmonize
VSM retrievals from TS3 and TS4 is related to thétiog of the grass when vegetation effects araquaced Ao IS
lower than 0.78, see Fig. 1).

As a consequence, monitoring VSM using a GNSS ndtwould be difficult when vegetation effects areticeable.
However, we show that one may use the informatiomfA,,, data to define time segments for which scaled i
series are valid. For example, grass cutting casebected from the rapid rise Aorm Value.

In this study, we used independent VSM in situ ole@ns to harmonize the VSM time series acros3 ai%l TS4. Since
in situ observations are not extensively availathles technique is not readily applicable at othigzs. In practice, one could
possibly use a data assimilation framework ablmtiegrate the VSM retrievals into model VSM simidas such as those
produced by the ISBA land surface model (Albergeble 2017). In such Land Data Assimilation SystethDAS), a
complex seasonal rescaling of VSM observationg&lad (Reichle and Koster, 2004; Draper and Rei2blEs), especially
when the observations are not properly decontaetbm vegetation effects (Stoffelen et al., 2000)r results show that
using this rescaling technique would be feasihteesithe ISBA simulations of VSM correlate well witke retrieved VSM
(Fig. 8). The main reason for this result is tHBBA is forced by the SAFRAN atmospheric analysisprporating a large

number of in situ raingauge observations (Sec). ZHis is another way of using ancillary in sitoservations.

5.2 Aregrassand and cropland vegetation effects compar able?

The effect of vegetation on GNSS SNR data is tlaideplant height, above-ground biomass, and litterthe end of the
growing season, plant height and above-ground kismalues can be much larger for annual crops firagrass. On the
other hand, while litter is usually missing duritige growing phase of annual crops, litter is a atigristic of grasslands
(Quested and Eriksson, 2016).

Over our grassland site, the measured grass haighe end of the growing period is 30 cm on 22eJ2@16. The grass
height is then only slightly larger than one GNS&velength (~ 25 cm for L5). The simulated abovedgtbbiomass by
ISBA is shown in Fig. 2. During the summer of 201% maximum above-ground biomass slightly exceéeds kg nt.
This short period coincides with,om, values slightly lower than the 0.78 threshold.Jime 2016, before the cutting, the
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above-ground biomass ranges between 0.25 and @56k The corresponding\.om drops below 0.78, showing that
vegetation effects are significant. The simulatezkg above-ground biomass is 0.39 kg on 22 June 2016, very close to
the observed value of 0.37 kg?mrhe litter dry mass is not simulated but a vafi®.29 kg nf is obtained from in situ
observation at the same date, consisting in 0.287kgf dead leaf material and in 0.06 k&’ mf decomposed leaves. This
represents 44 % of the total above-ground orgaaierial.

Zhang et al. (2017) showed that over a wheat fibld vegetation gradually replaces the soil as thaindant reflecting
surface when plant height becomes comparable larger than, one wavelength, even at relatively Values of the above-
ground biomass (an estimate of 0.08 k§ is given). In such conditions ti#g.m drops below 0.78 and the SNR phase is no
longer related to soil moisture (Zhang et al., 2017

This study shows that VSM retrieval above thesemlaiss and plant height thresholds are feasible fassg However, a
limited number of suitable tracks, less affectedvbgetation, has to be selected using the gratagatvent (see Sect. 3.2).
In real practical applications, such tracks areaptiori known and retrieving VSM would be challgmg when vegetation

effects are significant.

5.3 Doesthelitter affect the GNSSVSM retrieval?

In order to analyze the possible impact of littertbe differences between GNSS VSM and eithertin ¥5M or ISBA
VSM, in situ VSM observations at 5 cm, in situ VSM observati@aisl cm and ISBA VSM simulations at 1 cm are
compared with the GNSS VSM retrievals. The GNSS MSkétrieved applying the Zhang et al. (2017) rodtto both L2C
and L5 SNR data, and the vegetation effects arevechfrom the retrievals. For ensuring the compétalof these various
soil moisture estimates, GNSS retrievals, ISBA 1simulations, in situ 1 cm observations and in Sitm observations are
scaled to dimensionless values.

