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Abstract 

Accurate flood predictions are essential to reduce the risk and damages over large urbanized areas. To improve prediction 

capabilities, hydrological measurements derived by traditional physical sensors are integrated in real-time within mathematic 15 

models. Recently, traditional sensors are complemented with low-cost social sensors. However, measurements derived by 

social sensors (i.e. crowdsourced observations) can be more spatially distributed but less accurate. In this study, we assess the 

usefulness for model performance of assimilating crowdsourced observations from a heterogeneous network of static physical, 

static social and dynamic social sensors. We assess potential effects on the model predictions to the extreme flood event 

occurred in the Bacchiglione catchment on May 2013. Flood predictions are estimated at the target point of Ponte degli Angeli 20 

(Vicenza), outlet of the Bacchiglione catchment, by means of a semi-distributed hydrological model. The contribution of the 

upstream sub-catchment is calculated using a conceptual hydrological model. The flow is propagated along the river reach 

using a hydraulic model. In both models, a Kalman filter is implemented to assimilate the real-time crowdsourced observations. 

We synthetically derived crowdsourced observations for either static social or dynamic social sensors because crowdsourced 

measures were not available. We consider three sets of experiments: 1) only physical sensors are available; 2) probability of 25 

receiving crowdsourced observations and 3) realistic scenario of citizen engagement based on population distribution. The 

results demonstrated the importance of integrating crowdsourced observations. Observations from upstream sub-catchments 

assimilated into the hydrological model ensures high model performance for high lead time values. Observations next to the 

outlet of the catchments provide good results for short lead times. Furthermore, citizen engagement level scenarios moved by 

a feeling of belonging to a community of friends indicated flood prediction improvements when such small communities are 30 
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located upstream a particular target point. Effective communication and feedback is required between water authorities and 

citizens to ensure minimum engagement levels and to minimize the intrinsic low-variable accuracy of crowdsourced 

observations. 

1 Introduction 

A challenge for water management is the reduction of risk related to extreme events such as floods. Flood management needs 5 

timely provision of early warning information, for example, to operate control river structures and to regulate water levels. 

Reliable accurate streamflow simulation and water level prediction by means of hydrological and hydraulic models are 

therefore of uttermost importance. However, model performance and related predictions are inherently uncertain due to: lack 

of reliable and sufficient observational data, lack of understanding of the natural hydrological and hydraulic processes, and 

limitations and assumptions of the modelling system (Merz et al., 2010, p 514). Hence, the accuracy of flood predictions is 10 

also variable (Werner et al., 2015). Early warning systems can benefit from spatially and temporally distributed observations 

of hydrological variables to improve the accuracy of water level predictions (Clark et al., 2008; Rakovec et al., 2012; Mazzoleni 

et al., 2015a). Particularly in operational early warning, different attempts have been made over to improve the accuracy of 

flood model predictions by means of: 1) Data assimilation techniques; 2) assimilation of multiple physical sensors; and more 

recently 3) assimilation of crowdsourced observations from static social and dynamic social sensors. 15 

The main objective of this study is to assess the modelling usefulness in assimilating crowdsourced (CS) observations derived 

from a distributed network of static physical (StPh), static social (StSc) and dynamic social (DySc) sensors. We analyse the 

benefits for the flood prediction of the event occurred in May 2013 in the Bacchiglione basin. Observations are assimilated 

within a cascade of hydrological and hydraulic models in case of different citizen engagement levels (CEL). CEL is further 

defined as the probability of receiving a CS observation based on the citizen’s own interest. We assume that CEL mainly limit 20 

the intermittency of observations. Section 2 starts with an overview of background studies both in data assimilation and CS 

observations. Section 3 introduces the case study and Section 4 describes the modelling and data assimilation approach. Section 

5 introduces the experimental setup. Three sets of experiments are carried out with synthetic water level observations. CS 

observations are not yet operational nor available in the case study for the flood event of 2013. First, it is assumed that only 

physical sensors are available. Then, CS observations become available according to different Citizen Engagement Levels 25 

(CEL). Last, CEL scenarios vary according to the population distribution and citizen’s engagement. We assumed three citizens 

behaviours to collect data: 1) own personal purposes; 2) shared or community interests and 3) societal benefits. Section 6 

highlights the modelling benefits of each experimental set up in terms of the model performance as well as the water level 

prediction. Section 7 draws the conclusions for the event analysed and provides recommendations for further research. 
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2 Overview in data assimilation and crowdsourced observations 

Data assimilation and modularisation concepts are common modelling updating techniques of the model input, parameters or 

outputs to integrate real-time observations of hydrological variables (WMO, 1992; Refsgaard, 1997). A data assimilation 

method like Kalman Filter (KF) takes into account the uncertainties in the model and observed data. Such uncertainties are 

considered within the model update process to update entire states of a modelling system (McLaughlin, 1995; Robinson et al., 5 

1998; McLaughlin, 2002; Madsen and Skotner, 2005; Lahoz et al., 2010; Liu et al., 2012). Observed data derived by static 

physical sensors, such as pressure sensors, water level sensors, heat flux sensors and pluviometers are assimilated within 

mathematical models to improve flood predictions. Recent studies have assessed the benefits of assimilating multiple 

observations from different sensors, in-situ and remote sensors, and different hydrologic variables (Montzka et al., 2012; 

Pipunic et al., 2013; Andreadis et al., 2015). One of the first attempts to assimilate observations from multiple sources was 10 

proposed by Aubert et al. (2003). Daily soil moisture and streamflow data was assimilated from static physical sensors. 

Afterwards, integration of multiple remote sensing-based observations such as soil moisture (from AMSR-E), precipitation 

rates (from TRMM and TMI), surface heat fluxes (from MODIS), soil moisture (from AMSR-E) and in-situ observations into 

dynamic modelling systems are carried out by McCabe et al. (2008), Pan et al. (2008), Lee et al. (2011), Lopez Lopez et al. 

(2015) and Rasmussen et al. (2015). These previous studies demonstrated the feasibility of assimilating multi-sources data and 15 

good model improvement compared against the predictions without any model update. 

Besides the increasing availability of remote sensing information, one of the main problems is the scarcity of in-situ data in 

both spatial and temporal domains (Hannah et al. 2011). Scarcity of in-situ data can be related to the fact that traditional 

physical sensors require proper maintenance and personnel, which can be very expensive in case of large networks. Over the 

last couple of decades, technological improvements allow the spread of heterogeneous networks of low-cost sensors. 20 

Hydrological variables, such as water level or precipitation, can then be measured in a more distributed way (Yarvis et al., 

2005; Fohringer et al., 2015; Smith et al., 2015; Le Boursicaud et al., 2016). The main advantages is that of these types of 

sensors can be used not only by technicians, but also by “regular” citizens. Due to their reduced cost, more spatially distributed 

coverage can be achieved. 

Recently, citizen science activities have been widely promoted to collect crowdsourced (CS) observations. Bonney et al. (2009) 25 

characterised three different approaches for citizen involvement in citizen science, namely contributory, collaborative and co-

created. Citizen can contribute with CS observations of hydrological variables to generate additional knowledge of the water 

cycle and to support decision-making (Howe, 2008; Rotman et al., 2012; Gura, 2013; Bonney et al., 2014; Buytaert et al., 

2014). Different projects assess the usefulness of CS observations (Au et al., 2000; Cifelli et al., 2005; Alfonso, 2006; Célleri 

et al., 2009; ABC, 2011; Roy et al., 2012; Degrossi et al., 2013; Lowry and Fienen, 2013; Seo et al., 2014 ; Castell et al., 2015; 30 

Schneider et al., 2015;  Cortes Arevalo, 2016). CS observations should meet easy, safety and reliability requirements (Rossiter 

et al. 2015). Easy refers to the limited citizen engagement level. Safety refers to the consideration of accessibility and safety 
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conditions to carry out the CS observations. Reliability refers to both the procedures to carry out the observations and the 

quality control to minimise low variable accuracies of CS observations.  

However, a main problem in citizen science is the motivation that drives citizens to be involved in such activities. Buytaert et 

al. (2014) pointed out that citizen engagement vary according to geographical location. Flint and Stevenson (2010), highlighted 

that the different land use and population density between urban and rural areas may also affect citizens’ engagement, their 5 

interaction and own interests. Cohn (2008) specified that citizens’ engagement may be driven by personal interest or 

community involvement. Batson et al. (2002) further specified it as the interest of: 1) increasing one’s own welfare; 2) 

increasing the welfare of a specific group that one belongs to), 3) increasing the welfare of another individual or group of 

individuals and 4) upholding one or more principles dear to one’s heart or to follow a moral principle. These findings for 

community engagement in general are confirmed by Gharesifard and Wehn (2016a,b) for citizen science. Their study of the 10 

drivers and barriers for sharing citizen-sensed weather data via online amateur networks shows the importance of personal 

benefits (usefulness of the collected data for personal purpose of belonging to a community of peers with shared interested), 

social benefits (sharing knowledge about the weather) and altruism (beneficing society at large). Moreover, engagement is 

dynamic and may evolve and change during the citizen’s involvement period. Bonney et al. (2009) characterised three different 

approaches for citizen involvement, namely contributory, collaborative and co-created. Due to the intrinsic low variable 15 

accuracy and intermittency of CS observations, it is important to evaluate the accuracy of CS and to develop quality control 

mechanisms (Tulloch and Szabo, 2012; Vandecasteele and Devillers, 2013; Bordogna et al., 2014; Bird et al., 2014; Cortes 

Arevalo et al., 2014). 

Data assimilation applications require specific, frequent and high quality measurements, which may not be compatible with 

the distributed, intermittent and, potentially, lower-quality of citizen-based data (Shanley et al., 2013; Buytaert et al., 2014; 20 

Lahoz and Schneider, 2014). That is why interpolation and merging techniques are commonly used to integrate citizen 

observations within mathematical models. Kovitz and Christakos (2004) assimilated fuzzy data sets assigning probabilities of 

plausible events based on general knowledge through information maximization and then applying a Bayesian maximum 

entropy method. Schneider et al. (2015) reported an example of data fusion used to provide a combined concentration field by 

regressing dynamic air quality observations against model data and spatially interpolating the residuals. Furthermore, Sheffield 25 

et al. (2006) and Seibert and Beven (2009) demonstrated that intermittent (or short duration) and distributed data can also be 

used for model calibration. Aronica et al. (1998) proposed a fuzzy-rule-based calibration to compare model predictions and 

highly uncertain information about the flood arising from several different types of observations. Seibert and McDonnell 

(2002) proposed an approach to calibrate hydrological models using both quantitative and qualitative data (e.g. percent of new 

water, reservoir volume, etc.) provided by expert users. Vaché et al. (2004) demonstrated the usefulness of using qualitative 30 

data for multi-objective calibration of hydrological models. Recently, Giuliani et al. (2016) proposed a procedure to 

automatically extract snow-related information from public webcams and photographs posted on Flickr, to inform water system 

operations. However, none of the previous studies assessed the usefulness of real-time CS observations in improving flood 

predictions. First attempts are reported in Mazzoleni et al. (2015a,b; 2016b) and Mazzoleni (2017), where the authors 
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assimilated distributed streamflow observations from heterogeneous type of sensors within hydrological models. In this study, 

we evaluate synthetic experiments of citizen engagement level from a heterogeneous network of sensors, including CS 

observations. To assess the modelling usefulness of CS observations, we evaluate the benefits in the predictions of a flood 

event in the following case study. 

