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Abstract 

To improve hydrological predictions, real time measurements derived by traditional physical sensors are integrated within 15 

mathematic models. Recently, traditional sensors are being complemented with crowdsourced data (social sensors). Despite 

measurements from social sensors can be low-cost and more spatially distributed other factors like spatial variability of citizen 

involvement, decreasing involvement over time, variable observations accuracy and feasibility for model assimilation play an 

important role for accurate flood predictions. Just few studies have investigated the benefit of assimilating uncertain 

crowdsourced data in hydrological and hydraulic model. In this study, we investigate the usefulness of assimilating 20 

crowdsourced observations from a heterogeneous network of static-physical, static-social and dynamic-social sensors. We 

assess improvements in the model prediction performances for different spatial-temporal scenarios of citizens’ involvement 

levels. To that end, we simulate an extreme flood event occurred in the Bacchiglione catchment (Italy) in May 2013 using a 

semi-distributed hydrological model with the station at Ponte degli Angeli (Vicenza) as prediction/validation point. A 

conceptual hydrological model is implemented by the Alto Adriatico Water Authority and it is used to estimate runoff from 25 

the different sub-catchments, while a hydraulic model is implemented to propagate the flow along the river reach. In both 

models, a Kalman filter is implemented to assimilate the crowdsourced observations. Synthetic crowdsourced observations are 

generated for either static social or dynamic social sensors because these measures were not available at the time of this study. 

We consider two sets of experiments: i) assuming random probability of receiving crowdsourced observations and ii) using 

theoretical scenarios of citizen motivations, and consequent involvement levels, based on population distribution. The results 30 

demonstrate the usefulness of integrating crowdsourced observations. First, the assimilation of crowdsourced observations 
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located at upstream points of the Bacchiglione catchment ensure high model performance for high lead time values, whereas 

observations at the outlet of the catchments provide good results for short lead times. Second, biased and inaccurate 

crowdsourced observations can significantly affect model results. Third, the theoretical scenario of citizens motivated by their 

feeling of belonging to a “community of friends” has the best effect in the model performance. However, flood prediction only 

improved when such small communities are located in the upstream portion of the Bacchiglione catchment. Finally, decreasing 5 

involvement over time leads to a reduction of the model performance and consequently inaccurate flood forecasts. 

1 Introduction 

A challenge for water management is the reduction of risk related to extreme events such as floods. Flood management needs 

timely provision of early warning information, for example, to operate control structures and to regulate water levels. Reliable 

and accurate streamflow simulation and water level prediction by means of hydrological and hydraulic models are therefore 10 

of uttermost importance. However, model performance and related predictions are inherently uncertain due to the lack of 

reliable and sufficient observational data, lack of understanding of the natural hydrological and hydraulic processes, and 

limitations and assumptions of the modelling system (Merz et al., 2010, p 514). 

Different attempts have been made to improve the accuracy of flood model predictions for operational early warning. In 

particular, data assimilation techniques have been extensively used (Liu et al., 2012). Data assimilation is a common method 15 

for updating model input, parameters, states or outputs. It is used to integrate real-time observations of hydrological variables 

(WMO, 1992; Refsgaard, 1997) while accounting for the uncertainties in both model and observed data (McLaughlin, 1995; 

Robinson et al., 1998; McLaughlin, 2002; Madsen and Skotner, 2005; Lahoz et al., 2010; Liu et al., 2012). In operational early 

warning systems, only observed data derived by static-physical (StPh) sensors are used, as described in Liu et al. (2012). 

However, recent studies have demonstrated that water system models could improve their performances with the assimilation 20 

of observations from multiple sources such as in-situ and remote sensors, and other hydrologic variables such as soil moisture 

and streamflow (Aubert et al., 2003; McCabe et al., 2008; Pan et al., 2008; Lee et al., 2011; Montzka et al., 2012; Pipunic et 

al., 2013; Andreadis et al., 2015; Lopez Lopez et al., 2015; Rasmussen et al., 2015). Those studies have also shown that data 

assimilation applications require specific, frequent and high quality measurements. 

In parallel, the availability of recent technological advances to the public has strengthen the idea of involving people in data 25 

collection. This idea is not limited to the data collection of flood or real-time information and various terms have been used in 

scientific literature (Wehn and Evers, 2015). In Natural Science this idea is known as ‘citizen science’ (Silvertown, 2009); in 

Geography, ‘volunteer geographic information, VGI’ (Goodchild, 2007) and ‘crowdsourcing geospatial data’ (Heipke, 2010), 

and in Computer Science ‘people-centric sensing’ (Campbell et al., 2006) and ‘participatory sensing’ (Höller et al., 2014). 

Other terms explicitly emphasise the involvement of the public, for instance the ‘value of information and public participation’ 30 

(Alfonso, 2010), ‘public computing’ (Anderson, 2003) and ‘community data collection’ (Aanensen et al., 2000).  
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Crowdsourcing particularly refers to the involvement of a large, often undefined and diverse group of people in data collection 

and/or data analysis and can be mediated via information technologies and online tools or platforms (Xintong, Hongzhi, Song, 

& Hong, 2014). In this study, we refer to crowdsourced (CS) citizen based-observations to as the involvement of citizens in 

general (either experts or not) in collecting water level observations at a particular location via a smartphone app upon request 

of the water authorities. 5 

Some previous studies have attempted to use CS citizens-based observations in water system models since a more spatially 

distributed coverage can be achieved. (Alfonso 2010; Fava et al. 2014; Smith et al. 2015; Fohringer et al., 2015; Gaitan et al., 

2016; Giuliani et al., 2016; de Vos et al., 2017; Rosser et al., 2017; Schneider et al., 2017; Starkey et al., 2017; Yu et al., 2017). 

In Fava et al. (2014) a methodology for flood forecasting integrating VGI and wireless sensor networks is proposed. Smith et 

al. (2015) and Fohringer et al. (2015) proposed frameworks for real-time flood monitoring using information retrieved from 10 

social media. In both studies, the observation filtering process was one of the main challenges. Rosser et al. (2017) proposed 

a data fusion method to rapidly estimate flood inundation extent using observations from remote sensing, social media and 

high resolution terrain mapping. Yu et al. (2017) validated the results of an urban hydro-inundation model (surface water 

related flooding) with a crowdsourced dataset of flood incidents. In a similar fashion, Starkey et al. (2017) demonstrated the 

value of community-based observations for modelling and understanding the catchment response. In particular, they have 15 

showed the significant improvement in the spatial and temporal characterisation of the catchment response by integrating local 

network of community-based observations together with traditional network rather than using traditional observations only. 

Recently, Herman Assumpção et al. (2017) provided a detailed review of the studies in which citizen observations are used 

for flood modelling applications. 

However, none of the previous studies assessed the usefulness of CS observations in improving flood predictions, nor taken 20 

into account the variable distribution, intermittency and, potentially, lower-quality of citizen-based data (Shanley et al., 2013; 

Buytaert et al., 2014; Lahoz and Schneider, 2017). First attempts are reported in Mazzoleni et al. (2015; 2017a and 2017b) and 

Mazzoleni (2017). In those studies, the authors investigated the effects on flood prediction in assimilating real-time (synthetic) 

CS observations in hydrological models. However, in the former studies the authors did not investigate the effects of 

assimilating (synthetic) CS observations in hydraulic models. Furthermore, the authors did not consider (theoretical) scenarios 25 

of citizen involvement, nor the simultaneous assimilation of CS observations from static and dynamic social sensors. For this 

reason, the main objective of this study is to assess the usefulness of assimilating CS observations in model-based predictions 

of flood events. We analyse a flood event which occurred in May 2013 in the Bacchiglione catchment (Italy). Static-physical 

(StPh), static-social (StSc) and dynamic-social (DySc) sensors are considered in this study. Synthetic CS observations of water 

level are assimilated in a cascade of hydrological and hydraulic models since real CS measurement are not yet available for 30 

this particular study site. Two sets of experiments of theoretical scenarios are analysed. Citizen involvement level (CIL) is 

further defined as the probability of receiving a CS observation based on the citizen’s own interest or intention in collecting 

water levels. We assume that CIL mainly limit the intermittency or timely availability of observations. The achievement of the 
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paper’s objective is a step forward in understanding the effect of public involvement on the possible improvement of 

hydrological and hydraulic models, with methods that can be replicated in other fields. 

2 Case study 

2.1 The Bacchiglione catchment  

The Bacchiglione catchment (North East Italy, see Figure 1) is one of the case studies in which WeSenseIt (http://wesenseit.eu,/ 5 

WSI) Citizen Observatory of Water Project developed and tested innovative static and low-cost mobile sensors (Ciravegna et 

al., 2013). The main goal of the WSI project was to allow active citizens to support the work of water authorities by providing 

CS observations. Innovative static sensors were strategically integrated into the existing monitoring networks for collecting 

physical and CS data. Low-cost mobile sensors were developed such as a mobile phone app, which uses a Quick Response 

(QR) code for geographical referencing and allows to send among others, flood reports and water level (WL) observations. In 10 

addition, WSI project set up a pilot platform in which CS observations collected with this app can be sent. However, this pilot 

is not yet operational and CS observations are not yet available (see details of the testing of this pilot in Section 2.3). In this 

research, only WL data is assimilated. 

