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Abstract. Hydropower makes up nearly half of Sweden’s elegtrenergy production. However, the distributiohtlioe
water resources is not aligned with demand, mogheinflows to the reservoirs occur during theirspiflood period. This
10 means that carefully planned reservoir managensentduired to help redistribute the water resoutoesnsure optimal
production and accurate forecasts of the springdfleolume (SFV) is essential for this. The curreperational SFV
forecasts use a historical ensemble approach wherdBV model is forced with historical observasaof precipitation and
temperature. In this work we develop and test airmudel prototype, building on previous work, aehluate its ability to
forecast the SFV in 84 sub-basins in northern Swedlbe testing is done using cross-validated hisidctor the period
15 1981-2015 and the results are evaluated against dobatology and the current system to determikid. Both the
considered multi-model methods considered showédasler the reference forecasts, however the vershat combined
the historical modelling chain, dynamical modellicigain, and statistical modelling chain performedttdr than the other
and was chosen for the prototype. The prototype aties to outperform the current operational systenaverage 65% of

the time and reduce the error in the SFV by ~6%scall subbasins and forecast dates.

20 1 Introduction

The spring flood period (sometimes referred tohasspring melt or freshet period in the literatusedf great importance in
snow dominated regions like Sweden where hydropoaeounts for nearly half of the country’s eleatienergy
production (SCB, 2016). Between 55-70% of the ahinflows to reservoirs in the larger hydropoweogucing rivers
occur during this relatively short period, typigaffom mid-April/early-May to the end of July. Thiseans that the majority
25 of the annual water resources available for hydnesgroduction would only be available to produagusing this period if
it were not regulated through carefully plannecresir management. This reservoir management isitapt as the energy
demand is out of phase with the natural availabiit the water resources; typically demand is high@wer) during the
colder (warmer) months when the inflows are lowglier). Therefore the goal is to redistribute #vailability of these

resources from the spring flood period to otheresnof the year when electricity demand is higher during the colder
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winter half year, while maintaining a balance beiwea sufficiently large volume of water for optimaloduction and
enough remaining capacity for safe flood risk mamagnt (Olsson et al., 2016). The typical strategydperators in
Sweden is to have reservoirs at around 90% capaicttye end of the spring flood which is then itlealaintained until the
beginning of winter. To achieve this operators mexjueliable seasonal forecast information to Hékpm in planning the
5 operations both leading up to and during the spitowd period.
The sources of predictability for hydrological smaesl forecasts come from the initial hydrologicainditions i.e.
information relating to the water stores withirtire catchment (e.g. Wood and Lettenmaier, 2008;d\t@l. 2015; Yossef
et al., 2013), and also from knowledge of the wesatturing the forecast period i.e. seasonal mekegical forecasts (e.g.
Bennet et al., 2016; Doublas-Reyes et al., 2103pdMVet al. 2015; Yossef et al., 2013). Hydrologisedsonal forecasts
10 attempt to leverage at least one of these soufqa®dictability to make skilful predictions of fute streamflow.
In practice there are two predominant approachesnaking hydrological forecasts at the seasonalescstiatistical
approaches and dynamical approaches. Statistiqgaloaghes utilise empirical relationships betweeadjtors and a
predictand, typically streamflow or a derivativerthof (e.g. Garen, 1992; Pagano et al., 2009). €T pesdictors can vary
greatly in type from local hydrological storage ighies like snow and groundwater storages (e.g.eRsdn et al. 2013;

15 Rosenberg et al., 2011), to local and regional aretegical variables (e.g. Cordoba-Machado et2016; Olsson et al.,
2016), to large scale climate data such as ENSiodade.g. Schepen et al., 2016; Shamir, 2017) hallvever, are trying to
leverage the predictability in these predictorst theginate from one of the two aforementioned sesr Dynamical
approaches use a hydrological model, typicallyatiged with observed data up to the forecast gatthat the model state is
a reasonable approximation of the initial hydrotaficonditions, and then force it with either higtal observations or force

20 it using data representative of the future met@michl conditions such as general circulation mg@CTM) outputs (e.g.
Crochemore et al. 2016; Olsson et al. 2016; Yuaal.e2013, 2015, 2016). Attempts to improve thegees of approaches
have involved bias adjusting the GCM outputs (Empchemore et al., 2016, Lucatero et al., 2017; 8\vetoal., 2002; Yuan
et al. 2015) or bias adjusting the hydrological elaglitputs (e.g. Lucatero et al., 2017) or a cowiom of both (e.g. Yuan
and Wood, 2012). Another dynamical approach iswed-established ensemble streamflow predictionREE&.g. Day,

25 1985). This is similar to the previous approachyéneer instead of using GCM outputs to force therblajical model it
uses an ensemble of historical data. This apprisagérhaps one of the most widely used methodssasiill the subject of
new research. Recent work have looked at conditgptine ensembles before using them, this condit@ian be done
using GCM outputs (e.g. Crochemore et al., 201l6)ate indices, and circulation pattern analysig.(Beckers et al., 2016;
Olsson et al. 2016; Yossef et al., 2016).

30 The current practice at the Swedish Meteorologizal Hydrological Institute (SMHI) for seasonal fomsts of reservoir
inflows is the ESP approach. It assumes that héstorobservations of precipitation and temperatare possible
representations of future meteorological conditiansl are used to force the HBV hydrological moded.( Bergstrom,
1976; Lindstrém et al., 1997) to give an ensembtedast that has a climatological evolution from ithitial conditions. A

number of attempts have been made in the past pooire the performance of these spring flood forscasth limited

2
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success (Arheimer et al., 2010) demonstratingttieste seasonal forecasts are already of a higityquéfork by Olsson et
al. (2016) on improving these forecasts was ableetdise reasonable improvements using a multi-inedproach. By
combining a statistical approach, dynamical apfieaal an analogue approach (conditioned ESP) tkeeg &ble to show a
~4% reduction in the forecast error of the spriogd volume (SFV). The purpose of this paper isdotinue on and update
the work started by Olsson et al. (2016) to devedod evaluate a hydrological seasonal forecasesygrototype for
forecasting the spring flood volumes in Sweden.

This paper is organised as follows. Section 2 oedlithe prototype, including the individual modehios, the experimental
setup, the methods and tools used, and the stedyaanrd data used in this work. Section 3 presemtgiscusses the cross-
validated evaluation scores for the prototype  fisith reference to climatology and then with refece to the current
operational system that is in use at SMHI. Sedti@oncludes with the main findings and a brief @it for future work.

