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Abstract. This workaims-toassesssthe estimation of surface volumetric soil moistiWV&M) using the Global Navigatio
Satellite System Interferometric Reflectometry (GNIR) technique. Year-round observations were aeduirom a
grassland site in southwestern France using ammaateonsecutively placed at two contrasting heighisve the ground
surface (3.3 or 29.4 m). The VSM retrievals are garad with two independent reference datasetsturobservations of
soil moisture, and numerical simulations of soilistre and vegetation biomass from the ISBA (Irtgoas between Soil,
Biosphere and Atmosphere) land surface model. 8cdeM estimates can be retrieved throughout the yeaoving
vegetation effects by the separation of growth semkscence periods and by the filtering of the GNRS&bservations that
are most affected by vegetation. Antenna heightrimasignificant impact on the quality of VSM estitesm Comparisons
between the VSM GNSS-IR retrievals and the in ¥i8M observations at a depth of 5 cm show a goodeagent R =
0.86 and RMSE = 0.04 Tm®). It is shown that the signal is sensitive to ¢nass litter water content and that this effect
triggers differences between VSM retrievals anditn VSM observations at depths of 1 cm and 5 @peeially during

light rainfall events.

1 Introduction

Soil moisture is a key component in the hydrologaele and in the soil-plant-atmosphere continultns also important
for irrigation management and flood prediction (Rgdez-lturbe and Porporato, 2007). However, in sibservations of
soil moisture are very sparse and with small sampliolumes. On the other hand, L-band satellitévddrproducts, for
example, from th&soil MmoistureAactive Ppassive (SMAP) mission or thsoil Mmoisture anddeceanSsalinity (SMOS)

mission, have a coarse resolution of tens of kitemse(Chan et al., 2016; Kerr et al., 2001). Thaselucts consisit-of

surface volumetric soil moisture (VSM) and conctiva top soil layer (from the soil surface to a tept 1 to 5 cm). There
is a need to monitor VSM at the local scale in orevalidate model simulations, and satellite-dedi products. The
International Soil Moisture Network (Dorigo et &013) has been collecting such in situ observatidgtie Committee on

Earth Observation Satellites (CEOS) Land Produdidetion group has recommended expanding the soigture networks
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(Morisette et al., 2006). In particulatevelepingthe development afew automatic monitoring techniques to measure V$M
is needed.

The Global Navigation Satellite System InterferomceReflectometry (GNSS-IR) technique has demotstraa strong
potential to monitor VSM using ground-based recesivi&hew et al., 2014). GNSS antennas measureighal girectly
emitted by the GNSS satellites, together with tiymad reflected by the surface surrounding the ramte The GNSS-IR
technique allows relating the reflected signal e tharacteristics of the reflecting surface andetoieve geophysical
variables. Over land, variables such as soil mmstanow depth and vegetation parameters can bervalas using this
technique (Larson et al., 2008; Small et al., 2Qt0son and Nievinski, 2013; Wan et al., 2015; bar2016; Roussel et
al., 2016; Zhang et al., 2017). GNSS satellitest extiive L-band microwave signals (between 1.2 aitdGHz). The L-
band signal is less affected by vegetation effdw@a shorter wavelengths, which is an asset tevetisurface soil moisture
(Kerr et al., 2001). The GNSS-IR footprint can coup to thousands of square meters, dependingeoarttenna height and
on the satellite elevation angle (Larson et all,®0/ey et al., 2016).

In addition to a specially designed antenna toivecthe reflected GNSS signal from the land surfé&avorotny et al.,
2014), classical geodetic-quality GNSS antennasbeansed to estimate VSM (Larson et al., 2008)h&utennas have an
antenna gain pattern optimised for Right Hand QéacuPolarization (RHCP) and minimized for Left Ha@ircular
Polarization (LHCP). A GNSS network called PlateuBdary Observatory (PBO).B with geodetic-quality antennas on
ground in western USA is currently used to moni&M (Larson et al., 2013; Larson, 2016; Chew et2016) and snow
depth (Larson et al., 2009). The basic observatsad in this technique is the signal-to-noise rg&NR) which is related to
temporal changes in the interference between ttextdand the reflected GNSS signals. Each GlobaltiBning System
(GPS) satellite repeats the same orbital cycle fooe day to another (offset of a few tenths of mb&tween two adjacent
cycles). This property permits monitoring surfadermges through time of the environmental conditismsounding the
receiving antenna.

The present day Block Il R-M (Replenishment Modeedi) and Block Il F (Follow-on) GPS satellites nmansmit a L2C
(1227.60 MHz) civilian signal. Power and precisifrthe L2C signal are higher than for the L1 C/§rsil (1575.42 MHz)
transmitted by all GPS satellites. Several previstuslies, such as Larson et al. (2008), Larsor. §2@10), Chew et al.
(2014), Chew et al. (2016) and Small et al. (208)lusively analyzed the SNR data from the GPS ERf@al to retrieve
soil moisture. The Block Il F satellites also tramisthe latest L5 signal (1176.45 MHz) as well, efhfeatures even higher
power, greater bandwidth and an advanced signafjde$Shere are now seven Block Il R-M satellitesg®do-Random
Noise (PRN) numbers 5, 7, 12, 15, 17, 29 and 3ntifying each satellite) and twelve Block Il Feddtes (PRN 1, 3, 6, 8,
9, 10, 24, 25, 26, 27, 30 and 32).

Due to the motion of the satellites, the direct aeffiected signals cause an interference pattef@NR data. The SNR
oscillations depend on known attributes such asdhellite elevation angle, signal wavelength ameérana height. The SNR
amplitude and phase can be solved by using th¢ $emmre estimation (LSE) method (Larson et alQ82@hew et al.,
2016). Larson et al. (2008) and Larson et al. (2@hdpirically showed that phase correlates withr1seaface soil moisture,
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with values of the coefficient of determinatid®’) ranging from 0.76 to 0.90. This property was usgdhew et al. (2014)
to develop an algorithm to estimate surface soiktace (top 5 cm) for bare soil. They used a phajsarface scattering and
dielectric permittivity model to derive a relatidmig between the phase and soil moisture, in voltimenits (nf m?®). Vey
et al. (2016) validated this algorithm, using fieldservations acquired during the 2008-2014 pdrimt a site presenting a
high percentage of bare soil. They obtained thieviohg R? and root mean square error (RMSE) scores for V&iievals:
R? = 0.80, and RMSE = 0.05%m. However, for vegetated soil the phase of the $\&so affected by vegetation. Chew
et al. (2016) showed that seasonal vegetationtsffat phase have to be considered for soil moigstienation. They also
observed that amplitude decreased as vegetation grenodel database for the SNR from L2C signal wsed to remove
most significant vegetation effects. Small et aDX6) compared different algorithms of GNSS-IR sadisture retrieval in
the presence of vegetation.

Zhang et al. (2017) used the GNSS-IR techniqua feheat field throughout the growth and senescpaded in 2015. The
L1 C/A signal was acquired over a wheat field dgrinperiod of about 7 months using a Leica GR26ivec, and a Leica
AR10 antenna at a constant height of 2.5 m abowesdil surface. They showed that VSM could notdigeved when the
vegetation canopy is too dense, i.e. plant heigbtsimulated dry above-ground biomass larger thenwavelength (~19
cm for L1) and 0.08 kg i respectively. On the other hand, relative plagight could be retrieved in such conditions. In
this study, both L2C and L5 signals were acquireer @ meadow during a rather long period of timalodut 15 months
using the same equipment (GR25 receiver, AR10 aajest contrasting heights (3.3 or 29.4 m) aboeestiil surface.

The objectives of this study are to (1) investiget®M estimation over a meadow, in contrasting ctods of plant
phenology (growth, senescence, after and befotengyt(2) compare the use of L2C and L5 signa3,assess the impact
of a major change in the height of the receivinteana above the soil surface, in relation to thd&R&dmpling interval.
Investigating the impact of the sampling interval \dSM retrievals is needed due to the fact thatliseaenpling intervals
(e.g. 1 s) generate a large amount of data (~10@&lmay for GPS satellites). Larger sampling ider may be defined to
reduce the amount of daily data.

A key difference between this study and Zhang e{2017) is related to the type of observed vegetatanopy. The
meadow considered in this study and the wheat fieltsidered by Zhang et al. (2017) present comigasharacteristics.
The meadow is cut once a year and consists of t-spgcies permanent grassland incorporating ex litbmposed of dead
leaves. On the other hand, the wheat crop in Zletad) (2017) consisted of a single plant speciés mo litter.

Past microwave remote sensing studies (e.g. Salah,2007) have shown that permanent grasslaatiave differently
from crops. Because permanent grasslands incogparditter composed of dead leaves, they can ieperprecipitation
considerably more than annual crops. The short iggpwycle of annual crops does not allow the acdation of large
amounts of litter material. This property of permangrasslands can have a major effect on the mére signal and can
perturb the retrieval of VSM, even at GPS L-bandl€B et al., 2007). Also, the structure of grag®pées differs from the
structure of crops such as wheat and this has padtron the attenuation of the microwave signavdgetation (Wigneron
et al., 2002).
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GPS SNR data from both L2C and L5 signals are néthusing a geodetic-quality GNSS antenna. SNRysisalising the
GNSS-IR technique is used to retrieve VSM overedfcovered with grass using the normalization méthased on the
newly-established scaled wetness index proposedhlayg et al. (2017). Another point to underlinghie impact of the
antenna height (here 2 levels: 3.3 and 29.4 m abimveoil surface) on the VSM retrieval. Moreowtte VSM retrievals
from two kinds of GPS signal wavelengths (24.45 @40 cm for L2C and L5, respectively) are comgangth field
observations. We analyze the vegetation effectsv8M retrieval accuracy. Another important addressegic is the
influence of the sampling interval on the VSM esties. As the SNR period changes depending on ttesran height,
satellite elevation angle, elevation angle charmge and GNSS signal wavelength, the sampling iatdras to be adjusted
accordingly in order to maintain the VSM retrieagkcuracy.

Data are described in Section 2 and methods indpe8t The obtained soil moisture retrievals arespnted in Section 4
and compared with independent VSM estimates. Resar¢ discussed in Section 5. And the main coraissiare

summarized together with prospects for furtherasgein Section 6.

2 Siteand data
2.1 Sitedescription and validation data

The study site is located at the premises of M&te@mce in Toulouse, France, over an experimerelal iovered with grass
(43°34'26"N, £22'27"E). Since 2012, this instrumented site idefisoil moisture profile observations from thefae
down to a depth of 2.2 m. Other measurements ssi¢hraulent fluxes are made in the framework of Meteopole-Flux
project (https://www.umr-cnrm.fr/spip.php?articld®iang=en) and ICOS (Integrated Carbon Observat®ystem,
https://icos-eco.fr/). The soil fine earth in theperimental field at a depth of 5 cm consists d¥b4and, 14.5% clay and
34.5% silt.

The grass height did not exceed 0.3 m during tipe@mxent time period. This is much lower than maximheight of the
wheat crop (~ 1 m) in Zhang et al. (2017). A ladifference could also be noticed in maximum aboraigd dry biomass
values: less than 0.5 kg frfor grass (this study), about 1 kg?or wheat (Zhang et al., 2017). The grass waswice
during the study period. The cutting process toakesal days and the grass was fully cut on: 7 Gut@®15 and 9 July
2016, for the 29.4 and 3.3 m antenna observingsareapectively.

Mean in situ VSM observations at 5 and 1 cm deptire performed using precise Delta-T ML2x Thetalesodnd low-cost
Decagon EC-5 VSM sensors, respectively. Three Phetees measured VSM at a depth of 5 cm and weateldavithin a
few meters of each other (red star in Fig. 1). Wean value was derived from these probes to repréise in situ VSM
observations at 5 cm. Only one EC-5 sensor was tasateasure VSM at 1 cm. Precipitation measuremeate made in
the experimental field by one rain gauge closéhtinh situ soil moisture sensors. A small fractidrihe precipitation time

series was missing. Missing data were replacecéyptecipitation data obtained from the SAFRAN apie@ric analysis
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(Durand et al., 1993, 1999). Additionally, scale8N observations at a depth of 1 cm and scaled ViaMlations for the
top 1 cm thick soil layer were used as indepentdenthmarks for validation.

VSM simulations for the top 1 cm were produced gsime ISBA (Interactions between Soil, Biospherg] Atmosphere)
land surface model within the SURFEX (version 8x@)deling platform (Masson et al., 2013). In additim VSM,
simulations included the soil iced water conterd #me vegetation above-ground dry biomass. The 18®Alel used the
atmospheric forcing data produced by the SAFRANoapheric analysis of Météo-France. The model veraged in this
study was designed for generic country-scale sitioulg over France at a spatial resolution of 8 ki® km. It was not
calibrated for this particular site. Sub-grid vedietn types are represented and soil moisture aiidesnperature profiles
are simulated for each vegetation type, indepehgeit other vegetation types. In this study, the @assland plant
functioning type and a multilayer representatiotthaf soil hydrology are considered. The model defth is 12 m, with 15
layers and the layer thickness increases fromdpestirface layer to the deepest layers (Decharraé,e2011). It must be
noted that the SAFRAN precipitation forcing is bdhsm ground observations and is quite realisticif@mna-Segui et al.,
2008). The ISBA configuration and the SAFRAN atmuesfic analysis used to force the model are degtiibéafont et al.
(2012).

2.2 GNSSdata

In this study, GNSS SNR data were acquired usingiaa GR25 multi-constellation and multi-band getoxeeceiver
equipped with an AR10 antenna during more thany@a&. Two measurement configurations were expl@ragl 1). First,
from 1 August 2015 to 5 June 2016, the antennapleaced at the top of a building close to the stuidjeassland, at a height
of 29.4 m above the soil surface {88'30"N, £22'26"E). Second, from 8 June to 6 October 2016 antenna was moved
on top of a small technical shed located within tieadow, close to the in situ sensors, at a heifjAt3 m above the soil
surface. During the first 29.4 m antenna heighteeixpent, the SNR sampling interval was reduced fidhto 1 s on 19
March. When the antenna height was changed frorh 893.3 m, the sampling interval remained at aiwalf 1 s. GNSS
SNR data were missing for 24 days: from 1 to 1day) from 17 to 26 May, and on 1, 6 and 7 June&6201

In this study, both L2C and L5 SNR data from theS@?ock Il R-M and Block Il F satellites were us@dhe ascending and
descending parts of the same satellite were predes=parately and were considered as independelitsdracks (Roussel
et al., 2015, 2016).

The valid SNR segment for each ascending or degugsdtellite track was limited based on the atddaatellite elevation
angle range (90° being defined as zenith). FoBtBam antenna height, the multipath signature waelsat elevation angles
above 30° or below 7°, and the reflecting regiarsi(fFresnel zone, FFZ) often included both groamd surrounding
obstructions. Therefore, only data correspondinglévation angles ranging from 7 to 30° were cogr@d. For a given
satellite track, the field observation area wasuai390 nf, and the observing duration was about one houl€Ta). The
range of instantaneous FFZ areas is indicated bieTa. After sorting elevation angles, 36 and 2telite tracks were

available for L2C and L5 SNR data, respectivelye Tdorresponding reflecting points and FFZ areasiobd using a
5
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reflection location model for GNSS-R (Roussel et, &014), are shown in Fig. 1. The successive éxpeatal
configurations are listed in Table 2 and shownim E.

Measurements from the antenna at a height of 29wkera affected by surrounding obstructions (budgimnd impervious
areas like car park, roads, etc.) and by an uralepbng issue at a sampling interval of 10 s (seet.31.2). In order to cope
with these problems, only 6 satellite tracks weseduto retrieve VSM from L2C SNR data (GPS PRN0JF3,08, 17, 25 and
26), and 4 satellites tracks from L5 SNR data (GRBl 03, 08, 25 and 26). Satellite track charadtesignd instantaneous
FFZ areas are given in Table 1. The selection tdllge tracks and elevation angles was performgadmparing VSM
retrievals with the in situ VSM observations dedsed in Sect. 2.1. It must be noted that this litiata only affected
measurements at a height of 29.4 m and was caystn lmore complex experimental constraints in toisfiguration (e.qg.
possible parasitic signal reflection on buildingsyr the low antenna configuration (3.3 m), thigiidnal data sorting was
not needed and all available satellite tracks w@itbomplete elevation angle range (between 7 anyl\86€fe used. As a
result, a larger variety of satellite tracks cob&lused for the antenna at a height of 3.3 m wihs&ampling. With a higher
antenna, the size of the observed reflecting serfaarkedly increaseLarson et al., 2010). Although the elevation andfl
range used for the antenna at 29.4 m is smaller finathe antenna at 3.3 m (Table 1), a much laddeserving area is
obtained for each satellite track. More details uibthe elevation range, the observing time period approximate
observing area for each satellite track are shawdable 1. The SNR data are typically convertednfriheir native
logarithmic units (dB-Hz) to a linear scale (V*\V(Vey et al., 2016). For a static receiver, theRSiN governed to a large
extent by the interference pattern (IP). The IBgBned as the coherent summation of direct andatefl GNSS signals on
the in-phase and quadrature space (Zavorotny eR@l4). This coherent summation generates an IBrevhigh and
intermediate frequencies distinct from noise fragues, are related to the difference of travellsthatice between direct and
reflected waves. The IP can be characterized Witl$& receivers using either (1) two antennas (eodriBuez-Alvarez et
al., 2011) or (2) one antenna (e.g. Larson e28D8; Chew et al., 2014; Zhang et al., 2017). is $tudy we used the one-
antenna IP technique as illustrated by Fig. 1 irsta et al. (2016) for a simple planar and horiabgtound reflection. A

low order polynomial curve is fitted to SNR dataoitler to retain only the multipath IP (Bilich &t 2008).