Figure 8 shows a comparison between the four séa&M time series during TS3 and TS4. Soil moistuaiies tend to
increase drastically during precipitation eventasiof the VSM peaks observed in 1 cm in situ oleéns are also found
in 5 cm observations, except for 5-7 July and 5ust@016. On the other hand, GNSS VSM peaks caur edgaile in situ
VSM observations do not display any response to €aig. on 8-14, 25 and 30 June, 30-31 July, andfust 2016. A
contrasting result is found comparing GNSS and ISE3M estimates, which peak, more often than nothatsame time.
As a consequence, the GNSS VSM estimates correlath better with ISBA VSMR = 0.82) than with in situ VSM
observations at 1 cnfiRf = 0.63) and at 5 cnR{ = 0.57). More scores are presented in Table 5.

The scores resulting from the comparison betweafedcVSM validation data and GNSS VSM estimatessaygarately
recorded in Table 6 for each time segment. Thedsglzorrelations are with ISBA simulations at 1 do, all time
segments. The scores based on in situ VSM obsengadit 1 cm are similar to those based on in sBM\6bservations at 5
cm. For TS4, the correlation with in situ VSM obssions at 1 cm is much higher than with those anb The main
difference between observations at 1 cm and at Sscthat the former respond to rainfall events magidly. This is
illustrated by Fig. 8 for events occurring afted @y 2016 (TS4). The differences observed betwel8&VSM estimates
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and in situ VSM observations at 1 cm can be explhiny the interception of light rains by the littévater contained in the
litter tends to directly reflect the GNSS signatidan prevent the GNSS signal from further penetratnto the soil. This
difference is not observed with ISBA simulationséese the litter is not implemented in this versiérthe ISBA model.
The good correspondence between ISBA and GNSS \&ikhates can be considered as an artifact: ISBAlsiies a VSM
peak which does not exist, and the GNSS SNR dataarsitive to a sudden increase in the litter maiatent and/or to the
rain intercepted by the litter or by the leavesothier demonstration of the impact of the litteeets can be made, removing
rainy days from TS4. The? score in Tables 2 and 6 then rises from 0.6588.0.

5.4 Does the sampling interval affect the VSM retrieval?

When the antenna height increases, the size afliberving areas is extended. But at the same tim@driod of the SNR
data decreases (Eqg. (1)), and a smaller sampltegval is needed to ensure the usability of the SIdfa for VSM retrieval.
On the other hand, because the SNR period frorgtadnitenna is much smaller, it is possible to nsaller elevation angle
ranges and shorter observing time periods per trBlok number of complete SNR waveforms is muchelatijan using a
low antenna. We investigate the impact of undergdiang for the 3.3 m antenna and for the 29.4 m ramde It should be
noted that in the examples illustrated by Figd®,and 11 the SNR frequency is always lower ther\tyquist frequency.
First, an example of the impact of the samplingrival for the 3.3 m antenna is shown in Fig. 9. lSXIR observations (N
= 90) from GPS PRN 10 ascending tracks during T&8r grass cutting) are used to retrieve VSM usiagous sampling
intervals. The Zhang et al. (2017) method is usaskt on the original 1 s sampling interval and egraded sampling
intervals of 10 and 100 s. During TSA4,.m is above 0.78 (Fig. 2), which also shows that tetgmn effects are not
significant (Chew et al., 2016). This is a rathey pgeriod but a few rainfall events are observeukeylcause changes in the
in situ VSM observations at 5 cm, which range bem®.07 and 0.21 tm>. In Fig. 9, the highest correlatioR%(= 0.68) is
for the smallest sampling intervals (1 and 10 s} the lowest correlatiorRf = 0.55) is observed for the largest sampling
interval (100 s). The corresponding statisticalrespresulting from the comparison between in g8M observations at a
depth of 5 cm and GNSS VSM retrievals are showFahble 7. As folR?, RMSE and SDD for 1 and 10 s sampling intervals
are similar (RMSE = 0.020 tm™ and SDD = 0.018 fm™®), and denote lower skill for the 100 s samplinigival (RMSE