2 Materials and Methods
2.1 The multi-model system and the individual modéhg chains

In this section we present the modelling approactses in this work. These are based on those egloy Olsson et al.
(2016) with some modification to facilitate theseuin an operational environment. First we brigflgsent the multi-model
prototype (Sect. 2.1.1) followed by a brief ovewief the individual modelling chains used in theltimmnodel and why we
chose them (Sect. 2.1.2 — 2.1.5). For more infaonategarding the individual modelling chains readare referred to

Olsson et al. (2016) and the accompanying supplemen

2.1.1 The multi-model ensemble (ME)

The prototypes developed in this work builds orapproach first proposed by Foster et al. (2010)latedt improved upon
and first tested by Olsson et al. (2016). The ainoiadapt their methodology for use in an opemnatienvironment and then
evaluate the resulting prototype against the ctroperational system using cross-validated hindcaBour different
modelling chains were considered when developirg gdlototype (Sect. 2.1.2 — 2.1.5). The performarafedifferent
combinations of these four were tested and it wasd that the two three-model combinations, anaegdynamic-statistical
and historical-dynamic-statistical, performed best average. A combination of all four modelling iclsawas not
considered as the analogue model chain is a sab#et historical model chain.

Figure 1 shows the generalised schematic of the gvatotypes, MEys and MEgs (where the subscripts refer to the
individual modelling chains making up each multigeg, including where the current methodologiededisignificantly
from those in previous works. These differences diseussed in the relevant modelling chain sectibalw. The
prototypes are multi-model ensembles of the outfyota the three relevant individual modelling chsiifhese outputs are

pooled together rather than using an asymmetrightieig scheme due to the lack of data points, & tdt35 spring flood
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events, from which to derive a robust weightingesnb. The simple weighting scheme used by Olssah €016) was not

considered either along similar lines of reasoning.

2.1.2 Historical ensemble (HE)

The historical model chain, the dark blue chaimdttifom the left in Figure 1, is an ensemble fostaaade by forcing a
rainfall-runoff model with historical observation$ precipitation and temperature. This approadbftsn referred to as ESP
(ensemble streamflow prediction) in the literatbe we chose not to as we feel our terminology @serdescriptive in the
context of this work. This is the current operaéibeeasonal forecasting practice at SMHI. The HB&eh (Bergstrom,
1976; Lindstrom et al. 1997) is initialized by ugiobserved meteorological inputs (P and T) to faheemodel up to the
forecast date so that the model state reflectscthieent hydro-meteorological conditions. Then, ¢gtly all available
historical daily P and T series for the period friira forecast issue date to the end of the foriecpgeriod are used as input
to HBV, generating an ensemble of forecasts thatchmatological in their evolution from the initieonditions. The HE is
used as the reference ensemble unless otherwisd.sta

The HBV is run one river system at a time and thedeh outputs are later regrouped into three clast8ection 2.6).
Typically only historical data prior to the foretaite are used to force the model, however tavefile a more robust cross
validation all data including for years after thereicast date were used (excluding the year in iuestf course).
Unfortunately, the scope of this work did not allder the recalibration of the HBV model before eawhss validated
hindcast. This will potentially inflate the perfoamce of the model for the hindcasts of years thetewused in the
calibration of the model. This will affect the anglie and dynamical model chains too as they alsorporate the HBV
model in their setup.

2.1.3 Analogue ensemble (AE)

The analogue model chain, the light blue chairhist to the left in Figure 1, is a subset of the Hiie hypothesis is that it
is possible to identify a reduced set of historigaérs (an analogue ensemble) that describes ththevein the coming
forecasting period better than the full historieasemble used in HE. In this work the circulatiattgrn approach used by
Olsson et al. (2016) was omitted due to data avititha issues making it impractical for operationapplications.
Additionally, the teleconnection approach was redito take advantage of the findings by Fostet.¢2812) and Foster et
al. (2016) where they identified which teleconnesctipatterns are related to the SFV and for whichiodeof their
persistence prior to the spring flood this conmettis strongest. The teleconnection indices thewtifled are the Arctic
oscillation (AO) and the Scandinavian pattern (S@AJl the periods of persistence for these indioeshe seven and eight
months leading up to the spring flood respectively.

The persistence for each teleconnection index|aulzded from the beginning of the aforementionedigrl to one month

prior to the forecast date (a limitation imposeddaya availability), similarly this was done fot yars in the climatological

4
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ensemble. If the values of these indices are censitlito be coordinates in Euclidean space we dkfinalogue years to be
those years whose positions are within a distah€e20from the position of the forecast year. Thkestion of the analogues
is done at the regional scale, by cluster (Se@i6), and these selections applied to the assdcsate-catchments in turn.

Similar to the HE, the analogue method makes ud®tf prior and later years to the hindcast yeatte cross validated

5 hindcasts.

2.1.4 Dynamical modelling ensemble (DE)

The dynamical model chain, the dark red chairh&st to the left in Figure 1, is similar to the Hif; adequately initialised
HBV model is forced by an ensemble of seasonalctsts of daily P and T from the ECMWF IFS syster{Bdct. 2.7
Seasonal data). A change to previous work has teiseP and T data bias adjusted first using tiESDnethod developed

10 by Yang et al. (2010) before being used to forceVHBhere have been some criticisms raised lateganging the
applicability of quantile mapping for bias adjustiseasonal data (e.g. Zhao et al., 2017). Theyt mrihthat although
quantile mapping approaches are effective at hiaection they cannot ensure reliability in foreécassemble spread or
guarantee coherence. Unfortunately, the scope®fibrk did not allow the testing of other biaswsljnent methods but the
criticism is noted and further work is planned ¢llgess these points.

15 These bias adjusted data are then converted inté iHButs by mapping them from their native grid @the HBV sub-
catchments. The mapping is done by areal weighdimg) the resulting sub-catchment average P and Uevare then
adjusted to represent different altitude fractiaithin the catchment. These data are then usearte the HBV model from
the same initial state as used in the HE procedure.

No changes are made this methodology to accommditaigross-validated hindcasting is done with tiielomodel chains.

20 2.1.5 Statistical modelling ensemble (SE)

The statistical model chain, the orange chain sgdoom the left in Figure 1, is an ensemble foréga®duced by
downscaling forecasted or modelled large-scaleabées (predictors) to the SFV for each cluster djotand). The
downscaling is done using an SVD approach (singutaiable decomposition). The predictors are thieege scale
circulation variables (Section 2.7) and the modke#iaow depths from the HBV initial conditions. Towtputted ensembles
25 of SFV are combined using a simple arithmetic weighsystem. The normalised squared covariance d@tvthe four
predictors and the predictands are ranked for &meleast initialisation date and weights betweean@ 1 are applied to the
different predictors according to their rank. Thes¢st ranked predictor is assigned a weight 0{8.1/10), the next lowest
predictor is assigned a weight of 0.2 (= 2/10), andon until all four have been assigned a weighe reason that an
asymmetric weighting scheme is used here is tleaetts physical support for it. Early in the seag@snowpack, which is
30 the majority contributor to the spring flood volupig still a fraction of what it will be and is ktaccumulating. Therefore,

the coming meteorological conditions, which dictat®wpack evolution, are more important earliefirothe season than
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they are later giving physical support for asymimetweighting. Additionally, the relative importancef these
meteorological with respect to each other predsctiiifers with time too.
The relative simplicity of the statistical modela@h means that it was possible to retrain the mbeébre each hindcast

during the cross-validation calculations allowing ho overlap between the calibration and validafieriods.