3 Case study: The Bacchiglione catchment 5 

The Bacchiglione catchment (Italy) is one of the case studies in which WeSenseIt (WSI) Citizen Observatory of Water Project 

developed and tested innovative static and low-cost mobile sensors (Ciravegna et al., 2013). The main goal of the WSI project 

is to allow active citizens to support the work of water authorities by providing CS observations. The new sensors are 

strategically integrated into the existing monitoring networks for collecting physical and social CS data. WSI also developed 

mobile phone apps for citizens to send flood reports and sensor readings of precipitation and water level. As a pilot, CS 10 

observations collected with these apps are sent to an online platform. Once the pilot becomes operational, the observations can 

be used in the hydrological and hydraulic models. We assess the usefulness of assimilating CS observations to improve the 

model performance and consequent flood prediction. 

This research focused on the upper part of the Bacchiglione catchment, in Northern-East of Italy, which flows into the Adriatic 

Sea at the South of the Venetian Lagoon. The case study has an overall extent of about 450km2 with a river length of about 15 

50km. The three main tributaries are the Timonchio River on the left side and Leogra and Orolo Rivers on the right side. The 

main urban areas are located close to the outlet section of the case study area, the city of Vicenza. Distributed rainfall and 

water level (WL) information are available from 01/01/2000 in 16 meteorological stations and 2 hydrometric stations. The Alto 

Adriatico Water Authority (AAWA) is currently using an operational semi-distributed hydrological and hydraulic model for 

early warning (Ferri et al., 2012, Mazzoleni et al., 2015b). Forecasted and measured precipitation time series are available for 20 

a flood event that occurred in May 2013. This event is used to assess the benefits of assimilating CS observations during an 

extreme event such the one in May 2013. The event is significant due to its high intensity, which resulted in several traffic 

disruptions at various locations upstream Vicenza. 

3.1 Sensor classification 

In this study, three types of sensors to measure water level WL are assimilated within the semi-distributed hydrological and 25 

hydraulic model (Section 3). Those are static physical (StPh), static social (StSc) and dynamic social sensors (DySc) sensors 

(see Figure 1).  

The StPh sensors are classic physical sensors such as water level ultrasonic sensors (see example in see Figure 1.a). StPh have 

a fixed location, regular arrival time and the observational error depends on how well documented the cross section is. Despite 

of the potential observational error, we assumed high accuracy level as the observation is not affected by the variability of CS 30 

data.  
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In contrast to StPh, StSc have a larger distribution along the river reach but consist of intermittent CS observations. The StSc 

sensors are staff gauges located at strategic points and easily accessible (safety) locations along the river reaches. Figure 1 

shows an illustrative example of the sensor locations in the Bacchiglione case study. Citizens report observations from these 

static sensors to estimate WL values. The WSI mobile phone app (see Figure 1.b) is used to send observations using the QR 

code as geographical reference point. 5 

In case of DySc sensors, the location is not fixed but the accessibility (safety) and ease of the observation can be encouraged 

by following the suggestions of water authorities. In fact, CS observations can provide the distance between the water level 

and the river bank at random locations along the river. It might be in fact difficult to estimate the WL value without having any 

indication about river depth. By assuming a cross section and documenting bank elevations, is possible to estimate the WL 

value. For example, by referring to reaches where cross sections are regular or where bank elevations can be inferred from the 10 

dimensions of a neighbouring object (see Figure 1.c). To report, citizens can also use the WSI mobile phone app (see Figure 

1.c). An example of DySc sensors is reported in Michelsen et al. (2016). 

 

 

Figure 1: Representation of different type of sensors implemented in the Bacchiglione catchment under the WeSenseIt project. 15 

3.2 Crowdsourced observations 

The idea of citizen observatories is that StSc and DySc sensors are used by citizen to provide WL observations. CS observations 

can have different characteristics of temporal availability and accuracy based on the adopted sensor, as reported in  

Table 1.  

Regardless of the social sensor (static or dynamic), the reliability and intermittency of the observation can be affected by the 20 

experience, engagement and citizens’ own interest. In particular, we assumed a direct relation between intermittency, or 

temporal availability, and the CEL, i.e. the probability of receiving a CS observation based on the citizen’s own interest. 

Regarding data accuracy, some expertise (training) is still required to read the gauge, take the picture and use the mobile 

applications developed by WSI. In fact, in case of StSc sensors, due to the low complexity of the observation, we assumed the 

accuracy level as medium. On the other hand, for DySc sensors, the degree of uncertainty is higher not only because of the 25 
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observational error, but also because of the indirect method to estimate the WL value. The assumed accuracy level is the lowest 

of all included sensors. 

CS may have three expertise levels according to the categories proposed by (Coleman et al., 2009, p5.). We further define 

these categories in the context of this research as follows: 

1) Neophyte volunteer, normal citizen who may have the mobile application but has not yet attended training activities nor 5 

experience with sending reports to the basin authority. 

2) Interested volunteer, citizen who has the mobile application, attended the trainings but has limited experience sending 

reports to the basin authority.  

3) Experienced volunteer, either experienced citizen or technician (the Civil Protection in case of the Bacchiglione catchment), 

who actively uses the application, joins training activities and has enough expertise to provide reliable observations. 10 

Due to the lack of distributed crowdsourced observations at the time the considered flood event occurred, synthetic WL 

observations are used. 

 

Table 1. Characteristics of crowdsourced (CS) observations based on sensor classification 

Sensor type 
Type of 

observation 
Location 

Time of 

availability 
Observational error 

Assumed 

accuracy level 

Static 

Physical 

(StPh) 

Water level 

time series 

Fixed, 

generally in 

key inlet or 

outlets 

Each model time 

step 

- Missing data 

- Observational noise due to 

changes in the cross section 

- Missing or not 

representative rating curve. 

High 

Static 

Social 

(StSc) 

CS water level 

and photo of 

the river gauge. 

Fixed but 

distributed at 

strategic 

points along 

the river 

reach 

Intermittent, 

according to CEL 

- Same as StPh 

- Inaccurate lecture of the 

river gauge 

- Inaccurate photo limiting 

validation 

- Unknown expertise level 

of the citizen reporting  

Medium 

Dynamic 

Social 

(DySc) 

Photo and CS 

estimation of 

the distance 

from the river 

bank to the 

actual water 

level 

Variable 

Intermittent, 

according to CEL 

and accessibility 

level to the river 

reach 

- Same as StPh 

- Same as StSc but 

inaccurate reference point 

to estimate distance from 

the river bank 

- Photo without a reference 

measure for validation 

- Unknown (irregular) cross 

section and river bank 

conditions at the reported 

location 

Low 

 15 
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4 Modelling tools 

4.1 Semi-distributed hydrological model 

In order to implement the semi-distributed model, the Bacchiglione catchment is divided into different sub-catchments and 

inter-catchments whose streamflow contributions flow into the main river channel up to the urbanized area of Vicenza. In the 

schematization of the Bacchiglione catchment (see Figure 2), the location of the StPh and StSc sensors corresponds to the 5 

outlet section of three main sub-basins, Timonchio, Leogra and Orolo. The remaining sub-basins are considered as the inter-

basin. The rainfall-runoff processes within each sub-catchment and inter-catchment are represented by means of a conceptual 

hydrological model, initially developed by AAWA. In case of the main river channel, a hydraulic model is used to propagate 

the flow up to the gauge station of Ponte degli Angeli (PA) in Vicenza. In particular, the river reach is divided into different 

reaches according to the location of the internal boundary conditions. We used hydrological outputs as upstream (from sub-10 

catchments) and internal boundary conditions (from inter-catchments). Figure 2 shows that the output of the hydrological 

model (red arrows) are boundary conditions for the proposed hydraulic model.  

 

Figure 2. Spatial distribution of the sub--catchments, river reaches, StPh and StSc sensors implemented in the catchment by 

AAWA 15 
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4.1.1 Hydrological modelling 

The hydrological model used in this study is based on the early warning system implemented by AAWA. We briefly relate to 

the model equation as detailed description is available in Ferri et al. (2012) and Mazzoleni et al. (2015b). Precipitation time 

series is the only input for the hydrological model implemented in this study. The water balance to a generic control volume 

of active soil is applied, at the sub-basin scale, to mathematically represent the processes related to runoff generation processes 5 

such as surface, sub-surface and deep flow.  

 

𝑆W,𝑡+𝑑𝑡 = 𝑆W,𝑡 + 𝑃𝑡 − 𝑅sur,t − 𝑅sub,t − 𝐿𝑡 − 𝐸𝑇,𝑡        (1) 

where SW,t is the water content at time t, P is the precipitation component, ET the evapotranspiration, Rsur, the surface runoff, 

Rsub the subsurface runoff and L is the deep percolation. The routed contributes of the surface Qsur, sub-surface Qsub and deep 10 

flow Qg are derived from Rsur, Rsub and L by means of the conceptual framework of the linear reservoir model. In case of Qsur 

the value of the parameter of this model, i.e. the time constant that defines how fast the water flows out of the reservoir, is 

estimated as a function of the slopes velocity of the surface runoff to the average slopes length.  

 

In this study, the estimate of the surface velocity is performed using the approach proposed by Kumar et al. (2002). It is worth 15 

noting that this formulation is applied at a lumped scale for each sub-catchment and inter-catchment. However, in order to 

reproduce the spatial variability of the velocity, and consequent resident time, a distributed model should be used as suggested 

by McDonnell and Beven (2014). Calibration of the hydrological model parameters, including the parameters of the linear 

reservoir model for Qsub and Qg, is performed by AAWA minimizing the error between the observed and simulated WL values 

at Ponte degli Angeli (Vicenza) for a period between 2000 and 2010. At this point, in order to apply the data assimilation 20 

approach and properly integrate crowdsourced WL observations within the mathematical model, it is necessary to represent the 

previous dynamic system in a state-space form, i.e.: 

𝐱𝑡 = 𝑀(𝐱𝑡−1, 𝜗, 𝑰𝑡) + 𝑤𝑡            (2) 

𝐳𝑡 = 𝐻(𝐱𝑡 , 𝜗) + 𝑣𝑡           (3) 

where, xt and xt-1 are the model state vectors at time t and t-1, M is the model operator, It is the vector of the model inputs, 25 

while H is the operator which maps the model states into the model output zt. The terms wt and vt indicate the system and 

measurements errors which are assumed normally distributed with zero mean and covariance S and R. In case of the 

hydrological model used in this study, the states are identified in xS, xsur, xsub and xL, i.e. the states to SW and to the linear 

reservoir generating Qsur, Qsub and Qg. In Mazzoleni et al. (2015b), a sensitivity analysis is carried out perturbing the model 

states ±20% around the true state every time step in order to find out to which model states the output are more sensible. The 30 

results of such analysis showed that model output is more sensitive to xsur if compared to the other ones. For this reason, we 
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decided to update only the model state xsur, which is related to the linear reservoir. Based on the linear nature of the linear 

reservoir model, the state-space form can be expressed as i.e. 