This research focuses on the upper part of the Bacchiglione catchment which flows into the Adriatic Sea at the South of the 

Venetian Lagoon. The case study has an overall extent of about 450km2 with a river length of approximately 50km. The three 15 

main tributaries are the Timonchio River on the East side and Leogra and Orolo Rivers on the West side. The main urban areas 

are located close to the outlet section of the case study area, the city of Vicenza. The Alto Adriatico Water Authority (AAWA) 

is currently using an operational semi-distributed hydrological and hydraulic model for early warning (Ferri et al., 2012, 

Mazzoleni et al., 2017a). Forecasted and measured precipitation time series are available for a flood event that occurred in 

May 2013. The forecasted precipitation time series are provided by the Cosmo-LAMI model, a regional model that provides 20 

numerical prediction over the national territory at 7 km resolution and three-day time interval. Currently, AAWA is performing 

quality control on the forecasted data before using them in the Bacchiglione flood early warning system. The measured 

precipitations are supplied and validated by Veneto Regional Agency of Environmental Prevention and Protection (ARPAV). 

The event of May 2013 is considered to be significant due to its high intensity, which resulted in several traffic disruptions at 

various locations upstream Vicenza. In this study, we assess the usefulness of assimilating CS WL (synthetic) observations in 25 

the hydrological and hydraulic models to improve the model performance and consequently flood prediction. 

2.2 Sensors classification 

Despites that CS observations were not operational nor available in the case study, we analysed the characteristics of each 

sensor to generate the synthetic WL observations that we assimilated for the flood event of 2013. We considered three types of 

sensors to measure WL, static physical (StPh), static social (StSc) and dynamic social sensors (DySc) sensors. Currently, only 30 

http://wesenseit.eu,/
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StPh sensors are used by AAWA to provide daily flood forecast in the Bacchiglione catchment. This paper sections aims at 

describing the characteristics of these sensors in terms of spatial coverage and accuracies. 

The StPh sensors are traditional physical sensors such as water level ultrasonic sensors. StPh have a fixed location, and a 

regular measurement interval. Data from StPh sensors are validated by ARPAV. Observational error depends on how well 

documented is the cross section where the StPh sensor is located, random and bias errors due to sensor characteristics. Despite 5 

of the potential observational error, we assume high accuracy level as the observation is automatically generated by the sensor 

therefore not affected by the variability of CS data.  

StSc have a higher spatial distribution along the river reach but are characterized by intermittent CS observations. The StSc 

sensors are staff gauges at a safe, strategic and accessible locations along the river reaches. Citizens can report observations 

using these static sensors to estimate WL values. According to the data collection tool, CS observations can come in a variety 10 

of formats either quantitative or qualitative, which is often one of the biggest challenges when involving citizens. Automatic 

mechanisms for data processing can be implemented. For example, whenever photos are collected can be automatically 

analysed using image recognition methods as proposed by van Overloop and Vierstra (2015) and Le Boursicaud et al. (2015). 

In this case a reference gauge must be available. The WSI mobile phone app will be used to send quantitative measurements 

(water level) observed at a specific staff gauge. Photos and videos are not supported by the WSI app. The geographical 15 

referencing will be provided by means of QR codes together with associated date/time. The WSI mobile app is equipped with 

a filter that automatically discards the water level measurements that fall outside the associated range to the staff gauge. 

DySc sensors are characterized by a not fixed locations. Water level observations at a particular location via a smartphone 

application can be requested/discouraged by water authorities according to the accessibility of the location. A possible method 

for measuring flow using DySc sensors is described in Lüthi et al. (2014). The authors proposed an approach based on particle 20 

image velocimetry to estimate, with acceptable accuracy water level, surface velocity and runoff in open channels. However, 

this approach requires a priori knowledge of the channel geometry at the location of the measurement, which is one of the 

main sources of uncertainty. For this reason, in this paper it is assumed that DySc sensors have lower accuracy than StSc 

sensors. Another example of DySc sensors is reported in Michelsen et al. (2016) where water level time series are derived 

from the analysis of YouTube videos. It is worth noting that the WSI mobile app does not allow for automatic retrieve of flow 25 

information from photos and video as proposed in Lüthi et al. (2014). 

As reported in Table 1, WL observations have different characteristics of temporal availability and accuracy based on the 

adopted sensor and changes in the cross section. Regardless of the type of social sensor either experts or amateur, we 

acknowledge that the data accuracy and intermittency of CS observations can be affected by various factors. Source of errors 

in observations include but are not limited to (Cortes Arevalo, 2016; Kerle & Hoffman, 2013; Le Coz et al., 2016): i) the 30 

expertise level (training and experience is still required to read a gauge, take a picture and use the mobile applications 

developed), ii) type and format of CS observation based on sensor classification and data collection procedure (WL 

measurement and photo with reference to a staff gauge vs a photo with reference to a neighbouring object) iii) the specific 

conditions at the reporting location (accessibility, visibility and environmental conditions). Intermittency (temporal 



6 

 

availability) of the CS observations is directly related to CIL, i.e. the probability of receiving a CS observation. In addition, 

CS observations imply the filtering and integration of a variety of formats and information types, which requires to develop 

suitable tools for data collection and processing (Kosmala, Wiggins, Swanson, & Simmons, 2016). 

 

Table 1. General characteristics of type of observations based on sensor classification 5 

Sensor 

type 

Type of 

observation 
Location 

Time of 

availability 
Observational error 

Example 

reference 

Assumed 

accuracy 

level 

Static 

Physical 

(StPh) 

Water level 

time series 

Fixed, 

generally in 

key inlet or 

outlets 

Each model 

time step 

- Missing data due to 

for example 

unexpected 

damage or lack of 

maintenance 

- Observational 

noise due to flow 

conditions and 

water level below 

or above the 

optimum range. 

- Missing or not 

representative 

rating curve due to 

changes in the 

cross section. 

Irrigation 

Training and 

Research 

Center, 1998, p. 

58 

High 

Static 

Social 

(StSc) 

Water level 

and photo of 

the river 

gauge. 

Fixed but 

distributed 

at strategic 

points along 

the river 

reach 

Intermittent, 

according to 

CIL 

- Same as StPh 

- Inaccurate reading 

of the river gauge 

- Inaccurate photo 

limiting validation 

- Unknown expertise 

level of the citizen 

reporting  
Le Boursicaud, 

Pénard, Hauet, 

Thollet, & Le 

Coz, 2016, pp. 

95–99; Le Coz 

et al., 2016, p. 

770 

Medium 

Dynamic 

Social 

(DySc) 

Photo and 

water level  

estimation by 

means of 

mobile app  

Variable 

Intermittent, 

according to 

CIL and 

accessibility 

level to the 

river reach 

- Same as StPh 

- Same as StSc but 

inaccurate 

estimation of the 

flow using mobile 

app 

- Unknown 

(irregular) cross 

section and river 

bank conditions at 

the reported 

location 

Low 
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2.3 Citizen involvement in the Bacchiglione catchment 

Gharesifard, et al. (2017) categorized participants into netizens, citizen scientists and volunteers to accordingly distinguish: i) 

unawareness about their implicit involvement and contribution to monitoring networks (netizens); ii) explicit and intentional 

involvement in data provision (citizen scientists) and iii) the involvement of individuals or groups that are systematically 

targeted and recruited to participate in data provision with pre-defined goal(s) (volunteers).  5 

In the framework of the WeSenseIt project, an exercise was carried out with volunteers who were providing water level 

observations via the smartphone app, from a limited number of locations to test the pilot set up. However, due to the limited 

number of participants, duration and testing goal of the exercise, no formal assessment of citizen involvement could be 

undertaken. For this reason, we propose theoretical involvement scenarios to represent the hypothetical situations whenever 

citizens are fully or partially involved in the Bacchiglione catchment. In the numerical simulations performed in this study, we 10 

did not make distinction between citizen expertise (expert or amateur) and involvement type (citizen scientists or volunteers). 

We do not refer to the engagement process (how to get citizens involved) but rather to the involvement level (probability of 

receiving a CS observation based on the citizen’s own interest or intention in collecting water levels). In fact, motivations and 

involvement levels are the only variables that differentiate the citizens, as described in the next sections 

3 Modelling tools 15 

3.1 Semi-distributed hydrological model 

In order to implement the semi-distributed model, the Bacchiglione catchment is divided into different sub-catchments and the 

so-called inter-catchments which streamflow contributions run into the main river channel up to the urbanized area of Vicenza. 