3 Methods

The modulation of the SNR by the multipath frequeocan be expressed as (Larson et al., 2008, 2di®y @t al., 2016):
AH, .
NR = Acos#"sm@—qp) (1)

whereA is the amplitude of the modulation agds thephase offsetd is the satellite elevation anglejs the GNSS signal
wavelengthHy is a fixed a priori effective antenna height facke satellite track, which is not known and halsacestimated
from the SNR data in snow-free and sparse vegetatoditions (Chew et al., 2016). Based on Eq.$NR phased) can
be solved by LSE method, and then this estimateai be used to retrieve VSM.

6
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Due to the good linear relationship betwgesnd in situ surface VSM, VSM can be estimatedefich satellite track (Chew
et al., 2016):

VM = SH@-@,,) *VIM, 4 @)

The Sparameter (in mm* degred) is defined using the a priori value. A valueSsf 0.0148 mm® degre& was proposed
by Chew et al. (2016) for the PBO,® network. This value is adapted to situationsoof Vegetation density or cover and is
valid for the Trimble antennas used in the PB§@Hhetwork. In this equation, thetime series is zeroed using a minimum
phase valueg,,) for each satellite track. This procedure is ustfuensure compatibility among different satellitacks.
dmin IS the mean of the lowest 15%gfalues for each satellite track during the congideime segment and VS)yis the

residual (minimum) volumetric soil moisture value.

3.1 A new normalized SNR phase method (Zhang et al., 2017)

In this study, the method proposed by Zhang ef28117) is used. Normalizing time series ensures compatibility among
different satellite tracks (Zhang et al., 2017)réjé is normalized with zero minimum in order to obt#ie scaled wetness
indeX @ingex as the following:

¢ - ¢min (3)
qqnax - (Dmin

wheredni, andgna are the mean of the lowest and highest 15% ofthtstical distribution of for each satellite track

Wndex =

during the considered time segment (TS), respdgtiviEhis averaging procedure is used in order k@rfiout outliers
corresponding to abnormally high or l@westimates. Negatiug,q.x values are replaced by zero.

Moreover gingex Can be used to estimate VSM as follows:

VSVI = Wnda [Q\/SVI obs _max _VSVI )+VSVI obs _min (4)

obs _min
Similarly to phase computation and to avoid art8ad/SMyps min@nd VSMys maxare the mean of the lowest and highest
15% of daily mean in situ VSM observations at atdegf 5 cm during the considered time segment, eetbgely. The
median VSM estimate from all available satellitgcls is considered as the final VSM estimate pgr baorder to better
correct for vegetation effects, vegetation growtld genescence were considered as independentagnegests instead of

applying Egs. (3-4) to the whole period.

3.2 Assessment of vegetation effects

SNR amplitude &) is affected by vegetation, which can be usedssess whether or not vegetation effects are sogmifi
Chew et al. (2016) defined the normalized amplit@de,) as the ratio of amplitude to the average of the 20%
amplitude valuesA,, (dimensionless) values below 0.78 indicate thajetation effects are significant and cannot be
neglected. When vegetation effects are significdugtS parameter value may depart from the value usétin2). A way

to cope with this issue is to apply the Zhang e{2017) method for a given time segment preserdongistent vegetation

7
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properties. Phase is scaled & not needed. The time series in this study paisged into four time segments: (1) TS1,
from 1 August 2015 to 18 March 2016 (a vegetatmmescence and dormancy period with data acquioed tihe antenna at
29.4 m using a 10 s sampling interval), (2) TS2mrl9 March to 5 June 2016 (a vegetation growingodewith data
acquired from the antenna at 29.4 m using a 1 plsagninterval), (3) TS3, from 8 June to 8 July BO(a vegetation
growing period with data acquired from the anteana.3 m antenna using a 1 s sampling interval)(@phd S4, from 9 July
to 6 October 2016 (after the grass cutting witlagatquired from the antenna at 3.3 m using a inplgag interval).

Another step is to select relevant satellite traokder significant vegetation effects. This is jgatarly challenging in dense
vegetation conditions. Even in conditions presensignificant vegetation effects, some satellitclis can be selected to
retrieve VSM. This occurs during TS3, correspondimdpow Ao vValues (Fig. 2). In order to select satellite ke such
conditions, only tracks presenting a continuityV&M retrievals with the following vegetation senesce period (TS4) are
kept. Only tracks giving similar VSM estimates {ditnce lower than 0.06°m?) at the end of TS3 and at the beginning of
TS4 are used for TS3. This procedure eliminategrdeks corresponding to the most densely vegetateals in the grass
field.

4 Results
4.1 VSM estimates

Figure 2 presents the VSM estimates derived froth be L2C and L5 SNR data using the normalized $R&se method
(see Sect. 3.1) and the vegetation correction mefsee Sect. 3.2). Results are shown for the wéxgperiment period from

1 August 2015 to 6 October 2016, and for all theesinental configurations of antenna height, sangpinterval, and grass
cutting (time segments).

The first grass cutting event occurs during TS1Hag no effect oA,,m because the above-ground biomass is relatively low
(less than 0.25 kg ), as shown in Fig. 2. On the other hand, the sganriting occurring before 9 July 2016 has a
significant effect o\, because, at that time, vegetation is not yet semégabove-ground biomass is about 0.50 Ky. m
Another reason to separate TS3 and TS4 is that 2@, values are significantly smaller during TS3 (06l 0.94
for TS3 and TS4, respectively).

The scaled wetness indexégde,) and VSM estimates are obtained for each of tiiesetime segments. The VSM scores
for the four separated time segments are recomiéthble 2. The mean absolute error (MAE), RMSE Rhdcores for
senescent, dormant or cut vegetation (TS1 and aB4petter than during the vegetation growing pe(ibS2 and TS3).
Scatter plot of the in situ VSM observations (N 69% at a depth of 5 cm versus GNSS VSM retrievalshiownfor the
whole experimenin Fig. 3. The RMSE and the standard deviationifié@nces (SDD) scores are: RMSE = 0.038mit
and SDD = 0.035 im’*, respectively. Thé¥ score is equal to 0.86 for merged L2C and L5 SMR.dAbout the same

value is found using only L2C dat&(= 0.85). The mean bias (0.02 m™) is positive, because the VSM estimates are

generally larger than in situ VSM observations atbdepth.
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Figure 2 shows that the GNSS VSM retrievals areensansitive to light rainfall events than in sit8M observations at 5
cm depth. Such events occur during the summer andna of 2016. It can be observed that while GNS/Mestimates

peak at the same time as light rains, the diffusiowater in the soil does not reach the probésah depth. This is why the
GNSS VSM tends to be larger than in situ VSM. Tdifference reduces the correlation and increasegtiors and can be
attributed to a GNSS-IR sensing depth less tham §Ghew et al., 2014 ; Shellito et al., 2016),dfation to vegetation litter
effects (see Sect. 5.3).

In the following sub-sections, more detailed corngmars are presented for antenna heights of 29.48 znoh.

4.2 VSM estimates from a GNSS antenna at 29.4 m above the soil

In most previous studies, VSM was retrieved fromS&N\antennas at about 2 or 3 m above the soil surfacreasing the
antenna height can significantly expand the sizh@fobserved areas. In this study, the impacsiofgua 29.4 m antenna on
VSM retrievals is assessed using TS1 and TS2 @ia.whole observation area for each track is aB00t nf or even
larger. The grass is cut in TS1, before 7 OctoltH52 Before grass cutting, the maximum simulatedvaiyround dry
biomass is about 0.25 kg™nFig. 2). For TS1A,om values are more often than not above 0.78 (FigA)ve this threshold
value, the vegetation effects are not signific&@tigw et al., 2016). From mid-August to mid-Septern{before the start of
grass cutting)Anerm is slightly smaller than the threshold value, ¥8M can be estimated at these dates. Moreoverfassg
cutting effects are observed in thg,, values, which also shows that vegetation effeotsret significant. The VSM
retrievals, using the L2C SNR data, are comparddgn4 with in situ VSM observations at a depttbafm. Figure 5 shows
that VSM retrievals tend to be larger than theiin sbservations. Similar results are obtained fttvn L5 SNR data (Fig.
5). The L2C and L5 VSM retrieval scores are presgint Table 3.

Fig. 5 and Table 3 show that VSM retrievals usifigSNR data are very close to those derived from BENR data. The
retrieval accuracies from L2C and L5 SNR data arglar (Table 3), showing that both L2C and L5 SN&a can be used
to retrieve VSM. In Table 2, L2C and L5 SNR data eombined. Results for TS1 in Table 2 show sligintiproved scores
with respect to those in Table 3. This can be empth by the larger number of available satelliecks per day. It is
interesting to note that results very similar tosth presented in Fig. 5 can be obtained by muiltiglpy 0.6 the S value
used by Chew et al. (2016) (not shown).

Overall, the scores obtained during TS1, at a hedfi29.4 m and a sampling interval of 10 s are parable to those
obtained in other time segments, including TS2 widampling interval of 1 s. The scores (Tablen2)$2 are similar to the
scores in TS1. This does not mean that there ieffext from the sampling interval because vegetatonditions are
different in TS1 and TS2. TS2 corresponds to ataige growing period. Vegetation growth impacts tkflecting surface
and has an impact on the SNR data as illustratetthdoyast decrease éf,m values in Fig. 2. Moreover, the SNR data in
TS4 (after grass cutting) are used to assess thacinof changing the sampling interval, without i@ in vegetation

conditions. This is discussed in Section 5.4.
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4.3 Removing vegetation growth effectsfrom VSM retrievals

Substantial vegetation effects are observed dur$®, at the end of the growing season of 2016. iBhevidenced by,om
values lower than 0.78 (Fig. 2). Grass is cut atethd of TS3 (before 9 July 2016). After grassiegttthe SNRA,m values
gradually raise to a relative large value (abow&).For example, the daily mean L2¢,,, values are 0.67, 0.69, 0.75 and
0.86 from 6 to 9 July 2016, respectively.

In order to remove vegetation effects, the SNR dafare and after cutting are considered as distiatasets (see Sects. 3.1
and 3.2). SNR data are used, time segment by tegment, to obtain soil wetness index and then VSkmates.The

observed soil moisture minimum and maximum valuesderived for each time segmeRor L2C (L5), 10 (6) satellite

tracks out of 36 (21) are selected for use duri8@.TFigure 6a shows the VSM retrievals for eacletsagment TS3 and
TS4 for L2C SNR data after removing vegetation @ffeby applying the Zhang et al. (2017) method. Theesponding
scores are listed in Table 4. Similar results dioed for L5 and both L2C and L5 SNR data (TableResults obtained
by applying the Zhang et al. (2017) method to tleeged time segments (TS3 and TS4) for L2C SNR al&also shown in
Fig. 6 and in Table 4. In this case, SNR-derivedWe too dry before the cutting and too wet atfter cutting (Fig. 6b).

5 Discussion
5.1 Why should growth and senescence be treated separately?

While VSM could not be retrieved by Zhang et alDX2) after wheat tillering, i.e. for plant heiglrder than 0.2 m, we
could retrieve scaled VSM values throughout timgnsents of the grass growing and senescence phidsegever,
retrieving VSM values in fhm ™ was challenging and required a seasonal rescalimgcount for vegetation effects (see
Fig. 7).

Section 4.3 showed that the VSM retrieval from StdRa during TS3 is of lower quality than during T8d. after cutting
the vegetation. Not all satellite tracks can beduSeable 1) and skill scores are systematicallysediTable 2). Moreover,
Figure 6 shows that a specific calibration (seet.S&2) of the retrieval method is needed for TB8cause the retrieval
method is based on the minimum phase which iseglat the vegetation height and density, the ldak mriori information
about this factor is likely to trigger marked dispancies.

Based on Eq. (1), SNR amplitudeand SNR phasé are calculated using the LSE method, assumingttieatrelative
antenna heighty) for each satellite track is constant across datesignoring the impact of the elevation anglencfeainA
(Larson et al., 2008; Larson et al., 2010). Theiaredalue of the derived effective antenna heightnfthe SNR data by the
Lomb-Scargle periodogram method is considered evalue of the a prioti, for each satellite track (Chew et al., 2016).
This hypothesis is only valid for the dates whem $lrface is not covered with snow or dense veagatahlthough the real
effective antenna height may vary from one dayrtotlaer, a constant value Hf is used through time for a given satellite

track. This assumption is made in order to enswgeconsistency af time series across dates. The a pifyrivalue affects
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the sinusoid fit, and might cause a systematic biasand¢ across dates. When there are significant vegetafiects, the
vegetation height affects the effective antennalitefZzhang et al., 2017). This explains why theaot#td VSM retrieval
time series with merged time segments are not wootis (Fig. 6). Segment by segment normalizatiarseful to remove
such systematic biases and to remove vegetatientsffrom VSM retrieval. It can be considered aggetation correction
method.

Figure 7 illustrates the improvement associatetihéovegetation correction. The systematic biasexhiby the mismatch in
Ho is shown. Without vegetation correction, the VSattievals do not correlate with the observed V&¥1=£ 0.03). On the
other hand, the vegetation correction removes iffierences between TS3 and TS4 caused by usingaimeH, in both
time segments and the VSM retrievals are more sterdi & = 0.55). Figure 7 clearly shows that using GNSSWR
retrieve VSM values in inm® when significant changes in vegetation effectsuois challenging. The need to harmonize
VSM retrievals from TS3 and TS4 is related to thétiog of the grass when vegetation effects araquaced Ao IS
lower than 0.78, see Fig. 1).

As a consequence, monitoring VSM using a GNSS ndtwould be difficult when vegetation effects areticeable.
However, we show that one may use the informatiomfA,,, data to define time segments for which scaled i
series are valid. For example, grass cutting casebected from the rapid rise Aorm Value.

In this study, we used independent VSM in situ ole@ns to harmonize the VSM time series acros3 ai%l TS4. Since
in situ observations are not extensively availathles technique is not readily applicable at othigzs. In practice, one could
possibly use a data assimilation framework ablmtiegrate the VSM retrievals into model VSM simidas such as those
produced by the ISBA land surface model (Albergeble 2017). In such Land Data Assimilation SystethDAS), a
complex seasonal rescaling of VSM observationg&lad (Reichle and Koster, 2004; Draper and Rei2blEs), especially
when the observations are not properly decontaetbm vegetation effects (Stoffelen et al., 2000)r results show that
using this rescaling technique would be feasihteesithe ISBA simulations of VSM correlate well witke retrieved VSM
(Fig. 8). The main reason for this result is tHBBA is forced by the SAFRAN atmospheric analysisprporating a large

number of in situ raingauge observations (Sec). ZHis is another way of using ancillary in sitoservations.

5.2 Aregrassand and cropland vegetation effects compar able?

The effect of vegetation on GNSS SNR data is tlaideplant height, above-ground biomass, and litterthe end of the
growing season, plant height and above-ground kismalues can be much larger for annual crops firagrass. On the
other hand, while litter is usually missing duritige growing phase of annual crops, litter is a atigristic of grasslands
(Quested and Eriksson, 2016).

Over our grassland site, the measured grass haighe end of the growing period is 30 cm on 22eJ2@16. The grass
height is then only slightly larger than one GNS&velength (~ 25 cm for L5). The simulated abovedgtbbiomass by
ISBA is shown in Fig. 2. During the summer of 201% maximum above-ground biomass slightly exceéeds kg nt.
This short period coincides with,om, values slightly lower than the 0.78 threshold.Jime 2016, before the cutting, the
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above-ground biomass ranges between 0.25 and @56k The corresponding\.om drops below 0.78, showing that
vegetation effects are significant. The simulatezkg above-ground biomass is 0.39 kg on 22 June 2016, very close to
the observed value of 0.37 kg?mrhe litter dry mass is not simulated but a vafi®.29 kg nf is obtained from in situ
observation at the same date, consisting in 0.287kgf dead leaf material and in 0.06 k&’ mf decomposed leaves. This
represents 44 % of the total above-ground orgaaierial.

Zhang et al. (2017) showed that over a wheat fibld vegetation gradually replaces the soil as thaindant reflecting
surface when plant height becomes comparable larger than, one wavelength, even at relatively Values of the above-
ground biomass (an estimate of 0.08 k§ is given). In such conditions ti#g.m drops below 0.78 and the SNR phase is no
longer related to soil moisture (Zhang et al., 2017

This study shows that VSM retrieval above thesemlaiss and plant height thresholds are feasible fassg However, a
limited number of suitable tracks, less affectedvbgetation, has to be selected using the gratagatvent (see Sect. 3.2).
In real practical applications, such tracks areaptiori known and retrieving VSM would be challgmg when vegetation

effects are significant.

5.3 Doesthelitter affect the GNSSVSM retrieval?

In order to analyze the possible impact of littertbe differences between GNSS VSM and eithertin ¥5M or ISBA
VSM, in situ VSM observations at 5 cm, in situ VSM observati@aisl cm and ISBA VSM simulations at 1 cm are
compared with the GNSS VSM retrievals. The GNSS MSkétrieved applying the Zhang et al. (2017) rodtto both L2C
and L5 SNR data, and the vegetation effects arevechfrom the retrievals. For ensuring the compétalof these various
soil moisture estimates, GNSS retrievals, ISBA 1simulations, in situ 1 cm observations and in Sitm observations are
scaled to dimensionless values.