𝐱𝑡 = 𝚽𝐱𝑡−1 + 𝚪𝐼𝑡 + 𝑤𝑡           (4) 

𝐳𝑡 = 𝐇𝐱𝑡 + 𝑣𝑡            (5) 

where x is the vector of the model states (stored water volume in m3),  is the state-transition matrix,  is the input-transition 5 

matrix, H is the output matrix. In this case, the model output z is expressed as streamflow Q at the outlet section of the sub-

catchment or inter-catchment. The detailed description of the matrices , and H can be found in Szilagyi and Szollosi-Nagi 

(2010). 

4.1.1 Hydraulic modelling 

Flood propagation along the main river channel is represented using a Muskingum-Cunge (MC) model (Cunge, 1969; Ponce 10 

and Chaganti, 1994; Ponce and Lugo, 2001; Todini, 2007). MC is derived from the mass balance applied over a prismatic 

section delimited by the upstream and downstream river section. As described in Cunge (1969) and Todini (2007), a four point 

time centered scheme is used on the kinematic routing model to derive a first order approximation of a diffusion wave model 

and express the MC model as: 

𝑄𝑡+1
𝑗+1

= 𝐶1𝑄𝑡
𝑗

+ 𝐶2𝑄𝑡
𝑗+1

+ 𝐶3𝑄𝑡+1
𝑗

          (6) 15 

where t and j are the temporal and spatial discretization, Q is the streamflow, while C1, C2 and C3 are the routing coefficients, 

function of the geometry of the cross-sections and wave celerity, calculated at each time step t following the approach proposed 

by Todini (2007) and detailed reported in Mazzoleni et al. (2016a). It is worth noting that in this formulation of MC, the only 

model parameter is the manning coefficient of the river channel considered in the estimation of the wave celerity. In addition, 

MC is implemented, independently, along each one of the six river reaches represented in Figure 2. 20 

As in case of the hydrological model previously described, a state-space form of the hydraulic model is used as well in order 

to apply the data assimilation method. The state and observations process equation are similar to the ones described in Eq.(4) 

and (5). In case of the hydraulic model, the model state vector is defined as xt=(Q1
t, Q2

t,..Qj
t,..,QN

t), where Q is the discharge 

along the river in m3/s, while the input matrix is  I(t)=(Q0
t, Q0

t+1) being Q0 the discharge at the upstream boundary condition. 

The state-transition  and input-transition  matrixes are calculated following the approach derived by Georgakakos et al. 25 

(1990). In the observation process of the hydraulic model, z represents the flow along the river channel, while H is output 

matrix equal to [0 0 … 1]T in case of flow measurements at the outlet section of the river reach. In this study, due to the variable 

position of social sensors, the matrix H changes accordingly each time step. The manning equation is used to estimate the WL 

in the river channel knowing the value of flow at each spatial discretization, considered 1000m. The value of the manning 

coefficient is 0.8 following the calibration process in which observed and simulated rating curve are compared at PA.  30 
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4.2 Data assimilation 

The Kalman Filter (KF, Kalman 1960) is a mathematical tool widely used to integrate real-time noisy observations, in an 

efficient computational (recursive), within a dynamic linear system resulting in the best state estimate having minimum 

variance of the model error. In Liu et al. (2012), a detailed review of KF and other type of data assimilation approaches is 

reported. The first step in the KF procedure is the forecast of the model state vector, following Eq.(4), and covariance matrix 5 

expressed as: 

𝐏𝑡
− = 𝚽𝐏𝑡−1

+ 𝚽𝑻 + 𝐒𝑡           (7) 

where the superscript – indicates the forecasted model error covariance matrix P and the superscript + indicates the updated 

state value coming from the previous time step. In fact, whenever an observation zo becomes available, the second step of the 

KF, i.e. the update step, the forecasted model states x and covariance P are updated as: 10 

𝐱𝑡
+ = 𝐱𝑡

− + 𝐊𝑡(𝑧𝑡
𝑜 − 𝐇𝑡𝑧𝑡

𝑜)          (8) 

𝐏𝑡
+ = (𝐈 − 𝐊𝑡𝐇𝒕)𝐏𝑡

−           (9) 

𝐊𝑡 = 𝐏𝑡
−𝐇𝑡

𝑇(𝐇𝑡𝐏𝑡
−𝐇𝑡

𝑇 + 𝐑𝑡)−𝟏          (10) 

where K is the Kalman gain matrix, the higher this matrix, the more confidence KF gives to the observation zo and vice versa. 

Due to the fact that along the river channel only WL observations are provided, the manning equation is used to express the 15 

vector z0 as streamflow based on natural river cross-section geometry. 

In this study, crowdsourced observations are considered. As already mentioned, such observations can be irregular both in 

time and in space. In order to consider the intermittent nature in time within the KF, the approach proposed by Cipra and 

Romera (1997) and Mazzoleni et al. (2015a) is adopted. According to this approach, when no observation is available, the 

model state vector x is estimated using Eq.(4), while the model error covariance P is forecasted considering no changes at that 20 

time step: 

 𝐏𝑡
+ = 𝐏𝑡

−            (11) 

It is worth noting that in case of the hydraulic model, the state variables at each reach are updated separately. 

4.3 Synthetic observations 

Due to the lack of distributed crowdsourced observations at the time the considered flood event occurred, synthetic WL 25 

observations are used. It is worth noting that, in real-life application, citizens are not supposed to provide directly streamflow 

observations but WL. Such WL values are then converted to streamflow using the rating curve at the location of the social 

sensors. 
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In order to generate such synthetic observations, the observed time series of precipitation during the flood event of May 2013 

are used as input for the hydrological models of the sub-catchments and inter-catchments to generate synthetic discharge and 

then propagate it with the hydraulic model up to the target point of PA. The hydrological model for each sub-catchment uses 

as input data spatial interpolation of meteorological variables (using Kriging methods). In this way, both the synthetic 

streamflow and WL values at the outlet of the sub-catchments/inter-catchments and at each spatial discretization of the six 5 

reaches of the Bacchiglione River are estimated and assumed as observed variables in the assimilation process. In meteorology, 

this kind of approach is often called “observing system simulation experiment” (OSSE), as described for example by Arnold 

and Dey (1986), Errico et al. (2013) and Errico and Privé (2014). 

In case of observations derived using DySc sensors, a systematic error is also accounted by means of different values of 

observations bias estimated as: 10 

𝑊L,𝑡
𝑠𝑦𝑛𝑡ℎ

= 𝑊L,𝑡
𝑡𝑟𝑢𝑒 + 𝛾𝑡 = 𝑊L,𝑡

𝑡𝑟𝑢𝑒 + 𝑊L,𝑡
𝑡𝑟𝑢𝑒 ⋅ 𝑈(𝛾min, 𝛾max)      (11) 

where  is a random stochastic variable function of the time, having minimum and maximum values min and max reported in 

Table 2 in case of the experiment 2.2 reported in the next section. For example, Bias 1 represent the case of no bias, bias 3 of 

underestimation and bias 4 overestimation of the real WL value. 

Table 2. Minimum and maximum values min and max in case of 4 different cases of observation bias used in experiment 2.2 15 

 min max 

Bias 1 (1) 0 0 

Bias 2 (2) -0.3 0.3 

Bias 3 (3) -0.3 0 

Bias 4 (4) 0 0.3 

 

As described in Weerts and El Serafy (2006), Rakovec et al. (2012), and Mazzoleni et al. (2015a, 2016b), the covariance matrix 

R is assumed to be:  

𝑅𝑡 = (𝛼𝑡 ∙ 𝑄𝑡
𝑠𝑦𝑛𝑡ℎ

)
2
           (12) 

where  is a variable related to the degree of uncertainty of the measurement. To account for the differing accuracy between 20 

the users of physical and social sensors (see details in section 2.2 and  

Table 1), Table 3 summarises the distribution of the coefficient  of the observational error (i.e. bias) of Eq.(12). As described 

in Weerts and El Serafy (2006) and Rakovec et al. (2012), in order to account for the rating curve uncertainty in the estimation 

of streamflow from WL, the coefficient  is assumed equal to 0.1, constantly in time and space. 

On the other hand, due to the unpredictable accuracy of the CS observations coming from the sensors StSc and DySc sensors, 25 

the coefficient  is assumed as a random stochastic variable within a minimum (min) and maximum (max) value. In fact, the 

accuracy of CS observations relies on, but is not limited to, the expertise level of participants (Section 2.2). The uncertainty of 
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a measurement provided by neophyte volunteer or interested volunteer is generally larger than that of an experienced volunteer 

or technician. Specifically, based this assumption on the consideration that expert volunteers or technicians may have submitted 

a large number of observations, have enough training or received sufficient background expertise to provide reliable water 

level reports. Regardless of the expertise level, basin authorities should establish quality control procedures of CS before, 

during and after the submission of reports to set these minimum and maximum accuracy values. 5 

In case of observations derived from StSc sensors, min and max are assumed equal to 0.1 and 0.3, while for DySc sensors, the 

minimum and maximum values are set to 0.2 and 0.5, i.e. two and five times higher than the uncertainty coming from the 

physical sensors (StPh). 

Table 3. Assumptions behind the observational errors according to the sensor type 

Sensor type 
Assumed 

accuracy level 
Coefficient  Temporal and spatial variability  

Static Physical 

(StPh) 
High 0.1 

Fixed location 

Constant in time 

Static Social 

(StSc) 
Medium U(0.1, 0.3) 

Fixed location 

Intermittent arrival 

Dynamic Social 

(DySc) 
Low 

U(0.2, 0.5) 

Systematic bias 

Variable location 

Intermittent arrival 

 10 

4.4 Performance measures 

Two different performance measures are used in order to assess the effect of assimilating CS observations within the models 

previously described. The widely used measure in hydrology, the Nash-Sutcliffe Efficiency (NSE) index (Nash 1970), is used 

to compare simulated and observed quantities: 

𝑁SE = 1 −
∑ (𝑊L,𝑡

𝑚−𝑊L,𝑡
𝑜 )

2𝑇
𝑡=1

∑ (𝑊L,𝑡
𝑚−𝑊L,𝑖

𝑜̅̅ ̅̅ ̅̅ )
2𝑇

𝑡=1

          (13) 15 

where the superscripts m and o indicate the simulated and observed values of WD, while 𝑊D
̅̅ ̅̅  is the average observed water 

level. An NSE of 1 represents a perfect model simulation whereas an NSE of zero indicates that the simulated streamflow is only 

as skilful as the mean of observed water level. 