2.2 Defining the spring flood

In previous works the spring flood period has ofberen defined in terms of calendar months e.g. Maye-July (Nilsson et
al., 2008; Foster and Uvo, 2010; Arheimer et @112 Olsson et al., 2016; Foster et al., 2016)s Hefinition of the spring
flood period is not ideal as it does not take iatzount the interannual and geographical variatiorthe timing of the
10 spring flood onset. In this work we propose an iowement to this practice where we define the spfingd to be the
period from the onset date to the end of July.
We define the onset as the nearest local minintlaeirhydrograph before the date after which thewndl are above the 90th
percentile, with reference to the inflows during first 80 days of the current year, for a peribétleast 30 days (Figure
2). For forecasts made after January i.e. thos#germaFebruary, March, April, and May, the missinflow data between
15 the 1 January and the forecast date are filled siitiulated inflow data from the HBV model using eh&d precipitation
and temperatures as input data.
A drawback to this definition is that it is not cprehensive as the end of the spring flood is néihelé according to the
hydrograph but rather by date. The reasons fodabhing the end of the spring flood objectivelg @awofold. Firstly, the
forecast horizon for the ECMWF-IFS is seven monthich means that forecasts initialised in Januaay mot encompass
20 the entire spring flood period, and secondly, ausbland objective definition of what constitutes #nd of the spring flood
was difficult to realise within the scope of thisnk. Further work is needed to resolve this in aersatisfactory manner.

2.3 Experimental setup

The challenge in this work was to perform a rotemssluation on a limited dataset (35 spring flooti381-2015) while
minimising the risk of unstable or over fitted &tts. Therefore, a leave-one-out cross validafldabOCV) protocol was
25 adopted. Additionally, as it was not practical exalibrate the HBV model before each step of th®©DV process; the
statistical model uses the same periods for trgigie those used to calibrate and validate the HBdain LOOCV is a
model evaluation technique that uses n-1 data gtontrain the models and the data point left suised for validation. This
process is repeated n times to give a validatidasas of length n. This allowed for a more robwstigation with a limited
dataset and to be able to sample more of the viyah the training period than if a traditionahlidation were performed.
30 The second point is especially advantageous fouatiag the statistical model which is especiaknsitive to situations

that were not found within the training period. LO®@ was applied to the individual model chains.
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To assess the relative skill for different leadeinwe evaluate hindcasts issued on thefDanuary (Jan),*lof February
(Feb), ' of March (Mar), T of April (Apr), and f' of May (May) for the spring floods 1981-2015. Teealuation of

performance is done in terms of how well the SF¥biecasted.

2.4 Evaluation

5 As it has been mentioned above, we are interestédei ability of a multi-model ensemble’s ability forecast the SFV at
differing lead-times i.e. forecasts initialised dre first of the month for the months of Januaryotiyh May. It was
suggested by Cloke and Pappenberger (2008) thaa fogorous assessment of the quality of a hydioddgensemble
prediction system (HEPS) it is not only importamselect appropriate verification measures but @lagse several different
measures so that different properties of the fatesidll can be estimated resulting in a more cahpnsive evaluation.

10 The evaluations in this paper are designed to anthedollowing questions:

e Can the forecasts improve on the reference forecemt?

* How often do the forecasts perform better tharrdifierence forecast?

« Are the forecasts better at capturing the interahwmariability than the reference forecast?

« Are the forecasts better at discriminating betweents and non-events than the reference forecast?
15 * Are the forecasts sharper than the reference fsteca

« Are the forecasts more sensitive to uncertaintyttheareference forecasts?

The verification measures used to answer thesdignesre described below and summarised in Table 1

Mean absolute error skill score (MAESS)

20 One of the most commonly published scores, evemet@mmended method, when evaluating HEPS is theéntmus rank
probability score (CRPS, Hersbach, 2000). Howesieice we have a limited number of data points, @8lyross validated
hindcasts per subbasin, and that the CRPS comgasteibutions we deemed its use unsuitable for wWosk. We chose to
use the mean absolute error (MAE) to evaluate gérferecast performance as the CRPS collapsesedVIAE for
deterministic forecasts (Hersbach, 2000). Thereligrassuming the ensemble mean to be the detetimifisecast a MAE

25 skill score (MAESS) can be expressed as

MAESS =1 — MAE, ¢}
MAE,

wheref andr denote forecast and reference respectively M is defined as
SFV;' — SFV

MAE = Z ‘ SFVY @

wherey denotes yeam denotes the total number of years, andenotes observations. The MAESS has a range betwee

negative infinity and 1 with positive values indiog skill over the reference forecast and a valuene a perfect forecast.
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Frequency of years (FY)

In their work Olsson et al. (2016) proposed Fa$ a complimentary performance measure to scomdsas the MAESS.
They are complimentary in that the MAESS is a measf@ihow much better the forecast is than thereefee forecast while
FY*is the frequency or how often the forecast is lbette how often the absolute error is lower."B¢ores range from 0 to
100% where values above 50% indicate that the rmdtiel forecast has skill over the reference faeday assuming the

ensemble mean to be the deterministic forecasti&¥xpressed as

100 ©
FY+=T Hy

y=1
whereH is the Heaviside function defined by
0, AbsEY < AbsE}
HY =
1, AbsEY > AbsE]

whereAE is the absolute error.

Nash-Sutcliffe model efficiency (NSE)

The NSE (Nash and Sutcliffe 1970) is a normalizadistic that determines the relative magnitudéhefresidual variance
compared to the measured data variance. The NS& taage fromoee to 1 with 1 being a perfect match and values alfbve
denoting that the forecast has skill over climaggloFor this work it can be interpreted as how vtie## forecasted SFV
matches the observed SFV year on year and as seomiplimentary to MAESS and FYBy assuming the ensemble mean

to be the deterministic forecast the NSE can beesged as
By (SFV — SFV?)’

NSE=1- 5
r_.(SFV) - SFV,)

©)

To assess the skill of the multi-model ensembléh vaspect to the reference historical ensembéeditierence in their NSE
is calculated
ANSE = NSE; — NSE, (6)

whereANSE > 0 indicates that the multi-model forecast ial over the reference forecast.