Figure 8 shows a comparison between the four séa&M time series during TS3 and TS4. Soil moistuaiies tend to
increase drastically during precipitation eventasiof the VSM peaks observed in 1 cm in situ oleéns are also found
in 5 cm observations, except for 5-7 July and 5ust@016. On the other hand, GNSS VSM peaks caur edgaile in situ
VSM observations do not display any response to €aig. on 8-14, 25 and 30 June, 30-31 July, andfust 2016. A
contrasting result is found comparing GNSS and ISE3M estimates, which peak, more often than nothatsame time.
As a consequence, the GNSS VSM estimates correlath better with ISBA VSMR = 0.82) than with in situ VSM
observations at 1 cnfiRf = 0.63) and at 5 cniR{ = 0.57)-More-scores-are presented-in-Fdhle |
The scores resulting from the comparison betweafedcVSM validation data and GNSS VSM estimatessaygarately
recorded in Table&6 for each time segment. The highest correlatiomsveith ISBA simulations at 1 cm, for all timéf
segments. The scores based on in situ VSM obsengadit 1 cm are similar to those based on in sBM\6bservations at 5
cm. For TS4, the correlation with in situ VSM obssions at 1 cm is much higher than with those anb The main
difference between observations at 1 cm and at Sscthat the former respond to rainfall events magidly. This is
illustrated by Fig. 8 for events occurring afted @y 2016 (TS4). The differences observed betwel8&VSM estimates
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and in situ VSM observations at 1 cm can be explhiny the interception of light rains by the littévater contained in the
litter tends to directly reflect the GNSS signatidan prevent the GNSS signal from further penetratnto the soil. This
difference is not observed with ISBA simulationséese the litter is not implemented in this versiérthe ISBA model.
The good correspondence between ISBA and GNSS \&ikhates can be considered as an artifact: ISBAlsiies a VSM
peak which does not exist, and the GNSS SNR dataarsitive to a sudden increase in the litter maiatent and/or to the
rain intercepted by the litter or by the leavesothier demonstration of the impact of the litteeets can be made, removing
rainy days from TS4. The? score in Tables 2 and 6 then rises from 0.6588.0.

5.4 Does the sampling interval affect the VSM retrieval?

When the antenna height increases, the size afliberving areas is extended. But at the same tim@driod of the SNR
data decreases (Eqg. (1)), and a smaller sampltegval is needed to ensure the usability of the SIdfa for VSM retrieval.
On the other hand, because the SNR period frorgtadnitenna is much smaller, it is possible to nsaller elevation angle
ranges and shorter observing time periods per trBlok number of complete SNR waveforms is muchelatijan using a
low antenna. We investigate the impact of undergdiang for the 3.3 m antenna and for the 29.4 m ramde It should be
noted that in the examples illustrated by Figd®,and 11 the SNR frequency is always lower ther\tyquist frequency.
First, an example of the impact of the samplingrival for the 3.3 m antenna is shown in Fig. 9. lSXIR observations (N
= 90) from GPS PRN 10 ascending tracks during T&8r grass cutting) are used to retrieve VSM usiagous sampling
intervals. The Zhang et al. (2017) method is usaskt on the original 1 s sampling interval and egraded sampling
intervals of 10 and 100 s. During TSA4,.m is above 0.78 (Fig. 2), which also shows that tetgmn effects are not
significant (Chew et al., 2016). This is a rathey pgeriod but a few rainfall events are observeukeylcause changes in the
in situ VSM observations at 5 cm, which range bem®.07 and 0.21 tm>. In Fig. 9, the highest correlatioR%(= 0.68) is
for the smallest sampling intervals (1 and 10 s} the lowest correlatiorRf = 0.55) is observed for the largest sampling
interval (100 s). The corresponding statisticalrespresulting from the comparison between in g8M observations at a
depth of 5 cm and GNSS VSM retrievals are showhahle 7Table 5 As for R, RMSE and SDD for 1 and 10 s samplirig
intervals are similar (RMSE = 0.020°mm™ and SDD = 0.018 frm™®), and denote lower skill for the 100 s samplingival
(RMSE = 0.025 im® and SDD = 0.021 fm™®). Much more day to day variability is observedtie retrievals using a 100
s sampling interval. The impact on the SNR infoioratontent of degrading the sampling interval naagyy from one day
to another. This is illustrated by Fig. 10 for tamntiguous days (28 and 29 July 2016). The undewpsag effect at 100 s is
more pronounced on 29 July than on 28 July. Moteapd peak information is missing on 29 July. Tieisds to trigger a
sharp decrease in the retrieved VSM values. Orother hand, under-sampling tends to increase thieved VSM on 28
July. As a result, the retrieved VSM drops by -0.08 m* from 28 to 29 July while the in situ VSM at 5 cmlypchanges
by -0.004 M m*,

SNR amplitudes are also affected by the samplitegval in TS4. For 29 July 2016, the estimated SM#plitude is 26 V V

! for both 1 and 10 s sampling intervals, but ory\M V* for the 100 s sampling interval. For this examipéek data
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acquired by the 3.3 m antenna, the SNR period @®taB30 s. There are about 330, 33 and 3 sampl@sdomplete
waveform for 1, 10 and 100 s sampling intervalspeetively. Obviously, the 100 s sampling interslaks not provide
enough samples to retrieve VSM. On the other hasihg a 10 s sampling interval is sufficient foe tBNR data acquired
by the 3.3 m antenna after cutting the grass.

For the 29.4 m antenna, the sensitivity to the dimgpnterval is more critical. Fig. 11 shows thBIfS oscillations for the
GPS PRN 25 ascending track. The SNR period is alnbut 38 s. With 10 s sampling interval, 3 or 4 glas are available
for a complete waveform. This is about the sameasiin as for the 100 s sampling interval for th& & antenna. Figure
11a shows that pit and peak information is misgindl8 March 2016 with respect to the 1 s samplingrval data on the
next day in Fig. 11b. Nevertheless, TaB&shows that the 10 s under-sampling had a limiteplact on VSM retrievals
during TS1 since the best scores are observedgithis segment. This paradoxical result can bea@xedl by the prior use
of the in situ VSM data to select the satelliteksaand the satellite elevation angles (see S&tjt. 2

6 Conclusions

GPS L2C and L5 signal-to-noise-ratio data were inbthat a grassland site in southwestern Frandaeglar period of 15
months. A dimensionless scaled wetness index wagedefrom the SNR observations based on the GNB&¢hnique,
using indiscriminately L2C or L5 signals. Surfa@gl snoisture was derived from this scaled wetnestex. We show that
accurately estimating soil moisture in units ofm® over such a densely vegetated site is challengingrder to efficiently
limit the impact of perturbing vegetation effecteg grass growth period and the senescence pehiodds be treated
separately. While the vegetation biomass effectbmnorrected for, the litter water interceptiofiiances the observations
and cannot be easily accounted for. Overall, aigicet of 0.035 'm’® is achieved for the whole meadow growing cycle,
and of 0.018 rim* after grass cutting. A suitable sampling intershbuld be used depending on the antenna height and
elevation angle range. Positioning the antenna bmfat 29.4 m in this study) in order to obsentarger area enhances the
impact of under-sampling. The signal sampling waérshould be better than 10 s in this case. Moggeements over
contrasting vegetation types are needed to fugkamine the feasibility of integrating GNSS-IR itals in land surface
models. Land data assimilation systems are usua#ig for satellite observations but can also imatiegground observations.
In such a framework, model simulations of vegetatmomass and soil moisture could be combined V@HSS-IR
retrievals. Proposing a complete protocol to apiply method to local GNSS antennas would requisepiations at a large
number of sites. More research is needed to useS3RSn densely vegetated areas.

14



10

15

20

25

30

Acknowledgments. The work of Sibo Zhang was supported by the STA&g(®es et Technologies pour I'’Aéronautique et
'Espace) foundation, in the framework of the PRI$Rbtentialités de la Réflectométrie GNSS In-SitiMebile) project.
Authors would also like to thank Eric Moulin andel®arrié (CNRM), for their technical support dugithe field campaign.

References

Albergel, C., Munier, S., Leroux, D. J., Dewaele, Fairbairn, D., Barbu, A. L., Gelati, E., Dorigdy., Faroux, S., Meurey,
C., Le Moigne, P., Decharme, B., Mahfouf, J.-F.d abalvet, J.-C.: Sequential assimilation of sdeelierived
vegetation and soil moisture products using SURREBX): LDAS-Monde assessment over the Euro-Meditea
area, Geosci. Model Dev., Geosci. Model Dev., B893-3912, https://doi.org/10.5194/gmd-10-3889-2@0D4,7.

Bilich, A., Larson, K. M., and Axelrad, P.: ModefjrGPS phase multipath with SNR: Case study fronSdlar de Uyuni,
Boliva, Journal of Geophysical Research, 113(B45622202, https://doi.org/10.1029/2007JB005194 8200

Chan S. K., Bindlish, R., O'Neill, P. E., Njoku,,Backson, T., Colliander, A., Chen, F., Burgin, Bunbar, S., Piepmeier,
J., Yueh, S., Entekhabi, D., Cosh, M. H., Caldw&ll, Walker, J., Wu, X., Berg, A., Rowlandson, Pacheco, A.,
McNairn, H., Thibeault, M., Martinez-Fernandez, Gonzélez-Zamora, A., Seyfried, M., Bosch, D., BarP.,
Goodrich, D., Prueger, J., Palecki, M., Small, E.Zeda, M., Calvet, J.-C., Crow, W., and Kerr, Xssessment of the
SMAP passive soil moisture product, IEEE T. GeosdRemote Sens., 54 (8), 4994 - 5007,
https://doi.org/10.1109/TGRS.2016.2561938, 2016.

Chew, C. C., Small, E. E., Larson, K. M., and Zaoy, V. U.: Effects of near-surface soil moisture GPS SNR data:
development of a retrieval algorithm for soil maist, IEEE Transactions on Geoscience and Remotsirigerb2(1),
537-543, https://doi.org/10.1109/TGRS.2013.22422824.

Chew, C. C., Small, E. E., and Larson, K. M.: Amgalthm for soil moisture estimation using GPS-iféeometric
reflectometry for bare and vegetated soil, GPS tBwis, 20(3), 525-537, https://doi.org/10.1007/99DP15-0462-4,
2016.

Decharme, B., Boone, A., Delire, C., and Noilhan, Lbcal evaluation of the Interaction between SBibsphere
Atmosphere soil multilayer diffusion scheme usiraurf pedotransfer functions, J. Geophys. Res., TiH)126,
https://doi.org/10.1029/2011JD016002, 2011.

Draper, C. and Reichle, R.: The impact of nearaa@fsoil moisture assimilation at subseasonalpgsafisand inter-annual
timescales, Hydrol. Earth Syst. Sci., 19, 4831—484i$s://doi.org/10.5194/hess-19-4831-2015, 2015.

Durand, Y., Brun, E., Merindol, L., Guyomarc’'h, G&esaffre, B., and Martin, E.: A meteorologicaliesttion of relevant
parameters for snow models, Ann. Geophys., 188578, https://doi.org/10.1017/S0260305500011279319

15



10

15

20

25

30

Durand, Y., Giraud, G., Brun, E., Merindol, L., aklrtin, E.: A computer-based system simulatingvspack structures as
a tool for regional avalanche forecasting, Ann. ok, 45(151), 469-484,
https://doi.org/10.1017/S0022143000001337, 1999.

Dorigo, W. A., Xaver, A., Vreugdenhil, M., Grubeh,, Hegyiova, A., Sanchis-Dufau, A. D., Zamojski,, Cordes, C,
Wagner, W, and Drusch, M.: Global automated qualdwtrol of in situ soil moisture data from thedmiational Soil
Moisture Network, Vadose Zone Journal, 12(3), 21 pttps://doi.org/10.2136/vzj2012.0097, 2013.

Kerr, Y., Waldteufel, P., Wigneron, J., Martinuzii, Font, J., and Berger, M.: Soil moisture realdrom space: The Soll
Moisture and Ocean Salinity (SMOS) mission, I|IEEE TGeosci. Remote, 39(8), 1729-1735,
https://doi.org/10.1109/36.942551, 2001.

Lafont, S., Zhao, Y., Calvet, J.-C., Peylin, P.ai€j P., Maignan, F., and Weiss, M.: Modelling LAlUrface water and
carbon fluxes at high-resolution over France: caispa of ISBA-A-gs and ORCHIDEE, Biogeosciences])9¢439—
456, https://doi.org/10.5194/bg-9-439-2012, 2012.

Larson, K. M., Small, E. E., Gutmann, E. D., Bili¢gh L., Braun, J. J., and Zavorotny, V. U.: UseG®S receivers as a soll
moisture network for water cycle studies, GeophalsicResearch Letters, 35(24), L24405, 5 pp.,
https://doi.org/10.1029/2008GL036013, 2008.

Larson, K. M., Gutmann, E. D., Zavorotny, V. U.,a8n, J. J.,, Williams, M. W., and Nievinski, F. @an we measure
snow depth with GPS receivers?, Geophysical Researtetters, 36, L17502, 5 pp.,
https://doi.org/10.1029/2009GL039430, 2009.

Larson, K. M., Braun, J. J., Small, E. E., Zavoyid. U., Gutmann, E. D., and Bilich, A. L.: GPS ltipath and its relation
to near-surface soil moisture content, IEEE Jounfabelected Topics in Applied Earth Observationsl &emote
Sensing, 3(1), 91-99, https://doi.org/10.1109/JSTAR09.2033612, 2010.

Larson, K. M., and Nievinski, F. G.: GPS snow sagsiresults from the EarthScope Plate Boundary @bsary, GPS
solutions, 17(1), 41-52, https://doi.org/10.1000241-012-0259-7, 2013.

Larson, K. M., Small, E. E., Chew, C. C., Nievingki G., Pratt, J., McCreight, J. L., Braun, J.nRBace, K., and Evans, S.
G.: PBO H20: Plate Boundary Observatory StudiethefWater Cycle, American Geophysical Union, Fa#ie¥ing,
San Francisco, 9-13 December, 2013.

Larson, K. M.: GPS interferometric reflectometrypéications to surface soil moisture, snow deptid segetation water
content in the western United States, Wiley Intzigilinary Reviews: Water, 3(6), 775-787,
https://doi.org/10.1002/wat2.1167, 2016.

Masson, V., Le Moigne, P., Martin, E., Faroux, Aias, A., Alkama, R., Belamari, S., Barbu, A., Bm A., Bouyssel, F.,
Brousseau, P., Brun, E., Calvet, J.-C., Carrer,0@charme, B., Delire, C., Donier, S., Essaouinj, Gibelin, A.-L.,
Giordani, H., Habets, F., Jidane, M., Kerdraon, Kaurzeneva, E., Lafaysse, M., Lafont, S., Lebeawiossier, C.,
Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokht®., Morin, S., Pigeon, G., Salgado, R., Selty, Taillefer, F.,
Tanguy, G., Tulet, P., Vincendon, B., Vionnet, &hd Voldoire, A.: The SURFEXv7.2 land and oceatfiasgr platform

16



for coupled or offline simulation of earth surfacariables and fluxes, Geosci. Model Dev., 6, 929,96
https://doi.org/10.5194/gmd-6-929-2013, 2013.

Morisette, J. T., Baret, F., Privette, J. L., Myhdt B., Nickeson, J. E., Garrigues, S., ShabahbyWeiss, M., Fernandes,
R., Leblanc, S., Kalacska, M., Sanchez-AzofeifaAG.Chubey, M., Rivard, B., Stenberg, P., RaugainM., Voipio,

5 P., Manninen, T., Pilant, A. N., Lewis, T. E., liag J. S., Colombo, R., Meroni, M., Busetto, L.h&w, W., Turner, D.
P., Warner, E. D., Petersen, G. W., Seufert, Gl,@ook, R.: Validation of global moderate-resolnticAl products: A
framework proposed within the CEOS land producidgion subgroup, IEEE Transactions on GeosciendeRemote
Sensing, 44(7), 1804-1817, http://doi.org/10.11@RE.2006.872529, 2006.

10 Quested, H. and Eriksson, O.: Litter species coitiposinfluences the performance of seedlings dasgtand herbs,
Functional Ecology, 20, 522-532, https://doi.orgiti11/j.1365-2435.2006.01131.x, 2016.

Quintana-Segui, P., Lemoigne, P., Durand, Y., Mark., Habets, F., Baillon, M., Canellas, C., Frasteguy, L., and
Morel, S.: Analysis of near surface atmospheridaldes: Validation of the SAFRAN analysis over FranJ. Appl.
Meteorol. Clim., 47, 92—-107, https://doi.org/10.522007JAMC1636.1, 2008.

15 Reichle, R. and Koster, R.: Bias reduction in shredords of satellite soil moisture, Geophys. Rest., 31, L19501,
https://doi.org/10.1029/2004GL020938, 2004.

Rodriguez-Alvarez, N., Vall-llossera, M., Camps,, Bosch-Lluis, X., Monerris, A., Ramos-Perez, l.aldhcia, E.,
Marchan-Hernandez, J.F., Martinez-Fernandez, Jqrigai-Turricchia, G., Perez-Gutierrez, C., anch&eez, N.: Land
geophysical parameters retrieval using the interfee pattern GNSS-R technique, IEEE Trans. GeBsrnhote Sens.

20 49, 71-84, https://doi.org/10.1109/TGRS.2010.2039@P11.

Rodriguez-lturbe, I., and Porporato, A.: Ecohydggl@f water-controlled ecosystems: soil moisture gtant dynamics,
University Press, Cambridge, ISBN 0521036747, 4642007.
Roussel, N., Frappart, F., Ramillien, G., DarrozespPesjardins, C., Gegout, P., Pérosanz, F.,dalerR.: Simulations of
direct and reflected waves trajectories for in SBNSS-R experiments, Geoscientific Model Developmen 2261-
25 2279, https://doi.org/10.5194/gmd-7-2261-2014, 2014
Roussel, N., Frappart, F., Ramillien, G., DarrozesBaup, F., Lestarquit, L., and Ha, M. C.: Datt of Soil Moisture
Variations Using GPS and GLONASS SNR Data for HievaAngles Ranging From 2° to 70°, IEEE Journal of
Selected Topics in  Applied Earth Observations andem&e  Sensing, 9(10), 4781-4794,
https://doi.org/10.1109/JSTARS.2016.2537847, 2016.
30 Roussel, N., Ramillien, G., Frappart, F., DarrodesGay, A., Striebig, N., Biancale, R., Hanquiz, Allain, D.: Sea level
monitoring and sea state estimate using a singbelejec receiver, Remote Sensing of Environment,, PBIL-277,
https://doi.org/10.1016/j.rse.2015.10.011, 2015.