In the schematization of the Bacchiglione catchment (see Figure 1), the location of the StPh and StSc sensors corresponds to 

the outlet section of the three main sub-basins, Timonchio, Leogra and Orolo. The remaining sub-basins are considered as 20 

inter-catchments. The rainfall-runoff processes within each sub-catchment and inter-catchment are represented by the 

conceptual hydrological model developed by AAWA. In the case of the main river channel, a hydraulic model is used to 

propagate the flow down to the gauge station of PA in Vicenza. The river reach is divided into several reaches according to 

the location of the internal boundary conditions. We use hydrological outputs as upstream (from sub-catchments) and internal 

boundary conditions (from inter-catchments). Figure 1 shows that the output of the hydrological model (red arrows) are 25 

boundary conditions for the proposed hydraulic model.  
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Figure 1. Spatial distribution of the sub--catchments, river reaches, and StPh and StSc sensors implemented in the catchment by 

AAWA. The prediction point of Ponte degli Angeli (PA) corresponds to the StPh-3 sensor. 

3.1.1 Hydrological modelling 

The hydrological model used in this study is a part of the early warning system implemented and used by AAWA. We briefly 5 

relate to the model equation here as a detailed description is available in Ferri et al. (2012) and Mazzoleni et al. (2017a). 

Precipitation time series is the only input. The water balance is applied to a generic control volume of active soil, at the sub-

basin scale, to mathematically represent the processes related to runoff generation processes such as surface, sub-surface and 

deep flow.  

𝑆W,𝑡+𝑑𝑡 = 𝑆W,𝑡 + 𝑃𝑡 − 𝑅sur,t − 𝑅sub,t − 𝐿𝑡 − 𝐸𝑇,𝑡        (1) 10 

where SW,t is the water content at time t, P is the precipitation component, ET the evapotranspiration, Rsur, the surface runoff, 

Rsub the subsurface runoff and L is the deep percolation. Temperature is used for the estimation of the real evapotranspiration, 

which is calculated using the formulation of Hargreaves and Samani (1985). The routed contributes of the surface flow Qsur, 

sub-surface flow Qsub and deep flow Qg are derived from Rsur, Rsub and L by means of the conceptual framework of the linear 

reservoir model. 15 

Calibration of the hydrological model parameters, including the parameters of the linear reservoir model for Qsub and Qg, is 

performed by AAWA minimizing the error between the observed and simulated WL values at Ponte degli Angeli (PA) for a 

period between 2000 and 2010 (Ferri et al., 2012). In order to apply the data assimilation approach and properly integrate 

crowdsourced WL observations within the mathematical model, it is necessary to represent the previous dynamic system in a 

state-space form, i.e.: 20 
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𝐱𝑡 = 𝑀(𝐱𝑡−1, 𝜗, 𝑰𝑡) + 𝑤𝑡            (2) 

𝐳𝑡 = 𝐻(𝐱𝑡 , 𝜗) + 𝑣𝑡           (3) 

where, xt and xt-1 are the model state vectors respectively at time t and t-1; M is the model operator, It is the vector of the model 

inputs; H is the operator which maps the model states into the model output zt. The terms wt and vt indicate respectively the 

system and measurements errors which are assumed normally distributed with zero mean and covariance S and R. In case of 5 

the hydrological model used in this study, the states are identified in xS, xsur, xsub and xL, i.e. the states to SW and to the linear 

reservoir generating Qsur, Qsub and Qg. In Mazzoleni et al. (2017a), sensitivity analysis is carried out by perturbing the model 

states ±20% around the true state every time step in order to find out to which model states the output is more sensitive. The 

study shows that model output is most sensitive to xsur. For this reason, we decide to update only the model state xsur, which is 

related to the linear reservoir, so the state-space form can be expressed as follows: 10 

𝐱𝑡 = 𝚽𝐱𝑡−1 + 𝚪𝐼𝑡 + 𝑤𝑡           (4) 

𝐳𝑡 = 𝐇𝐱𝑡 + 𝑣𝑡            (5) 

where x is the vector of the model states (stored water volume in m3),  is the state-transition matrix,  is the input-transition 

matrix, H is the output matrix. In this case, the model output z is expressed as streamflow Q at the outlet section of the sub-

catchment or inter-catchment. The detailed description of data assimilation in linear systems and the ways the matrices , 15 

and H are built can be found, e.g., in Szilagyi and Szollosi-Nagi (2010). 

3.1.2. Hydraulic modelling 

Flood propagation along the main river channel is represented using a Muskingum-Cunge (MC) model (Cunge, 1969; Ponce 

and Chaganti, 1994; Ponce and Lugo, 2001; Todini, 2007); it is based on the mass balance equation applied over a prismatic 

section delimited by the upstream and downstream river section. As described in Cunge (1969) and Todini (2007), a four point 20 

time centered scheme can be applied to numerically solve the kinematic routing equation, and to derive a first order 

approximation of a kinematic wave model and express the MC model as: 

𝑄𝑡+1
𝑗+1

= 𝐶1𝑄𝑡
𝑗

+ 𝐶2𝑄𝑡
𝑗+1

+ 𝐶3𝑄𝑡+1
𝑗

          (6) 

where t and j are the temporal and spatial discretization and Q is the streamflow; C1, C2 and C3 are the routing coefficients, 

which are function of the geometry of the cross-sections and wave celerity, calculated at each time step t following the approach 25 

proposed by Todini (2007) and reported in detail by Mazzoleni (2017). It is worth noting that in this formulation of MC model, 

the only model parameter is the Manning coefficient of the river channel considered in the estimation of the wave celerity. In 

addition, MC model is implemented, independently, along each one of the six river reaches represented in Figure 1. 

As in the case of a hydrological model, to apply the data assimilation method, the state-space form of the hydraulic model is 

used as well. The state and observation process equations are similar to the ones described in Eq.(4) and (5). In case of the 30 
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hydraulic model, the model state vector is defined as xt=(Qt
1, Qt

2,..Qt
j,..,Qt

N), where Q is the discharge along the river in m3/s, 

while the input matrix is  It=(Qt
1, Qt+1

1) being Q1 the discharge at the upstream boundary condition. The state-transition  and 

input-transition  matrixes are calculated following the approach derived by Georgakakos et al. (1990). In the observation 

process of the hydraulic model, z represents the flow along the river channel, while H is output matrix equal to [0 0 … 1]T in 

case of flow measurements at the outlet section of the river reach. In this study, due to the varying position of social sensors, 5 

the matrix H changes accordingly at each time step. The Manning equation is used to estimate the WL in the river channel 

knowing the value of flow at each spatial discretization step, considered 1000m in order to guarantee the numerical stability 

of the MC model scheme.  

3.2 Data assimilation 

The Kalman Filter (KF, Kalman 1960) is a mathematical tool widely used to integrate real-time noisy observations, in an 10 

efficient computational (recursive) algorithm, within a dynamic linear system resulting in the best state estimate with minimum 

variance of the model error. In Liu et al. (2012), a detailed review of KF and other type of data assimilation approaches is 

reported. The first step in the KF procedure is the forecast of the model state vector, following Eq.(4), and the covariance 

matrix is expressed as: 

𝐏𝑡
− = 𝚽𝐏𝑡−1

+ 𝚽𝑻 + 𝐒𝑡           (7) 15 

where the superscript – indicates the forecasted model error covariance matrix P and the superscript + indicates the updated 

state value coming from the previous time step. When an observation zo becomes available, the second (update) step of the KF 

is executed, in which the forecasted model states x and covariance P are updated as: 

𝐱𝑡
+ = 𝐱𝑡

− + 𝐊𝑡(𝑧𝑡
𝑜 − 𝐇𝑡𝑧𝑡

𝑜)          (8) 

𝐏𝑡
+ = (𝐈 − 𝐊𝑡𝐇𝒕)𝐏𝑡

−           (9) 20 

𝐊𝑡 = 𝐏𝑡
−𝐇𝑡

𝑇(𝐇𝑡𝐏𝑡
−𝐇𝑡

𝑇 + 𝐑𝑡)−𝟏          (10) 

where K is the Kalman gain matrix (the higher its values, the more confidence KF gives to the observation zo and vice versa). 

Due to the fact that along the river channel only WL observations are provided, the manning equation is used to express the 

vector z0 as streamflow based on the river cross-section geometry. 

In this study, CS observations are considered. As already mentioned, such observations can be irregular both in time and in 25 

space. In order to consider the intermittent nature in time within the KF, the approach proposed by Cipra and Romera (1997) 

and Mazzoleni et al. (2015) is adopted. According to this approach, when no observation is available, the model state vector x 

is estimated using Eq.(4), while the model error covariance P is left unchanged: 

 𝐏𝑡
+ = 𝐏𝑡

−            (11) 

It is worth noting that in case of a hydraulic model, the state variables at each reach are updated independently 30 
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3.3 Synthetic observations 

In operational practice, WL values are converted into streamflow values to be then assimilated within hydrological models. 

This is usually done using the available rating curves at the sub-catchment outlets. On the other hand, WL data usually can be 

directly assimilated in hydraulic models, but the problem is that the MC model used in this study requires flow information 

rather than WL. For this reason, the synthetic WL observation at a certain random location (DySc sensor) is converted into 5 

streamflow by means of the Manning equation if no rating curve information is available. In fact, it is quite unlikely to have 

the information of the rating curve at a random location of the CS observation provided by DySc sensors in real world 

applications. When there are no data regarding the cross-section, assumptions should be made about a rectangular cross-section 

with a given width and depth. However, this approach will introduce significant uncertainty in river flow estimation. A possible 

solution is the use of mobile apps able to automatically retrieve of flow information from photos and video as proposed in 10 

Lüthi et al. (2014), Overloop and Vierstra (2015) and Le Boursicaud et al. (2015). We believe that this type of mobile apps 

will increasingly become available (at reasonable low costs) to citizen in order to easily measure river flow.  