= 0.025 mMi m*® and SDD = 0.021 fm?®). Much more day to day variability is observedtlie retrievals using a 100 s
sampling interval. The impact on the SNR informatémntent of degrading the sampling interval may\¥eom one day to
another. This is illustrated by Fig. 10 for two tignous days (28 and 29 July 2016). The under-saggiffect at 100 s is
more pronounced on 29 July than on 28 July. Moteapd peak information is missing on 29 July. Tieisds to trigger a
sharp decrease in the retrieved VSM values. Omother hand, under-sampling tends to increase thieved VSM on 28
July. As a result, the retrieved VSM drops by -0.08 m* from 28 to 29 July while the in situ VSM at 5 cmlypchanges
by -0.004 M m*,

SNR amplitudes are also affected by the samplitegval in TS4. For 29 July 2016, the estimated SM#plitude is 26 V V

! for both 1 and 10 s sampling intervals, but ory\M V* for the 100 s sampling interval. For this examipéek data
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acquired by the 3.3 m antenna, the SNR period @®taB30 s. There are about 330, 33 and 3 sampl@sdomplete

waveform for 1, 10 and 100 s sampling intervalspeetively. Obviously, the 100 s sampling interslaks not provide
enough samples to retrieve VSM. On the other hasihg a 10 s sampling interval is sufficient foe tBNR data acquired
by the 3.3 m antenna after cutting the grass.

For the 29.4 m antenna, the sensitivity to the dimgpnterval is more critical. Fig. 11 shows thBIfS oscillations for the
GPS PRN 25 ascending track. The SNR period is alnbut 38 s. With 10 s sampling interval, 3 or 4 glas are available
for a complete waveform. This is about the sameasiin as for the 100 s sampling interval for th& & antenna. Figure
11a shows that pit and peak information is misgindl8 March 2016 with respect to the 1 s samplingrval data on the
next day in Fig. 11b. Nevertheless, Table 6 shdws the 10 s under-sampling had a limited impacv&M retrievals

during TS1 since the best scores are observedgithis segment. This paradoxical result can beaéxedl by the prior use
of the in situ VSM data to select the satelliteksaand the satellite elevation angles (see S&tjt. 2

6 Conclusions

GPS L2C and L5 signal-to-noise-ratio data were inbthat a grassland site in southwestern Frandaeglar period of 15
months. A dimensionless scaled wetness index wagedefrom the SNR observations based on the GNB&¢hnique,
using indiscriminately L2C or L5 signals. Surfa@gl snoisture was derived from this scaled wetnestex. We show that
accurately estimating soil moisture in units ofm® over such a densely vegetated site is challengingrder to efficiently
limit the impact of perturbing vegetation effecteg grass growth period and the senescence pehiodds be treated
separately. While the vegetation biomass effectbmnorrected for, the litter water interceptiofiiances the observations
and cannot be easily accounted for. Overall, aigicet of 0.035 'm’® is achieved for the whole meadow growing cycle,
and of 0.018 rim* after grass cutting. A suitable sampling intershbuld be used depending on the antenna height and
elevation angle range. Positioning the antenna bmfat 29.4 m in this study) in order to obsentarger area enhances the
impact of under-sampling. The signal sampling waérshould be better than 10 s in this case. Moggeements over
contrasting vegetation types are needed to fugkamine the feasibility of integrating GNSS-IR ietals in land surface
models. Land data assimilation systems are usua#ig for satellite observations but can also imatiegground observations.
In such a framework, model simulations of vegetatmomass and soil moisture could be combined W@HSS-IR
retrievals. Proposing a complete protocol to apiply method to local GNSS antennas would requisepiations at a large
number of sites. More research is needed to useS3RSn densely vegetated areas.
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Table 1. Characteristics of the selected satellite tracksnfthe GNSS antenna at a 29.4 m height and aB an3height

(North is 0° azimuth angle, clockwise rotation).