17



10

15

20

25

30

Saleh, K., Wigneron, J.-P., Waldteufel, P., de Rgsi®., Schwank, M., Calvet, J.-C., and Kerr, Ystifaates of surface soil
moisture under grass covers using L-band radiometrRemote Sens. Env., 109(1), 42-53,
https://doi.org/10.1016/j.rse.2006.12.002, 2007.

Shellito, P. J., Small, E. E., Colliander, A., Bist, R., Cosh, M. H., Berg, A. A, Bosch, D. Dal@well, T. G., Goodrich,
D. C., McNairn, H., Prueger, J. H., Starks, Pvan der Velde, R., and Walker, J. P.: SMAP soilshoie drying more
rapid than observed in situ following rainfall et®n Geophys. Res. Lett, 43, 8068-8075,
https://doi.org/10.1002/2016GL069946, 2016.

Small, E. E., Larson, K. M., and Braun, J. J.: 8epsegetation growth with reflected GPS signalspghysical Research
Letters, 37(12), L12401, 5 pp., https://doi.orgllI29/2010GL042951, 2010.

Small, E. E., Larson, K. M., Chew, C. C., Dong,ahd Ochsner, T. E.: Validation of GPS-IR soil e retrievals:
Comparison of different algorithms to remove vetietaeffects, IEEE Journal of Selected Topics inpkgd Earth
Observations and Remote Sensing, 9(10), 4759-4%{f3;://doi.org/10.1109/JSTARS.2015.2504527, 2016.

Stoffelen, A., Aaboe, S., Calvet, J.-C., Cotton,Dk Chiara, G., Figua-Saldana, J., Mouche, A.Partabella, M., Scipal,
K., and Wagner, W.: Scientific developments and HRS-SG scatterometer, IEEE J. Sel. Topics AppithE@bs.
Remote Sens., 10, 2086-2097, https://doi.org/1@UBIARS.2017.2696424, 2017.

Vey, S., Guntner, A., Wickert, J., Blume, T., andnfatschi, M.: Long-term soil moisture dynamics dedi from GNSS
interferometric reflectometry: A case study for I@rand, South Africa, GPS Solutions, 20(4), 64465
https://doi.org/10.1007/s10291-015-0474-0, 2016.

Wan, W., Larson, K. M., Small, E. E., Chew, C. &nd Braun, J. J.: Using geodetic GPS receiversdasore vegetation
water content, GPS Solutions, 19(2), 237-248, Hftjxs.org/10.1007/s10291-014-0383-7, 2015.

Wigneron, J. P., Chanzy, A., Calvet, J. C., Olicdoand Kerr, Y.: Modeling approaches to assimigtL band passive
microwave observations over land surfaces, JouofalGeophysical Research: Atmospheres, 107(D14),pp4
https://doi.org/10.1029/2001JD000958, 2002.

Zavorotny, V. U., Gleason, S., Cardellach, E., &anps, A.: Tutorial on remote sensing using GNS$abc radar of
opportunity, IEEE Geoscience and Remote Sensingalklag, 2, 8-45, https://doi.org/10.1109/MGRS.203424220,
2014.

Zhang, S., Roussel, N., Boniface, K., Ha, M. Cagpart, F., Darrozes, J., Baup, F., and Calvef,.:JUse of reflected
GNSS SNR data to retrieve either soil moisture egetation height from a wheat crop, Hydrol. EanstSSci., 21,
4767-4784, https://doi.org/10.5194/hess-21-476772Q017.

18



Table 1. Characteristics of the selected satellite tracksnfthe GNSS antenna at a 29.4 m height and aB an3height

(North is 0° azimuth angle, clockwise rotation).

Antenna
height . . Instantaneous FFZ _. .
. Elevation angle Azimuth angle Areas per Time duration per
(m) Satellite tracks range (°) range (°) track (mfy /€@ range (fn track (min)
29.4 GPS PRN 03 216 to 219 21.6
GPS PRN 07 168 to 169 21.2
GPS PRN 08 14 to 23 166 to 169 ~ 900 ~400-150 20.3
GPS PRN 17 223 t0 228 24.0
GPS PRN 26 168to 171 20.3
GPS PRN 25 9to 17 228 to 232 ~ 2000 ~1000-300 20.7
3.3 36 for L2C
(20 during TS3) 7to 30 - ~ 300 ~200-10 ~60

21 for L5
(6 during TS3)
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Antenna-height{m) 29.4 33 33 29.40r33
Sampling-interval(s) 1 1 1 100,11

N 68 31 90 409
Mean-bias{(Mmi) 0.028 0.023 0.006 0016
MAE-(m°+) 0-039 0035 0.013 0-029
RMSE(ri-m) 0.-048 0043 0.019 0.038
SDB{nT-") 0-039 0.-036 0.018 0.035

R 0-62 045 065 086
p-value 0 000001 0 0
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Table 2. Soil moisture scores for four time segments fromdomparison between scaled VSM validation dataifu VSM
observations at 1 cm and 5 cm and ISBA VSM simoitetiat 1 cm) and scaled GNSS VSM retrievals (b@@ hnd L5).

Scores in ’m are given (between brackets) for in situ obseovatiat -5 cm. Best score values among time segraenis

bold. MAE is the mean absolute error, RMSE is that mean square error and SDD is the standardtdmvief differences.

5 N.s the number of observations.

Time TS1 TS2 TS3 IS4

segment

Dates from 1 August 2015 from 19 March 2016 from 8 June 2016 from 9 July 2016

to 18 March 2016 to 5 June 2016 to 8 July 2016 to 6 October 2016

Vegatation senescence, cutting, rowin rowin cutting

stages dormancy

Antenna 29.4 29.4 3.3 3.3

height (m)

Sampling 10 1 1 1

interval (s)

N 220 68 31 90

Independent ISBA | Insitu | Insitu | ISBA | Insitu | Insitu| ISBA | Insitu | Insitu| ISBA | Insitu | In situ

soil lcm 1lcm 5cm [ 1lcm | 1cm 5cm | 1cm 1cm 5cm | 1lcm 1lcm 5cm

moisture

estimates

MAE 032 | 033 | 030 | 047 | 058 | 0.56 | 0.34 | 0.54 | 0.65 | 0.33 | 0.33 | 0.38

0.031 (0.039 (0.035 (0.013

m’m*) m’m) m’m) m’m*)

RMSE 040 | 042 | 040 | 061 | O0.71 | 0.65 | 0.51 | 0.69 | 0.80 | 0.42 | 0.44 | 0.62
(0.040 (0.048 (0.043 (0.019
m°m’®) m°m’®) m°m’®) m°m’®)

SDD 0.40 0.42 0.40 0.61| 0.71 | 0.65 | 051 | 0.69 | 0.80 | 042 | 0.44 | 0.62
(0.037 0.039 (0.036 0.018

R 0.84 | 083 | 08 | 0.66 | 0.55 | 0.62 | 0.75 | 0.57 | 045 | 0.83 | 0.81 | 0.65
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Table 3. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengdts

(either L2C or L5) during TS1 (SNR data from the®2& antenna with 10 s sampling interval from 1 Bstg2015 to 18
March 2016). Best score values are in bold. M&Ehe-mean-abseolute-erf®MSE is-the-root-mean-square-error<8IidD

andN are defined in Table B-the-standard-deviation-of-differences.

Signal L2C L5
N 220 220
Mean bias (hm?) o 116 017
MAE (m® m?) 0.032 0.033
RMSE (MPm®) o 15 042
SDD (n? m?) 0.039 0.038
R 0.83 0.84
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Table 4. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengdts
(either L2C or L5 or both) during TS3 and TS4 (Stiea from the 3.3 m antenna with 1 s sampling vialefrom 8 June to
6 October 2016). The Zhang et al. (2017) methagsed for separated time segments, and also foremidige segments.

Best score values are in bold. MA&Ethe-mean-abselute-effd(RMSE is-the-root-mean-square-errorg8DD and N are
5 defined in Table 2-the-standard-deviation-of differences

Time segment§FS3

ane e Separate TS3 and TS4 Mg;%e_?_gfs
Signal L2C L5 L2C and L5 L2C

N 121 121 121 121
Mean bias (mfhm?®) 0.010 0.011 0.010 0.025
MAE (m® m') 0.019 0.018 0.018 0.044
RMSE (n? m) 0.027 0.027 0.027 0.050
SDD (nf m") 0.026 0.025 0.025 0.044

R 0.55 0.60 0.57 0.03
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Table7Table 5. Soil moisture scores from the comparison betwesly dhean in situ VSM observations at a depth ofib
and GNSS VSM retrievals during TS4 (after grassirmyt from 9 July to 6 October 2016). The L2C SN&tadfrom
GPS PRN 10 ascending tracks were used, which wareirad by the 3.3 m antenna. Best score valuesabeld.
MAE is the mean absolute error, RMSE is the rocamequare error and SDD is the standard deviafidifferences

Time-segment{TS4) 1 ssamplinginterval 10 ssampling-interval 100 ssampling-interval
Sampling interval

N 90 90 90

Mean bias (rhm’) 0.009 0.008 0.012
MAE (m® m®) 0.013 0.013 0.018
SDD (n? m®) 0.018 0.018 0.021
RMSE (n? m?) 0.020 0.020 0.025
R 0.68 0.68 0.55
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Figure 1. Experimental site of M eteopole-Flux. The specular reflection points and first Fresnel zone (FFZ) areas from the selected
satellite tracks are shown in orange for a 29.4 m GNSS antenna (" H" red dot). The specular reflection points and FFZ areas for a
3.3 m GNSS antenna ("L" red dot) are shown in blue. The red star indicates the location of in situ soil moisture observations.

Background geographic information isfrom Google Earth.
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Figure 2: Timeline of experiment. (a) Daily GNSS VSM retrieval time series (N = 409) using both L2C and L5 SNR data for the
whole experimental period (from 1 August 2015 to 6 October 2016) is shown in red line, together with daily mean in situ VSM
observations at a depth of 5 cm (green line). The blue line represents the daily precipitation in mm day™. The black lines indicate
the grass cutting before 7 October 2015 and before 9 July 2016. The retrievals are obtained separately depending on four time
segments (Table 2). (b) Thered line represents the above-ground dry biomass (kg m™) of the grass simulated by the ISBA model
before grass cutting; and the red dashed line indicates the maximum simulated dry biomass (0.25 kg m™) in 2015. Grass cutting is
also shown in black solid lines. The L2C (L5) SNR normalized amplitude (A,orm, dimensionless) time series is shown in green
(blue). Normalization is performed separately for TS1 and TS2, and for the period with data acquired from the 3.3 m antenna
using a 1 s sampling interval. The latter corresponds to the merged TS3 and TS4. The black dashed line indicates the Aom

threshold (0.78) for evaluating the vegetation effects.
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Figure 3: Scatter plot of daily mean in situ VSM observations (N = 409) at a depth of 5 cm vs. GNSS VSM retrievals (from both
L2C and L5) for thewhole experimental period from 1 August 2015 to 6 October 2016.
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Figure 4: Median of the daily VSM retrievals (N = 220, red dots) and their daily statistical distribution (grey box plots) for 6
available satellite tracks. Daily mean in situ VSM observations at a depth of 5 cm are shown by the green line. The black line
indicates the grass cutting before 7 October 2015. The blue line represents the rainfall (daily precipitation in mm day™). TheL2C
SNR data acquired by the 29.4 m antenna with a 10 s sampling interval were used to retrieve VSM during TS1 (vegetation
senescence and after cutting). Boxes: 25-75% percentiles, bars: maximum (minimum) values below (above) 1.5 IQR (Inter
Quartile Range, corresponding to the 25-75% per centile interval); dots: data outsidethe 1.5 IQR interval.
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Figure 5: Scatter plots of daily mean in situ VSM observations at a depth of 5 cm vs. GNSS VSM retrievals (N = 220): from (a)
5 L2C SNR data, (b) L5 SNR data. The SNR data acquired by the 29.4 m antenna with a 10 s sampling interval during TS1 were
used.
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Figure 6: Median of the daily VSM retrievals (red lines) with (a) separate TS3 and TS4 and removing vegetation effects, (b)
merged TS3 and TS4, using L2C SNR data (from the 3.3 m antenna with 1 s sampling interval) during TS3 and T$4 (from 8 June
to 6 October 2016). Daily mean in situ VSM observations at a depth of 5 cm are shown by the green lines. The blue lines repr esent
therainfall (daily precipitation in mm day™). The black/orange dashed line indicates the grass cutting before 9 July 2016.
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Figure 7: Scatter plots of daily mean in situ VSM observations (N = 121) at a depth of 5 cm vs. GPS L2C retrievals: (a) after
vegetation effects correction (with separate TS3 and T$4, corresponding to Fig. 6a) and (b) before correction (with merged TS3
and T$4, corresponding to Fig. 6b). The L2C SNR data acquired by the 3.3 m antenna with 1 ssampling interval were used. Black
dotsrepresent theretrievals (N = 31) during TS3; red dots (N = 90) represent theretrievals during T4 (after grass cutting).
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Figure 8: (a) Scaled GNSSVSM retrieval timeseries(red line, N = 121) using both L2C and L5 SNR data during separate TS3 and
T4, scaled ISBA 1 cm simulations (green line) and scaled in situ VSM observations at 1 cm (grey solid line) and at 5 cm (grey
dashed line). The SNR data acquired by the 3.3 m antenna with 1 s sampling interval were used during TS3 and TS4. The
black/orange dashed line indicates the grass cutting of 9 July 2016. (b, c and d) Scatter plots of scaled ISBA VSM simulations at 1
cm, scaled in situ VSM observations at 1 cm and scaled in situ VSM observations at 5 cm vs. scaled GNSS VSM retrievals,
respectively.
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Figure 9: L2C SNR VSM retrieval time series using GPS PRN 10 ascending tracks with different sampling intervals: (a) 1 s, (b) 10
sand (c) 100 s. The L2C SNR data acquired by the 3.3 m antenna during T$4 (after grass cutting in July 2016) were used. Their
corresponding scatter plots are shown in (d), (e) and (f), respectively. Daily mean in situ VSM observations at a depth of 5 cm
(black lines) are shown in theleft sub-figures, and the blue lines represent the daily precipitation in mm day™.
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Figure 10: Two examples of L2C SNR data sets (from the GPS PRN 10 ascending tracks) acquired by the 3.3 m antenna at two
contiguous dates: (a) 28 July and (b) 29 July 2016. SNR data with three different sampling intervalsat 1, 10 and 100 sare shown in
5 black, orange and red lines, respectively.
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Figure 11: Two examples of L2C SNR data sets (from the GPS PRN 25 ascending tracks) acquired by the 29.4 m antenna at two
contiguous dates: (a) 18 March 2016 (with 10 ssampling interval) and (b) 19 March 2016 (with 1 ssampling interval).
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“Deriving surface soil moisture from reflected GNSSsignal observations
from a grassland site in southwestern France”
by Sibo Zhang et al.

Cover letter to the editor

5 February 2018

Dear Dr. Miriam Coenders-Gerrits,

The authors’ response to the comments of the tvaoyanous referees has been published on
the HESS web site.

In response to comments by Reviewer 1, we remdwedamparison with Chew et al. (2016)
in the text, in Tables 3 and 4, and in Figs. 4.8)Ve also explained in the Discussion section
how VSM retrieval in marked changing vegetation dibans could be performed without
using ancillary in situ VSM observations. Such dem in vegetation conditions can be
identified from the GNSS signal and then the regte VSM values can be rescaled to be
consistent with a land surface model, using a dasamilation framework. Our results show
that using this rescaling technique would be fdasfiince the ISBA simulations of VSM
correlate well with the retrieved VSM (Fig. 8). Thmin reason for this result is that ISBA is
forced by the SAFRAN atmospheric analysis, incamgiog a large number of in situ
raingauge observations. This is another way ofguancillary in situ observations.

All changes relative to the published HESS paperdatailed in the marked-up version of the
new manuscript. They include all the response emsngiven by the authors in response to
the reviewers’ comments (green and blue for Revielvand 2, respectively). Other changes
in the text are in red.

In response to your comment, we have elaborate@ moithe rescaling issue (in yellow) and
added other published examples of the assimiladiosatellite-derived VSM observations
making use of the cumulative distribution functid@DF) matching to rescale observations
prior to their assimilation in a land surface mo@ekichle and Koster, 2004; Draper and
Reichle, 2015).

References:

Draper, C. and Reichle, R.: The impact of nearsm@fsoil moisture assimilation at
subseasonal, seasonal, and inter-annual times¢fjdsol. Earth Syst. Sci., 19, 4831-4844,
https://doi.org/10.5194/hess-19-4831-2015, 2015.

Reichle, R. and Koster, R.: Bias reduction in shecbrds of satellite soil moisture, Geophys.
Res. Lett., 31, L19501, https://doi.org/10.1029460020938, 2004.

Yours sincerely,

Jean-Christophe Calvet, Sibo Zhang.



