## Suppliment of The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

5 K. Foster<sup>1, 2</sup>, C.B. Uvo<sup>2</sup>, J. Olsson<sup>1</sup>

<sup>1</sup>Research & Development (hydrology), Swedish Meteorological and Hydrological Institute, 601 76 Norrköping, Sweden <sup>2</sup>Department of Water Resources Engineering, Lund University, Box 118, 221 00 Lund, Sweden

1

Correspondence to: Kean Foster (kean.foster@smhi.se)



Figure 1. A scatterplot of the MAESS vs  $\Delta$ NSE scores for the different combinations of the different individual modelling chains. The shaded quadrants denote the respective areas of skill for the different scores.



Figure 2. Bootstrapped (N = 10000) FY+, MAESS, and  $\Delta$ NSE scores for ME<sub>hds</sub> with respect to HE for all subbasins in the cluster S<sup>1</sup>. Each subplot is a histogram of the medians of the bootstrapped validations scores for each initialisation month. Above the histograms are six related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the histograms; (right of the red line) percentages of the subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>abs</sub>), the percentage of subbasins where ME<sub>hds</sub> performed worse than HE (n<sup>-</sup><sub>0.1</sub>) at the 0.1 level.





Figure 3. Bootstrapped (N = 10000) FY+, MAESS, and  $\Delta$ NSE scores for ME<sub>hds</sub> with respect to HE for all subbasins in the cluster S<sup>2</sup>. Each subplot is a histogram of the medians of the bootstrapped validations scores for each initialisation month. Above the histograms are six related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the histograms; (right of the red line) percentages of the subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>abs</sub>), the percentage of subbasins where ME<sub>hds</sub> performed worse than HE (n<sup>-</sup><sub>0.1</sub>) at the 0.1 level.



Figure 4. Bootstrapped (N = 10000)  $\Delta$ ROCSS for the lower, middle, and upper terciles between the ME<sub>hds</sub> and HE for subbasins in the cluster S<sup>1</sup>. Each subplot is a histogram of the medians of the bootstrapped validation score's ensembles for each initialisation month. Above the histograms are six related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the histograms; (right of the red line) percentages of the subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>abs</sub>), the percentage of subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>0.1</sub>) at the significance level 0.1, and lastly the percentage of subbasins where ME<sub>hds</sub> performed worse than HE (n<sup>-</sup><sub>0.1</sub>) at the 0.1 level.



Figure 5. Bootstrapped (N = 10000)  $\Delta$ ROCSS for the lower, middle, and upper terciles between the ME<sub>hds</sub> and HE for subbasins in the cluster S<sup>2</sup>. Each subplot is a histogram of the medians of the bootstrapped validation score's ensembles for each initialisation month. Above the histograms are six related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the histograms; (right of the red line) percentages of the subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>abs</sub>), the percentage of subbasins where ME<sub>hds</sub> performed better than HE (n<sup>+</sup><sub>0.1</sub>) at the significance level 0.1, and lastly the percentage of subbasins where ME<sub>hds</sub> performed worse than HE (n<sup>-</sup><sub>0.1</sub>) at the 0.1 level.