The Bias index (BI) measures the tendency, on average, of a given simulated variable to be bigger or smaller than its observed 

value. Values of BI bigger than 1 indicate overestimation of such variable, and vice versa, for BI lower than 1, an overall 20 

underestimation is present.  

𝐵I =
∑ 𝑊𝐿𝑡

𝑚𝑇
𝑡=1

∑ 𝑊𝐿𝑡
𝑜𝑇

𝑡=1
            (14) 
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5 Experimental setup 

In this section, three sets of experiments are performed to test the benefits of real-time assimilation of CS from a network of 

heterogeneous static and dynamic sensors. A 3-day rainfall forecast is used to assess the simulated streamflow and WL values 

along the Bacchiglione River and at the target point of PA. WL observations from StPh sensors are assimilated at an hourly 

frequency, while CS observations from StSc and DySc sensors are assimilated at different intermittent moments to account for 5 

the random temporal nature of such observations. In addition, different model runs are performed to consider the random 

accuracy and engagement level of the citizen providing CS observations. 

Three sets of experiments are carried out as described in the following subsections. Experiment 1 considers only the 

assimilation of observations from StPh sensors. Experiment 2 considers that CS observations become available from StSc 

(Experiment 2.1) and DySc (Experiment 2.2) according to random CEL. In this study, we assumed that CEL do not affect 10 

observations accuracy but just their intermittency nature. Instead, Experiment 3 consists of a unique experiment where the 

assimilation of CS observations from all sensors is carried out. This experiment considers a more realistic assumption of 

engagement based on citizen’s engagement and the spatial distribution. Observed and forecasted WL values are compared, for 

different lead times, at the outlet section of PA to evaluate the assimilation of CS observation within the semi-distributed 

model. 15 

5.1 Experiment 1: Assimilation of data from static physical (StPh) sensors 

In this experiment, CS observations coming from sensor StPh1 are assimilated within the hydrological model, being located 

at the outlet section of a sub-catchment. Instead, observations from sensors StPh2 and StPh3, which are installed along the 

main river reach, are assimilated into the hydraulic model of the Bacchiglione catchment. The observations are assumed to be 

regular in time. In particular, because of the high accuracy of these sensors compared to dynamic sensors (DySc), the 20 

coefficient  of Eq.(12) is considered equal to 0.1 as described in Section 3.3. The assimilation of WL observations is firstly 

performed considering a single sensor at a time and then all StPh sensors together. Model performances, expressed in terms of 

NSE, are calculated for different lead time values, up to 24 hours. 

5.2 Experiment 2: Engagement scenarios of social sensors 

Different values of CEL are considered. Such engagement, closely related to the intermittent nature of the WL observations, 25 

can be considered as the probability to receive an observation at a given model time step. This means that in the case of 

CEL=0.4 there is 40% of probability to obtain an observation at a given model time step. In fact, in the case of CEL=0, no 

observation is assimilated and the semi-distributed model is run without any update. On the other hand, for CEL=1, 

observations are available at every time step and this situation is analogous to the observation from StPh sensors, which are 

regular in time. 30 
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5.2.1 Experiment 2.1: Assimilation of data from static social (StSc) sensors 

In Experiment 2, only assimilation of WL observations from StSc sensors is considered. Besides StSc1, 2 and 6, located in sub-

catchment A, B and C respectively, the other sensors are located along the river reaches of the Bacchiglione catchment. On 

contrast to the observations from StPh, the ones from StSc are not regular in time since they are strictly related to the citizen 

engagement level. 5 

Observation error is defined as in section 3.3 using Eq.(12). The value of  for each StSc sensor is only a function of time t 

since the location of the sensor is assigned and fixed. Assimilation of WL observations in case of different combinations of 

sensor availability in the different sub-catchments and river reaches is performed. 

5.2.2 Experiment 2.2: Assimilation of data from dynamic social (DySc) sensors 

In the Experiment 2.2, the assimilation of WL observations coming only from DySc sensors is considered. In this case, the CS 10 

observations can be sent without the use of the static reference tool as in case of the StSc sensors but only with the dynamic 

device (e.g. smart phone). The two main differences between StSc and DySc sensors are that: 1) DySc sensor locations vary 

every time step along the river reaches in contrast to StSc sensors whose locations are considered constant in time. In fact, in 

the case of the DySc sensors, the mobile sensor might provide observations in different random places due to the fact that there 

is no need for a static reference tool to measure the WL; 2) uncertainty in the observations provided by DySc sensors is higher 15 

than for those from StSc sensors. This is because, for a non-expert, it might be difficult to estimate the WL in a river without 

any reference device as in the case of StSc sensors. For this reason, citizens might provide observations of the distance between 

the water profile and the river bank. This information is then used by the modeller to calculate the WL knowing the distance 

from river bank and thalweg (from available natural section). This procedure introduces high uncertainty in the estimation of 

the WL. 20 

A synthetic WL value is considered instead of the distance between water profile and river bank. Synthetic WL observations are 

then assimilated only in the hydraulic model of the Bacchiglione River. That is because WL observations are easier to be 

integrated within the hydraulic than the hydrological model. In fact, WL observations should be converted into streamflow 

values, for example by means of a rating curve, in order to be assimilated within the hydrological model. It would be very 

difficult to assess the rating curve for a random point, as the information about the geometry of the river cross-sections is not 25 

available within each sub-catchment. Also in this experiment, different random values of engagement are accounted for. 

5.3 Experiment 3: Realistic scenarios of engagements 

In this experiment, all the StPh, StSc and DySc sensors are considered. However, the engagement level is estimated in a more 

realistic and complex way. In fact, in the previous experiments, engagement was considered as random values varying from 0 

to 1. In this experiment, engagement level is considered as a function of the population distribution within the Bacchiglione 30 
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catchment. We proposed 3-steps procedure including: 1) estimation of citizen active area; 2) number of active citizens and; 3) 

citizen engagement curve. 

Step1: Estimate of the citizen “active area”. A 500m buffer around each sub-river reach of 1000m (spatial discretization of the 

MC model) is used to identify the area in which the active population is which might provide CS observations using DySc 

sensors (see Figure 3). It is in fact assumed that citizens located more than 500m from the river are not contributing to the 5 

collection of CS observations. In the case of the StSc sensor, we assume the active area as a circle with 500m radius with the 

sensor at the centre. Land cover maps are used to identify the main urban area from which citizens might provide CS 

observations of WL within the buffer previously estimated (see Figure 3). 

Step 2: Estimate of the number of active citizens. The population density for the different municipalities along the different 

river reaches is used to estimate the number of citizens within the 500m buffer of each sub-river reach in which the urban areas 10 

are located. In the case of agricultural areas, an engagement value equal to zero is considered. In addition, not all citizens 

would be able to provide CS observations because only proportion of them uses mobile phones. According to Statistica (2016), 

the mobile phone penetration in Italy in 2013, the year of the flood event analysed in this study, was about 41%. For this 

reason, in order to estimate the active population, the number of citizens enclosed between the 500m buffer and 1000m of river 

sub-reaches is multiplied by this percentage. Table 4 summarizes the results for the case of the StSc sensors and in Table 5 for 15 

the DySc sensors. In Table 5, the active citizens are divided by the number of sub-reaches (3 for reach 6). For reach 6 (km 3-

4-5), main urban areas are contained in more than one sub-reach. 

 

Table 4. Estimate of the active population which can provide CS observation of WL from StSc sensors 

Sensor Municipality Active area (m2) 
Density 

(inhab/km2) 

Population 

(inhab) 
Active citizens (inhab) 

StSc–1 
Schio 

206828.3 
597 

124 51 

StSc–2 71292.5 43 18 

StSc–3 Malo 100733.8 491.39 50 21 

StSc–4 Villaverla 359743.8 400 144 59 

StSc–5 Caldogno 67310.9 720 49 20 

StSc–6 Costabissara 421777.7 562.53 238 98 

StSc–7 

Vicenza 

86543.9 

319.49 

28 11 

StSc–8 241.450.9 77 32 

StSc–9 415513.4 133 55 

StSc–10 500000.0 160 66 

 20 

Table 5. Estimate of the active population which can provide CS observation of WL from DySc sensors 

Reach Municipality Active area (m2) 
Density 

(inhab/km2) 

Population 

(inhab) 

Active citizens 

(inhab) 

1 (km6-7-8) Marano Vicentino 608985.2 800 487 200 

2 (km2) Schio 39536.4 597 24 10 

3(km8) Villaverla 359743.8 400 144 59 
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3(km11) Caldogno 232474.1 720 167 69 

4(km2) Dueville 30692.3 700.85 22 9 

4(km3) 
Caldogno 

191987.6 
720 

138 57 

4(km5) 292519.8 211 86 

5(km1) 
Costabissara 

351920.7 
562.53 

198 81 

5(km2) 119897.9 67 28 

5(km3-4-5) 

Vicenza 

212452.9 

319.49 

68 28 

6(km1-2) 129815.9 41 17 

6(km3-4-5) 1156964.3 370 152 

Figure 3. Representation of the different Bacchiglione river reaches, land use (Corine Land Cover, 2006), location of the StSc and 

StSc sensors and the 500m buffer 
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Step 3: Estimate of the citizen engagement curve. It is now necessary to estimate the citizen’ level of engagement based on 

the hypothetical number of active citizens. For this reason, six different scenarios of Maximum Citizen Engagement Level 

(MCEL), function of three diverse citizen behaviours (Gharesifard and Wehn, 2016a) and the number of active citizens, are 

proposed. 

In the behaviour 1 (own personal purposes), we assume that citizens collect data mainly for their own personal purposes. In 5 

this case, the MCEL is low for low number of citizens, while it grows following a logistic function, Eq.(15), for increasing 

numbers of people. 

𝑀𝐶𝐸𝐿 =
𝐾⋅𝑃o⋅𝑒𝑟⋅𝑃op

𝐾+𝑃𝑜⋅(𝑒𝑟⋅𝑃op−1)
+ 𝑤          (15) 

Where: 

Pop is the population number; 10 

r is the growth rate, we assumed two different values of r are (0.04 and 0.08); 

K is the carrying capacity, i.e. maximum value of MCEL, assumed equal to 1; 

w is a coefficient related to the additional CS observations are also driven by societal benefits (third citizen behaviours 

explained below); 

Po is the minimum value of MCEL assumed equal to 0.01. 15 

In the behaviour 2 (shared or community interests), citizens might decide to collect and share CS observations driven by a 

feeling of belonging to a community of peers with shared interests and vision. In this case, it is assumed that a maximum value 

of MCEL is achieved for small population values while for increasing population this value is reducing. This behaviour follows 

an inverse logistic function as shown in the graphical representation of Figure 4. 