LIST OF CHANGES MADE IN RESPONSE TO COMMENTS OF REV IEWER #1

1.1 [General comments: The authors utilize a geodetquality GNSS antenna (AR10
type) in a meadow to test out a soil moisture reteival algorithm under different stages of
natural grass cover growth. They find that their retieval algorithm performs well and
retrieves soil moisture compared to in situ with arRMSE less than 0.04 cm3 cm-3. They
compare their results to a 'benchmark’ algorithm ard find that their algorithm
performs better. They also vary the height of the mtenna to see if antenna height affects
their results, and they also look at the effects &m changing the sampling rate. They find
that antenna height does not affect their retrievad, but sampling rate does. Overall,
there are two major short comings of this study tha must be addressed: *First, the
'benchmark’ algorithm that the authors compare therr own retrievals to should NOT be
used for this type of antenna. The benchmark algotihm developed in Chew et al. (2016)
was created solely for the antennas used in the R@aBoundary Observatory network
(Trimble antennas). It is well known that the algorthm would need to be calibrated for
use with a different antenna type. The authors shdd remove the portion of the paper
(figures and text) that compare their algorithm to hat from Chew et al. (2016). This is a
significant portion of the text and discussion thashould be removed, but the paper is
still worthwhile without it.]

Response 1.1: changes in the marked-up version éietnew manuscript

P.7,L.5-13:

"Due to the good linear relationship betwegrand in situ surface VSM, VSM can be
estimated for each satellite track (Chew et all,630

VaM = SU@- @) +VIM 4 (2

The Sparameter (in fim™ degred) is defined using the a priori value. A valueSof 0.0148
m*® m® degre& was proposed by Chew et al. (2016) for the PBO-Hetwork. This value is
adapted to situations of low vegetation densitgarer and is valid for the Trimble antennas
used in the PBO-4D network. In this equation, thgetime series is zeroed using a minimum
phase valueg¢in) for each satellite track. This procedure is us&fuensure compatibility
among different satellite track®min is the mean of the lowest 15% @fvalues for each
satellite track during the considered time segnamt VSMesiq is the residual (minimum)
volumetric soil moisture value."

P.7,L.15:
"In this study, the method proposed by Zhang e2&l17) is used."

P. 10, L. 20-21:
"It is interesting to note that results very simila those presented in Fig. 5 can be obtained
by multiplying by 0.6 the S value used by Chewle(2016) (not shown)."

1.2 [*Second, the fact that the authors’ retrievalalgorithm requires having in situ
observations of maximum and minimum soil moisture £q. 3) detracts significantly from
the usefulness of the algorithm. Of course their gbrithm produces soil moisture
retrievals within the bounds of the in situ probesi is effectively scaled by the in situ



observations. Furthermore, the authors state that ey need min/max in situ
observations from both vegetation growth and seneence periods, which then means
that they need ancillary vegetation information inorder for their algorithm to work. If
you need vegetation data and in situ soil moisturprobes in order for your algorithm to
work, why use GNSS-IR at all? The authors should gnd some time re-working their
algorithm so that they don’t need in situ soil moigire information. If the authors can
address the above two comments, then the paper wibe technically correct and will
make a more worthwhile contribution to the field of GNSS-IR in general. | know that
these are harsh criticisms, and | don’t want the athors/editors to think that | don't like
the paper—overall, | enjoyed reading it. It is wellorganized and clearly written. | think
reporting their retrieval results is worthwhile, and removing the comparison with the
benchmark algorithm will not detract from the paper.]

Response 1.2: changes in the marked-up version et new manuscript

P.12, L. 4-16:

"Figure 7 clearly shows that using GNSS-IR to estei VSM values in fim?> when
significant changes in vegetation effects occuchiallenging. The need to harmonize VSM
retrievals from TS3 and TS4 is related to the ngtof the grass when vegetation effects are
pronouncedAnom is lower than 0.78, see Fig. 1). As a consequanoajtoring VSM using a
GNSS network could be difficult when vegetationeets are noticeable. However, we show
that one may use the information frof,m data to define time segments for which scaled
VSM time series are valid. For example, grass rmgttian be detected from the rapid rise in
Anorm Value. In this study, we used independent VSMitim gbservations to harmonize the
VSM time series across TS3 and TS4. Since in $ifevations are not extensively available,
this technique is not readily applicable at othtss In practice, one could possibly use a data
assimilation framework able to integrate the VSNriezals into model VSM simulations
such as those produced by the ISBA land surfacesh{@dbergel et al., 2017). In such Land
Data Assimilation Systems (LDAS), a complex seakoescaling of VSM observations is
needed (Reichle and Koster, 2004; Draper and ReicBD15), especially when the
observations are not properly decontaminated fregetation effects (Stoffelen et al., 2017)."

P. 15, L. 19-24:

"More experiments over contrasting vegetation types needed to further examine the
feasibility of integrating GNSS-IR retrievals innkh surface models. Land data assimilation
systems are usually used for satellite observationsan also integrate ground observations.
In such a framework, model simulations of vegetatidomass and soil moisture could be
combined with GNSS-IR retrievals. Proposing a catglprotocol to apply this method to

local GNSS antennas would require observationslatge number of sites. More research is
needed to use GNSS-IR in densely vegetated areas."

New references:

P. 16, L. 1-5:

"Albergel, C., S. Munier, D. J. Leroux, H. Dewael®, Fairbairn, A. L. Barbu, E. Gelati, W.
Dorigo, S. Faroux, C. Meurey, P. Le Moigne, B. Dathe, J.-F. Mahfouf, J.-C. Calvet:
Sequential assimilation of satellite-derived vegeta and soil moisture products using
SURFEX_v8.0: LDAS-Monde assessment over the Eurditdganean area, Geosci. Model
Dev., Geosci. Model Dev., 10, 3889-3912, httpst/tig/10.5194/gmd-10-3889-2017,
2017."



P. 19, L. 19-21:

"Stoffelen, A., S. Aaboe, J.-C. Calvet, J. Cott@, De Chiara, J. Figua-Saldana, A. A.
Mouche, M. Portabella, K. Scipal, W. Wagner: Sdientdevelopments and the EPS-SG
scatterometer, IEEE J. Sel. Topics Appl. Earth CRemote Sens., 10 (5), 2086-2097,
https://doi.org/10.1109/JSTARS.2017.2696424, 2017."

1.3 [Specific comments: Page 2, line 5: You shouldake it clear that GNSS-IR is not
used for spaceborne applications, as you referenagethe Camps et al. (2008) paper. The
spaceborne technique is very different from GNSS-IR

Response 1.3: changes in the marked-up version dietnew manuscript

P.2, L. 4-5:
This sentence was deleted.

1.4 [Page 8, line 9: Isn’t another way of saying th, is that the sensing depth of GNSS-IR
is less than 5 cm? This has been found in previowtudies for GNSS-IR (Chew et al.,

2014) and for L-band microwave remote sensing in geral (Shellito et al., 2016, GRL).

The comparison with the land surface model is a bitushed and perhaps not needed. As
you know, there are a variety of different land suface models, each with their own
parameterizations of the land surface. There aren’enough details provided about the
land surface model for readers to understand its athntages and shortcomings. Was it
parameterized for this particular field? What is the spatial resolution of the model? The

authors do not spend much time with comparing theiresults to the model output, so it

would be easy to remove this part of the paper.]

Response 1.4: changes in the marked-up version éietnew manuscript

P.5, L. 8-16:

"The ISBA model used the atmospheric forcing datadpced by the SAFRAN atmospheric
analysis of Météo-France. The model version usethim study was designed for generic
country-scale simulations over France at a spadisblution of 8 km x 8 km. It was not
calibrated for this particular site. Sub-grid vedein types are represented and soil moisture
and soil temperature profiles are simulated foheasgetation type, independently of other
vegetation types. In this study, the C3 grasslalastpfunctioning type and a multilayer
representation of the soil hydrology are considefidte model soil depth is 12 m, with 15
layers and the layer thickness increases from dpesurface layer to the deepest layers
(Decharme et al., 2011). It must be noted thatIAERAN precipitation forcing is based on
ground observations and is quite realistic (Quiat&egui et al., 2008)."

P.9, L. 23-25:

"This difference reduces the correlation and ineesathe errors and can be attributed to a
GNSS-IR sensing depth less than 5 cm (Chew 2@il4 ; Shellito et al., 2016), in relation to
vegetation litter effects (see Sect. 5.3)."

New references:
P. 16, L. 23-25:



"Decharme, B., Boone, A., Delire, C., and Noilhdn, Local evaluation of the Interaction
between Soil Biosphere Atmosphere soil multilayéusgion scheme using four pedotransfer
functions, J. Geophys. Res., 116, D20126, https:6ch/10.1029/2011JD016002, 2011."

P. 18, L. 16-18:

"Quintana-Segqui, P., Lemoigne, P., Durand, Y., MaiE., Habets, F., Baillon, M., Canellas,
C., Franchisteguy, L., and Morel, S.: Analysis afan surface atmospheric variables:
Validation of the SAFRAN analysis over France, JpA Meteorol. Clim., 47, 92-107,
https://doi.org/10.1175/2007JAMC1636.1, 2008."

P. 19, L. 10-13:

"Shellito, P. J., Small, E. E., Colliander, A., Biish, R., Cosh, M. H., Berg, A. A., Bosch, D.
D., Caldwell, T. G., Goodrich, D. C., McNairn, HPrueger, J. H., Starks, P. J., van der Velde,
R., and Walker, J. P.: SMAP soil moisture dryingrencapid than observed in situ following
rainfall events, Geophys. Res. Lett., 43, 8068—80itps://doi.org/10.1002/2016GL069946,
2016."

1.5 [With regards to the sampling rate discussion+a you not just exploring effects of
sampling lower than the required Nyquist sampling fequency for a given antenna
height?]

Response 1.5: changes in the marked-up version éietnew manuscript

P. 14, L. 8-9:
"It should be noted that in the examples illustldig Figs. 9, 10, and 11 the SNR frequency
is always lower than the Nyquist frequency."

1.6 [Technical corrections: Figure 2 needs a secorydaxis for Anorm. | understand they
are scaled between 0-1 just like you have your bicass values, but it's a bit confusing
without an extra label. ]

Response 1.6: changes in the marked-up version éietnew manuscript

P. 30:
A second y-axis was added foffn



LIST OF CHANGES MADE IN RESPONSE TO COMMENTS OF REV IEWER #2

2.1 [OVERVIEW

The manuscript investigates the use of the Global dVigation Satellite System
Interferometric Reflectometry (GNSS-IR) technique fa soil moisture retrieval.
Specifically, one year of observations were acquiredt a grassland site in France by
using an antenna at 2 different heights (3.3 and 28 m). GNSS-IR data are compared
with ground-based reference measurements and thefe€t of vegetation, litter water
interception, sampling interval and antenna heightis analysed on the accuracy of the
measurements.

GENERALCOMMENTS

GNSS-IR represents a new approach for measuring danoisture and surely deserves to
be investigated. Specifically, the potential of usgn GNSS-IR measurements for
monitoring soil moisture over large areas might repesent an important step forward in
our capability of measuring soil moisture at field sale. The manuscript is well written
and clear and, hence, | have no major comments toebaddressed. | believe the paper
might be published after considering the minor comrant | reported below.

1) The same authors (nearly) published a paper inGA7 with a very similar purpose. |
can see the differences between the two papers, amence | believe this paper should be
published. However, | strongly suggest to clearly nderline the differences between the
two papers and the main innovative aspects (e.g.ntenna height, analysis of vegetation
effect) of the current study.]

Response 2.1: changes in the marked-up version ¢t new manuscript
The differences between the two studies is nowebdtscribed throughout the manuscript.

P. 3, L. 12-14:

"Zhang et al. (2017) used the GNSS-IR techniquafaheat field throughout the growth and
senescence period in 2015. The L1 C/A signal wgaised over a wheat field during a period
of about 7 months using a Leica GR25 receiver, ariceica AR10 antenna at a constant
height of 2.5 m above the soil surface."

P.3,L.17-19:

"In this study, both L2C and L5 signals were acediiover a meadow during a rather long
period of time of about 15 months using the samepegent (GR25 receiver, AR10 antenna)
at contrasting heights (3.3 or 29.4 m) above tlilessoface."

P. 3, L. 26-29:

"A key difference between this study and Zhand.g2817) is related to the type of observed
vegetation canopy. The meadow considered in thidysand the wheat field considered by
Zhang et al. (2017) present contrasting charattesisThe meadow is cut once a year and
consists of a multi-species permanent grasslandrpocating a litter composed of dead
leaves. On the other hand, the wheat crop in Zlerad. (2017) consisted of a single plant
species with no litter."

P. 4, L. 25-27:
"The grass height did not exceed 0.3 m during ¥peement time period. This is much lower
than maximum height of the wheat crop (~ 1 m) irap et al. (2017). A large difference



could also be noticed in maximum above-ground doynass values: less than 0.5 kif fior
grass (this study), about 1 kgfior wheat (Zhang et al., 2017)."

P.11, L. 12-15:

"While VSM could not be retrieved by Zhang et @017) after wheat tillering, i.e. for plant
height larger than 0.2 m, we could retrieve scAl&l/ values throughout time segments of
the grass growing and senescence phases. Howetrying VSM values in thm > was
challenging and required a seasonal rescalingdoust for vegetation effects (see Fig. 7)."

2.2 [2) In the description of the study area, moreletails should be provided. At which
depth are installed the surface measurements? Howany rain gauges are available in
the study area? How many soil moisture stations @uess one)? Which model is used for
simulating soil moisture? | suggest adding all thesdetails in the revised manuscript.]

Response 2.2: changes in the marked-up version et new manuscript

P.4,L.29-P.5, L. 2:

"Mean in situ VSM observations at 5 and 1 cm deptbse performed using precise Delta-T
ML2x ThetaProbes and low-cost Decagon EC-5 VSM a@®nsrespectively. Three
ThetaProbes measured VSM at a depth of 5 cm anel leeated within a few meters of each
other (red star in Fig. 1). The mean value wasvddrirom these probes to represent the in
situ VSM observations at 5 cm. Only one EC-5 sengis used to measure VSM at 1 cm.
Precipitation measurements were made in the expatahfield by one rain gauge close to
the in situ soil moisture sensors."

P.5, L. 6-9:

"VSM simulations for the top 1 cm were producecgdhe ISBA (Interactions between Soil,
Biosphere, and Atmosphere) land surface model withe SURFEX (version 8.0) modeling
platform (Masson et al., 2013). In addition to VS&inulations included the soil iced water
content and the vegetation above-ground dry bion¥dss ISBA model used the atmospheric
forcing data produced by the SAFRAN atmospheridyasimof Météo-France."

2.3 [3) At Page 5, lines 17-20 it reads that onlpmie satellite tracks are selected based on
the comparison with in situ measurements. | was watering how the authors will select
the tracks if in situ soil moisture observations ag not available, it should be clarified.]

Response 2.3: changes in the marked-up version bietnew manuscript

P. 6, L. 10-15:

"The selection of satellite tracks and elevatiogles was performed by comparing VSM
retrievals with the in situ VSM observations ddsed in Sect. 2.1. It must be noted that this
limitation only affected measurements at a heighf®4 m and was caused by the more
complex experimental constraints in this configira{e.g. possible parasitic signal reflection
on buildings). For the low antenna configuratior8(81), this additional data sorting was not
needed and all available satellite tracks with mpglete elevation angle range (between 7 and
30°) were used. As a result, a larger variety télBee tracks could be used for the antenna at
a height of 3.3 m with 1 s sampling."



2.4 [4) At Page 5, line 28, what is the “multipathinterference pattern”. Please clarify.]
Response 2.4: changes in the marked-up version bietnew manuscript

P. 6, L. 20-27:

"For a static receiver, the SNR is governed torgela@xtent by the interference pattern (IP).
The IP is defined as the coherent summation ottdaad reflected GNSS signals on the in-
phase and quadrature space (Zavorotny et al., 20h#) coherent summation generates an IP
where high and intermediate frequencies distinainfmoise frequencies, are related to the
difference of travelled distance between direct aeflected waves. The IP can be
characterized with GNSS receivers using eithenyb) antennas (e.g. Rodriguez-Alvarez et
al., 2011) or (2) one antenna (e.g. Larson e2808; Chew et al., 2014; Zhang et al., 2017).
In this study we used the one-antenna IP technaguilustrated by Fig. 1 in Larson et al.
(2016) for a simple planar and horizontal grourfteogion.”

New reference:

P. 18, L. 21-24:
"Rodriguez-Alvarez, N., Vall-llossera, M., Camps, Bosch-Lluis, X., Monerris, A., Ramos-
Perez, 1., Valencia, E., Marchan-Hernandez, J.Fartifkez-Fernandez, J., Baroncini-

Turricchia, G., Perez-Gutierrez, C., and SanchezLAhd geophysical parameters retrieval
using the interference pattern GNSS-R techniqueElErans. Geosci. Remote Sens., 49, 71—
84, https://doi.org/10.1109/TGRS.2010.2049023, 2011
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Abstract. This work aims to assess the estimation of surf@atemetric soil moisture (VSM) using the Global\Ngation
Satellite System Interferometric Reflectometry (GNIR) technique. Year-round observations were aeduirom a
grassland site in southwestern France using ammaateonsecutively placed at two contrasting heighisve the ground
surface (3.3 or 29.4 m). The VSM retrievals are garad with two independent reference datasetsturobservations of
soil moisture, and numerical simulations of soilistre and vegetation biomass from the ISBA (Irtgoas between Soil,
Biosphere and Atmosphere) land surface model. 8cdeM estimates can be retrieved throughout the yeaoving
vegetation effects by the separation of growth semkscence periods and by the filtering of the GNRS&bservations that
are most affected by vegetation. Antenna heightrimasignificant impact on the quality of VSM estiesm Comparisons
between the VSM GNSS-IR retrievals and the in ¥i8M observations at a depth of 5 cm show a goodeagent R =
0.86 and RMSE = 0.04 Tm?®). It is shown that the signal is sensitive to ¢ness litter water content and that this effect
triggers differences between VSM retrievals anditn VSM observations at depths of 1 cm and 5 @peeially during

light rainfall events.