Due to the lack of distributed CS observations at the time the considered flood event occurred, synthetic WL observations are 

used (Mazzoleni et al., 2017a).  In order to generate such synthetic observations, the observed time series of precipitation 

during the considered flood event are used as input for the hydrological models of the sub-catchments and inter-catchments to 15 

generate synthetic discharges and then propagate them with the hydraulic model down to the prediction point of PA 

(corresponding to the sensor StPh-3 in Figure 1). In this way, the synthetic WL values at the outlet of the sub-catchments/inter-

catchments and at each spatial discretization of the six reaches of the Bacchiglione River are estimated, and assumed as 

observed variables in the assimilation process. In meteorology, this kind of approach is often called “observing system 

simulation experiment” (OSSE), as described for example by Arnold and Dey (1986), Errico et al. (2013) and Errico and Privé 20 

(2014). 

Regarding the observation error, as described in Weerts and El Serafy (2006), Rakovec et al. (2012), and Mazzoleni (2017), 

the covariance matrix R is assumed to be:  

𝑅𝑡 = (𝛼𝑡 ∙ 𝑄𝑡
𝑠𝑦𝑛𝑡ℎ

)
2
           (12) 

where  is a variable related to the accuracy level of the measurement. The accuracy (i.e. degree to which the measurement is 25 

correct overall) is subjected to random error and bias or systematic errors (Bird et al., 2014). Moreover, for WL observations 

accuracy levels vary temporally, spatially and for each physical or social sensor. Table 2 summarises the distribution of the 

coefficient  of the observational error of Eq.(12). The distribution of the coefficient  does not pretend to be exhaustive in 

accounting the different accuracies between observations coming from physical and social sensors but a first and simplified 

approximation that is aspect for further research (see details in section 2.2 and Table 1). 30 

Although there are many sources of uncertainty in the indirect estimation of streamflow, in case StPh sensors it is assumed 

that the rating curve estimation is the main source of uncertainty to properly estimate the streamflow given a certain WL value. 
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In fact, for the StPh sensors used in this study the instrument precision is about 0.01 m. As described in Weerts and El Serafy 

(2006) and Rakovec et al. (2012), the coefficient  is assumed equal to 0.1, constantly in time and space. 

On the other hand, due to the unpredictable accuracy of the CS observations coming from the sensors StSc and DySc sensors, 

the coefficient  is assumed to be random stochastic variable in time and space within a minimum (min) and maximum (max) 

value, based on the type of sensor and citizen accuracy. Table 2 summaries the values for the accuracy level that are used in 5 

this study and are assumed under the following considerations: 

 For both StSc and DySc sensors  values are higher than StPh sensors due to the additional sources of uncertainty 

introduced with the CS WL estimation and the consequent conversion to discharge. Moreover, the coefficient  for both 

StSc and DySc sensors is considered to be a random stochastic variable uniformly distributed in time and space (see 

Table 2). 10 

 In case of CS observations derived from StSc sensors, min and max are assumed to be equal to 0.1 and 0.3 respectively 

(Mazzoleni et al., 2017a). Accuracy  values mainly account for the uncertainty introduced in the streamflow estimation 

from WL by means of the available rating curve derived during the installation of the sensor/staff gauge. The minimum 

value of  equal to 0.1 assumes a low observational error similar to the one of StPh sensors. The maximum value of  

equal to 0.3 assumes a high observational errors in consistency with values used in previous studies (Mazzoleni et al., 15 

2015; Mazzoleni et al., 2017a). 

 In case of DySc sensors, the minimum and maximum values are set to 0.2 and 0.5 respectively, i.e. two and five times 

higher than the uncertainty coming from the StPh sensors. The minimum  equal to 0.2 assumes that WL can be better 

estimated from StSc (i.e. by citizens using a reference staff gauge) as compared to the DySc sensors. As described in 

Lüthi et al. (2014), flow in open channel can be estimated using mobile application only if the channel geometry in 20 

known. The maximum  equal to 0.5 is almost double than in case of StSc considering the increasing uncertainty on the 

assessment of the WL is due to the limited knowledge of the cross-section geometry at any location. 

 

Table 2. Assumptions behind the observational errors (based on Weerts and El Serafy, 2006, Rakovec et al. 2012, and Mazzoleni et 

al. 2017a) according to the sensor type used in this study 25 

Sensor type 
Assumed 

accuracy level 
Coefficient  Temporal and spatial variability  

Static Physical 

(StPh) 
High 0.1 

Fixed location 

Constant in time 

Static Social 

(StSc) 
Medium U(0.1, 0.3) 

Fixed location 

Intermittent arrival 

Dynamic Social 

(DySc) 
Low U(0.2, 0.5) 

Variable location 

Intermittent arrival 

Unfortunately, we do not have any real CS to test the appropriateness of choosing these coefficients’ values. A statistical 

modelling of systematic error against series of CS observations is proposed by Bird et al. (2014). Walker et al (2016) proposes 



13 

 

correlations for consistency of CS with WL values and rainfall series from nearby hydrologically similar catchments. In 

addition, to maintain accuracy levels within assumed ranges, Kosmala, et al. (2016) suggest to develop on methods and tools 

to boost data accuracy and account for bias, include iterative evaluation of CS observations, volunteer training and testing, 

expert validation and replication across volunteers. 

 5 

4 Experimental setup 

In this section, two sets of experiments are performed to test the benefits of assimilation of real-time CS, from a network of 

heterogeneous static and dynamic social sensors, under different assumptions of CIL.  

A 3-day rainfall forecast is used to assess the simulated WL values along the Bacchiglione River and at the prediction point of 

PA.  10 

WL observations from StPh sensors are assimilated at an hourly frequency, while CS observations from StSc and DySc sensors 

are assimilated at different intermittent moments to account for the random temporal nature of such observations. The observed 

and forecasted WL values are compared at the outlet section of PA. 

The number of observations used in each experiment varies based on CIL. Considering a 48h flood event and hourly model 

time step, an involvement equal to 1 corresponds to 48 available observations, while with involvement of 0.5 only 24 15 

observations (randomly distributed in time and space) are assimilated. 

In addition, several model runs (100) are performed to account for the random accuracy and involvement level in time and 

space of the citizen in providing CS observations. In each run, a specific  value and arrival moment for each observation are 

considered and the corresponding NSE value is estimated. From the 100 samples of these NSE values, the corresponding mean 

(NSE) and standard deviation (NSE) are calculated. 20 

The widely used measure in hydrology, the Nash-Sutcliffe Efficiency (NSE) index (Nash 1970), is used to compare simulated 

and observed quantities: 

𝑁SE = 1 −
∑ (𝑊L,𝑡

𝑚−𝑊L,𝑡
𝑜 )

2𝑇
𝑡=1

∑ (𝑊L,𝑡
𝑚−𝑊L,𝑖

𝑜̅̅ ̅̅ ̅̅ )
2𝑇

𝑡=1

             (13) 

where the superscripts m and o indicate the simulated and observed values of WL, while 𝑊L
̅̅ ̅̅  is the average observed water 

level. An NSE of 1 represents a perfect model simulation whereas an NSE smaller than zero indicates that the model simulating 25 

streamflow is only as skilful as the mean of observed water level. NSE values between 0.0 and 1.0 are generally considered as 

acceptable levels of model performance (Moriasi et al. 2007).  
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4.1 Experiment 1: Random citizen involvement levels 

In the first experiment, CS observations are taken from StSc (Experiment 1.1) and DySc (Experiment 1.2) according to random 

CIL. Such involvement, closely related to the intermittent nature of the WL observations, can be considered as the probability 

to receive an observation at a given model time step. This means that in the case of CIL=0.4 there is 40% of probability to 

obtain an observation at a given model time step. In fact, in the case of CIL=0, no observation is assimilated and the semi-5 

distributed model is ran without any update, whereas if CIL=1, observations are available at every time step and this situation 

is analogous to the observation from StPh sensors, which are assumed to be regular in time. 

4.1.1 Experiment 1.1: Assimilation of data from static social (StSc) sensors 

Experiment 1.1 considers only the assimilation of WL observations from StSc sensors. The sensors StSc1, 2 and 6, are located 

in sub-catchment A, B and C respectively, while the other sensors are located along the river reaches of the Bacchiglione 10 

catchment (see Figure 1). In contrast to the observations from StPh sensors, the ones from StSc are not regular in time since 

they are strictly related to the citizen involvement level. 