Relative operating characteristic skill score (ROCS)

The ROCSS is a skill score based on the area uhdemurve (AUC) in a relative operating charactaridiagram. ROCSS
values below 0 indicate the forecast has no skiffr@limatology while values over O indicate skilith 1 being a perfect
forecast. The ROC diagram measures the abilithefforecast ensemble to discriminate between anteral a non-event
given a specific threshold. For this work the ROQ&8e calculated for the upper tercilex(%6.7%), middle tercile (66.7%

< X < 33.3%) and lower tercile (x < 33.3%). These scagtimate the skill of ensemble forecasts to distish between

8
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below normal (BN), near normal (NN) and above ndr(@&) anomalies. Hamill and Juras (2006) defihe ROC skill

score to be
ROCSS = 2 * AUC — 1 &)

where AUC is the area under the curve when mappingteis against false alarm rates

= (FAR, — FAR,_,)(HR, + HR,_,)
AUC=Z Y y_12 y vl )

y=1
where FAR = false alarm rate and HR = hit rates€&allarms are defined as both the false positidefalse negative
5 forecasts, or type | and type Il errors. Hits aeéiried as correctly forecasted events.

Inter quartile range skill score (IQRSS) and uncerainty sensitivity skill score (USS)
Sharpness is an intrinsic attribute to HEPS, giangindication of how large the ensemble spreaffasecasts ensembles
that are too spread are overly cautious and havieli value for an end user due to the uncertafithe true magnitude of
10 the SFV, conversely ensembles that are not spreaugh are overly confident and may not be a trpeeisentation of the
uncertainty thus giving the end user false configeim the forecast (Gneiting et al., 2007). Fos thork the sharpness is
computed as the difference between th® &&d 2% percentiles of the forecast distribution or thesirquartile range (IQR).
The IQRSS is skill score based on the IQR andnieasure of how much better i.e. sharper the foreceemble is over the
reference ensemble, values above 0 indicate thdbtiecast ensemble is an improvement over theerede ensemble. The
15 IQRSS is expressed as
IQR;
IQR,
As mentioned above, sharpness can be misleadimgellAdesigned and calibrated ensemble should gigeuser an idea of

IQRSS =1 —

€))

the uncertainty of the forecast conveyed throughrétative sharpness of the ensemble. Thus itvislithat the IQR should

be positively correlated to the absolute forecasirea larger (smaller) IQR would indicate to tiger that there is a larger

(smaller) uncertainty in the SFV forecast. The utanty sensitivity skill score (USS) can be expess as the skill score of
20 the Spearman rank correlations between the IQRtenebsolute deterministic error

_(r=rp)
(1 - pr)
wherep is the Spearman rank correlation.

USS (10)

2.5 Uncertainty estimation

Due to the limited sample size of data availabléhia work a bootstrap approach is employed tarext# the verification
measures and determine whether they are statigtisanificant. Again due to data limitations a reocircumspect

25 significance level is prudent due to the coursemmgadf the resulting statistics, we chose to setsilgnificance level at 0.1
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resulting in a 90% confidence interval between Sfleand 9%' percentiles. The cross-validated hindcast ensembtze
sampled, allowing for repetition, 10000 times tdcutate the verification measures. We define alte@sube statistically
significant if the &' (95" percentile of the bootstrapped ensemble beintuated does not overlap the™&") percentile

of the bootstrapped reference ensemble.

5 2.6 Study area and local data

The subbasins sub-basins used in this work aréetivinto three groups using the clusters defineBdster et al. 2012 and
Foster et al. 2016, namely clusters, &, and $. Sweden was divided into five regions of homogemsestreamflow
variability; three clusters located in the north@arts of the country, where snow dominates therdigdical processes
(northern group), and two located in the southart,pvhere rain dominates the hydrological procegseuthern group).
10 For the purposes of this work we are intereste¢ amithe northern group. The numbers of subbaserseach of these
clusters are 25, 19, and 40 respectively. The $héncluster's designation denotes that the hydicédgegimes are
dominated by snow processes and the superscripésthe relative strength of the signal from thesecpsses in the
hydrological regime. During the winter months mofthe precipitation that falls within these basis stored in the form of
a snowpack and does not immediately contributdremamflow. During the warmer spring months, whea tmperatures
15 rise above freezing, these snowpacks begin to typlically around mid- to late-April, which resulis a period of high
streamflow commonly referred to as the spring flodée focus on forecasts of the accumulated stremmfiolume during
this period or spring flood volume (hereafter SFV).
For this work, 84 subbasins from seven hydropoweducing rivers in northern Sweden (Figure 3) wased to for the
development and testing of the multi-model protetyphese are those used in the current operatsmasdonal forecast
20 system at SMHI plus the two unregulated subbassesl by Olsson et al. (2016). Daily reservoir inflofer each subbasin
are available from the SMHI archives starting frd861 to the end of the last hydrological year;dhé used in our work
are for the period 1961-2015. These inflows arévddrby adding the local streamflow to the changeeiservoir storage
then subtracting the streamflow from upstream saisin
Qin = AS + Qiocar = Qupstream 11
Missing inflow data were filled by a multiple lineaegression approach using simulated inflows fa subbasin and
25 observations from the surrounding subbasins asigioes. Of the 84 subbasins used in this work 68 less than 1%
missing data (50 of these had no missing datay, liad 1-10% missing data, five had 20-30% missiata,dfour had 30-
40% missing data, and three had 61%, 63% and 71$%ingi data respectively. As these subbasins asgtapthe current
operational forecast system they were includedhénstudy despite some of them having a significaiesing data fraction.
The average NSE for the data used for filling wa®Qqthe NSE scores for the intervals above wes&,®.75, 0.77, 0.61,
30 and 0.73 respectively) which suggests that thisagah is acceptable.
Daily observations of precipitation and temperatdata used in this work were obtained from the PVHiataset from
SMHI (Johansson, 2002). The PTHBYV dataset is a dxgfidded observation dataset of daily precipitagnd temperature
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data that has been created by optimal interpolatitin elevation and wind taken into account. Théata are available from
1961 to the present.
Table 2 gives a summary of some basic basin claisiits and statistics regarding the SFV as wefalected performance
measures for the HBV rainfall-runoff model for thebbasins in each cluster. Although the rangesibibasin areas in the
5 different clusters are similar, except for the main in $, the SFV statistics increase with each clustermatbeking from
cluster $ to S. This is due to the effects that elevation anitudé have on how much snow processes dominate the
hydrological regimes in each cluster. Subbasindiater $ are typically at a latitude and or elevation thiamse in clusters
& and §, similarly the subbasins irf @ith respect to those irf SThe ranges in the NSE and the relative MAE inthbt in
general the HBV model is adequately or well caliédafor most subbasins, however there are someasiutsbfor which the
10 HBV model appears to not be well calibrated andwbich there is some scope for improvement. This lma somewhat
misleading as these data are a function of thiiéereint observations and as such can be subjexiise and uncertainties.