1 Introduction

Soil moisture is a key component in the hydrolog@ele and in the soil-plant-atmosphere continultns also important
for irrigation management and flood prediction (Rgdez-lturbe and Porporato, 2007). However, in sibservations of
soil moisture are very sparse and with small sampliolumes. On the other hand, L-band satellitévddrproducts, for
example, from the soil moisture active passive ($Waission or the soil moisture and ocean saliy1OS) mission,
have a coarse resolution of tens of kilometers (Cétaal., 2016; Kerr et al., 2001). These prodwcissist in surface
volumetric soil moisture (VSM) and concern the sajil layer (from the soil surface to a depth ob5btcm). There is a need
to monitor VSM at the local scale in order to vatiel model simulations, and satellite-derived prégltu€he International

Soil Moisture Network (Dorigo et al., 2013) has bewollecting such in situ observations. The Consriton Earth
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Observation Satellites (CEOS) Land Product Valalatgroup has recommended expanding the soil meigiatworks
(Morisette et al., 2006). In particular, developimev automatic monitoring techniques to measure \¥Shkeeded.

The Global Navigation Satellite System InterferomceReflectometry (GNSS-IR) technique hdsmonstrated a stron
potential to monitor VSMrem-using ground-basedeceivers(Chew et al., 2014 giborne (Egide et al; 2014 Sanehez |et

g 2015 \btte et al 2016} oF spaceborpetennas (Camps et al; 2008§NSS antennas measure the signal diregtly
emitted by the GNSS satellites, together with tiymad reflected by the surface surrounding the ramte The GNSS-IR

technique allows relating the reflected signal e tharacteristics of the reflecting surface andetoieve geophysical
variables. Over land, variables such as soil mméstanow depth and vegetation parameters can bervaos using this
technique (Larson et al., 2008; Small et al., 2Qt0son and Nievinski, 2013; Wan et al., 2015; bars2016; Roussel et
al., 2016; Zhang et al., 2017). GNSS satellitest extiive L-band microwave signals (between 1.2 aidGHz). The L-
band signal is less affected by vegetation effdwa shorter wavelengths, which is an asset tevetisurface soil moisture
(Kerr et al., 2001). The GNSS-IR footprint can coup to thousands of square meters, dependingeoarttenna height and
on the satellite elevation angle (Larson et all,®0/ey et al., 2016).

In addition to a specially designed antenna toivecthe reflected GNSS signal from the land surfé&avorotny et al.,
2014), classical geodetic-quality GNSS antennasbeansed to estimate VSM (Larson et al., 2008)h&utennas have an
antenna gain pattern optimised for Right Hand QacuPolarization (RHCP) and minimized for Left Haf@ircular
Polarization (LHCP). A GNSS network called PlateuBdary Observatory (PBO).B with geodetic-quality antennas on
ground in western USA is currently used to moni&M (Larson et al., 2013; Larson, 2016; Chew et2016) and snow
depth (Larson et al., 2009). The basic observatsad in this technique is the signal-to-noise rg&NR) which is related to
temporal changes in the interference between trextdand the reflected GNSS signals. Each GlobaltiBning System
(GPS) satellite repeats the same orbital cycle fooe day to another (offset of a few tenths of mb&tween two adjacent
cycles). This property permits monitoring surfadermges through time of the environmental conditismsounding the
receiving antenna.

The present day Block Il R-M (Replenishment Modeedi) and Block Il F (Follow-on) GPS satellites nmansmit a L2C
(1227.60 MHZz) civilian signal. Power and precisifrthe L2C signal are higher than for the L1 C/§rsil (1575.42 MHz)
transmitted by all GPS satellites. Several previstuslies, such as Larson et al. (2008), Larsor. §2@10), Chew et al.
(2014), Chew et al. (2016) and Small et al. (208)lusively analyzed the SNR data from the GPS ERf@al to retrieve
soil moisture. The Block Il F satellites also tramisthe latest L5 signal (1176.45 MHz) as well, efhfeatures even higher
power, greater bandwidth and an advanced signafjde$here are now seven Block Il R-M satellitesg&do-Random
Noise (PRN) numbers 5, 7, 12, 15, 17, 29 and 3ntifying each satellite) and twelve Block Il Fedlites PRN1, 3, 6, 8,
9, 10, 24, 25, 26, 27, 30 and 32).

Due to the motion of the satellites, the direct aefliected signals cause an interference pattef@NR data. The SNR
oscillations depend on known attributes such asdhellite elevation angle, signal wavelength ameérana height. The SNR

amplitude and phase can be solved by using thé¢ $emmre estimation (LSE) method (Larson et alQ82@hew et al.,
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2016). Larson et al. (2008) and Larson et al. (2@hdpirically showed that phase correlates withr1seface soil moisture,
with values of the coefficient of determinati¢®) ranging fromR*—=-0.76 to 0.90. This property was used by Chew et|al.
(2014) to develop an algorithm to estimate surfagié moisture (top 5 cm) for bare soil. They useghysical surface
scattering and dielectric permittivity model to idera relationship between the phase and soil mn@stn volumetric units
(m*>m?). Vey et al. (2016) validated this algorithm, wgiiield observations acquired during the 2008-2p&dod from a |
site presenting a high percentage of bare soily Biwained the followind? and root mean square error (RMSE) scores for
VSM retrievals:R? = 0.80, and RMSE = 0.05°rm™. However, for vegetated soil the phase of the $$\&so affected by
vegetation. Chew et al. (2016) showed that seasmggtation effects on phase have to be consideresoil moisture
estimation. They also observed that amplitude deg@ as vegetation grew. A model database forNfref®m L2C signal
was used to remove most significant vegetationceffeSmall et al. (2016) compared different aldwns of GNSS-IR soll
moisture retrieval in the presence of vegetation.

Zhang et al. (2017) used the GNSS-IR techniqueafamheat field throughout the growth and senesceecedin 2015
frem-January-te-July-201Fhe L1 C/A signal was acquired over a wheat field during aggeof about 7 months using
Leica GR25 receiver, and a Leica AR10 antennacanatant height of 2.5 m above the soil surfatey showed that VSM

could not be retrieved when the vegetation cansppé dense, i.e. plant height and simulated dovedground biomass
larger than one wavelength (~19 cm for L1) and &@8n?, respectively. On the other hand, relative plaight could be

retrieved in such condition8a this study, both L2C and L5 signals were aceghiover a meadow during a rather long peripd

of time of about 15 months using the same equiprfieR25 receiver, AR10 antenna) at contrasting hsi¢($3 or 29.4 m)

above the soil surface.

The objectives of this study are to (1) investiget®M estimation over a meadow, in contrasting ctods of plant
phenology (growth, senescence, after and befotengyt(2) compare the use of L2C and L5 signa3,assess the impact
of a major change in the height of the receivinteana above the soil surface, in relation to thd&R&dmpling interval.
Investigating the impact of the sampling interval \8SM retrievals is needed due to the fact thatliseaanpling intervals
(e.g. 1 s) generate a large amount of data (~10@&ilmay for GPS satellites). Larger sampling wakr may be defined to
reduce the amount of daily data.

A key difference between this study and Zhang et(2017) is related to the type of observed vegetatanopy. The

meadow considered in this study and the wheat fielusidered by Zhang et al. (2017) present com@asharacteristics.

The meadow is cut once a year and consists of 8-apdcies permanent grassland incorporating ex lifbmposed of dead
leaves. On the other hand, the wheat crop in Zledrad. (2017) consisted of a single plant speciigls mo litter. A-ratural

Past microwave remote sensing studies (e.g. Salah, 2007) have shown that permanent grasslaaave differently
from crops. Because permanent grasslands incogarditter composed of dead leaves, they can igperprecipitation
considerably more than annual crops. The short iggpwycle of annual crops does not allow the acdatimn of large

amounts of litter material. This property of permangrasslands can have a major effect on the mére signal and can

3
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perturb the retrieval of VSM, even @PSL-band (Saleh et al., 2007). Also, the structurgrafss canopies differs from thF
structure of crops such as wheat and this has padtron the attenuation of the microwave signavédgetation (Wigneron
et al., 2002).

GPS SNR data from both L2C and L5 signals are pbethiising a geodetic-quality GNSS antenna. SNRysisalising the

GNSS-IR technique is used to retrieve VSM overldfcovered with grass usiiige approaches:the -methed prepesed py
Shewetal{2016)anihe normalization method based on the newly-estiabti scaled wetness indgroposed by Zhang

et al. (2017)Fhe tetrievalsfrom-beth-methedsare comparathther point to underline is the impact of theeamta height

(here 2 levels: 3.3 and 29.4 m above the soil sagjfan the VSM retrieval. Moreover, the VSM retats/from two kinds of

GPS signal wavelengths (24.45 and 25.40 cm for 2@ L5, respectively) are compared with field obatons. We

analyze the vegetation effects on VSM retrievalaacy. Another important addressed topic is thisémfce of the sampling
interval on the VSM estimates. As the SNR periodngfes depending on the antenna height, satelieatidn angle,

elevation angle change rate and GNSS signal wagtethe sampling interval has to be adjusted atiagly in order to

maintain the VSM retrieval accuracy.

Data are described in Section 2 and methods indpe8t The obtained soil moisture retrievals arespnted in Section 4
and compared with independent VSM estimates. Resaré discussed in Section 5. And the main corangsiare

summarized together with prospects for furtheraesein Section 6.

2 Siteand data
2.1 Sitedescription and validation data

The study site is located at the premises of M&@mce in Toulouse, France, over an experimerehl fiovered with grass
(43°34'26"N, 222'27"E). Since 2012, this instrumented site idekisoil moisture profile observations from thefaue
down to a depth of 2.2 m. Other measurements ssi¢hrbulent fluxes are made in the framework of Mteteopole-Flux
project (https://www.umr-cnrm.fr/spip.php?articld®iang=en) and ICOS (Integrated Carbon Observat®ystem,
https://icos-eco.fr/). The soil fine earth in theperimental field at a depth of 5 cm consists d¥b4and, 14.5% clay and
34.5% silt.

The grasssas-as-tall-as-30-dmight did not exceed 0.3 during the experiment time perio@his is much lower than
maximum _height of the wheat crop (~ 1 m) in Zhah@le (2017). A large difference could also be oeti in maximum

above-ground dry biomass values: less than 0.5 kdangrass (this study), about 1 kgifior wheat (Zhang et al., 2017),

The grass was cut twice during the study perioce Tlitting process took several days and the grassfully cut on: 7
October 2015 and 9 July 2016, for the 29.4 andBa&itenna observing areas, respectively.

-Mean in situ VSM observations at 5 and 1 cm deptbse performed using precise Delta-T ML2ZRetaProbeand low-
cost Decagon EC-5 VSM sensors, respectivélyee ThetaProbes measured VSM at a depth of Snchmaere located

within a few meters of each other (red star in E)g.The mean value was derived from these prabespresent the in sity
4
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VSM observations at 5 cm. Only one EC-5 sensor ugesl to measure VVSM at 1 cPrecipitation measurements wele

made in the experimental fieldy: one rain gauge close to the in situ soil moistueasers.A small fraction of the

precipitation time series was missing. Missing datae replaced by the precipitation data obtaimethfthe SAFRAN
atmospheric analysis (Durand et al., 1993, 199@yi#onally, scaled VSM observations at a depthh efm and scaled VSM
simulations for the top 1 cm thick soil layer wersed as independent benchmarks for validation.

VSM simulationsfor the top 1 cnwere produced using the ISBA (Interactions betw8eit, Biosphere, and Atmospherg)
land surface model within the SURFEX (version 8xdeling platform (Masson et al., 2013). In additim VSM,
simulations included the soil iced water conterd #me vegetation above-ground dry biomadse ISBA model used the
atmospheric forcing data produced by the SAFRANaaheric analysis of Météo-Fran¢e. The model varaged in this
study was designed for generic country-scale sitimia over France at a spatial resolution of 8 ki km. It was not

P008). The ISBA configuration and the SAFRAN atmospherialgsis used to force the model are described faritaet al.
(2012).

2.2 GNSS data

In this study, GNSS SNR data were acquired usingiaa GR25 multi-constellation and multi-band getoxleeceiver
equipped with an AR10 antenna during more thanyaae. Two measurement configurations were expl@régl 1). First,
from 1 August 2015 to 5 June 2016, the antennapleac®d at the top of a building close to the stiidjeassland, at a height
of 29.4 m above the soil surface {88'30"N, £22'26"E). Second, from 8 June to 6 October 2016 antenna was moved
on top of a small technical shed located within tieadow, close to the in situ sensors, at a heifjit3 m above the soil
surface. During the first 29.4 m antenna heighteeixpent, the SNR sampling interval was reduced fidhto 1 s on 19
March. When the antenna height was changed frodh 893.3 m, the sampling interval remained at ai@alf 1 s. GNSS
SNR data were missing for 24 days: from 1 to 11uday from 17 to 26 May, and on 1, 6 and 7 Juné201

In this study, both L2C and L5 SNR data from theéS@?ock Il R-M and Block Il F satellites were usdthe ascending and
descending parts of the same satellite were predessparately and were considered as independelitsaracks (Roussel
et al., 2015, 2016).

The valid SNR segment for each ascending or degsugidtellite track was limited based on the atdéaatellite elevation
angle range (90° being defined as zenith). FoBtBan antenna height, the multipath signature weedisat elevation angles
above 30° or below 7°, and the reflecting regiarst{fFresnel zone, FFZ) often included both groamd surrounding

obstructions. Therefore, only data correspondinglévation angles ranging from 7 to 30° were cosrgid. For a given
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satellite track, the field observation area wasual390 nf, and the observing duration was about one houbl€Ta). The
range of instantaneous FFZ areas is indicated bieTa. After sorting elevation angles, 36 and 2teli&e tracks were
available for L2C and L5 SNR data, respectivelye Tdorresponding reflecting points and FFZ areasiobd using a
reflection location model for GNSS-R (Roussel et &014), are shown in Fig. 1. The successive éxpgertal
configurations are listed in Table 2 and shownim E.

Measurements from the antenna at a height of 29wkera affected by surrounding obstructions (buddimnd impervious
areas like car park, roads, etc.) and by an ural@pbng issue at a sampling interval of 10 s (seet.31.2). In order to cope
with these problems, only 6 satellite tracks weseduto retrieve VSM from L2C SNR data (GPS PRN0J3,08, 17, 25 and
26), and 4 satellites tracks from L5 SNR data (®RBI 03, 08, 25 and 26). Satellite track charadtesisnd instantaneous

FFZ areas are given in Table 1. The selection tdllga tracks and elevation angles was performgatdmparing VSM

o

retrievals with the in situ VSM observations desed in Sect. 2.1-lt must be noted that this limitation only affects

measurements at a height of 29.4 m and was cawyst Imore complex experimental constraints in ¢coisfiguration (e.g.

possible parasitic signal reflection on buildindsyr the low antenna configuration (3.3 m), thisliidnal data sorting was

not needed and all available satellite tracks witbomplete elevation angle range (between 7 anil \86fe usedAs a

result, alarger variety of satellite tracks could be usedthe antenna at a height of 3.3 m with 1 s sargpNVith a higher
antenna, the size of the observed reflecting serfaarkedly increase (Larson et al., 2010). Althotlgh elevation angle
range used for the antenna at 29.4 m is smaller fimathe antenna at 3.3 m (Table 1), a much laddeserving area is
obtained for each satellite track. More details wbthe elevation range, the observing time periad approximate

observing area for each satellite track are shawdable 1. The SNR data are typically convertednfriheir native

logarithmic units (dB-Hz) to a linear scale (V'V(Vey et al., 2016)Eor a static receiver, the SNR is governed o gela
extent by the interference pattern (IP). The IBefned as the coherent summation of direct andateftl GNSS signals o

the in-phase and quadrature space (Zavorotny e2@l4). This coherent summation generates an |€revhigh and

intermediate frequencies distinct from noise framies, are related to the difference of travellsthtice between direct angl

reflected waves. The IP can be characterized wi$& receivers using either (1) two antennas (eodriBuez-Alvarez et
al., 2011) or (2) one antenna (e.g. Larson eR8D8; Chew et al., 2014; Zhang et al., 2017). is $tudy we used the one|
antenna IP technique as-multipditbstrated by Fig. 1 in Larson et al. (2016) fosianple planar and horizontal groungd
reflection. A low order polynomial curve is fitted to SNR dataorder to retain only the multipathterference—patietR
(Bilich et al., 2008).