In the behaviour 3 (social benefits), weather enthusiast individuals, weather networks and related hobby-clubs might provide 20 

additional information driven by moral norms and the wish to create knowledge about the weather, benefiting society at large. 

This is potentially a much smaller subset of the population than those practicing. The added value of this information is 

accounted for in Eq.(15) by means of a coefficient w. Table 6 summarizes the different engagement scenarios, based on 

different values of the coefficient r and w related to citizen behaviours. 

In the next analysis, different model runs (100) are performed considering random values of citizen engagement from 0 to the 25 

MCEL according to the given engagement scenario and population. For example, considering scenario 5 and 60 inhabitants 

enclosed in a given river sub-reach, different model runs are performed for engagement values varying from 0 to 0.6 based on 

Figure 4. In case different CS observations coming at the same time from different sensors, only the most accurate observation, 

i.e. having the lower value of observational noise, is assimilated in the hydrological and/or hydraulic model. 

 30 
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Figure 4. Maximum Citizen Engagement Level (MCEL) scenarios based on number of active citizens. 

 

Table 6. Engagement scenarios based on different citizen behaviours 

Engagement scenario Citizen behaviour 
Logistic function 

Growth rate 
(Factor r in Eq 15) 

Additional CS observations 

(Factor w in Eq. 15)* 

1 Shared or community interests (2) 0.12 0 

2 Own purposes (1) 0.04 0 

3 Own purposes (1) 0.08 0 

4 Own purposes (1)+Social benefits(3) 0.04 0.05 

5 Own purposes (1) )+Social benefits(3) 0.08 0.05 

6 Own purposes (1)+Social benefits(3) 0.04 0.15 

*Increment applies when CS are also driven by societal benefits (third citizen behaviours) 

 5 
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6 Results and discussions 

6.1 Experiment 1 

Experiment 1 deals with the assimilation of streamflow and WL observations from StPh sensors located in the hydrological 

(StPh1) and hydraulic (StPh2 and StPh3) models of the Bacchiglione catchment. As it can be seen from Figure 5, assimilation 

in hydrological model (StPh1) provides the best model improvement, in terms of WL hydrograph at PA (Vicenza), if compared 5 

to the other StPh sensors. In particular, both flood peaks are well represented with assimilation from StPh1 sensor, while, with 

observations from the other two StPh sensors, only the second simulated peak fits the observed values. Assimilation of WL 

observations from StPh2 gives lower improvement than the assimilation from the StPh3 sensor, located close to the PA station. 

However, assimilation from StPh2 insures a better model prediction than StPh3, expressed as NSE values, in case of high lead 

time value. This is due to the location of the StPh2 sensor, upstream StPh3, and the consequent high travel time (around 6 10 

hours) required reaching the target point of PA. As can be seen from Figure 5, travel time from StPh3 to PA is around 2 hours, 

after that, NSE drops to the value achieved in case of no model update. Assimilation in hydrological model provides best model 

improvement also in case of high lead value. As expected, good fit of the simulated hydrographs and high NSE values are 

achieved from the assimilation from all the distributed StPh sensors. In particular, up to 6 hours lead time NSE values are 

affected by the assimilation of streamflow and WL observations from all StPh sensors, while after that, only StPh1 influences 15 

the model performance.  

Figure 5. Hydrograph and Nse with assimilation of Q and WL observations from StPh sensors in hydrological (StPh1) and hydraulic 

models (StPh2 and StPh3) 
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6.2 Experiment 2 

6.2.1 Experiment 2.1 

In Experiment 2.1, only the assimilation of CS observations from StSc sensors is considered. Because CS observations are not 

regular in time and they have variable accuracy, five engagement levels and random uniform values of the coefficient  are 

considered. Several model runs (100) are performed to account for such random behaviour of CS observations. In each run, a 5 

specific  value and arrival moment for each observation is considered and for this run a NSE value is estimated. From the 

sampling of these 100 NSE values, the corresponding mean (NSE) is calculated and shown in Figure 6 in case of assimilation 

from StSc sensors located at the outlet of the sub-catchment (hydrological model) or main river reaches (hydraulic models) 

where the sensors are located. As in case of Experiment 1, different lead time values of up to 24 hours are considered. From 

the results represented in Figure 6, it can be pointed out that assimilation from the hydrological model allows achieving good 10 

model predictions in case of high lead values. On the other hand, for short lead times, assimilation from StSc located in the 

river reaches (hydraulic model) induced high NSE values if the sensors are located close to the PA station (reach 6 in Figure 6).  

Figure 6. (NSE) obtained assimilating CS observations from different sub-catchments (first row) and river reaches (second row) in 

case of different Citizen Engagement Level (CEL) values. 15 
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However, this improvement is not guaranteed for high lead time values due to the short travel time as shown in the previous 

section. In fact, in case of assimilation in upstream reaches (as reach 3), NSE is higher for high lead time values due to the 

system memory and higher travel time. As expected, for increasing engagement values, NSE tends to increase as well. In case 

of engagement equal to 1, CS observations are received continuously at each time step, while for engagement equal to 0.6 the 

CS observations have a 60% random probability to be received and then assimilated into the hydrological and/or hydraulic 5 

models. 

In Figure 7, the (NSE) values obtained assimilating CS observations derived from a combination of StSc sensors located in 

different sub-catchments and river reaches are represented for a lead time of 1 hour. For example, in the contour map located 

in the first row and first column, the NSE values obtained assimilating CS observations from sub-catchments A and river reach 

3 are shown for different engagement values.  10 

Figure 7. (NSE) values obtained assimilating CS observations from a combination of static social (StSc) sensors located in different 

sub-catchments and river reaches with 1-hour lead time in case of different Citizen Engagement Level (CEL) values. 
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Figure 7 shows that NSE values are less affected by the assimilation of CS observations located in the sub-catchment A than in 

the other reaches. In fact, from the first row of Figure 7, it is clear that NSE values change only for different engagement values 

of StSc sensors along reach 3, 4 and 6, while constant NSE values are achieved for varying engagement values of the StSc2 

(sub-catchment A). As previously shown, for a low lead time value, NSE is higher in case of StSc sensors located in reach 6 

rather than in the other river reaches 3 and 4. 5 

In case of assimilation in sub-catchment B, second row of Figure 7, higher NSE values are achieved if compared to the ones of 

the sub-catchment A (first row of the same figure). In particular, NSE values are mainly influenced by different engagement 

levels of CS observations from sub-catchment B than from river reaches 3. However, moving from upstream (reach 3) to 

downstream (reach 6) a switch in the model behaviour can be observed, with an increasing influence of engagement in StSc 

sensors located in the river reach close to the PA station, as previously demonstrated (see contour map of sub-catchment B and 10 

reach 6 in Figure 7). 

Similar results are shown for StSc sensors located in sub-catchment C and different river reaches (third row of Figure 7). 

However, engagement levels in upstream river reaches affect the NSE values more than the engagement of StSc sensors in sub-

catchment C. The same behaviour is manifested considering StSc sensors located from upstream river reach to downstream. 

The third row of Figure 7 can be considered as an average situation between the first (sub-catchment A) and second (sub-15 

catchment B) row of the same figure. 

Figure 8 is analogous to Figure 7, with the only difference that in this case the lead time is equal to 4 hours. Overall, NSE values 

are lower for lead time equal to 4 hours than 1 hour, as expected. As previously discussed, assimilation of CS observations in 

river reaches located upstream the PA station allows to achieve higher N NSE values in case of high lead time than StSc located 

downstream. Model results are dominated by the assimilation in the sub-catchments A, B and C if compared to the engagement 20 

in reach 4 and 6. An intermediate situation is achieved for reach 3. In fact, engagement in reach 3 affects the NSE values more 

than engagement levels in sub-catchment A and C. On the other hand, as in case of Figure 7 for 1-hour lead time, engagements 

in sub-catchment B has higher impact on NSE values than engagement in reach 3.  

In Figure 9, StSc sensors located in different sub-catchments and river reaches are assimilated at the same time considering 

three different lead time values. For lead time of 1 hour, high NSE values are achieved even for small engagement values due 25 

to the high number of StSc sensors considered in the assimilation process (3 in the sub-catchments and 7 and river reaches). 

The higher the lead time value, the lower the model performance and the higher the influence of engagement of the StSc 

sensors located at the sub-catchment outlet over the sensors located at the river reaches.  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



24 

 

Figure 8. (NSE) values obtained assimilating CS observations from a combination of static social (StSc) sensors located in different 

sub-catchments and river reaches with 4-hours lead time in case of different Citizen Engagement Level (CEL) values. 

Figure 9. (NSE) values obtained assimilating CS observations from static social (StSc) sensors located in all sub-catchments and 5 
river reaches in case of 3 different lead time values and Citizen Engagement Level (CEL)  
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6.2.2 Experiment 2.2 

In Experiment 2.2, the effect of assimilating CS observations from DySc sensors is analysed. In this case, the DySc sensors 

are assumed to be located only along the river reach 3, 4 and 6 so only the hydraulic model is used in this experiment. Moreover, 

100 runs are carried out to account for the random accuracy and location of the CS observations. 

Figure 10 shows the (NSE) values assimilating CS observations from DySc sensors at different locations along the three river 5 

reaches. In Figure 10, for each model run, the DySc sensor location is assumed fixed in time. Assimilation from DySc located 

close to the outlet of the Bacchiglione catchment provides the best NSE values for engagement equal to one. As expected, NSE 

values drop for reducing engagement values. Because boundary conditions have a higher error than the model error, NSE tends 

to reduce moving from upstream to downstream along the given river reach. 

10 

Figure 10. Effects of different dynamic social (DySc) sensor locations on the model performances in case of five values of Citizen 

Engagement Level (CEL) 

For both Figure 10 and Figure 11, the sensor location is assumed fixed in time, while both CS observation accuracy and 

engagement level are variable in time for a given river reach or combination of the two. However, in this case, DySc sensors 

are assumed located at all the river reach spatial discretization, i.e. at each 1000m, and not at one specific point as in Figure 15 

10. In most of the cases, (NSE) values converge to an asymptotic threshold for increasing engagement levels. Among the three 

river reaches, 3 and 4 are the ones providing higher NSE values for low engagement levels. This can be related to the high 

number of DySc sensors located in reach 3 (13 sensors) and 4 (8 sensors). On the other hand, reach 6 is better performing in 

case of high engagement levels. However, high (NSE) values are obtained for reach 6 showing a significant sensitivity of 

model performance in case of different engagement levels. Assimilating DySc sensors from different reaches at the same time 20 

induces an overall improvement of (NSE) and (NSE) reduction. Lowest (NSE) values are obtained including DySc from 

reaches 3 and 4. However, this reduction in the (NSE) values does not correspond to a relative high improvement in (NSE). 