Antenna ] ]
] Elevation Azimuth . ]
height ) Areas per| Instantaneoug Time duration
Satellite tracks angle range| angle range i
(m) 3 5 track (nf) | FFZ area range per track (min)
©) ) ’
(m’)
29.4 GPS PRN 03 216 to 214 21.6
GPS PRN 07 168 to 164 21.2
GPS PRN 08 14 to 23 166 to 169 ~ 900 ~400-150 20.3
GPS PRN 17 223 to 224 24.0
GPS PRN 26 168 to0 171 20.3
GPS PRN 25 9to 17 228 to 23p ~ 2000 ~1000-300 20.7
3.3 36 for L2C
(10 during TS3) 7to 30 - ~ 300 ~200-10 ~60
21 for L5
(6 during TS3)
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Table 2. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengdts

(both L2C and L5) for the whole experimental perad for four time segments. Best score values grtiame segments
are in bold. MAE is the mean absolute error, RMSEhie root mean square error and SDD is the stdrdkriation of

differences.

TS1 TS2 TS3 TS4 Whole
Time segments (TS1 to (from 1 (from 19 (from 8 June tg (from 9 July to experiment
TS4) August2015to| Marchto5 8 July2016) | 6 October2016 (from 1
18 March2016) June2016) August2015 to §
October2016)
senescence,
Vegetation stages :::r cutting growing growing after cutting all
dormancy
Antenna height (m) 29.4 29.4 3.3 3.3 29.40r 3.3
Sampling interval (s) 10 1 1 1 10o0r1
N 220 68 31 90 409
Mean bias (m®) 0.016 0.028 0.023 0.006 0.016
MAE (m® m®) 0.031 0.039 0.035 0.013 0.029
RMSE (n7 m*) 0.040 0.048 0.043 0.019 0.038
SDD (n? m®) 0.037 0.039 0.036 0.018 0.035
R 0.85 0.62 0.45 0.65 0.86
p-value 0 0 0.00001 0 0
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Table 3. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengits
(either L2C or L5) during TS1 (SNR data from the®2& antenna with 10 s sampling interval from 1 Bstg2015 to 18
March 2016). Best score values are in bold. MAEhé&smean absolute error, RMSE is the root meanrecqgraor and SDD

is the standard deviation of differences.

Signal L2C L5

N 220 220
Mean bias (mm’®) 0.016 0.017
MAE (m® m”®) 0.032 0.033
RMSE (n m®) 0.042 0.042
SDD (n? m®) 0.039 0.038
R 0.83 0.84
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Table 4. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengdts

(either L2C or L5 or both) during TS3 and TS4 (Stiea from the 3.3 m antenna with 1 s sampling vialefrom 8 June to
6 October 2016). The Zhang et al. (2017) methagsed for separated time segments, and also foremidige segments.
Best score values are in bold. MAE is the meanlateserror, RMSE is the root mean square error@DD is the standard

5 deviation of differences.

Time segments (TS3 Merged TS3
and TS4) Separate TS3 and TS4 and TS4
Signal L2C L5 L2C and L5 L2C

N 121 121 121 121
Mean bias (hm~) 0.010 0.011 0.010 0.025
MAE (m° m®) 0.019 0.018 0.018 0.044
RMSE (m m?) 0.027 0.027 0.027 0.050
SDD (n? m®) 0.026 0.025 0.025 0.044

3 0.55 0.60 0.57 0.03
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Table 5. Soil moisture scores from the comparison betweated VSM validation data (in situ VSM observati@islepths
of 1 and 5 cm and ISBA VSM simulations at 1 cm tgpind scaled GNSS VSM retrievals (from both L2@ &B) during
TS3 and TS4 (SNR data from the 3.3 m antenna wishshmpling interval from 8 June to 6 October 20B®&st score

values are in bold. MAE is the mean absolute eRMSE is the root mean square error and SDD istiuedard deviation
5 of differences.

Time segments (TS3 and ISBA 1 cm vs. Insitulcmvs. | Insitu5cmvs.
TS4) GNSS GNSS GNSS

N 121 121 121
MAE 0.300 0.444 0.481
RMSE or SDD 0.435 0.637 0.699

R 0.82 0.63 0.57
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Table 6. Soil moisture scores for all time segments (TST3$4) from the comparison between scaled VSM vtbtdadata

(in situ VSM observations at 1 cm and 5 cm and ISB3M simulations at 1 cm) and scaled GNSS VSM egtis
(both L2C and L5). Best score values among timensegs are in bold. MAE is the mean absolute eRMSE is the

root mean square error and SDD is the standardii@viof differences.