2.7 Driving Data
Teleconnection indices

This work uses monthly indices of the Arctic Ostitbn and Scandinavian Pattern collected from thmate Prediction
15 Center (Climate Prediction Center, 2012) for thequeOctober 1960 to May 2015.

Seasonal data

The ECMWF seasonal forecast system model from sydtéMolteni et al., 2011) is the cycle36r4 versaffECMWF IFS
(Integrated Forecast System) coupled with a 1°ieersf the NEMO ocean model. The seasonal forecsta the
ECMWEF IFS were used in the following two differdntms, a field of seasonal monthly averages astitgpthe statistical
20 model and individual grid points of daily data foput into the HBV model.
The seasonal forecast averages are the seasonas foeeach ensemble member of the different ptediovhich had a
domain covering 75°W to 75°E and 80°N to 30°N (Feg@) with a 1°x1° resolution. For each predictalyathe first 15
ensemble members were used in this work. Thisdause the number of ensemble members is limit&§ for the hindcast
period while the operational seasonal forecastrahkehas 51 members. The predictors consideretismart of the work
25 were the following: 850 hPa geopotential, 850 hétaperature, 850 hPa zonal wind component, 850 hdtalional wind
component, 850 hPa specific humidity, surface $émdieat flux, surface latent heat flux, mean saell pressure, 10m
zonal wind component, 10m meridional wind compon2nt temperature, total precipitation.
The daily time series data are the ECMWF IFS seddorecasts of daily values of temperature (2nig the accumulated
total precipitation (pr). These data have a resmiubf 0.5°x0.5° and spans a period from 1981 tb528nd had a domain
30 covering 11° to 23°E and 55° to 70°N.

11
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3 Results

The following section outlines and discusses tlselte from the cross-valuated hindcasts of theergfit approach’s ability
to hindcast the SFV for the period 1981-2015. Rhist evaluation is done for each system usingatidlogy as a reference
to assess their general skill. After that the mskiéful of the two multi-model ensembles is evakdhtusing the HE as a
5 reference to assess any improved skill and thuedddlue of the multi-model ensemble approach twercurrent HE
approach. The analysis is carried out on the ovafidated hindcasts of the SFV initialised on tfeof January, February,

March, April, and May.

3.1 Evaluating the different forecast systems agas climatology

The different forecast approach’s general skilptedict the SFV was estimated using MAESS, theill &kreproduce the

10 interannual variability was estimated using NSHj inally the skill to discriminate between belowBNN, and AN SFVs
is estimated using ROCSS. Table 3 gives an overofetivese scores across all subbasins and cldsteesch initialisation
month as well as the percentage of subbasins wherhindcasts outperformed climatology, the valnelsrackets are the
percentage of subbasins where the hindcasts ootpefl climatology and the result is statisticalfyngficant.

The performance measures for each of the threeagpipes are positively related to the relative tgmif the hindcasts i.e.

15 hindcasts initialised in any month are generallyran@ess) skilful than the hindcasts initialisedtiwe preceding (following)
months. This can be expected as the further awtisnenfrom the spring flood that the hindcast isiafised, increasing lead
time, the less the initial hydrological conditiocsntribute to predictability and the more uncertiia forcing data become
(e.g. Wood et al., 2016; Arnal et al., 2017).

With respect to general skill and the ability tgprae the interannual variation shown by the obeions, the prototypes

20 tend to perform the better than HE with M&ypically having the best performance. This iseesally so when we consider
the percentage of the subbasins where this imprpeefbrmance is statistically significant. The dsgtween HE and the
two prototypes in MAESS, NSE, and percentage obasims with improved performance over climatologgds to get
smaller as the season progresses while the gdmipdrcentage of subbasins where improved perfarennstatistically
significant appears to grow, at least early indeason.

25 However, if we turn our attention to the forecasitslity to discriminate between BN, NN, and AN S&then the HE holds
an advantage over the two prototypes especiallywitheomes to identifying NN events from all foretanitialisation dates
and, to a lesser extent, BN events for the latexcfasts. The proposed prototypes are better difideg AN events for all
forecasts except those initialised in May whereahdity of the HE is comparable. The advantageldiged by the HE to
identify NN events is to be expected due to itsnatological nature while the advantage with respedBN events can

30 probably be attributed to a cold bias in the histdrforcing data caused by climate change. The diaelative skill by the
prototypes in the later forecasts is in part duthéir sharpness being worse than the HE in tlee fatecast (Section 3.3).

12
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From these results we are now able to make annmdrchoice as to which prototype to proceed witlg,v(hereafter
referred to as the prototype unless stated othejwiiswe take all the results and rank the perfomoes of the three methods
then the prototype would rank first followed closbly ME,4sand HE would rank third. However, all three forgtamethods

have been shown to be skilful at forecasting the 8lBeit a naive skill.

3.2 Evaluating the prototype against HE

The frequency at which the prototype outperforms idEestimated using FY its general skill to predict the SFV is
estimated using MAESS, its skill to reproduce thierannual variability is estimated usindSE, and finally its skill to
discriminate between BN, NN, and AN SFVs is estadatisingAROCSS. Figure 4 shows the bootstrapped scores for
MAESS, FY+, andANSE calculated for each hindcast initialisation thofor the subbasins in clustef. The medians of
these bootstrapped scores are presented as ar&mtagmmary statistics are documented above gtegnam. On the left-
hand side are the max, mean, and min scores focltiséer i.e. the subbasins with the highest amek$d scores and the
mean for the basin. On the right-hand side ar@éneentage of subbasins where the prototype ooimee] HE, shows skill
over HE(n},), the percentage of subbasins where the prototypessstatistically significant skill over H&a¢ ), and the
percentage of subbasins where HE statisticallyifidgnt skill over the prototypéng ;).

FY*

The prototype has a FY> 50% for the majority of the subbasins in clus&rranging from 98% of the subbasins with an
mean FY of 61% for hindcasts initialised in January down78% of the subbasins and mean’Ff 56% for hindcasts
initialised in May. These figures are similar, exelittle higher, for subbasins in clusteérghile somewhat lower for cluster
S'. The number of subbasins for which the prototyae 4 statistically significant FY> 50% ranges between 10% and 28%
in cluster $ (§= 5-37%, and 5= 12-16%). While the prototype has a statisticaltynificant FY" < 50% (performs worse
than HE more often than not) for 5% of subbasinshiadcasts initialised in April in cluster &nd 4% of subbasins in
hindcasts initialised in May for clustet.S

MAESS

The prototype shows skill at improving the volumeoe hindcasted by HE for the majority of the sukiba, ranging
between 65% and 100% of the subbasins in clusté®’S 74-95%, and 'S= 64-80%). This improvement tends to be largest
for hindcasts initialised in January, mean MAES®4R2 ($ = 0.11, and 5= 0.04), and lowest for those in May, 0.04%S
0.05, and &= 0.02). The percentage of subbasins for which MBBS0 is statistically significant ranges betwe&r58%
for all clusters and hindcast initialisations, wehihe percentage of subbasins for which MAESS s<qiatistically significant
are 8% and 4% for hindcasts initialised in Marckl ey in cluster Sand 3% for hindcasts initialised in both April and
May in cluster & These results also show that the prototype glyéras a smaller MAE than HE especially for earlie
hindcast initialisations and again for clustetsisd $.