In fact, the highest (NSE) are achieved joining sensors from reach 4 and 6, i.e. the closest river reaches to the PA station. 
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Similar results in terms of (NSE) and (NSE) are obtained joining reaches 3 and 6. It is worth noting that in both, Figure 10 

and Figure 11, no bias in the observations from DySc sensors is considered. 

Figure 11. Effects of different level of engagement, in terms of (NSE) and NSE) in the assimilation of CS observations from 

dynamic social (DySc) sensors for different Citizen Engagement Level (CEL) values 5 

Figure 12 represents the (NSE) values obtained considering random locations of DySc sensors along the river reaches 3, 4 and 

6 in 4 different cases of CS observation bias for 1 hour lead time. It is worth noting that reach 6 has five different sub-reaches 

of 1000m. This means that CS observations from only five sensors can be assimilated. However, in Figure 12 a total number 

of 13 DySc sensors is considered. In these experiments, the location of DySc sensors it is randomly generated. It might in fact 

happen that two sensors are located at distances of 2600m and 2900m from the upstream boundary condition. Because of the 10 

small spatial discretization of the hydraulic model (1000m), it is assumed that the difference between the hydrographs 

estimated between two different model discretization is negligible. For this reason, the two CS observations from the DySc 

sensors at 2600m and 2900m are simultaneously assimilated at the third sub-reach. In this way, it is possible to assimilate CS 

observations from a number of DySc sensors higher than the number of model spatial discretization. 
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Figure 12. (NSE) values obtained considering random location of dynamic social (DySc) sensors along the river reaches 3, 4 and 6 

in 4 different cases of CS observation bias for 1hour lead time and Citizen Engagement Level (CEL) values 

As it can be observed, different  values (bias assumptions) affect the model performance in different ways. Underestimation 

of the CS observations (3) induces a reduction of the (NSE) values due to the underestimated forecasted precipitation which 5 

generated a consequent underestimated simulated water level hydrograph at PA in case of no model update. For the same 

reason, overestimation of CS observations (4) causes an increase in model performance especially for a low number of DySc 

sensors and engagement levels. An intermediate behaviour between 3 and 4 is obtained in case of 2. However, the indication 

of the NSE alone is not enough to evaluate the obtained results in case of biased observations. 

For this reason, the estimation of the BI metric, Eq.(14), is used in Figure 13 to provide additional evidence of the results just 10 

obtained. The highest BI values are obtained with DySc located in reach 6 in case of 4, while the lowest are achieved in reach 

3 with 3. Reach 4 insures a compromise between high NSE values and BI close to one.  
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Figure 13. BI values obtained considering random location of dynamic social (DySc) sensors along the river reaches 3, 4 and 6 in 4 

different cases of CS observation bias for 1hour lead time and Citizen Engagement Level (CEL) values 

6.3 Experiment 3 

Experiment 3 focuses on the assimilation of CS observations from a distributed network of heterogeneous StPh, StSc and DySc 5 

sensors. In particular, the engagement level is calculated in a more realistic way accounting for the population living in the 

surrounding 500m of the river. Six different engagement scenarios are introduced based on three citizen behaviours in 

collecting and sharing WL observations. Based on Figure 4, different MCEL values are calculated. 

Figure 14 shows (NSE) values in case of different engagement scenarios and MCEL according to the different type of sensors. 

In fact, a random value of engagement level between 0 and MCEL for the fixed river sub-reach of 1000m is considered for a 10 

given model run. In particular, in Figure 14, smaller values of MCEL such as MCEL1, MCEL2, MCEL3, MCEL4 and MCEL5 

are estimated as to MCEL/5, 2MCEL/5, 3MCEL/5, 4MCEL/5 and MCEL, respectively. It can be noticed that scenario 1 is the 

one providing the best model improvements, followed by scenarios 3 and 5. These results demonstrated that sharing CS 

observations driven by feeling of belonging to a community of friends (behaviour 2) can help improve flood prediction if such 
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a small community is located upstream of a particular target point. The results achieved in case of scenario 3 pointed out that 

a growing participation, of individualist citizens (behaviour 1), towards sharing hydrological observations in big cities can 

help to improve model performance. In particular, the model results can benefit from the additional observations provided by 

weather enthusiasts (behaviour 3). The difference between results obtained with scenarios 2 and 3 shows the influence of the 

growth rate parameter in the calculation of the MCEL curve for the same citizen behaviour. 5 

Figure 14. (NSE) values obtained in case of different Maximum Citizen Engagement Level (MCEL) scenarios comparing 

engagement level from static social (StSc) and dynamic social (DySc) sensors 

Overall, the model results are more sensitive to the change of MCEL values in StSc sensors rather than DySc sensors. However, 

opposite results are shown in scenario 1. It is worth noting that no bias in the CS observations is assumed for DySc sensors.  10 

Low values of (NSE), shown in Figure 15, are achieved in scenario 1, 3 and 5. Including weather-enthusiastic people (scenarios 

4 and 5 if compared to 2 and 3) helps to reduce (NSE), especially for low engagement values. Also in this case, (NSE) values 

are more sensitive to the different engagement levels for the StSc sensors than DySc sensors. In particular, the highest values 

of (NSE) are located for the value of MCEL equal to MCEL1 (for DySc sensors) and MCEL2 (for StSc sensors). 

Analogous results are represented in Figure 16 and Figure 17 where a comparison between (NSE) and (NSE) calculated for 15 

different engagement levels in the hydrological and hydraulic model is performed. Also in this case, good model improvement 

is achieved in scenarios 1, 3 and 5. In particular, (NSE) values are more sensitive to the assimilation of CS observations from 

random points in river reaches than from the outlet of the hydrological models. This effect is visible for engagement levels 

higher than MCEL3, i.e. 3MCEL/5. Figure 16 shows additional evidence on how CS observations provided by weather 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



30 

 

enthusiasts are useful in order to increase (NSE) values passing from scenario 2 to 4 and from scenario 3 to 5. In the same 

way, the beneficial effect of a high growth rate in the citizen engagement can be observed moving from scenario 2 to 3 and 

from scenario 4 to 5. 

The same results can be observed for (NSE), Figure 17. Low (NSE) values are achieved in scenarios 1, 3, and 5, as previously 

shown in Figure 15. In addition, variable values of (NSE) are obtained for different engagement levels along the river reaches, 5 

while no changes in (NSE) are visible for varying engagement levels in the sub-catchments. 

Figure 15. (NSE) values obtained in case of different Maximum Citizen Engagement Level (MCEL) scenarios comparing 

engagement level from static social (StSc) and dynamic social (DySc) sensors 

 10 
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Figure 16. (NSE) values obtained in case of different Maximum Citizen Engagement Level (MCEL) scenarios comparing 

engagement level from hydrological (sub-catchments) and hydraulic models (reaches) 

Figure 17. (NSE) values obtained in case of different Maximum Citizen Engagement Level (MCEL) scenarios comparing 5 
engagement level from hydrological (sub-catchments) and hydraulic models (reaches) 
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7 Summary and conclusions 

This study assessed the modelling usefulness of assimilating crowdsourced (CS) observations as referred in Section 2.2. A 

network of distributed heterogeneous sensors is used to assess the potential effects on model performance measures (Section 

4.4). The assessment is done for the prediction of the May 2013 flood event in the Bacchiglione catchment, so general 

conclusions cannot be derived based on this study only. In particular, water level observations from static physical (StPh), 5 

static social (StSc) and dynamic social (DySc) sensors, installed within the WeSenseIt Project are assimilated within a semi-

distributed hydrological and hydraulic model of the Bacchiglione catchment (Section 3). Because CS observations of water 

level are not available at the time of this study, we used an experimental setup of synthetic observations with intermittent 

arrival time and random accuracy in time and space (Section 4). Three different sets of experiments are carried out. In 

particular, in Experiment 3, six citizen engagement levels scenarios are introduced, in order to provide realistic representation 10 

of the arrival moments of CS observations. Scenarios are based on the combination of population distribution and three 

citizens’ behaviours to collect data: 1) own personal purposes; 2) shared or community interests and 3) societal benefits. We 

summarize the results of these experiments as follows: 

 In Experiment 1, observations from StPh sensors are assimilated: Assimilation in the hydrological model 

provides the best model improvement, in terms of water level hydrograph at PA (Vicenza), if compared to the other 15 

StPh sensors located along the river reach. Assimilation from StPh2 insures a better model prediction for a high lead 

time value than the assimilation from the StPh3 sensor, located close to the PA station. 

 In Experiment 2.1, only the assimilation of CS observations from StSc sensors: In case of high lead values, 

assimilation from the hydrological model allows to achieve good model predictions, while, for short lead times, 

assimilation from StSc sensors located in the river reaches close to the target point of PA improves model 20 

performance. NSE values are more affected by the assimilation of CS observations from StSc sensors located in sub-

catchment B rather than in sub-catchments A and C. For high lead time values, NSE values are dominated by 

engagement levels in the sub-catchment A, B and C if compared to the engagement in reach 4 and 6. Different 

engagement levels in reach 3 affects the NSE values more than engagement levels in sub-catchment A and C.  

 In Experiment 2.2, assimilation of CS observations from DySc sensors randomly distributed along the river 25 

reaches 3, 4 and 6 is analysed: High values of NSE are achieved for DySc sensors located at points close to the 

boundary conditions, while moving the sensor to downstream locations lower NSE values are obtained. This is because 

boundary conditions, i.e. hydrological model output, have higher error than model error. Different scenarios of 

observation biases are considered in this experiment.  

 In Experiment 4, a simplified social model is used to propose realistic scenarios of engagement levels: CS 30 

observations driven by feeling of belonging to a community of peers (behaviour 2) can help to improve flood 

prediction if such small communities are located in the upstream part of the catchment. On the other hand, growing 

participation of individualist citizens, sharing hydrological observations in big cities can help to improve model 
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performance. In particular, the model results can benefit from the additional observations provided by weather 

enthusiasts. 

A part from the important results achieved in this study, a number of limitations have to be addressed: 

 In order to generalize the findings of this research, the proposed methodology has to be applied in additional case 

studies and flood events. In fact, the results of this study might be influenced by the particular features of the 5 

catchment and the location of the urban areas used in Experiment 3. Additional flood events should be considered as 

well.  

 Real CS observations should be used. In this study, CS observational error and accuracy level vary according to the 

sensor type static or dynamic. We assumed observational errors (bias) randomly distributed based on accuracy ranges 

that slightly improve according to the citizens’ expertise level. We further assume that CEL affects only observations 10 

intermittency rather than accuracy. This study is a first step to assess the effects of CS observations in flood model 

predictions. In reality, CS observations can be affected by the combination of CEL, the safety of the location and the 

quality control mechanisms that are in place. For example, mobile applications should include validation procedures 

upon submission. Effective communication and feedback from water authorities to engaged citizens is further 

required to minimize intrinsic low-variable accuracy of crowdsourced observations. 15 

 Finally, no specific spatial sensor trajectory of the citizens moving from one StSc sensor to another or using DySc 

sensors is considered since this would require the introduction of assumptions about citizens’ behaviour in the case 

of a flood event. This component would be extremely important in the case of dynamic sensors but it could not be 

included in this research due to the lack of information about citizen engagement in monitoring river water level in 

the case study. Agent Based Models, which simulate the interactions between autonomous agents, could be 20 

introduced in future studies and integrated into the presented mathematical modelling framework. 