TS1 TS2 TS3 TS4

Time ISBA | Insitu | Insitu | ISBA | Insitu| Insitu | ISBA | Insitu | Insitu | ISBA | In situ | In situ
segments lcm| 1cm | 5ecm | 1lecm | 1cm | 5cm | 1ecm | 1cm | 5cm | 1cm | 1cm | 5cm
(TS1to TS4) | wvs. VS. VS. VS. VS. VS. VS. VS. VS. VS. VS. VS.

GNSS| GNSS| GNSS | GNSS| GNSS| GNSS | GNSS| GNSS| GNSS| GNSS| GNSS| GNSS
Antenna

) 29.4 294 294 29.4 29.4 29.4 3.1 3.8 3J3 313 33 3 3

height (m)
Sampling
] 10 10 10 1 1 1 1 1 1 1 1 1
interval (s)
N 220 220 220 68 68 68 31 31 31 9( 90 90
MAE 0.32 0.33 | 0.30 0.47 0.58 0.56 0.34 0.54 0.6b 0.3 0.33 0.38
RMSE or

0.40 | 0.42 0.40 0.61 0.71 0.65 0.51 0.69 0.8D 0.4 0.44 0.62
SDD
R 0.84 0.83 | 0.85 0.66 0.55 0.62 0.75 0.57 0.45 0.8 O.%l 0.65
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Table 7. Soil moisture scores from the comparison betwedly dnean in situ VSM observations at a depth a@hb and
GNSS VSM retrievals during TS4 (after grass cuttiingm 9 July to 6 October 2016). The L2C SNR datan GPS
PRN 10 ascending tracks were used, which were @by the 3.3 m antenna. Best score values drelth MAE is

the mean absolute error, RMSE is the root mearnreagreor and SDD is the standard deviation of diffiees

Time segment (TS4) 1 s sampling interval 10 s sagphterval 100 s sampling interval
N 90 90 90

Mean bias (mMm’®) 0.009 0.008 0.012

MAE (m°® m”®) 0.013 0.013 0.018

SDD (n? m®) 0.018 0.018 0.021

RMSE (n m®) 0.020 0.020 0.025

R 0.68 0.68 0.55
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Figure 1. Experimental site of M eteopole-Flux. The specular reflection points and first Fresnel zone (FFZ) areas from the selected
satellite tracks are shown in orange for a 29.4 m GNSS antenna (" H" red dot). The specular reflection points and FFZ areas for a
3.3 m GNSS antenna ("L" red dot) are shown in blue. The red star indicates the location of in situ soil moisture observations.

Background geographic information isfrom Google Earth.
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Figure 2: Timeline of experiment. (a) Daily GNSS VSM retrieval time series (N = 409) using both L2C and L5 SNR data for the
whole experimental period (from 1 August 2015 to 6 October 2016) is shown in red line, together with daily mean in situ VSM
observations at a depth of 5 cm (green line). The blue line represents the daily precipitation in mm day™. The black lines indicate
the grass cutting before 7 October 2015 and before 9 July 2016. The retrievals are obtained separately depending on four time
segments (Table 2). (b) Thered line represents the above-ground dry biomass (kg m™) of the grass simulated by the ISBA model
before grass cutting; and the red dashed line indicates the maximum simulated dry biomass (0.25 kg m™) in 2015. Grass cutting is
also shown in black solid lines. The L2C (L5) SNR normalized amplitude (A,orm, dimensionless) time series is shown in green
(blue). Normalization is performed separately for TS1 and TS2, and for the period with data acquired from the 3.3 m antenna
using a 1 s sampling interval. The latter corresponds to the merged TS3 and TS4. The black dashed line indicates the Aom