ANSE
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The prototype shows skill at improving the repréagon of the interannual variability of the obsetlvSFV again for most
of the subbasins, ranging between 63% and 100%hifasins in cluster’$S? = 74-100%, and 'S 76-92%), and the mean
ANSE ranges between 0.06 and 0.33 for subbasinsstec $ (S*= 0.09 and 0.32, and'S 0.06 and 0.15). The percentage
of subbasins for whicANSE > 0 is statistically significant ranges betwdd®% and 63% for all clusters and hindcast
initialisations, while the percentage of subbadims which ANSE < 0 is statistically significant are 4% for toasts

initialised in January, March and May in clustéy &hd 5% for hindcasts initialised in May in clusg.

AROCSS

Figure 5, which has the same information presemtattructure as Figure 4, shows the bootstrag®@CSS for the lower
(BN), middle (NN), and upper (AN) terciles calcw@dtfor each hindcast initialisation month for thelsasins in cluster’s
The prototype shows skill over HE to discriminagivbeen BN events and non-BN events for the majafitthe subbasins
in cluster $ for hindcasts initialised in January and Febru@8#6 and 68% respectivelyXS 63%, 53% and 'S= 68%,
32%) but this drops to less than half the subbasifendcasts initialised thereafter. The me@e€ROCSS ranges between -
0.04 and 0.14 in cluste %S = -0.03 and 0.05, and"$ -0.06 and 0.02) with only statistically signéit results being
found in favour of the prototype for 15% and 5%sobbasins for hindcasts initialised in Januarylirsters S3 and S2
respectively and in favour of HE for 4% of subbasior hindcasts initialised in April in clustet.S

Out of the three terciles the prototype shows daestl skill over HE with regards to discriminatingtlseen NN events and
non-NN events. The percentage of subbasins forhwifie prototype outperforms HE ranges between 2686653% (8 =
37-63%, and 5= 24-60%) with mealROCSS ranges between -0.07 and 0.31=(£.06 and 0, and'$ -0.05 and 0.02)
and no statistically significant results for anyblasins, both in favour or against the prototype.

The prototype shows the best performance whenidisrating between AN events and non-AN events. péeentage of
subbasins for which the prototype shows skill ol in the upper tercile ranges between 85% and §8%hindcasts
initialised in the first three months{S 47-89%, and ‘S= 48-84%) then 57% and 25% for the last two mongispectively
(S = 63% and 53%, and'S 80% and 32%). The mea\ROCSS ranges between -0.02 and 0.3=(%.01 and 0.14, and
St = -0.01 and 0.07). The percentage of subbasintuter $ for which AROCSS > 0 is statistically significant are 18%,
10%, and 3% for hindcasts initialised in Januargbrigary, and March respectively, and 16% for fasecanitialised in

January and February in clustér Shere are no statistically significant resultgamour of HE.

3.3 Analysis of the forecast ensemble sharpness

Figure 6 shows the cross validated hindcasts byth®type initialised in January (top panel) andyMbottom panel) for
Géuta-Ajaure, a cluster’Subbasin in upper reaches of the Ume River systém total ensemble spread (the whiskers) of
the forecasts initialised in January remains sona¢whbnsistent from year to year while the IQR (thes boxes) displays a
more pronounced variation. The lack of variationatal spread is primarily the result of the cliolagical nature of the HE
component which tends to have a larger and morsistemt spread than that for DE and SE at longet fienes. The greater
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variation exhibited by the IQR is mostly due to tlrae’ forecast nature of the DE and SE componéntie multi-model
ensemble. If we turn our attention to the forecastilised in May we see a more pronounced vimmin both the total
spread and the IQR. This is because the spred iDE and SE components is now comparable to dad rger than the
spread in the HE component. Table 4 shows how@#SIS drops as the spring flood season approachws hlso be seen
5 in figure 6 that the ensemble median (red linep@e responsive to the year on year variation i BFthe May forecasts
than in the January forecasts. This is becauseethtve contribution to predictability by the i@t conditions is greater than
the contribution from the meteorological driverssgr to the spring flood period. These patterngyarerally true for both
the forecasts initialised in the intermediate merahd for the other subbasins.
If we assume that the more sensitive an ensemble isicertainty the more the forecast sharpnedsvaily. We would
10 therefore expect the USS values to generally béiypms.e. that the forecast sharpness of protoiggeetter correlated with
the forecast error than for HE. This is largelysanped by the USS values in Table 4 where onlyetivaues are negative,
the January forecast in clustet @&hd the April forecasts in both clustersaé®d $, and even then not by very much. This
suggests that at least one but probably both obteeand SE ensembles are responsible for this inepnent due to their
variability. There is a general decreasing trenth\iitialisation date in the USS values in clust&r and $ (if we ignore
15 the value for January if’Swhile the values are more consistent in clusfe’A the uncertainty correlation values for both
the HE and the prototype are significant at thel@vel (not shown for brevity) suggesting that betthibit sensitivity to
uncertainty to some extent, however prototype igegaly more so which should instil more confideoethe forecast in
the users.
The IQRSS values show that the prototype tendsddyze sharper forecasts than HE early in the selasbthis reverses
20 itself in forecasts initialised in March for clust®' and those initialised in April for the other clest. This is probably due
to the climatological nature of the HE having le§san impact on forecast sharpness as the indi#is date approaches the

spring flood period together with the uncertainaesl biases in the other individual ensembles ekatieg the situation.

4 Conclusions

In this paper we present the development and etiafuaf a hydrological seasonal forecast systentopype for predicting
25 the SFV in Swedish rivers. Initially, two versioobthe prototype, MEisand MEgs Wwere evaluated together with the HE

using climatology as a reference to both help $eldtch version of the prototype to proceed wittd da get a general

impression of their skill to forecast the SFV. Téedter the chosen prototype was evaluated usinga$i& reference and

finally the sharpness of the hindcast ensembles wealysed.