Acknowledgements 

This research was funded in the framework of the European FP7 Project WeSenseIt: Citizen Observatory of Water, grant 

agreement No. 308429. Data used were supplied by the Alto Adriatico Water Authority. 

 25 

 

 

  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



34 

 

References 

ABC: ABC’s crowdsourced flood-mapping initiative, ABCs Crowdsourced Flood-Mapp. Initiat. [online] Available from: 

http://www.abc.net.au/technology/articles/2011/01/13/3112261.htm (Accessed 20 January 2016), 2011. 

Alfonso, L.: Use of hydroinformatics technologies for real time water quality management and operation of distribution 

networks. Case study of Villavicencio, Colombia, M.Sc. Thesis, UNESCO-IHE, Institute for Water Education, Delft, The 5 

Netherlands., 2006. 

Andreadis, K., Das, N., Granger, S., Han, E., Ines, A. and Stampoulis, D.: Assimilating multi-sensor satellite observations for 

initializing hydrologic and agricultural forecasts, vol. 17, p. 7705. [online] Available from: 

http://adsabs.harvard.edu/abs/2015EGUGA..17.7705A (Accessed 18 March 2016), 2015. 

Arnold, C. P. and Dey, C. H.: Observing-Systems Simulation Experiments: Past, Present, and Future, Bull. Am. Meteorol. 10 

Soc., 67(6), 687–695, doi:10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2, 1986. 

Aronica, G., Hankin, B. and Beven, K.: Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood 

propagation model with limited data, Adv. Water Resour., 22(4), 349–365, doi:10.1016/S0309-1708(98)00017-7, 1998. 

Au, J., Bagchi, P., Chen, B., Martinez, R., Dudley, S. A. and Sorger, G. J.: Methodology for public monitoring of total 

coliforms, Escherichia coli and toxicity in waterways by Canadian high school students, J. Environ. Manage., 58(3), 213–15 

230, doi:10.1006/jema.2000.0323, 2000. 

Aubert, D., Loumagne, C. and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–

runoff model, J. Hydrol., 280(1–4), 145–161, doi:10.1016/S0022-1694(03)00229-4, 2003. 

Batson, C. D., Ahmad, N. and Tsang, J.-A.: Four motives for community involvement, J. Soc. Issues, 58(3), 429–445, 

doi:10.1111/1540-4560.00269, 2002. 20 

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., 

Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N. and Frusher, S.: Statistical solutions for error and bias in global 

citizen science datasets, Biol. Conserv., 173, 144–154, doi:10.1016/j.biocon.2013.07.037, 2014. 

Bonney, R., Ballard, H., Jordan, R., McCallie, E., Phillips, T., Shirk, J. and Wilderman, C. C.: Public Participation in Scientific 

Research: Defining the Field and Assessing Its Potential for Informal Science Education. A CAISE Inquiry Group Report., 25 

2009. 

Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J. and Parrish, J. K.: Next Steps for 

Citizen Science, Science, 343(6178), 1436–1437, doi:10.1126/science.1251554, 2014. 

Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M. and Rampini, A.: A linguistic decision making approach to assess the quality 

of volunteer geographic information for citizen science, Inf. Sci., 258, 312–327, doi:10.1016/j.ins.2013.07.013, 2014. 30 

Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De BiÃ¨vre, B., Bhusal, J., Clark, J., Dewulf, 

A., Foggin, M., Hannah, D. M., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., 

Steenhuis, T., Tilahun, S., Van Hecken, G. and Zhumanova, M.: Citizen science in hydrology and water resources: 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



35 

 

opportunities for knowledge generation, ecosystem service management, and sustainable development, Front. Earth Sci., 

2(October), 1–21, doi:10.3389/feart.2014.00026, 2014. 

Castell, N., Kobernus, M., Liu, H.-Y., Schneider, P., Lahoz, W., Berre, A. J. and Noll, J.: Mobile technologies and services 

for environmental monitoring: The Citi-Sense-MOB approach, Urban Clim., 14, Part 3, 370–382, 

doi:10.1016/j.uclim.2014.08.002, 2015. 5 

Célleri, R., Buytaert, W., De Bièvre, B., Tobón, C., Crespo, P., Molina, J. and Feyen, J.: Understanding the hydrology of 

tropical Andean ecosystems through an Andean Network of Basins, DOI: 10.13140/2.1.4187.3608, 2009. 

Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A., Gimmestad, C. and Depue, T.: The Community 

Collaborative Rain, Hail, and Snow Network: Informal Education for Scientists and Citizens, Bull. Am. Meteorol. Soc., 

86(8), 1069–1077, 2005. 10 

Cipra, T. and Romera, R.: Kalman filter with outliers and missing observations, Test, 6(2), 379–395, doi:10.1007/BF02564705, 

1997. 

Ciravegna, F., Huwald, H., Lanfranchi, V. and Wehn de Montalvo, U.: Citizen observatories: the WeSenseIt vision, Florence, 

Italy., 2013 

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J. and Uddstrom, M. J.: Hydrological 15 

data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed 

hydrological model, Adv. Water Resour., 31(10), 1309–1324, doi:10.1016/j.advwatres.2008.06.005, 2008. 

Cohn, J.P.: Citizen science: Can volunteers do real research?, BioScience, 58, 192-197, 2008 

Coleman, D.J, Georgiadou, Y. and Labonte, J.: Volunteered Geographic Information: The Nature and Motivation of Produsers, 

International Journal of Spatial Data Infrastructures Research, 4, 332-358, 2009. 20 

Corine Land Cover: Corine Land Cover 2006 raster data — European Environment Agency, [online] Available from: 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster (Accessed 20 March 2016), 2006. 

Cortes Arevalo, V. J., Charrière, M., Bossi, G., Frigerio, S., Schenato, L., Bogaard, T., Bianchizza, C., Pasuto, A. and 

Sterlacchini, S.: Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain 

catchments, Nat. Hazards Earth Syst. Sci., 14(10), 2681–2698, doi:10.5194/nhess-14-2681-2014, 2014. 25 

Cortes Arevalo, V. J.: Use of volunteers’ information to support proactive inspection of hydraulic structures, PhD Thesis, TU 

Delft, Delft, The Netherlands, 2016. 

Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method (Muskingum Method), J. Hydraul. Res., 7(2), 

205–230, 1969. 

Degrossi, L. C., Do Amaral, G. G., da Vasconcelos, E. S. M., Albuquerque, J. P. and Ueyama, J.: Using Wireless Sensor 30 

Networks in the Sensor Web for Flood Monitoring in Brazil, in Proceedings of the 10th International ISCRAM Conference, 

Baden-Baden, Germany, 2013. 

Errico, R. M. and Privé, N. C.: An estimate of some analysis-error statistics using the Global Modeling and Assimilation Office 

observing-system simulation framework, Q. J. R. Meteorol. Soc., 140(680), 1005–1012, doi:10.1002/qj.2180, 2014. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



36 

 

Errico, R. M., Yang, R., Privé, N. C., Tai, K.-S., Todling, R., Sienkiewicz, M. E. and Guo, J.: Development and validation of 

observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office, Q. J. R. Meteorol. Soc., 

139(674), 1162–1178, doi:10.1002/qj.2027, 2013. 

Ferri, M., Monego, M., Norbiato, D., Baruffi, F., Toffolon, C. and Casarin, R.: La piattaforma previsionale per i bacini 

idrografici del Nord Est Adriatico (I), in Proc.XXXIII Conference of Hydraulics and Hydraulic Engineering, p. 10, Brescia., 5 

2012. 

Flint, C. and Stevenson, J.: Building Community Disaster Preparedness with Volunteers: Community Emergency Response 

Teams in Illinois, Nat. Hazards Rev., 118-124: 2009. 

Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: Social media as an information source for rapid flood inundation 

mapping, Natural Hazards and Earth System Sciences, 15, 2725–2738, 2015. 10 

Georgakakos, A. P., Georgakakos, K. P. and Baltas, E. A.: A state-space model for hydrologic river routing, Water Resour. 

Res., 26(5), 827–838, doi:10.1029/WR026i005p00827, 1990. 

Gharesifard, M. and Wehn, U.: To share or not to share: Drivers and barriers for sharing data via online amateur weather 

networks, J. Hydrol., 535, 181–190, doi:10.1016/j.jhydrol.2016.01.036, 2016a. 

Gharesifard, M. and Wehn, U.: What drives citizens to engage in ICT-enabled citizen science? Case study of online amateur 15 

weather networks, in Ceccaroni , L. and Piera, J. (eds) Analysing the role of citizen science in modern research, IGI Global, 

in press, 2016b. 

Giuliani, M., Castelletti, A., Fedorov, R., and Fraternali, P.: Using crowdsourced web content for informing water systems 

operations in snow-dominated catchments, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-400, in review, 2016. 

Gura, T.: Citizen science: Amateur experts, Nature, 496(7444), 259–261, doi:10.1038/nj7444-259a, 2013. 20 

Hannah, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C., Rees, G., Stahl, K. and Tallaksen, L. M.: Large-

scale river flow archives: importance, current status and future needs, Hydrol. Process., 25(7), 1191–1200, 

doi:10.1002/hyp.7794, 2011. 

Howe, J.: Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business, 1st ed., Crown Publishing Group, 

New York, NY, USA., 2008. 25 

Kalman, R. E.: A new approach to linear filtering and prediction problems, J. Basic Eng., 82(1), 35–45, 

doi:10.1115/1.3662552, 1960. 

Kovitz, J. L. and Christakos, G.: Assimilation of fuzzy data by the BME method, Stoch. Environ. Res. Risk Assess., 18(2), 

79–90, doi:10.1007/s00477-003-0128-6, 2004. 

Kumar, R., Chatterjee, C., Lohani, A. K., Kumar, S. and Singh, R. D.: Sensitivity Analysis of the GIUH based Clark Model 30 

for a Catchment, Water Resour. Manag., 16(4), 263–278, doi:10.1023/A:1021920717410, 2002. 

Lahoz, W. A. and Schneider, P.: Data assimilation: making sense of Earth Observation, Front. Environ. Sci., 2, 

doi:10.3389/fenvs.2014.00016, 2014. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



37 

 

Lahoz, W., Khattatov, B. and Menard, R.: Data Assimilation: Making Sense of Observations, Springer Science & Business 

Media., 2010. 

Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., and Le Coz, J.: Gauging extreme floods on YouTube: application of 

LSPIV to home movies for the post-event determination of stream discharges, Hydrological Processes, 30, 90–105, 2016. 

Lee, H., Seo, D. J. and Koren, V.: Assimilation of streamflow and in situ soil moisture data into operational distributed 5 

hydrologic models: Effects of uncertainties in the data and initial model soil moisture states, Adv. Water Resour., 34(12), 

1597–1615, doi:10.1016/j.advwatres.2011.08.012, 2011. 

Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H., Seo, D. J., Schwanenberg, D., Smith, 

P., Van Dijk, A. I. J. M., Van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O. and Restrepo, P.: Advancing data 

assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. 10 

Sci., 16(10), 3863–3887, doi:10.5194/hess-16-3863-2012, 2012. 

Lopez Lopez, P., Wanders, N., Schellekens, J., Renzullo, L. J., Sutanudjaja, E. H. and Bierkens, M. F. P.: Improved large-

scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations, 

Hydrol. Earth Syst. Sci. Discuss., 12(10), 10559–10601, doi:10.5194/hessd-12-10559-2015, 2015. 

Lowry, C. S. and Fienen, M. N.: CrowdHydrology: Crowdsourcing hydrologic data and engaging citizen scientists, 15 

GroundWater, 51(1), 151–156, doi:10.1111/j.1745-6584.2012.00956.x, 2013. 

Madsen, H. and Skotner, C.: Adaptive state updating in real-time river flow forecasting - A combined filtering and error 

forecasting procedure, J. Hydrol., 308(1–4), 302–312, doi:10.1016/j.jhydrol.2004.10.030, 2005. 

Mazzoleni M., Improving flood prediction assimilating uncertain crowdsourced data into hydrologic and hydraulic models, 

PhD dissertation, Taylor & Francis, 2017. 20 

Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J. and Solomatine, D.: Assimilating uncertain, dynamic and intermittent 

streamflow observations in hydrological models, Adv. Water Resour., 83, 323–339, 2015a. 

Mazzoleni, M., Verlaan, M., Alfonso, L., Monego, M., Norbiato, D., Ferri, M. and Solomatine, D. P.: Can assimilation of 

crowdsourced streamflow observations in hydrological modelling improve flood prediction?, Hydrol. Earth Syst. Sci. 

Discuss., 12(11), 11371–11419, 2015b, accepted. 25 

Mazzoleni, M., Noh, S.J., Lee, H., Liu, Y., Seo D.J. and Solomatine D.P.: Assimilation of real-time streamflow observations 

into a hydrologic routing model: Effect of different model structures, Hydroinformatics Conference, Incheon, Korea, 

2016a. 

Mazzoleni, M., Alfonso, L. and Solomatine, D. P.: Influence of spatial distribution of sensors and observation accuracy on the 

assimilation of distributed streamflow data in hydrological modelling, Hydrol. Sci. J., doi: 30 

10.1080/02626667.2016.1247211, 2016b. 

McCabe, M. F., Wood, E. F., Wójcik, R., Pan, M., Sheffield, J., Gao, H. and Su, H.: Hydrological consistency using multi-

sensor remote sensing data for water and energy cycle studies, Remote Sens. Environ., 112(2), 430–444, 

doi:10.1016/j.rse.2007.03.027, 2008. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



38 

 

McDonnell, J. J. and Beven, K.: Debates—The future of hydrological sciences: A (common) path forward? A call to action 

aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. 

Res., 50(6), 5342–5350, doi:10.1002/2013WR015141, 2014. 

McLaughlin, D.: An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering, Adv. Water 

Resour., 25(8–12), 1275–1286, doi:10.1016/S0309-1708(02)00055-6, 2002. 5 

McLaughlin, D.: Recent developments in hydrologic data assimilation, Rev. Geophys., 33(95), 977–984, 1995. 

Merz, B., Hall, J., Disse, M., and Schumann, A.: Fluvial flood risk management in a changing world, Nat. Hazards Earth Syst. 

Sci, 10, 509–527, 2010. 

Michelsen, N., Dirks, H., Schulz, S., Kempe, S., Al-Saud, M., and Schüth, C.: YouTube as a crowd-generated water level 

archive, Science of The Total Environment, 568, 189–195, 2016 10 

Montzka, C., Pauwels, V., Franssen, H.-J., Han, X. and Vereecken, H.: Multivariate and Multiscale Data Assimilation in 

Terrestrial Systems: A Review, Sensors, 12(12), 16291–16333, doi:10.3390/s121216291, 2012. 

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, J. 

Hydrol., 10(3), 282–290, doi:10.1016/0022-1694(70)90255-6, 1970. 

Pan, M., Wood, E. F., Wójcik, R. and McCabe, M. F.: Estimation of regional terrestrial water cycle using multi-sensor remote 15 

sensing observations and data assimilation, Remote Sens. Environ., 112(4), 1282–1294, doi:10.1016/j.rse.2007.02.039, 

2008. 

Pipunic, R. C., Walker, J. P., Western, A. W. and Trudinger, C. M.: Assimilation of multiple data types for improved heat flux 

prediction: A one-dimensional field study, Remote Sens. Environ., 136, 315–329, doi:10.1016/j.rse.2013.05.015, 2013. 

Ponce, V. M. and Changanti, P. V.: Variable-parameter Muskingum-Cunge method revisited, J. Hydrol., 162(3–4), 433–439, 20 

doi:10.1016/0022-1694(94)90241-0, 1994. 

Ponce, V. M. and Lugo, A.: Modeling Looped Ratings in Muskingum-Cunge Routing, J. Hydrol. Eng., 6(2), 119–124, 

doi:10.1061/(ASCE)1084-0699(2001)6:2(119), 2001. 

Rakovec, O., Weerts, A. H., Hazenberg, P., F. Torfs, P. J. J. and Uijlenhoet, R.: State updating of a distributed hydrological 

model with ensemble kalman Filtering: Effects of updating frequency and observation network density on forecast 25 

accuracy, Hydrol. Earth Syst. Sci., 16(9), 3435–3449, doi:10.5194/hess-16-3435-2012, 2012. 

Rasmussen, J., Madsen, H., Jensen, K. H. and Refsgaard, J. C.: Data assimilation in integrated hydrological modeling using 

ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance, Hydrol. Earth 

Syst. Sci., 19(7), 2999–3013, doi:10.5194/hess-19-2999-2015, 2015. 

Refsgaard, J. C.: Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting, Nord. Hydrol., 30 

28(2), 65–84, doi:10.2166/nh.1997.005, 1997. 

Robinson, A. R., Lermusiaux, P. F. J. and Sloan III, N. Q.: Data assimilation, The sea, 10, 541–594, 1998. 

Rossiter, D.G., Liu, J., Carlisle, S. and Zhu, A.X.: Can citizen science assist digital soil mapping?, Geoderma, 259–260, 71-

80, 2015 ISSN 0016-7061, http://dx.doi.org/10.1016/j.geoderma.2015.05.006, 2015 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



39 

 

Rotman, D., Preece, J., Hammock, J., Procita, K., Hansen, D., Parr, C., Lewis, D. and Jacobs, D.: Dynamic Changes in 

Motivation in Collaborative Citizen-science Projects, Proceedings of the ACM 2012 Conference on Computer Supported 

Cooperative Work, Seattle, Washington, USA, 217-226, 2012 

Roy, H. E., Pocock, M. J. O., Preston, C. D., Roy, D. B. and Savage, J.: Understanding Citizen Science and Environmental 

Monitoring, Final Report of UK Environmental Observation Framework., 2012. 5 

Schneider, P., Castell, N., Vogt, M., Lahoz, W. and Bartonova, A.: Making sense of crowdsourced observations: Data fusion 

techniques for real-time mapping of urban air quality, vol. 17, p. 3503. [online] Available from: 

http://adsabs.harvard.edu/abs/2015EGUGA..17.3503S, 2015. 

Seibert, J. and Beven, K. J.: Gauging the ungauged basin : how many discharge measurements are needed?, Hydrol. Earth 

Syst. Sci., 13, 883–892, doi:10.5194/hessd-6-2275-2009, 2009. 10 

Seibert, J. and McDonnell, J. J.: On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data 

for multicriteria model calibration, Water Resour. Res., 38(11), 1241, doi:10.1029/2001WR000978, 2002. 

Seo, D. ., Kerke, B., Zink, M., Fang, N., Gao, J. and Yu, X.: iSPUW: A Vision for Integrated Sensing and Prediction of Urban 

Water for Sustainable Cities., 2014. 

Shanley, L., Burns, R., Bastian, Z. and Robson, E.: Tweeting up a storm: the promise and perils of crisis mapping, Available 15 

SSRN 2464599, 2013. 

Sheffield, J., Goteti, G. and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological 

Forcings for Land Surface Modeling, J. Clim., 19(13), 3088–3111, doi:10.1175/JCLI3790.1, 2006. 

Smith, L., Liang, Q., James, P., and Lin, W.: Assessing the utility of social media as a data source for flood risk management 

using a real-time modelling framework, Journal of Flood Risk Management, 2015. 20 

Statistica: Smartphone penetration in Italy (share of mobile users), Statista [online] Available from: 

http://www.statista.com/statistics/257053/smartphone-user-penetration-in-italy/ (Accessed 20 March 2016), 2016. 

Szilagyi, J. and Szollosi-Nagy, A.: Recursive Streamflow Forecasting: A State Space Approach - CRC Press Book., 2010. 

Todini, E.: A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach, Hydrol. Earth 

Syst. Sci., 11, 1645–1659, 2007. 25 

Tulloch, A. I. T. and Szabo, J. K.: A behavioural ecology approach to understand volunteer surveying for citizen science 

datasets, Emu, 112(4), 313, doi:10.1071/MU12009, 2012. 

Vaché, K. B., McDonnell, J. J. and Bolte, J.: On the use of multiple criteria for a posteriori model rejection: Soft data to 

characterize model performance, Geophys. Res. Lett., 31(21), L21504, doi:10.1029/2004GL021577, 2004. 

Vandecasteele, A. and Devillers, R.: Improving volunteered geographic data quality using semantic similarity measurements, 30 

ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 1(1), 143–148, 2013. 

Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman filtering for state updating with hydrological 

conceptual rainfall-runoff models, Water Resour. Res., 42(9), 1–17, doi:10.1029/2005WR004093, 2006. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



40 

 

Werner, M., Reggiani, P., de Roo, A., Bates, P., and Sprokkereef, S.: Flood forecasting and warning at the river basin and at 

the European scale, Natural Hazards, 36, 25-42, 2005. 

WMO: Simulated real-time intercomparison of hydrological models, World Meteorological Organization., 1992. 

Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y. and Singh, S.: Exploiting heterogeneity in sensor networks, 

in Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications 5 

Societies, vol. 2, 878–890, 2005. 

 

 

 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-59, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 6 February 2017
c© Author(s) 2017. CC-BY 3.0 License.