3 Methods

The modulation of the SNR by the multipath frequeoan be expressed aglLarson et al.2008,201Q; Chew et al.2016):

NR= Acos@sin@—qo) L
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whereA is the amplitude of the modulation apds the phase offsetd is the satellite elevation anglejs the GNSS signal
wavelengthH is a fixed a priori effective antenna height fack satellite track, which is not known and hakd®@stimated
from the SNR data in snow-free and sparse vegetatioditions (Chew et al., 2016). Based on Eq.$NR phased) can
be solved by LSE method, and then this estimateaih be used to retrieve VSM.

d

3.1 A new normalized SNR phase method (Zhang et al., 2017)

S e S OGP OS SNV ZEGISPINSIUSE N ormalizing ¢ time series ensures compatibility amorlg

different satellite tracks (Zhang et al., 2017)ré{é is normalized with zero minimum in order to obt#ie scaled wetness
index @ingex) @s the following:

¢ ~ ¢min
Wnax - ﬂnin

wheregdnin andgmax are the mean of the lowest and highest 15% oftatstical distribution of for each satellite track

¢{nd@( = @2)

during the considered time segment (TS), respdygtivishis averaging procedure is used in order kerfiout- outliers
corresponding to abnormally high or l@vestimates. Negatiug,q.x vValues are replaced by zero.
Moreover gingex 2N be used to estimate VSM-fdlows:

VSV' = ¢{ndex [Q\/S\/l obs _max _VSVI )+VSV| obs _min (4'3)

obs _min

Similarly to phase computation and to avoid art§a®/SM,ps_min and VSMys maxare the mean of the lowest and highest
15% of daily mean in situ VSM observations at atdegf 5 cm during the considered time segment, eetsgely. The
median VSM estimate from all available satellilgcles is considered as the final VSM estimate pgr baorder to better
correct for vegetation effects, vegetation growtld genescence were considered as independentdgneests instead of
applying Eqgs. 32-43) to the whole period.
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BI28 Assessment of vegetation effects

SNR amplitude 4) is affected by vegetation, which can be usedssess whether or not vegetation effects are sogmifi
Chew et al. (2016) defined the normalized amplit@dg,,) as the ratio of amplitude to the average of the 20%
amplitude valuesA,,nm (dimensionless) values below 0.78 indicate thajetation effects are significant and cannot be
neglected. When vegetation effects are significtnetS parameter value may depart from the value usétjin24). A way

to cope with this issue is to apply the Zhang ef2017) method for a given time segment presertongsistent vegetation
properties. Phase is scaled & not needed. The time series in this study paisged into four time segments: (1) TS1,
from 1 August 2015 to 18 March 2016 (a vegetatimmescence and dormancy period with data acquioed tihe antenna at
29.4 m using a 10 s sampling interval), (2) TSRmrl9 March to 5 June 2016 (a vegetation growingodewith data
acquired from the antenna at 29.4 m using a 1 Pplagninterval), (3) TS3, from 8 June to 8 July BO(a vegetation
growing period with data acquired from the anteand.3 m antenna using a 1 s sampling interval)(dphd S4, from 9 July
to 6 October 2016 (after the grass cutting witladatquired from the antenna at 3.3 m using a inpléag interval).

Another step is to select relevant satellite tragkder significant vegetation effects. This is jgatarly challenging in dense
vegetation conditions. Even in conditions presensignificant vegetation effects, some satellitclis can be selected to
retrieve VSM. This occurs during TS3, correspondimdpow A..m values (Fig. 2). In order to select satellite ks such
conditions, only tracks presenting a continuityV&M retrievals with the following vegetation senesce period (TS4) are
kept. Only tracks giving similar VSM estimates {eience lower than 0.06%m?) at the end of TS3 and at the beginning of
TS4 are used for TS3. This procedure eliminatedrdeks corresponding to the most densely vegetateals in the grass
field.
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4 Results
4.1VSM estimates

Figure 2 presents the VSM estimates derived froth be L2C and L5 SNR data using the normalized $R&se method
(seeSect. 3.1) and the vegetation correction mettsag $ect. 323). Results are shown for the whole experiment per|o
from 1 August 2015 to 6 October 2016, and for tadl &xperimental configurations of antenna heigimy®ing interval, and
grass cutting (time segments).

The first grass cutting event occurs during TS1Hag no effect oA,,m because the above-ground biomass is relatively low
(less than 0.25 kg ), as shown in Fig. 2. On the other hand, the sganriting occurring before 9 July 2016 has a
significant effect orA,m because, at that time, vegetation is not yet semegabove-ground biomass is about 0.50 K&y m
Another reason to separate TS3 and TS4 is that m2@m\,.m, values are significantly smaller during TS3 (0&5®l 0.94
for TS3 and TS4, respectively).

The scaled wetness indexésde,) and VSM estimates are obtained for each of tiiesetime segments. The VSM scores
for the four separated time segments are recomidthble 2. The mean absolute error (MAE), RMSE Rhdcores for
senescent, dormant or cut vegetation (TS1 and aB84petter than during the vegetation growing pe(ibS2 and TS3).
Scatter plot of the in situ VSM observations (N@G9%at a depth of 5 cm versus GNSS VSM retrieigishe Zhang-etal.
(2037 methdds shown in Fig. 3. The RMSE and the standard dieviaf differences (SDD) scores are: RMSE = 0.688
m* and SDD = 0.035 frm’®, respectively. Th& score is equal to 0.86 for merged L2C and L5 SiHf.dAbout the same
value is found using only L2C dat&(= 0.85). The mean bias (0.02 m®) is positive, because the VSM estimates are
generally larger than in situ VSM observations atbdepth.

Figure 2 shows that the GNSS VSM retrievals areensansitive to light rainfall events than in sit6M observations at 5
cm depth. Such events occur during the summer atm of 2016. It can be observed that while GNSS/Mestimates
peak at the same time as light rains, the diffusiowater in the soil does not reach the probé&sah depth. This is why the
GNSS VSM tends to be larger than in situ VSM. Tdifference reduces the correlation and increasestiorsand can be
attributed to a GNSS-IR sensing depth less tham $Ghew et al., 2014 ; Shellito et al., 2016),6tation to vegetation litter
gffects(seeSect. 5.3).

In the following sub-sections, more detailed corngmars are presented for antenna height2®# and 3.3 m.

4.2 VSM estimates from a GNSS antenna at 29.4 m above the soil

In most previous studies, VSM was retrieved fromS&\antennas at about 2 or 3 m above the soil surfiacreasing the
antenna height can significantly expand the sizéh@fobserved areas. In this study, the impactiofgua 29.4 m antenna on
VSM retrievals is assessed using TS1 and TS2 @&e.whole observation area for each track is aB60t nf or even
larger. The grass is cut in TS1, before 7 OctoltH52 Before grass cutting, the maximum simulatedvaiyround dry
biomass is about 0.25 kgnFig. 2). For TS1A..m Vvalues are more often than not above 0.78 (FigA)ve this threshold
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value, the vegetation effects are not signific&tigw et al., 2016). From mid-August to mid-Septentbefore the start of
grass cutting)An.om is slightly smaller than the threshold value, W&M can be estimatelifBothmethecat these dates.|
Moreover, no grass cutting effects are observethnA,.m values, which also shows that vegetation effects reot

significant. The VSM retrievalSOHEBoIEMEBE susing the L2C SNR data, af@owacomparean Fig 2 WithNnsii

smallerusing-the-Zhang-et-al—(2017)-methBigure 5 shows thay'SM retrievals tend to be larger than the in_siu

Additionalhy-Fig. 5 and Table 3 show that VSM retrievals usifdgINR data areery close to those derived from L2C SNIR
data. The retrieval accuracies from L2C and L5 SIdR are similar (Table 3), showing that both L2@ &5 SNR data can
be used to retrieve VSM. In Table P2C and L5 SNR data are combined. Results for TSTable 2 show inghtIy|
improved scores with respect to those in Tableh#s Tan be explained by the larger number of avkglaatellite tracks per
day. It is interesting to note that results very simitathose presented in Fig. 5 can be obtained iifiptying by 0.6 the S

wn).

Overall, the scores obtained during TS1, at a hedfi29.4 m and a sampling interval of 10 s are parable to those
obtained in other time segments, including TS2 widampling interval of 1 s. The scores (Tablen2)$2 are similar to the
scores in TS1. This does not mean that there isffext from the sampling interval because vegeatationditions are
different in TS1 and TS2. TS2 corresponds to a tetige growing period. Vegetation growth impacts tkflecting surface
and has an impact on the SNR data as illustratetthdoyast decrease éf.m values in Fig. 2. Moreover, the SNR data in
TS4 (after grass cutting) are used to assess thacimof changing the sampling interval, without r in vegetation
conditions. This is discussed in Section 5.4.

4.3 Removing vegetation growth effectsfrom VSM retrievals

Substantial vegetation effects are observed dur®, at the end of the growing season of 2016. iBhevidenced by,
values lower than 0.78 (Fig. 2). Grass is cut atethd of TS3 (before 9 July 2016). After grassiegttthe SNRA,m values
gradually raise to a relative large value (abow&).For example, the daily mean L2¢,,, values are 0.67, 0.69, 0.75 and
0.86 from 6 to 9 July 2016, respectively.

10



10

15

20

25

30

In order to remove vegetation effects, the SNR dafare and after cutting are considered as distiatasetsgeeSects. 3.1
and 323). SNR data are used, time segment by time segiteeohtain soil wetness index and then VSM estimdter L2C
(L5), 10 (6) satellite tracks out of 36 (21) ar¢ested for use during TS3. Figure 6a shows the \fBivlevals for each time
segment TS3 and TS4 for L2C SNR data after remowvéggtation effects by applying the Zhang et @1{) method. The
corresponding scores are listed in Table 4. Sinm#aults are obtained for L5 and both L2C and L9RShata (Table 4).
Results obtained by applying the Zhang et al. (2GEEHECREWEIAIN204 fethod to the merged time segments (T$3
and TS4) for L2C SNR data are also shown in FHigafd-6c and in Table 4ln this caseSNR-derived VSM are too dr
before the cutting and too wet after the cuttingg (f6b)- /S Grass Cuing, the CHeW sralpoiamahadngas
correlation-within situ measurements-but gives-unrealistic VSM-valuegetathan-0.5-fim (Fig-6¢).

5 Discussion
5.1 Why should growth and senescence be treated separately?

While VSM could not be retrieved by Zhang et aDX2) after wheat tillering, i.e. for plant heighrder than 0.2 m, w

could retrieve scaled VSM values throughout timgnsents of the grass growing and senescence phsegver,

retrieving VSM values in thm™ was challenging and required a seasonal rescaimgcount for vegetation effects (sde
Fig. 7).
Section 4.3 showed that the VSM retrieval from StRa during TS3 is of lower quality than during T$d. after cutting

the vegetation. Not all satellite tracks can beduSeable 1) and skill scores are systematicallys@diTable 2). Moreover,
Figure 6 shows that a specific calibratise¢Sect. 323) of the retrieval method is needed for TS3. Bee S Zhang et
A0 and CheWeralN@auiBe retrievaimethod isarebased on the minimum phase which is related tovéigetation
height and density, the lack of a priori informatimbout this factor is likely to trigger markedaispancies.

Based on Eqg. (1), SNR amplitudeand SNR phasé are calculated using the LSE method, assumingtti@atrelative
antenna heightHy) for each satellite track is constant across datesignoring the impact of the elevation anglengginA
(Larson et al., 2008; Larson et al., 2010). Theiaresalue of the derived effective antenna heightnfthe SNR data by the
Lomb-Scargle periodogram method is considered evalue of the a prioii, for each satellite track (Chew et al., 2016).
This hypothesis is only valid for the dates whem $hirface is not covered with snow or dense vagatahlthough the real
effective antenna height may vary from one dayrtotlaer, a constant value Bf, is used through time for a given satellite
track. This assumption is made in order to ensugeconsistency af time series across dates. The a ptityrivalue affects
the sinusoid fit, and might cause a systematic biasand¢ across dates. When there are significant vegatafiects, the
vegetation height affects the effective antennalitefZzhang et al., 2017). This explains why theaot#td VSM retrieval
time series with merged time segments are not wootis (Fig. 6). Segment by segment normalizatiarseful to remove
such systematic biases and to remove vegetatieotsffrom VSM retrieval. It can be considered aggetation correction

method.
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Figure 7 illustrates the improvement associatethéovegetation correcticilOg With tHe ZHang el (P0TASREh dthe

systematic bias caused by the mismatcHgis shownWithout vegetation correctioriFlhe VSM retrievals do not correlatg

with the observed VSMRE = 0.03). On the other hand, the vegetation cdmeaemoves the differences between TS3 and
TS4 caused by using the saigin both time segments and the VSM retrievals apeenconsistentf® = 0.55). FigUie

complexiseasonalifescalinglonVSVIohSevationeenad (Reichle and Koster, 2004; Draper and Rei2BIE5), especially
when the observations are not properly decontagtiniom vegetation effects (Stoffelen et 8017). Our results show thaf

using this rescaling technigue would be feasibieesithe ISBA simulations of VSM correlate well witie retrieved VSM

(Fig. 8). The main reason for this result is tHBBA is forced by the SAFRAN atmospheric analysisprporating a large

number of in situ raingauge observations (Sec). Z4is is another way of using ancillary in sitobservations.

5.2 Aregrassland and cropland vegetation effects comparable?

The effect of vegetation on GNSS SNR data is tloldeplant height, above-ground biomass, and litterthe end of the
growing season, plant height and above-ground t8smalues can be much larger for annual crops ftragrass. On the
other hand, while litter is usually missing duritige growing phase of annual crops, litter is a abi@ristic of grasslands
(Quested and Eriksson, 2016).

Over our grassland site, the measured grass haighe end of the growing period is 30 cm on 22eJ2@16. The grass
height is then only slightly larger than one GNS&velength (~ 25 cm for L5). The simulated abovedgtbbiomass by
ISBA is shown in Fig. 2. During the summer of 201% maximum above-ground biomass slightly exceéeds kg nt.
This short period coincides with,, values slightly lower than the 0.78 thresholdJime 2016, before the cutting, the
above-ground biomass ranges between 0.25 and @56 The corresponding\,m drops below 0.78, showing that
vegetation effects are significant. The simulategeg above-ground biomass is 0.39 K§ on 22 June 2016, very close to
the observed value of 0.37 kg?niThe litter dry mass is not simulated but a vadi®.29 kg rif is obtained from in situ
observation at the same date, consisting in 0.281kgf dead leaf material and in 0.06 k¢f mf decomposed leaves. This

represents 44 % of the total above-ground orgaaienal.
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Zhang et al. (2017) showed that over a wheat fibll vegetation gradually replaces the soil as thainant reflecting
surface when plant height becomes comparable targer than, one wavelength, even at relatively Values of the above-
ground biomass (an estimate of 0.08 k§ is given). In such conditions ti#g.m drops below 0.78 and the SNR phase is no
longer related to soil moisture (Zhang et al., 2017

This study shows that VSM retrieval above thesembiss and plant height thresholds are feasible ragsg However, a
limited number of suitable tracks, less affectedviegetation, has to be selected using the grassigwvent geeSect.
3.23). In real practical applications, such tracks aot a priori known and retrieving VSM would be dkabing when

vegetation effects are significant.

5.3 Doesthelitter affect the GNSSVSM retrieval ?

In order to analyze the possible impact of litterthe differences between GNSS VSM and eithertin \éEM or ISBA
VSM, in situ VSM observations at 5 cm, in situ VSM observati@sl cm and ISBA VSM simulations at 1 cm are
compared with the GNSS VSM retrievals. The GNSS MSkétrieved applying the Zhang et al. (2017) rodtto both L2C
and L5 SNR data, and the vegetation effects arevechfrom the retrievals. For ensuring the compititabf these various
soil moisture estimates, GNSS retrievals, ISBA 1simulations, in situ 1 cm observations and in Sitm observations are
scaled to dimensionless values.

Figure 8 shows a comparison between the four séa&Md time series during TS3 and TS4. Soil moistuatues tend to
increase drastically during precipitation eventaskiof the VSM peaks observed in 1 cm in situ olet@ns are also found
in 5 cm observations, except for 5-7 July and 5ust@®016. On the other hand, GNSS VSM peaks camr adaile in situ
VSM observations do not display any response to €aig. on 8-14, 25 and 30 June, 30-31 July, andifust 2016. A
contrasting result is found comparing GNSS and ISE3M estimates, which peak, more often than nothatsame time.
As a consequence, the GNSS VSM estimates correlatén better with ISBA VSMR = 0.82) than with in situ VSM
observations at 1 cniRt = 0.63) and at 5 cniRf = 0.57). More scores are presented in Table 5.

The scores resulting from the comparison betweafedcVSM validation data and GNSS VSM estimatessaygarately
recorded in Table 6 for each time segment. Thedsgltorrelations are with ISBA simulations at 1 do, all time
segments. The scores based on in situ VSM obsengadit 1 cm are similar to those based on in sBM\6bservations at 5
cm. For TS4, the correlation with in situ VSM obssions at 1 cm is much higher than with those a&nb The main
difference between observations at 1 cm and at Sscthat the former respond to rainfall events magidly. This is
illustrated by Fig. 8 for events occurring afteddy 2016 (TS4). The differences observed betwel8&VSM estimates
and in situ VSM observations at 1 cm can be expthiny the interception of light rains by the littévater contained in the
litter tends to directly reflect the GNSS signatidn prevent the GNSS signal from further penetatnto the soil. This
difference is not observed with ISBA simulationséese the litter is not implemented in this versiérthe ISBA model.
The good correspondence between ISBA and GNSS \&ikhates can be considered as an artifact: ISBAlsit@s a VSM

peak which does not exist, and the GNSS SNR dataeansitive to a sudden increase in the litter ma@iatent and/or to the
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rain intercepted by the litter or by the leavesother demonstration of the impact of the litteeefs can be made, removing
rainy days from TS4. Thi® score in Tables 2 and 6 then rises from 0.6588.0.