Both multi-model ensembles show skill at forecagt®#V with respect to forecast error, ability tpn@duce the interannual
30 variability in SFV, and the ability to discriminabetween BN, NN, and AN events. At the least thayehcomparable skill

to the HE when using climatology as a referenceth@ftwo proposed prototypes NMEshowed the most skill and was

therefore chosen for the prototype. The prototypehown to exhibit skill over the HE for most oftkubbasins and
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initialisation dates, although this skill is dimshied when it comes to the discrimination betweamtss The prototype is at
worst comparable to the HE and at best clearly ns&ikul. This means that for the user the protetygfers a seasonal
forecast of the SFV that shows improved forecastieguracy, better event prediction for early fostsaand higher
sensitivity to uncertainty. On average, over abitssins and initialisation dates, the prototypehi to reduce the forecast
5 error by 6% and outperforms the HE 65% of the tithés hoped that these improvements will make fivecasts more
actionable for the users. The prototype was potaperation as a beta product at SMHI in Januaty 20
Looking forward, future studies need to addressgtnestions raised by Zhao et al. (2017) regardiegbias adjustment of
meteorological seasonal forecast data using geamg@pping. Results from this study show that wttike seasonal forecasts
were bias adjusted the performance of the DE wsapgiointing, although it still had value within thrilti-model setting
10 suggesting that it has more of a modulating rolltbe other modelling chains as opposed to contrigudlirectly to
predictability.
The AE approach did not exhibit the promising perfances found by Olsson et al. (2016) using citmdgpattern analysis
to select the analogues. A part of the explandforthis poor performance is that the teleconnectidormation used to
select the analogues only partially span the feliqrls Foster et al. (2016) identified, from OctdNevember to the
15 beginning of the spring flood. The missing dataldde filled by making forecasts of the indices.otfrer approach would
be to revisit the circulation pattern analysis lbaapproach now that data inhomogeneity issuesaagely addressed by the
new ERAGS reanalysis data that is becoming availéfitp://climate.copernicus.eu/products/climatenedgsis). Yet another
approach would be to use GCM forecasts to selecatialogues (e.g. Crochemore et al., 2016).
Lastly, the post processing of model outputs (eugatero et al., 2017) has been shown to be beéalefice incorporation of
20 a simple approach like linear scaling is possillly thost appealing due to its ease of implementaticen operational

environment.
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Figure 1. Schematic of the multi-model forecast sysm. The three individual model chains that are inalded in the multi-model are
(from left to right) the dynamic model chain (red ines), the statistical model chain (orange linesgnd the historical (dark blue
lines) or analogue (light blue lines) model chairiThe dashed boxes labelled (a) and (b) indicate theagis of the system that have

5 non trivial changes from the multi-model describedn Olsson et al. (2016).

20



Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-588 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System

Discussion started: 23 October 2017 Sciences
(© Author(s) 2017. CC BY 4.0 License.

Discussions

200 - —

150 | 4

_|)

Q(m
T
1

50 4

0 1 | | 1 1 | Il Il
20 40 60 80 100 120 140 160 180 200

Days since 1°' January
Figure 2. Schematic of how the spring flood is defed. The spring flood is the period between the onsand the last day of July.

The hydrograph from which the spring flood period isto be derived (blue line), the onset date (red lg), and the 98' percentile of
the inflow for first 80 days (dashed line).

21



Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-588 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Discussion started: 23 October 2017 Sciences
(© Author(s) 2017. CC BY 4.0 License.

Discussions

Table 1. The validation metrics used to evaluate thmulti-model performance. The threshold for skill is50 for FY* and O for all
the other metrics.

Name Equation Description

Measure of the model’s general

MAESS Mean absolute MAESS = 1 MAE; performance; it quantifies the relative
error skill score IAESS) - MAE, forecast error against a reference
forecast.

100+
FY* = —Z w,
n o

whereH is the Heaviside function defined by

Measure of the model’s general

Frequency of Years{™) performance; it quantifies how often the

0, AE} < AE?

y = I forecast outperforms a reference forecast.
1, AE} > AE}
AE is the absolute error.
Measure of the model’s general

Nash-Sutcliffe efficiency NSE — 1 ;,'=1(Sszbs - SFVy)2 performance; it quantifies the model’s
(NSE) ;=1(SFVibs — SFVobs)2 residual variance against a reference

forecast's variance.

ROCSS =2+ AUC -1,

where AUC is the area under the curve Measure of the model’s probabilistic

Relative operating performance; it quantifies the model’s

R S (FRY — FR*™)(HRY + HRY™Y)
characteristic skill score AUC = Z > ,
y

ability of the discriminate between an
=1

(ROCSS event and a non-event given a specific
whereFR s the false alarm rate aitR is the threshold.
hit rate.
. . IQR, Measure of the forecast sharpness, it
Interquartile range skill IQRSS =1 — . . .
IQR, quantifies the relative spread in the
score (QRSS) . . ) )
where IQR is the interquartile range. forecast against a reference forecast.
Uss (pr — Py) Measure of the model’s sensitivity to
Uncertainty sensitivity skill T (1-p)’ uncertainty; it quantifies the correlation
score USS wherep is the Spearman rank correlation  between forecast sharpness and absolute
between théQR and absolute error. error
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Table 2. Basic information on the study area includig overall performance of the HBV model for the subasins in each cluster.

Cluster Basin SFV HBV

Area  elevation (m®x 10%) NSE rMAE

(km?) (m) min mean  max (%)

min 233 135 0.21 0.42 0.82 -0.47 3.9

1 median 1827 282 1.27 3.23 5.30 0.74 11.2
max 6258 584 1895 34.36 44.36 0.95 445

min 184 429 0.40 0.81 1.68 -0.69 6.2

2 median 1166 598 2.49 3.80 4.77 0.66 10.2
max 4272 666 9.99 13.56 18.17 0.83 70.1

min 270 212 0.67 1.12 1.54 0.22 3.8

3 median 1309 586 2.96 5.41 7.95 0.74 7.3
max 13177 776 19.39 37.76 48.50 0.92 20.0
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Figure 3. Map showing (left) the domain for the prelictors used in the SE modelling chain, (right) thedomain of the seasonal
forecast data used in the DE modelling chain, and ¢hlocation of the forecasts subbasins used in thigork. The subbasins shown in
blue belong to cluster $, those shown in green belong to clusteSand those shown in red belong to cluster’s
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Table 3. Bootstrapped (N = 10000) skill scores anéhé number of subbasins, as a percentage, where tREEPS performs better
than climatology averaged over all 84 subbasins. The" values in brackets show the percentages of the susins for which these
scores are statistically significant at the 0.1 l&V.