threshold (0.78) for evaluating the vegetation effects.
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Figure 3: Scatter plot of daily mean in situ VSM observations (N = 409) at a depth of 5 cm vs. GNSS VSM retrievals (from both
L2C and L5) for thewhole experimental period from 1 August 2015 to 6 October 2016.
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Figure 4: Median of the daily VSM retrievals (N = 220, red dots) and their daily statistical distribution (grey box plots) for 6
available satellite tracks. Daily mean in situ VSM observations at a depth of 5 cm are shown by the green line. The black line
indicates the grass cutting before 7 October 2015. The blue line represents the rainfall (daily precipitation in mm day™ can be
obtained multiplying by 70). The L2C SNR data acquired by the 29.4 m antenna with a 10 s sampling interval were used to
retrieve VSM during TS1 (vegetation senescence and after cutting). Boxes: 25-75% percentiles; bars. maximum (minimum) values
below (above) 1.5 IQR (Inter Quartile Range, corresponding to the 25-75% percentile interval); dots. data outside the 1.5 IQR

interval.
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Figure 5: Scatter plots of daily mean in situ VSM observations at a depth of 5 cm vs. GNSS VSM retrievals (N = 220): from (a)
5 L2C SNR data, (b) L5 SNR data. The SNR data acquired by the 29.4 m antenna with a 10 s sampling interval during TS1 were
used.
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Figure 6: Median of the daily VSM retrievals (red lines) with (a) separate TS3 and TS4 and removing vegetation effects, (b)
merged TS3 and TS4, using L2C SNR data (from the 3.3 m antenna with 1 s sampling interval) during TS3 and T$4 (from 8 June
to 6 October 2016). Daily mean in situ VSM observations at a depth of 5 cm are shown by the green lines. The blue lines repr esent
the rainfall (daily precipitation in mm day™ can be obtained multiplying by 70). The black/orange dashed line indicates the grass

cutting before 9 July 2016.
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Figure 7: Scatter plots of daily mean in situ VSM observations (N = 121) at a depth of 5 cm vs. GPS L2C retrievals: (a) after
vegetation effects correction (with separate TS3 and T$4, corresponding to Fig. 6a) and (b) before correction (with merged TS3
and T$4, corresponding to Fig. 6b). The L2C SNR data acquired by the 3.3 m antenna with 1 ssampling interval were used. Black
dotsrepresent theretrievals (N = 31) during TS3; red dots (N = 90) represent theretrievals during T4 (after grass cutting).
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Figure 8: (a) Scaled GNSSVSM retrieval timeseries(red line, N = 121) using both L2C and L5 SNR data during separate TS3 and
T4, scaled ISBA 1 cm simulations (green line) and scaled in situ VSM observations at 1 cm (grey solid line) and at 5 cm (grey
dashed line). The SNR data acquired by the 3.3 m antenna with 1 s sampling interval were used during TS3 and TS4. The
black/orange dashed line indicates the grass cutting of 9 July 2016. (b, c and d) Scatter plots of scaled ISBA VSM simulations at 1
cm, scaled in situ VSM observations at 1 cm and scaled in situ VSM observations at 5 cm vs. scaled GNSS VSM retrievals,
respectively.
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Figure 9: L2C SNR VSM retrieval time series using GPS PRN 10 ascending tracks with different sampling intervals: (a) 1 s, (b) 10
sand (c) 100 s. The L2C SNR data acquired by the 3.3 m antenna during T$4 (after grass cutting in July 2016) were used. Their
corresponding scatter plots are shown in (d), (e) and (f), respectively. Daily mean in situ VSM observations at a depth of 5 cm
(black lines) are shown in theleft sub-figures, and the blue lines represent the daily precipitation in mm day™.
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Figure 10: Two examples of L2C SNR data sets (from the GPS PRN 10 ascending tracks) acquired by the 3.3 m antenna at two
contiguous dates: (a) 28 July and (b) 29 July 2016. SNR data with three different sampling intervalsat 1, 10 and 100 sare shown in
5 black, orange and red lines, respectively.
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Figure 11: Two examples of L2C SNR data sets (from the GPS PRN 25 ascending tracks) acquired by the 29.4 m antenna at two
contiguous dates: (a) 18 March 2016 (with 10 ssampling interval) and (b) 19 March 2016 (with 1 ssampling interval).
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