5.4 Does the sampling interval affect the VSM retrieval?

When the antenna height increases, the size afliberving areas is extended. But at the same tim@driod of the SNR
data decreases (Eqg. (1)), and a smaller sampliegval is needed to ensure the usability of the SIdR for VSM retrieval.
On the other hand, because the SNR period frorgladnitenna is much smaller, it is possible to us&llsr elevation angle
ranges and shorter observing time periods per trBlok& number of complete SNR waveforms is muchelatijan using a
low antenna. We investigate the impact of underging for the 3.3 m antenna and for the 29.4 m ramaelt should be
noted that in the examples illustrated by Figs.®,and 11 the SNR frequency is always lower tharNyquist frequency

First, an example of the impact of the samplingrival for the 3.3 m antenna is shown in Fig. 9. LR observations (N
= 90) from GPS PRN 10 ascending tracks during T&8rgrass cutting) are used to retrieve VSM usiagous sampling
intervals. The Zhang et al. (2017) method is usaskt on the original 1 s sampling interval and egraded sampling
intervals of 10 and 100 s. During TSA,.m iS above 0.78 (Fig. 2), which also shows that tegtggn effects are not
significant (Chew et al., 2016). This is a rathey pgeriod but a few rainfall events are observeukeylcause changes in the
in situ VSM observations at 5 cm, which range bemw®.07 and 0.21m>. In Fig. 9, the highest correlatioR%(= 0.68) is
for the smallest sampling intervals (1 and 10 8} the lowest correlatiorRf = 0.55) is observed for the largest sampling
interval (100 s). The corresponding statisticalrespresulting from the comparison between in g§8M observations at a
depth of 5 cm and GNSS VSM retrievals are showhahble 7. As foilR>, RMSE and SDD for 1 and 10 s sampling intervals
are similar (RMSE = 0.020 tm™® and SDD = 0.018 fm™®), and denote lower skill for the 100 s samplinigival (RMSE

= 0.025 M m*® and SDD = 0.021 fnm™®). Much more day to day variability is observedtfie retrievals using a 100 s
sampling interval. The impact on the SNR informatimntent of degrading the sampling interval may\eom one day to
another. This is illustrated by Fig. 10 for two tignous days (28 and 29 July 2016). The under-saggiffect at 100 s is
more pronounced on 29 July than on 28 July. Motapd peak information is missing on 29 July. Tieisds to trigger a
sharp decrease in the retrieved VSM values. Orother hand, under-sampling tends to increase thieved VSM on 28
July. As a result, the retrieved VSM drops by -0.68 m™ from 28 to 29 July while the in situ VSM at 5 cmlychanges
by -0.004 M m?,

SNR amplitudes are also affected by the samplitegval in TS4. For 29 July 2016, the estimated SM#plitude is 26 V V

! for both 1 and 10 s sampling intervals, but ory\M V* for the 100 s sampling interval. For this examipéek data
acquired by the 3.3 m antenna, the SNR period @®1taB30 s. There are about 330, 33 and 3 samplasdomplete
waveform for 1, 10 and 100 s sampling intervalspeetively. Obviously, the 100 s sampling interdaks not provide
enough samples to retrieve VSM. On the other hasihg a 10 s sampling interval is sufficient foe tBNR data acquired

by the 3.3 m antenna after cutting the grass.
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For the 29.4 m antenna, the sensitivity to the dimgnpnterval is more critical. Fig. 11 shows thBIFS oscillations for the
GPS PRN 25 ascending track. The SNR period is almbut 38 s. With 10 s sampling interval, 3 or 4 glasare available
for a complete waveform. This is about the sameasiin as for the 100 s sampling interval for th& @ antenna. Figure
11a shows that pit and peak information is missindl8 March 2016 with respect to the 1 s samplirtgrial data on the
next day in Fig. 11b. Nevertheless, Table 6 shdws the 10 s under-sampling had a limited impacV&M retrievals

during TS1 since the best scores are observedgitiisl segment. This paradoxical result can beaéxptl by the prior use
of the in situ VSM data to select the satellitekismand the satellite elevation angles (see Setjt. 2

6 Conclusions

GPS L2C and L5 signal-to-noise-ratio data were iobthat a grassland site in southwestern Frandeglar period of 15
months. A dimensionless scaled wetness index wagedefrom the SNR observations based on the GNS&¢thnique,
using indiscriminately L2C or L5 signals. Surfa@él snoisture was derived from this scaled wetnestex. We show that
accurately estimating soil moisture in units ofmi® over such a densely vegetated site is challen_ej

n

order to efficiently limit the impact of perturbingegetation effects, the grass growth period amrdsenescence period
should be treated separately. While the veget&tiomass effect can be corrected for, the litterewatterception influences
the observations and cannot be easily accountedfeerall, a precision of 0.035°m™ is achieved for the whole meadow
growing cycle, and of 0.018%m after grass cutting. A suitable sampling interstaduld be used depending on the antenna
height and elevation angle range. Positioning titerana high up (at 29.4 m in this study) in oraeolbserve a larger area
enhances the impact of under-sampling. The sigaaipting interval should be better than 10 s in ttése. More
experlments over contrasting vegetation types aegled to further examine the feasibilityll@Egratngsing-theGNSS-IR

an

be combined with GNSS-IR retrievals. Proposing emlete protocol to apply this method to local GNS#ennas would

(2
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Table 1. Characteristics of the selected satellite tracksnfthe GNSS antenna at a 29.4 m height and aB an3aeight
(North is 0° azimuth angle, clockwise rotation).

Antenna
) Elevation Azimuth _ )
height ] Areas per| Instantaneoug Time duration
Satellite tracks angle range| angle range )
(m) 3 3 track (nf) | FFZ area range per track (min)
©) ) 2
(m’)
29.4 GPS PRN 03 216 to 214 21.6
GPS PRN 07 168 to 164 21.2
GPS PRN 08 14 to 23 166 to 169 ~ 900 ~400-150 20.3
GPS PRN 17 223 to 224 24.0
GPS PRN 26 168 to 171 20.3
GPS PRN 25 9to 17 228 to 23p ~ 2000 ~1000-300 20.7
3.3 36 for L2C
(10 during TS3) 7to 30 - ~ 300 ~200-10 ~ 60
21 for L5
(6 during TS3)
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Table 2. Soil moisture scores between daily mean in sitb\servations at a depth of 5 cm and GNSS VSMengdts

(both L2C and L5frem-theZhang-etal{2017)-methddr the whole experimental period and for four tisegments. Bestl
score values among time segments are in bold. MAfReé mean absolute error, RMSE is the root meaarscerror and
SDD is the standard deviation of differences.

TS1 TS2 TS3 TS4 Whole
Time segments (TS1 to (from 1 (from 19 (from 8 June tg (from 9 July to experiment
TS4) August2015to| Marchto5 8 July2016) | 6 October2016 (from 1
18 March2016) June2016) August2015 to §
October2016)
senescence,
Vegetation stages :::r cutting growing growing after cutting all
dormancy
Antenna height (m) 29.4 29.4 3.3 3.3 29.40r 3.3
Sampling interval (s) 10 1 1 1 10o0r1
N 220 68 31 90 409
Mean bias (m®) 0.016 0.028 0.023 0.006 0.016
MAE (m® m®) 0.031 0.039 0.035 0.013 0.029
RMSE (n7 m*) 0.040 0.048 0.043 0.019 0.038
SDD (n? m®) 0.037 0.039 0.036 0.018 0.035
R 0.85 0.62 0.45 0.65 0.86
p-value 0 0 0.00001 0 0
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Table3! soil moisture scores between daily mean in sitb\bservations at a depth of 5 cm and GNSS VSMensits
(either L2C or L5)using-ei methediuring TS1 (SNR data|
from the 29.4 m antenna with 10 s sampling intefn@h 1 August 2015 to 18 March 2016). Best scaleies are in bold.
MAE is the mean absolute error, RMSE is the rocamsquare error and SDD is the standard deviafidifferences.

Fime-segment{FS1) | Zhangetal. benchmark Zhang-etal. benchmark
(2017 method|  methed (2017) melhod method

Signal L2C L2¢c L5 L5

N 220 220 220 220

Mean bias (fm”~) 0.016 0119 0.017 0129

MAE (m® m®) 0.032 0121 0.033 0131

RMSE (n m?) 0.042 0137 0.042 0147

SDD (n? m®) 0.039 0.068 0.038 0.0/

R 0.83 081 0.84 0.84
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[Fable 4. Soil moisture scores between daily mean in sittiMdbservations at a depth of 5 cm and GNSS VSMenats
(either L2C or L5 or bothsi '

TS3 and TS4 (SNR data from the 3.3 m antenna witlsdmpling interval from 8 June to 6 October 20T6&g Zhang et al.
(2017) method is usedr separagdng time segmenisand also for merged time segmeiseling-time-segments-is-show
for-comparison-with-tb-benchmark-methoest score values are in bold. MAE is the mean lats@rror, RMSE is the

root mean square error and SDD is the standardii@viof differences.

In-situ-vs. Zhang et a(2017) method In-situ-vs.-benchmark method
Time segments (TS3 merged TS3 merged TS3-and TS4
and TS4) separate TS3 and TS4 and TS4
Signal L2C L5 L2C and L5 L2C L2c
N 121 121 121 121 121
Mean bias (hm~) 0.010 0.011 0.010 0.025 0245
MAE (m° m®) 0.019 0.018 0.018 0.044 0.248
RMSE (m m?) 0.027 0.027 0.027 0.050 0-282
SDD (n? m®) 0.026 0.025 0.025 0.044 0140
3 0.55 0.60 0.57 0.03 0.03
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Table 5. Soil moisture scores from the comparison betweated VSM validation data (in situ VSM observati@islepths
of 1 and 5 cm and ISBA VSM simulations at 1 cm dgpind scaled GNSS VSM retrievals (from both L2@ &B) by-the
Zhang-etalk{2017)-methatliring TS3 and TS4 (SNR data from the 3.3 m antevittal s sampling interval from 8 June tL
6 October 2016). Best score values are in bold. M&Athe mean absolute error, RMSE is the root nsgprare error and

5 SDD is the standard deviation of differences.

Time segments (TS3 and ISBA 1 cm vs. Insitulcmvs. | Insitu5cmyvs.
TS4) GNSS GNSS GNSS
N 121 121 121
MAE 0.300 0.444 0.481
RMSE or SDD 0.435 0.637 0.699
R 0.82 0.63 0.57
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Table 6. Soil moisture scores for all time segments (TST3$4) from the comparison between scaled VSM vtbdadata

(in situ VSM observations at 1 cm and 5 cm and ISB3M simulations at 1 cm) and scaled GNSS VSM egtis

(both L2C and L5py-the-Zhang-etal{2017)-methdkst score values among time segments are in B is the
mean absolute error, RMSE is the root mean squeseand SDD is the standard deviation of diffeesc

TS1 TS2 TS3 TS4

Time ISBA | Insitu | Insitu | ISBA | Insitu| Insitu | ISBA | Insitu | Insitu | ISBA | In situ | In situ
segments lcm| 1cm | 5ecm | 1lecm | 1cm | 5cm | 1ecm | 1cm | 5cm | 1cm | 1cm | 5cm
(TS1to TS4) | wvs. VS. VS. VS. VS. VS. VS. VS. VS. VS. VS. VS.

GNSS| GNSS| GNSS | GNSS| GNSS| GNSS | GNSS| GNSS| GNSS| GNSS| GNSS| GNSS
Antenna

) 29.4 294 294 29.4 29.4 29.4 3.1 3.8 3J3 313 33 3 3

height (m)
Sampling
] 10 10 10 1 1 1 1 1 1 1 1 1
interval (s)
N 220 220 220 68 68 68 31 31 31 a0 90 90
MAE 0.32 0.33 | 0.30 0.47 0.58 0.56 0.34 0.54 0.6b 0.33 0.33 0.38
RMSE or

0.40 | 0.42 0.40 0.61 0.71 0.65 0.51 0.69 0.8D 0.42 0.44 0.62
SDD
R 0.84 0.83 | 0.85 0.66 0.55 0.62 0.75 0.57 0.4% 0.83 O.%l 0.65
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Table 7. Soil moisture scores from the comparison betwedly dnean in situ VSM observations at a depth a@hb and
GNSS VSM retrievalby-the-Zhang-et-ak{(2017)-methddring TS4 (after grass cutting, from 9 July to 6tdber
2016). The L2C SNR data from GPS PRN 10 ascendautks were used, which were acquired by the 3.3 tenaa.
Best score values are in bold. MAE is the mean lates@rror, RMSE is the root mean square error &b is the

standard deviation of differences

Time segment (TS4) 1 s sampling interval 10 s sagphterval 100 s sampling interval
N 90 90 90

Mean biagm® m®) 0.009 0.008 0.012

MAE (m°® m”®) 0.013 0.013 0.018

SDD (n? m®) 0.018 0.018 0.021

RMSE (n m?) 0.020 0.020 0.025

R 0.68 0.68 0.55
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Figure 1. Experimental site of M eteopole-Flux. The specular reflection points and first Fresnel zone (FFZ) areas from the selected
satellite tracks are shown in orange for a 29.4 m GNSS antenna (" H" red dot). The specular reflection points and FFZ areas for a
3.3 m GNSS antenna ("L" red dot) are shown in blue. The red star indicates the location of in situ soil moisture observations.
Background geographic information isfrom Google Earth.
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Figure2: Timeline of experiment. (a) Daily GNSS VSM retrieval time series (N = 409) from-the Zhang-et-al{(2017)-method-using |
both L2C and L5 SNR data for the whole experimental period (from 1 August 2015 to 6 October 2016) is shown in red line,
together with daily mean in situ VSM observations at a depth of 5 cm (green line). The blue line represents the rainfat{(daily
precipitation in mm day -ean-beobtained-multiphyingby-70). The black linesindicate the grass cutting before 7 October 2015 and
before 9 July 2016. The retrievals are obtained separately depending on four time segments (Table 2). (b) Thered line represents
the above-ground dry biomass (kg m?) of the grass simulated by the |SBA mode before grass cutting; and the red dashed line
indicates the maximum simulated dry biomass (0.25 kg m™) in 2015. Grass cutting is also shown in black solid lines. The L2C (L5)
SNR normalized amplitude (Anorm, dimensionless) time seriesis shown in green (blue). Normalization is performed separately for
TS1 and TS2, and for the period with data acquired from the 3.3 m antenna using a 1 s sampling interval. The latter corresponds
tothe merged TS3 and TS4. The black dashed lineindicates the Ao, threshold (0.78) for evaluating the vegetation effects.
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Figure 3: Scatter plot of daily mean in situ VSM observations (N = 409) at a depth of 5 cm vs. GNSS VSM retrievals (from both
L2C and L5) frem-the Zhang-et-al-{(2017)-methed-for the whole experimental period from 1 August 2015 to 6 October 2016.
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Figliré4: Median of the dally VSM retrlevals (N = 220 red dots) and their daily statistical dlstrlbutlon (grey box plots) for 6
available satdllite track 6)-method. Daily mean
in situ VSM observations at a depth of 5 cm are shown by the green line. The black I|ne |nd|cates the grass cuttlng before 7
October 2015. The blue line represents the rainfall (daily precipitation in mm day™ can be obtained multiplying by 70). The L2C
SNR data acquired by the 29.4 m antenna with a 10 s sampling interval were used to retrieve VSM during TS1 (vegetation
senescence and after cutting). Boxes: 25-75% percentiles;, bars. maximum (minimum) values below (above) 1.5 IQR (Inter
Quartile Range, corresponding to the 25-75% per centile interval); dots: data outsidethe 1.5 IQR interval.
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Figure5: Scatter plots of daily mean in situ VSM observatlons at a depth of 5 cm vs. GNSS VSM retrlevals(N 220) from (aAa)
L2C SNR data, (bed) L5 SNR data,usihg{(a; a a atal;
5 methed. The SNR data acquired by the 29.4 m antenna W|th alo ssampllng |nterval durlng TSl were used
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(a) Zhang et al. (2017) method with separate TS3 and TS4, removing vegetation effects
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Figlife’8: M edian of the daily VSM retrievals (red lines)

removing vegetation effects, (b) merged TS3 and TS4;
and-T4, using L2C SNR data (from the 3.3 m antenna W|th 1 ssamphng mtervaJ) durlng TS3 and TS4 (from 8 Juneto 6 October

2016). Daily mean in situ VSM observations at a depth of 5 cm are shown by the green lines. The blue lines represent the rainfall
(daily precipitation in mm day™ can be obtained multiplying by 70). The black/orange dashed line indicates the grass cutting

before 9 July 2016.
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Figure: Scatter plotsof daily mean in situ VSM observations (N = 121) at a depth of 5 cm vs. GPSL2C retrievalsby-theZhang-et ‘
ak2017)-method: (a) after vegetation effects correction (with separate TS3 and T$4, corresponding to Fig. 6a) and (b) before
correction (with merged TS3 and TS4, corresponding to Fig. 6b). The L2C SNR data acquired by the 3.3 m antenna with 1 s
sampling interval were used. Black dots represent the retrievals (N = 31) during TS3; red dots (N = 90) represent the retrievals
during T4 (after grass cutting).
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used during TS3 and TS4. The black/orange dashed line indicates the grass cutting of 9 July 2016. (b, ¢c and d) Scatter plots of
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10 scaled GNSSVSM retrievals, respectively.
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Figure 9: L2C SNR VSM retrieval time series from-the-Zhang-etab—{(2017-method-using GPS PRN 10 ascending tracks with
different sampllng intervals: (a) 1 s, (b) 10 sand (c) 100 s. The L2C SNR data acquired by the 3.3 m antenna during TS4 (after

grass cutting_in July 2016) were used. Their corresponding scatter plots are shown in (d), (e) and (f), respectively. Daily mean in
situ VSM observations at a depth of 5 cm (black lines) are shown in the left sub-figures, and the blue lines represent the daily
precipitation in mm day™.
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Figure 10: Two examples of L2C SNR data sets (from the GPS PRN 10 ascending tracks) acquired by the 3.3 m antenna at two
contiguous dates: (a) 28 July and (b) 29 July 2016. SNR data with three different sampling intervalsat 1, 10 and 100 sare shown in
5 black, orange and red lines, respectively.
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Figure 11: Two examples of L2C SNR data sets (from the GPS PRN 25 ascending tracks) acquired by the 29.4 m antenna at two
contiguous dates: (a) 18 March 2016 (with 10 ssampling interval) and (b) 19 March 2016 (with 1 ssampling interval).
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