Observation error is defined as in section 3.3 using Eq.(12). The value of  for each StSc sensor is only a function of time t 

since the location of the sensor is assigned and fixed. Assimilation of WL observations for different combinations of sensor 

availability in the different sub-catchments and river reaches is performed. 15 

4.1.2 Experiment 1.2: Assimilation of data from dynamic social (DySc) sensors 

In Experiment 1.2, the assimilation of WL observations coming only from DySc sensors is considered. The two main 

differences between StSc and DySc sensors are that: 1) DySc sensor locations vary every time step along the river reaches in 

contrast to StSc sensors whose locations are considered constant in time. In fact, in the case of DySc sensors, the mobile sensor 

might provide observations in different random places due to the fact that there is no need for a static reference tool to measure 20 

the WL; 2) uncertainty in the observations provided by DySc sensors is higher than for those from StSc sensors. This is because 

for a person it might be difficult to estimate the WL in a river without any reference device as in the case of StSc sensors. 

Analysis on the effect of biased CS observations from DySc sensors is carried out within this experiment. In fact, due to the 

Bacchiglione catchment complexity and the low available data, the semi-distributed model used in this study may not properly 

represent internal states away from the calibration point. Consequently, synthetic CS observations may not fully mimic real 25 

CS observations, as underlined in Viero (2017). This means that real CSD may be likely biased with respect to the synthetic 

CS observations generated in this study. For this reason, in case of CS observations derived using DySc sensors, a systematic 

error is also accounted by means of different values of observations bias: 

𝑊L,𝑡
𝑠𝑦𝑛𝑡ℎ

= 𝑊L,𝑡
𝑡𝑟𝑢𝑒 + 𝛾𝑡 = 𝑊L,𝑡

𝑡𝑟𝑢𝑒 + 𝑊L,𝑡
𝑡𝑟𝑢𝑒 ⋅ 𝑈(𝛾min, 𝛾max)       (14) 
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where  is a random stochastic variable function of time, having minimum and maximum values min and max. In case of no 

bias  min =  max = 0, if WL is underestimated < 0 and if WL is overestimated then  max > 0. Bias in CS observations from StSc 

sensors is not considered in this study. 

Table 3. Minimum and maximum values min and max in case of 4 different cases of observation bias used in experiment 1.2 and 2 

 min max 

Bias 1 (1) 0 0 

Bias 2 (2) -0.3 0.3 

Bias 3 (3) -0.3 0 

Bias 4 (4) 0 0.3 

 5 

The coefficients are subjectively assumed. In fact, we do not want to argue that a particular value (e.g. 0.3 as in this 

experiment) should be considered as the default value to estimate bias in real-life crowdsourced observations. Such bias has 

to be defined based on field experiments with volunteers proving water level observations during real flood conditions. The 

main point of this analysis is to assess the model sensitivity for different subjective values of . The value of  should be also 

defined based on field experiments with volunteers. 10 

 

4.2 Experiment 2: Theoretical scenarios of citizen involvement levels 

In this experiment, all the StPh, StSc and DySc sensors are considered. One main problem in citizen science is understanding 

the motivations that drive citizens to be involved in such activities (Gharesifard and Wehn, 2016). For this reason, a theoretical 

assumption about citizen involvement based on their motivations, varying in time and space, is introduced. In the previous 15 

experiments, involvement is considered to be random varying from 0 to 1. In this experiment, involvement level is assumed 

to be a function of the spatial distribution of the population within the Bacchiglione catchment. 

As stated by Gharesifard and Wehn (2016), we acknowledge that stronger motivations or intentions are not only driven by a 

combination of more positive and favourable attitudes. The motivations also rely on stronger positive social pressure and 

greater perceived control or self-sufficiency about the means to provide CS observations. Authors further recognized that such 20 

rational choices may not apply in case of emergency situations. In  this paper, the distinction between favourable attitudes are 

treated from a theoretical point of view since during the WSI Project no consistent analysis of motivational structures was 

undertaken for the Bacchiglione case study. Based on Batson et al. (2002), we assume the three main motivations for citizens 

involvement in collecting data: 1) for their own personal purposes (usefulness of the collected data for personal interest or 

direct flood risk management impact); 2) belonging to a community of peers with shared interested; and 3) altruism (beneficing 25 

society at large). In order to assess citizen involvement, we propose 3-steps procedure including: 1) estimation of citizen active 

area; 2) number of active citizens and; 3) citizen involvement curve. 



16 

 

Step1: Estimation of the citizen “active area”. A hypothetical 500-meter buffer around each sub-river reach of 1000m (spatial 

discretization of the MC model) is used to identify the area in which the active population might provide CS observations 

using DySc sensors (see Figure 2). It is assumed that the citizens located further than 500m from the river are not contributing 

to the collection of CS observations. In the case of the StSc sensor, we assume the active area to be a circle with 500m radius 

with the sensor at the centre. Different extents of the buffer will lead to different coverages of the active area, with significant 5 

effects on the simulated number of hypothetical involved citizens. However, analyse the implications of different buffer extent 

on the number of active and consequent flood prediction is out of the scope of this research. Land cover maps are used to 

identify the main urban area from which citizens might provide CS observations of WL within the buffer previously estimated 

(see Figure 2). 

Step 2: Estimation of the active citizens number. The population density for the different municipalities along the different 10 

river reaches is used to estimate the number of citizens within the 500m buffer of each sub-river reach in which the urban areas 

are located. In the case of agricultural areas, an involvement value equal to zero is considered. In addition, not all citizens 

would be able to provide CS observations because only a proportion of them uses mobile phones. According to Statistica 

(2016), the mobile phone penetration in Italy in 2013, the year of the flood event analysed in this study, was about 41%, which 

means that about 41% of the population was potentially able to submit data. In view of the lack of a better source, we assume 15 

that this proportion is valid also for the regional scope. Therefore, to estimate the potential number of active citizens that could 

submit data close to the river reach, we first estimate the total population enclosed in a cell of 1km long by 1km wide (a buffer 

of 500m from each side of the river), and then estimate the 41% of them. Table 4 summarizes the results for the case of the 

StSc sensors and Table 5 those for the DySc sensors. In Table 5, the active citizens are divided by the number of sub-reaches 

(3 for reach 6). For reach 6 (km 3-4-5), main urban areas are contained in more than one sub-reach. Naturally, for a better 20 

estimation of these values, a more exhaustive social-economic analysis should be performed. 

Table 4. Estimate of the active population that potentially can provide CS observation of WL from StSc sensors 

Sensor Municipality Active area (m2) 
Density 

(inhab/km2) 

Population 

(inhab) 
Active citizens (inhab) 

StSc–1 
Schio 

206828 
597 

124 51 

StSc–2 71293 43 18 

StSc–3 Malo 100734 491. 50 21 

StSc–4 Villaverla 359744 400 144 59 

StSc–5 Caldogno 67311 720 49 20 

StSc–6 Costabissara 421778 563 238 98 

StSc–7 

Vicenza 

86544 

1400 

122 50 

StSc–8 241451 339 139 

StSc–9 415513 583 239 

StSc–10 500000 700 287 
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Table 5. Estimate of the active population that potentially can provide CS observation of WL from DySc sensors 

Reach Municipality Active area (m2) 
Density 

(inhab/km2) 

Population 

(inhab) 

Active citizens 

(inhab) 

1 (km6-7-8) Marano Vicentino 608985 800 487 200 

2 (km2) Schio 39536 597 24 10 

3(km8) Villaverla 359744 400 144 59 

3(km11) Caldogno 232474.1 720 167 69 

4(km2) Dueville 30692 701 22 9 

4(km3) 
Caldogno 

191988 
720 

138 57 

4(km5) 292519.8 211 86 

5(km1) 
Costabissara 

351921 
562 

198 81 

5(km2) 119898 67 28 

5(km3-4-5) 

Vicenza 

212453 

1400 

100 41 

6(km1-2) 129816 90 37 

6(km3-4-5) 1156964 539 221 
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Figure 2. Representation of the different Bacchiglione river reaches, land use (Corine Land Cover, 2006), location of the StSc and 

StSc sensors and the 500-meter buffer 

 

Step 3: Estimation of the theoretical citizen involvement curve. It is now necessary to estimate the citizen’ level of involvement 5 

based on the hypothetical number of active citizens and their motivation for sharing data. For this reason, three different 

involvement curves, representing each a scenario and corresponding number of active citizens, providing the Maximum Citizen 

Involvement Level (MCIL) are proposed. These scenarios are based on Batson et al., (2002), whose aggregated categories of 

citizen’s motivations are still in agreement with more comprehensive and detailed analysis such the ones recently reported in 

Geoghegan et al. (2016) and Gharesifard et al.(2017). 10 
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In the scenario 1, we assume that citizens collect data mainly for their own personal use. In this case, the MCIL is low for low 

number of citizens, while it grows following a logistic function, Eq.(15), for increasing numbers of people. 

𝑀𝐶𝐸𝐿 =
𝐾⋅𝑃o⋅𝑒𝑟⋅𝑃op

𝐾+𝑃𝑜⋅(𝑒𝑟⋅𝑃op−1)
+ 𝑤          (15) 

Where: 

Pop is the population number; 5 

r is the growth rate, we assumed two different values of r (0.04 and 0.08); 

K is the carrying capacity, i.e. maximum value of MCIL, assumed equal to 1; 

w is a coefficient related to the additional CS observations are also driven by societal benefits (third citizen scenario explained 

below); 

Po is the minimum value of MCIL assumed equal to 0.01. 10 

In the scenario 2, citizens might decide to collect and share CS observations driven by a feeling of belonging to a community 

of peers with shared interests and vision. In this case, it is assumed that a maximum value of MCIL is achieved for small 

population values while for increasing population this value is reducing. This scenario follows an inverse logistic function as 

shown in the graphical representation of scenario 2 in Figure 3. 