MAESS NSE ROCSS
LT MT uT
n' (%) n" (%) n' (%) n' (%) n' (%)
Jan -0.09 25 (1) 024 17 (0) 023 90(21) 0.7 70(0) 010 68(11)
Feb 0.00 51(6) -0.07 42 (5) 041 99(52) 0.11 69(1) 026 92(27)

HE Mar 0.09 80 (17) 013 77(23) 055 100(87) 0.10 73(5) 0.44 99 (56)
Apr  0.15 85 (35) 022 80(35) 062 100(92) 0.17 85(7) 051 100 (75)
May 0.21 90 (49) 0.32 90(49)  0.68 100(98) 0.23 92(10) 0.61 100 (92)

Jan 0.00 50 (2) 0.00 55 (1) 0.31 99(31) -001 48(0) 0.20 80(18)
Feb 0.06 73(23) 011 76(21) 039 99(51) 0.08 74(0) 036 96 (42)
ME.s Mar 0.11 86 (25) 020 87(36)  0.47 100(76) 0.07 61(4) 0.47 100 (60)
Apr 020 95 (62) 0.32 94(64)  0.60 100(90) 0.16 83(5) 0.52 100 (79)
May 0.22 96 (67) 0.36 98(68)  0.66 100(94) 0.18 82(8) 0.57 100 (76)

Jan 0.02 60 (6) 0.03 63 (5) 0.32 100(31) 0.00 51(0) 022 83(24)
Feb 0.08 80 (25) 014 85(29) 041 99(57) 0.07 69(1) 038 99 (44)
MEns Mar 0.14 90 (32) 024 92(45) 051 100(81) 0.07 61(5) 0.48 100 (64)
Apr 019 94 (56) 0.32 93(62) 0.60 100(90) 0.17 88(5) 0.54 100 (80)
May 0.24 98 (74) 039 96(76)  0.67 100(94) 0.18 85(10) 0.60 100 (88)
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Figure 4. Bootstrapped (N = 10000) FY+, MAESS, andNSE scores for MEgs with respect to HE for all subbasins in the cluster
s®. Each subplot is a histogram of the medians of thkeootstrapped validations scores for each initialigon month. Above the
histograms are six related statistics: (left of theed line) the maximum, mean, and minimum of the viidation scores shown in the
5 histograms; (right of the red line) percentages ofhe subbasins where M performed better than HE (n},), the percentage of

subbasins where MEgs performed better than HE (ng ;) at the significance level 0.1, and lastly the peentage of subbasins where

ME ,¢s performed worse than HE fg4) at the 0.1 level.

26



Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-588 Hydrology and

Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Discussion started: 23 October 2017 Sciences
(© Author(s) 2017. CC BY 4.0 License. Discussions
(OmOoM
100 Jan_ 100 F b* 100 L 100 Apr 100 M“{
max: 0.31 [, 95% max: 0.1 nd 68% max: 0.08 |n 15% max: 0.08 [n, 35% max: 0.04 [, 43%
Ry } -
B 75 | mean:0.14 n; \15% 75 | mean:0.01 n‘; 11 0% 75 | mean:-0.0 n:) 0% 75 | mean:-0.01 n(; 11 0% 75 | mean:-0.01 n; 0%
£ . . X . .
= § 50 {min: -0.09 n[') 11 0% 50 fmin: -0.22 (') 11 0% 50 fmin: -0.1 n;) 11 0% 50 fmin: -0.12 n(', 1:0% 50 {min: -0.19 ;, - 0%
58 3 . . . .
zZ T
S& s 25| 25 25 —‘ 25 J
0 0 0 0 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
100 . 100 [ - 100 - 100 - 100 -
max: 0.24 |n, :23% max: 0.22 |n,, :33% max: 0.17 - |n_, :35% max: 0.23 |n - 57% max: 012 |n, :35%
o - abs s s s abs
5 & 75 | mean:-0.07 n:, - 0% 75 | mean:-0.05 n:) - 0% 75 | mean:-0.04 n(; 0% 75 | mean:0.01 n(; 0% 75 | mean:-0.02 n:) 0%
5% . . X . .
Z § 50 fmin: -0.28 [ng = 0% 50 /min: -0.25 [ng = 0% 50 {min: -0.22 [ng = 0% 50 imin: -0.2  [ng,:0% 50 fmin: -0.17 fn - 0%
£ . . . . .
- o
ol s R W S |
0 13 0 0 0 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
100 n 100 n 100 n 100 . 100 n
max: 0.34 [, 85% max: 025 |n, 98% max: 0.16 |n, 85% max: 013 |n 57% max: 0.08 [n, 25%
o= s ' s abs s s
@ < 5 mean:0.13 n; v 18% 75 mean:0.13 n:) v 10% 75 mean:0.07 [n, 3% 7 mean:0.01 n; v 0% 75 mean:-0.0! ng v 0%
5% 0. 0. 0. o. 0.
= § 50 imin: -0.22 [, 0% 50 tmin: -0.05 l: 0% 50 fmin: -0.05 [m, 0% 50 fmin: -0.09 fn, 0% 50 {min: -0.18 {fn, 0%
52 . . . . .
5& 25 H:H] 25| 25 25 25
0 — 0 = 0 D 0 0 H
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
AROCS AROCS AROCS AROCS AROCS

Figure 5. Bootstrapped (N = 10000AROCSS for the lower, middle, and upper terciles beteen the ME,4s and HE for subbasins in
the cluster $. Each subplot is a histogram of the medians of thieootstrapped validation score’s ensembles for eadhitialisation
month. Above the histograms are six related statiats: (left of the red line) the maximum, mean, andninimum of the validation

5 scores shown in the histograms; (right of the redrie) percentages of the subbasins where ME performed better than HE (n},,),
the percentage of subbasins where Mig performed better than HE (n¢,) at the significance level 0.1, and lastly the peentage of
subbasins where MEgs performed worse than HE fg4) at the 0.1 level.
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Figure 6. The cross validated hindcasts of the SF\bf a subbasin in cluster $ made by MEs (boxplots) together with the

observed SFV (black Iinezl. The box plots represenhe entire forecast ensemble, the red lines repregethe ensemble medians, the
blue boxes the 28 and 75" percentiles (IQR), and the feelers represent thé0and 100" percentiles.
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Table 4. Bootstrapped (N = 10000) USS and IQRSS fME ,4s using HE as a reference. All values that are in bdlare statistically
significant at the 0.1 level.

uss IQRSS
Jan Feb Mar Apr May Jan Feb Mar Apr May
o SS 0.21 0.04 0.02 -0.02 0.00 0.01 0.05 -0.02 -0.08 -0.18
n"(%) 80(16) 64(0) 56(8) 48(4) 52(8) 56 (24) 72(20) 40(8) 16(4) 16(4)
@ SS -0.05 0.17 0.07 -0.10 0.17 0.01 0.06 0.05 -0.13 -0.15
n"(%) 48(4) 80(4) 60(4) 40(0) 68(4) 52 (36) 68(40) 64 (16) 16 (4) 12(0)
g SS 0.05 0.06 0.11 0.07 0.06 0.09 0.08 0.02 -0.05 -0.03

N (%) 60(12) 65(10) 65(15) 58(10) 60 (12) 70 (52) 80 (48) 60 (25) 32(8) 48 (18)
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