In the scenario 3, enthusiast individuals might provide additional information driven by moral norms and the wish to create 15 

knowledge about the hydrological status of the river, benefiting society at large. This is potentially a much smaller subset of 

the population. The added value of this information is accounted for in Eq.(15) by means of a coefficient w. Table 6 summarizes 

the different involvement curves based on the previous scenarios and different values of the coefficients r and w. 

At the next phase of analysis, a number of model runs (100) are carried out, considering the random values of citizen 

involvement from 0 to the MCIL according to the given involvement scenarios and the population. For example, considering 20 

scenario 1 and 150 inhabitants enclosed in a given river sub-reach, several model runs are performed for involvement values 

varying from 0 to 0.65 based on Figure 3. In case different CS observations coming at the same time from different sensors, 

only the most accurate observation, i.e. having the lower value of the coefficient  in Eq.(12), is assimilated in the hydrological 

and/or hydraulic model. Another approach could be to assimilate all measurements instead of only the most accurate ones. In 

this case, each observation is used within the assimilation scheme with the account of its error: less weight would be given to 25 

the more uncertain observations. 
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Figure 3. Representation of the theoretical MCIL scenarios based on number of active citizens. 

 

Table 6. Involvement curves based on different citizen motivations 

Involvement scenario Citizen motivation 
Growth rate 

(Factor r in Eq 15) 

Additional CS observations 

(Factor w in Eq. 15)* 

1 Own purposes (1) 0.035 0 

2 Shared or community interests (2) 0.060 0 

3 Social benefits(3) 0.035 0.10 

*Increment applies when CS are also driven by societal benefits (third citizen motivations) 

 5 

Finally, in this experiment it is also investigated the effect of the spatial variability of smartphone penetration and decrease of 

citizens involvement levels in time. For this reason, higher (double) percentage of active citizens in Vicenza is assumed 

(smartphone penetration of 80%), while random values of the coefficient r are considered to represent lower involvement 

levels over time. 
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5 Results 

5.1 Experiment 1 

5.1.1 Experiment 1.1 

In Experiment 1.1, the effect of different CIL on the assimilation of CS observations from StSc sensors is analysed. Figure 4 

aims to represent the (NSE) values obtained when assimilating CS observations from StSc sensors located in a different sub-5 

catchments (hydrological model) and river reaches (hydraulic model) for a 1-hour lead time. For example, in Figure 4.a, the 

NSE values obtained assimilating CS observations from sub-catchments A and river reach 3 are shown for different involvement 

values.  

Figure 4. (NSE) values obtained assimilating CS observations from a combination of StSc sensors located in different sub-10 
catchments and river reaches with 1-hour lead time in case of different CIL values. 
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Figure 4 shows that NSE values are less affected by the assimilation of CS observations located in the sub-catchment A than in 

the other reaches. In fact, Figure 4a, b and c, it is clear that NSE values change only for different involvement values of StSc 

sensors along reach 3, 4 and 6, while constant NSE values are achieved for varying involvement values of the StSc (sub-

catchment A). As previously shown, for a low lead time value, NSE is higher in case of StSc sensors located in reach 6 rather 

than in the other river reaches 3 and 4. 5 

In case of assimilation in sub-catchment B, Figure 4d, e and f, higher NSE values are achieved if compared to the ones for the 

sub-catchment A (first row of the same figure). In particular, NSE values are mainly influenced by different involvement levels 

of CS observations from sub-catchment B than from river reaches 3. However, moving from upstream (reach 3) to downstream 

(reach 6) a switch in the model behaviour can be observed, with an increasing influence of involvement in StSc sensors located 

in the river reach close to the PA station, as previously demonstrated (see contour map of sub-catchment B and reach 6 in 10 

Figure 4). 

Similar results are shown for StSc sensors located in sub-catchment C and different river reaches, Figure 4g, h and i. However, 

involvement levels in upstream river reaches affect the NSE values more than the involvement of StSc sensors in sub-catchment 

C. The same behaviour is manifested considering StSc sensors located from upstream river reach to downstream. The third 

row of Figure 4 can be considered as an average situation between the first (sub-catchment A) and the second (sub-catchment 15 

B) row of the same figure. 

Figure 5 is analogous to Figure 4, but with a lead time of 4 hours. Overall, as expected, the NSE values are lower for lead time 

of 4 hours, if compared to that of 1 hour. Model results are dominated by the assimilation in the sub-catchments A, B and C if 

compared to the involvement in reaches 4 and 6. This is due to the fact that assimilation from the hydrological model allows 

achieving good model predictions in case of high lead values. An intermediate situation is achieved for reach 3. It can be seen 20 

that assimilation of CS observations in this upstream river reach allows to obtain higher NSE values in case of high lead times 

due to the longer travel time than the one of StSc sensors located closer to PA (e.g. reach 6). Citizen involvement in reach 3 

affects the NSE values more than the involvement levels in sub-catchment A and C. Moreover, as in case of Figure 4 for 1-hour 

lead time, involvement in sub-catchment B have higher impact on NSE values than involvement in reach 3. A more detailed 

analysis on the effect of sensor location and lead time is provided in Mazzoleni et al. (2017a). 25 
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Figure 5. (NSE) values obtained assimilating CS observations from a combination of StSc sensors located in different sub-

catchments and river reaches with 4-hours lead time in case of different CIL values. 

5.1.2 Experiment 1.2 

In Experiment 1.2, the effect of CIL in assimilating CS observations only from DySc sensors is analysed. In this case, the 5 

DySc sensors are assumed to be located only along the river reach 3, 4 and 6 so only the hydraulic model is used in this 

experiment. Also in this experiment, 100 runs are carried out to account for the random accuracy and location of the CS 

observations. 

In Figure 6, DySc sensors are assumed to be present every 1000m, while CIL changes in each model run. This means that CS 

observations that are available at one time step at one specific location may not be available at the same location for the next 10 

time steps. It can be observed that in most of the cases (NSE) values converge asymptotically to some threshold, as 

involvement level increases. Among the three river reaches, 3 and 4 are the ones providing higher NSE values for low 

involvement levels. This can be related to the high number of DySc sensors located in reach 3 (13 sensors) and 4 (8 sensors). 
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Although, reach 6 is better performing in case of high involvement levels, high (NSE) values are obtained for this reach, 

showing a significant sensitivity of model performance in case of different CIL in the hydraulic model. Assimilating CS 

observations from DySc sensors at different reaches induces an overall improvement of (NSE) and reduction of (NSE). Lowest 

(NSE) values are obtained including DySc sensors from reaches 3 and 4. However, this reduction in the (NSE) values does 

not correspond to a higher improvement in (NSE). In fact, the highest (NSE) are achieved joining sensors from reach 4 and 6, 5 

i.e. the closest river reaches to the PA station. Similar results in terms of (NSE) and (NSE) are obtained joining reaches 3 and 

6.  

Figure 6. Effect of different levels of involvement, in terms of (NSE) and NSE) in the assimilation of CS observations from DySc 

sensors for different CIL values 10 

It is worth noting that in Figure 6, no bias in the observations from DySc sensors is considered.  

Figure 7 presents the (NSE) values obtained considering random locations of DySc sensors along the river reaches 3, 4 and 6 

in 4 different cases of CS observation bias for 1 hour lead time. As reach 6 has five different sub-reaches of 1000m, CS 

observations from only five sensors can be assimilated. However, in Figure 7 a total number of 13 DySc sensors is considered. 

In these experiments, location of DySc sensors are randomly generated. It might happen that two sensors are located, say, at 15 

distances of 2600m and 2900m from the upstream boundary condition. Because of the small spatial discretization of the 

hydraulic model (1000m), it is assumed that the difference between the hydrographs estimated between the two different model 

discretization is negligible. For this reason, the two CS observations from the DySc sensors at 2600m and 2900m are 

simultaneously assimilated at the third sub-reach. In this way, it is possible to assimilate CS observations from a number of 

DySc sensors higher than the number of model spatial discretization points. 20 
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Figure 7. (NSE) values obtained considering random location of dynamic social (DySc) sensors along the river reaches 3, 4 and 6 

in 4 different cases of CS observation bias for 1hour lead time and Citizen Involvement Level (CIL) values 

As it can be observed, different  values (bias assumptions) affect the model performance in different ways. Underestimation 

of the CS observations (3) induces a reduction of the (NSE) values due to the underestimated forecasted precipitation. In 5 

consequence the underestimation of water level hydrograph at PA in case of no model update. For the same reason, 

overestimation of CS observations (4) causes an increase in model performance especially for a low number of DySc sensors 

and involvement levels. In case of 2 the behaviour in-between 3 and 4 can be observed.  

5.2 Experiment 2 

Experiment 2 focuses on the assimilation of CS observations from a distributed network of heterogeneous StPh, StSc and DySc 10 

sensors. In particular, the involvement level is calculated in a more realistic way accounting for the population living in the 

range of 500m from the river. Based on Figure 3, different MCIL values are calculated for the three scenarios in collecting and 

sharing WL observations. It is worth noting that Bias 2 is considered in the CS observations from DySc sensors. 
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Figure 8 shows (NSE) values in case of different involvement scenarios and MCIL according to the different type of sensors. 

A random value of involvement level between 0 and MCIL is considered for a given river sub-reach and model run. In 

particular, in Figure 8, smaller values of MCIL such as MCIL1, MCIL2, MCIL3, MCIL4 and MCIL5 are estimated as to 0.2 

MCIL, 0.4 MCIL, 0.6 MCIL, 0.8 MCIL and MCIL, respectively. It can be noticed that scenario 2 is the one providing the best 

model improvements, followed by scenario 3. Involving the enthusiastic people (scenario 3) helps to improve (NSE), 5 

especially for low involvement values. Scenario 1 is the one that gives the lowest (NSE) values due to the lowest growth rate 

of the involvement curve and consequent lower involvement of citizens. 

In scenarios 1 and 3, the steepest vertical gradient of the contour plot can be observed, leading to the conclusion that model 

results seem to be more sensitive to the change of MCIL values in StSc sensors rather than DySc sensors. However, the gradient 

reduces with scenario 2. 10 

In the previous analysis, NSE is used as the only performance indicator without considering improvement in the prediction in 

the peak and rising limb of the hydrograph, which are extremely important in case of operational flood management. For this 

reason, the relative error between the observed streamflow peak and simulated peak (see Eq. 16) is included to better assess 

the assimilation of crowdsourced observations from an operational point of view. 

𝐸𝑅𝑅 =
(W𝐿,𝑃

𝑂
−W𝐿,𝑃

𝑆
)

W𝐿,𝑃
𝑂            (16) 15 

where WL,P
O and WL,P

S are the observed and simulated streamflow (m3s −1). The results reported in Figure 8 shows comparable 

results to the ones achieved using NSE. Including CS observations from enthusiast citizens seems not to lead to a more accurate 

representation of the peak discharge. In fact, similar (NSE) values are achieved between scenario 1 and 3. However, error in 

peak prediction is lower in scenario 1 than in scenario 2. It can be observed that ERR values are clearly more sensitive to the 

different involvement values in StSc sensors than from the DySc ones (vertical gradient). 20 
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Figure 8. (NSE) and (Err) values obtained in case of different Maximum Citizen Involvement Level (MCIL) scenarios comparing 

involvement level from StSc and DySc sensors 

In the previous analysis, unrealistically high citizen involvement (up to 80%) is considered. For this reason, the following 

analysis focuses more into the lower part of the theoretical involvement curve, assuming more realistic CIL. In particular, the 5 

maximum carrying capacity of the logistic curve (K) is changed from 0.01 up to 1. In case of K equal to 1, the values of (NSE) 

related to the different scenarios are estimated as mean average of the contour plot showed in Figure 8. The same analysis is 

performed for the vector of different values of K. 

The results of this analysis show an expected reduction in the model performances for low values of the parameter K (which 

indicates the maximum possible level of involvement). It can be noted that if K is equal to 0.5, assimilation of crowdsourced 10 

observations still provide significant model improvement for all the different scenarios even though the involvement is halved. 

As expected, (NSE) values tend to increase for low involvement of citizens. From Figure 9, it can be seen that (NSE) values 

do not follow a linear trend as expected. On the contrary, it tends to drop for values of K between 0 and 0.2 (for example in 

scenario 3), while for higher K values the (NSE) does not grow significantly. In particular, for K values higher than 0.5, 

scenario 2 provides the highest (NSE) values. Besides, for lower K values than 0.5, scenario 3 is the one leading to better 15 

model performances. This is because the presence of enthusiast individuals keeps high involvement values even for low values 

of K. Regarding the variability of NSE, i.e. (NSE), for values of K lower than 0.4, high (NSE) can be observed in scenario 1.  
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Figure 9. (NSE) and (NSE) values obtained considering varying values of K for different involvement scenarios 

Additional analysis considering negative and positive bias (Bias 3 and 4 in Table 3) in the CS are considered. As expected, it 

can be observed that Bias 4 provides higher NSE values than Bias 2 since model without update underestimate observed 

streamflow/water level. Moreover, results obtained using observations with Bias 3 have lower NSE than the results with Bias 5 

2. However, in both Bias 3 and 4, such changes in NSE are very small, leading to the conclusion that assimilation of biased WL 

observations during the May 2013 flood event in the Bacchiglione River do not reduce model performances. 
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Figure 10. Difference between (NSE) values obtained considering Bias 2 with Bias 3 (first row) and Bias 2 with Bias 4 (second row) 

for different involvement levels from StSc and DySc sensors 

 

Effect of spatial variability of smartphone penetration 5 

The value of smartphone penetration depends mainly on the geographic area and on the characteristic of the population. We 

assume that not everyone is prone to use smartphone to collect and share water level data due to their age and habits. However, 

smartphone penetration and consequent percentage of active citizens may change spatially. In the following simulations, a 

higher percentage of smartphone users (80%) is assumed in the urbanized area of the municipality of Vicenza. From Figure 

11 it can be seen that increasing the smartphone penetration in Vicenza does not affect model results in case of scenario 2.  10 
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Figure 11. Difference between (NSE) values obtained considering standard and higher active citizen percentage in the municipality of 

Vicenza for different involvement levels from StSc and DySc 

For this scenario, no involvement is assumed in highly urbanized areas such as the municipality of Vicenza. Higher number 

of smartphones in Vicenza partially affects only scenarios 1 and 3. In these scenarios, an expected increment in the model 5 

performance (due to the higher involvement in Vicenza), can be observed. However, small increments in the NSE values are 

reported in Figure 11, with a maximum difference of 0.04 between normal and higher smartphone penetration. 

 

Effect of temporal variability of citizen involvement 

In the previous analyses, CIL is considered constant in time. However, in real practice, involvement may decrease if citizens 10 

are not properly involved in a water observatory, so for the assimilation of CS observations it is also important to consider also 

this situation. A possible idea to represent the decrease of involvement level on time could be to assume varying values of 

growth rate r of the logistics curve over time.  

In Figure 12, results of sensitivity analysis of model results with respect to the varying values of the coefficient r of Eq.15 are 

presented. Only scenario 3 and three different values of w are considered. The results demonstrate that decreasing involvement 15 

over time (low values of r) lead to a reduction of the model performance and consequently inaccurate flood forecasts. This is 

an expected result that demonstrates again the importance of keeping citizens continuously engaged. However, such reduction 

of model performances is significant only for values of r lower than 0.3, leading to the conclusion that model performances 

can still be high even if involvement reduces over time. 
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Figure 12. (NSE) and (NSE) values obtained considering varying values of the coefficient r for scenarios 1 and 3 with three different 

values of w 

6 Discussion 

In flood risk management, CS observations of hydrological variables can potentially contribute to the situational awareness 5 

and to support decision-making  (Howe, 2008; Alfonso, 2010; Rotman et al., 2012; Gura, 2013; Bonney et al., 2014; Buytaert 

et al., 2014). ICT-enabled citizen observatories become possible via, for example, mobile and web-based easy-to-use sensors 

and low-cost monitoring technologies (Jonoski et al., 2012). However, the fact that ICT tools and citizen observatories 

initiatives are in place does not automatically imply a higher level of citizen involvement - due to intermittency and timely 

availability of CS observations (De Grossi et al., 2013). This section aims to summarise the main findings of our study and to 10 

analyse the pros and cons of using CS observations for improving flood predictions. It is worth noting that in this study we do 

not refer to how to get the citizens involved but rather to the probability of receiving a CS observation based on the citizen’s 

own interest or intention in collecting water levels. Engagement and involvement levels are related and represent a huge barrier 

to collect CS observations (Starkey et al., 2017). 

Overall, the results we have obtained are in accordance with the recent studies on the use of (real) crowdsourced observation 15 

in the area of water resources management (Gaitan et al., 2016; Giuliani et al., 2016; de Vos et al., 2017; Rosser et al., 2017; 

Scheider et al., 2017;  Starkey et al., 2017; Yu et al., 2017). In particular, any improvement of model performance with respect 

to the current practice for flood forecasting in the catchment used by Alto Adriatico Water Authority with no model update, 

provides additional useful information for flood risk management. The results from Experiment 1.1 (assimilation only from 

StSc) show that model outputs depend on the particular sub-catchment and river reach in which the observations are 20 

assimilated. In fact, we also found that accuracy of the assimilation process is highly dependent on different factors including 
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the total number of observations, their spatial distribution and their accuracy as demonstrated by Schneider et al. (2017) and 

Starkey et al. (2017) by using real CS observations. In addition, assimilation of CS observations into the hydrological model 

tends to provide lower improvement than the assimilation in the hydraulic model. However, assimilation in hydrological 

models ensures a better model prediction for high lead time values than the assimilation in the hydraulic model. This is due to 

the high travel time needed to reach the prediction point of PA (around 22 hours from the outlet of sub-catchment B). For 5 

operational flood management it is advisable to consider model results in which observations at upstream location of the 

catchment are assimilated in both hydrological and hydraulic model. In Experiment 1.2, assimilation of CS observations from 

DySc sensors produced an overall improvement of model performances in terms of (NSE) increase and (NSE) reduction. 

Higher values of (NSE) are achieved assimilating CS observations coming from multiple river reaches, in particular, for those 

reaches close to PA. Due to the fact that the model without assimilation underestimates the observed water level, overestimated 10 

biased CS observations tends to increase model performances. Comparable results were obtained in Rakovec et al. (2012) and 

Mazzoleni et al. (2015, 2017a) in case of assimilation of distributed sensors in hydrological modelling. 

The aim of Experiment 2 is to investigate the effects of different, theoretical, level of involvement in the assimilation of CS 

observations coming from heterogeneous sensors (StPh, StSc and DySc). Our findings demonstrate that sharing CS 

observations driven by feeling of belonging to a community of peers (scenario 2 in the proposed theoretical social model) can 15 

help improving flood prediction if such a small community is located upstream of a particular interest point. The results 

achieved for scenario 1 point out that a growing participation of citizens motivated by personal interests, sharing hydrological 

observations in big cities, can help improving model performance. In particular, the model results can benefit from the 

additional observations provided by enthusiastic citizens (scenario 3). Similar conclusions are reported in Starkey et al. (2017) 

where it is demonstrate the importance of a proper engagement for providing additional source of catchment information. 20 

Finally, it is important to investigate the effect of varying percentage of smartphone usage in space and decrease of citizen 

involvement over time. Percentage of active citizens may change spatially in densely populated areas such as the municipality 

of Vicenza. Increasing the smartphone penetration in Vicenza would not affect model results in case of scenario 2, because no 

involvement is assumed in densely urbanized areas. High percentage of active citizens in Vicenza affects only scenarios 1 and 

3. However, because the number of active citizens in Vicenza is already high for a smartphone usage of 41%, the model 25 

improvement is not significant for higher percentage of active citizens. This means that in the proposed theoretical involvement 

model more active citizens (i.e. more mobiles available) will not significantly improve involvement and affect the model 

performance. It is worth noting that a more exhaustive social-economic analysis should be performed in order to better define 

the smartphone penetration and consequent percentage of active citizens. 

In this study we assume intrinsic motivation, constant in time, differentiated according to the level of involvement. However, 30 

a main challenge in citizen science is to keep this involvement high in the long term. In case of flood events, citizen involvement 

tends to disappear if no other event will occur in a short time. In fact, depending on the memory of the community, the 

awareness of flood risk decreases over time (Raaijmakers et al., 2008), and, therefore, the tendency to be engaged in data 

collection will also reduce or even disappear. For this reason it is important to keep citizens engaged using for example 
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gamification approaches or periodic meetings/seminars with interested participants. However, the main goal of this paper is 

not to review or propose approaches to engage and keep citizen involvement over a long time. For this purpose, a 

comprehensive and detailed analysis of citizen motivations and engagement mechanisms is reported in Geoghegan et al. 

(2016), Gharesifard and Wehn (2016) and Rutten et al. (2017) are being studied in detail in the H2020 GroundTruth 2.0 Project 

(www.gt20.eu). A possible solution for collecting water level data over time could be the involvement of the civil protection 5 

volunteers. This approach is currently being used in the Bacchiglione catchment by the Alto Adriatico Water Authority which 

requests the water level data at particular location and time to the Civil Protection to validate model results in near real-time. 

This study demonstrates that high performance model can still be achieved even for decreasing involvement over time. 

Moreover, crowdsourced observations of either experts or citizens will not necessarily have the quality high enough to support 

decision-making (Cortes Arevalo et al., 2014). In addition, real time observations require to ensure safety conditions, internet 10 

connection and trusted observers by water authorities. Therefore, it is of utmost importance to understand limitations and to 

develop quality control mechanisms of CS observations (Tulloch and Szabo, 2012; Vandecasteele and Devillers, 2013; 

Bordogna et al., 2014; Bird et al., 2014; Cortes Arevalo, 2016). 

7 Conclusions 

This study assess the modelling usefulness of assimilating crowdsourced (CS) observations coming from a network of 15 

distributed static physical (StPh), static social (StSc) and dynamic social (DySc) sensors, installed within the WeSenseIt Project 

in the Bacchiglione catchment, with the aim of advancing in the understanding of the effect of public involvement on the 

improvements of flood models. In the complex process of assimilating of CS observations in water system models many factors 

play an important role for the correct flood estimation: type of social sensor, citizen involvement, decrease of the involvement 

over time, type of hydrological and hydraulic model, spatial variability of citizen involvement, etc. In this study, we focus on 20 

the type of social sensor, on the citizen involvement level and its variability in time and space. The assessment is done for the 

prediction of the May 2013 flood event in the Bacchiglione catchment, so general conclusions cannot be derived based on one 

case study only. Because CS observations of water level are not available at the time of this study, we use synthetic observations 

having intermittent measurement intervals and random accuracy in time and space. Two different sets of experiments are 

carried out. In experiment 1, crowdsourced observations from StSc and DySc are assimilated with the hydrological and 25 

hydraulic model considering to random levels of citizen involvement. On the other hand, in experiment 2 three hypothetical 

citizen involvement level scenarios are introduced to provide a more realistic representation of the availability of CS 

observations for the model. Scenarios are based on the combination of population distribution and three types of citizens’ 

motivations to collect data based on Batson et al. (2002): 1) own personal purposes; 2) shared or community interests and 3) 

societal benefits. We further assume that CIL affects only observations intermittency rather than accuracy. 30 

Overall, we demonstrate that assimilation of CS observations provided by citizens improves model performance. Experiment 

1.1 shows that assimilation of CS observations in the hydrological model tends to lead to a lower improvement than the 
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assimilation in the hydraulic model, in case of low lead time values. In case of high lead values, assimilation in the hydrological 

model allows to achieve better model predictions than the assimilation in the hydraulic model. In Experiment 1.2, high values 

of NSE are achieved for DySc sensors located close to the boundary conditions, while moving these sensors to downstream 

locations reduces NSE values. This results are due to the higher error of the boundary conditions if compared to the model error 

of the hydraulic model itself. Systematic (Bias) and random errors in water level observations plays an important role. Finally, 5 

Experiment 2 demonstrates that crowdsourced observations provided by citizens driven by feeling of belonging to a community 

of peers (motivation 2) can help to improve flood prediction if such small communities are located in the upstream part of the 

catchment. On the other hand, growing participation of citizens motivated by own purposes, sharing hydrological observations 

in big cities can help improving model performance. In particular, the model results can benefit from the additional 

observations provided by enthusiastic citizens. In this study, higher smartphone penetration in the highly urbanized area of 10 

Vicenza than in the upstream towns tends to not significantly affect model results. The reduction of citizen involvement over 

time directly affects the model results. High model performance can still be achieved even for decreasing involvement over 

time. 

A number of limitations of this study have to be addressed as well. Firstly, in order to generalize the findings of this research, 

the proposed methodology has to be applied in more case studies and flood events. Secondly, real CS observations should be 15 

used to properly assess the observational error and accuracy level which vary according to the sensor type (static or dynamic). 

Thirdly, no specific spatial sensor trajectory of the citizens moving from one StSc sensor to another or using DySc sensors is 

considered, since this would require the introduction of assumptions about citizens’ behaviour during a flood event. This 

component would be extremely important in the case of dynamic sensors but it could not be included in this research due to 

the lack of information about citizen involvement in monitoring river water level in the case study. Finally, in real life 20 

conditions, it may occur that active citizens might not be available at the right time, i.e. during a flood event. In our study we 

do not distinguished between observations provided during day time or night time (as addressed by Mazzoleni et al., 2015). 

For future studies it is recommended to (a) introduce an approach for a better characterization of the CS observations accuracy 

level, (b) propose an involvement model based on social analysis on citizen motivations and engagement, (c) use agent-based 

models to simulate and represent the interactions between autonomous agents (citizens) based on their motivations, and (d) 25 

test the proposed method using real CS observations during different flood events. 

 

 

 

 30 
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Appendices 

Table 7. List of acronyms used in this study 

Acronyms Meaning 

AAWA Alto Adriatico Water Authority 

CIL Citizen Involvement Level 

CS Crowdsourced 

DySc Dynamic Social 

KF Kalman filter 

MCIL Maximum Citizen Involvement Level 

PA Ponte degli Angeli 

StPh Static Physical 

StSc Static Social 

WL Water level 

WSI WeSenseIt 

 

Table 8. Response times for the sub-catchment and the reaches of the Bacchiglione catchment  

Location Time (hours) 

Sub-catchment A 1.5 

Sub-catchment B 3.5 

Sub-catchment C 6.0 

Reach 1 2.2 

Reach 2 2.0 

Reach 3 7.2 

Reach 4 9.5 

Reach 5 3.4 

Reach 6 5.2 
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