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Abstract. Hydropower makes up nearly half of Sweden’s eiegitrenergy production. However, the distributiohtloe
water resources is not aligned with demand, mogh@inflows to the reservoirs occur during theirgpflood period. This
means that carefully planned reservoir managengentduired to help redistribute the water resoutoesnsure optimal
production and accurate forecasts of the springdfleolume (SFV) is essential for this. The curreperational SFV
forecasts use a historical ensemble approach vtherdBV model is forced with historical observasanf precipitation and
temperature. In this work we develop and test dirmbdel prototype, building on previous work, aehluate its ability to
forecast the SFV in 84 sub-basins in northern Swetdlbe hypothesis explored in this work is that @tiimodel seasonal
forecast system incorporating different modellingpi@aches is generally more skilful at forecastihg SFV in snow
dominated regions than a forecast system thasesilonly one approach. The testing is done usimgseralidated hindcasts
for the period 1981-2015 and the results are etaduagainst both climatology and the current sysitemetermine skill.
Both the multi-model methods considered showed skér the reference forecasts. The version thatbioned the historical
modelling chain, dynamical modelling chain, andistal modelling chain performed better than dtleer and was chosen
for the prototype. The prototype was able to odter the current operational system on average 57%he time and

reduce the error in the SFV by ~6% across all ssibband forecast dates.

1 Introduction

The spring flood period (sometimes referred tohasspring melt or freshet period in the literatusedf great importance in
snow dominated regions like Sweden where hydropoagounts for nearly half of the country’'s eleati@nergy

production (Statistiska centralbyran, 2016). Betw&86-70% of the annual inflows to reservoirs in theer hydropower
producing rivers occur during this relatively shpetriod, typically from mid-April/early-May to thend of July. This means
that the majority of the annual water resourceslabia for hydropower production would only be dable to producers
during this period if it were not regulated througgrefully planned reservoir management. This k@gemanagement is

important as the energy demand is out of phase thighnatural availability of the water resourcesidally demand is
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higher during the colder months when the inflows &wer and vice versa. Therefore the goal is tlistebute the
availability of these resources from the springélgeriod to other times of the year when eledyridemand is higher i.e.
during the colder winter half year, while maintaigia balance between a sufficiently large volumevafer for optimal
production and enough remaining capacity for stfedf risk management (Olsson et al., 2016). Théc#ystrategy for
operators in Sweden is to have reservoirs at ar@0% capacity at the end of the spring flood whighhen ideally
maintained until the beginning of winter. To acld@ethis, operators require reliable seasonal fotdoésrmation to help
them in planning the operations both leading uarna during the spring flood period.

The sources of predictability for hydrological smaasl forecasts come from the initial hydrologicainditions i.e.
information relating to the water stores within tachment (e.g. Wood and Lettenmaier, 2008; Waad. 2015; Yossef et
al., 2013), and also from knowledge of the weathaing the forecast period i.e. seasonal meteoitabdorecasts (e.g.
Bennet et al., 2016; Doublas-Reyes et al., 2103pdVet al. 2015; Yossef et al., 2013). Hydrologisehsonal forecasts
attempt to leverage at least one of these soufga®dictability to make skilful predictions of fute streamflow.

In practice, there are two predominant approacbesnaking hydrological forecasts at the seasonalescdatistical
approaches and dynamical approaches (see Seet. dhd. Sect. 2.1.5 for more regarding how thesecagpes in the
context of this work). Statistical approaches seiliempirical relationships between predictors amutealictand, typically
streamflow or a derivative thereof (e.g. Garen,2t9agano et al., 2009). These predictors can gaegtly in type from
local hydrological storage variables like snow gnoundwater storages (e.g. Robertson et al. 20@8emmberg et al., 2011),
to local and regional meteorological variables.(€grdoba-Machado et al., 2016; Olsson et al., pabdarge scale climate
data such as ENSO indices (e.g. Schepen et aB; Zamir, 2017). All, however, are trying to leage the predictability
in these predictors that originate from one of tive aforementioned sources. Dynamical approachesausydrological
model, typically initialised with observed datatopthe forecast date so that the model stateéasonable approximation of
the initial hydrological conditions, and then fordewith either historical observations (called emble streamflow
prediction or ESP; e.g. Day, 1985) or force it gsaata representative of the future meteorologicaiditions such as
general circulation model (GCM) outputs (e.g. Cextlore et al. 2016; Olsson et al. 2016; Yuan e2@13, 2015, 2016).
Attempts to improve these types of approaches headved bias adjusting the GCM outputs (e.g. Ceounbre et al., 2016,
Lucatero et al., 2017; Wood et al., 2002; Yuanl.e2@l5) or bias adjusting the hydrological modeadputs (e.g. Lucatero et
al., 2017) or a combination of both (e.g. Yuan &dod, 2012). Another dynamical approach is the ‘eslhblished ESP
method (Day, 1985). This is similar to the previcagproach, however instead of using GCM outputdotee the
hydrological model it uses an ensemble of histbdeda. This approach is perhaps one of the magtlwiused methods and
is still the subject of new research. Recent woakehlooked at conditioning the ensembles beforagushem, this
conditioning can be done using GCM outputs (e.@cBemore et al., 2016), climate indices, and catouh pattern analysis
(e.g. Beckers et al., 2016; Olsson et al. 2016s¥bet al., 2016).

The current practice at the Swedish Meteorological Hydrological Institute (SMHI) for seasonal foasts of reservoir

inflows is the ESP approach. It assumes that historobservations of precipitation and temperatare possible
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representations of future meteorological conditiansl are used to force the HBV hydrological modef.( Bergstrom,
1976; Lindstrom et al., 1997) to give an ensembtedast that has a climatological evolution from ithitial conditions. A
number of attempts have been made in the past pooira the performance of these spring flood forscasth limited
success (Arheimer et al., 2010) demonstratingttiege seasonal forecasts are already of a higityqi&lork by Olsson et
al. (2016) on improving these forecasts was ableetdise reasonable improvements using a multi-inegproach. By
combining a statistical approach, dynamical apgrcaa an analogue approach (conditioned ESP) tkeeg able to show a
~4% reduction in the forecast error of the spriogd volume (SFV). The purpose of this paper isdntinue on and update
the work started by Olsson et al. (2016) to devedod evaluate a hydrological seasonal forecastmsygirototype for
forecasting the spring flood volumes in Sweden.

This paper is organised as follows. Section 2 neslithe prototype, including the individual modedios, the experimental
setup, the methods and tools used, and the stedyasnd data used in this work. Section 3 presentsiscusses the cross-
validated evaluation scores for the prototype  fiwith reference to climatology and then with refece to the current

operational system that is in use at SMHI. Secti@oncludes with the main findings and a brief ool for future work.

2 Materials and Methods
2.1 The multi-model system and the individual modéhg chains

In this section we present the modelling approacisesl in this work. These are based on those egloy Olsson et al.
(2016) with some modification to facilitate thegeauin an operational environment. First we brigflgsent the multi-model
prototype (Sect. 2.1.1) followed by a brief ovewief the individual modelling chains used in theltironodel and why we
chose them (Sect. 2.1.2 — 2.1.5). For more infdonategarding the individual modelling chains readare referred to

Olsson et al. (2016) and the accompanying supplemen

2.1.1 The multi-model ensemble (ME)

The prototypes developed in this work builds orapproach first proposed by Foster et al. (20103, later improved upon
and first tested by Olsson et al. (2016). The aitw iadapt their methodology for use in an opematienvironment and then
evaluate the resulting prototype against the ctirogerational system using cross-validated hindcémt 84 gauging
stations in northern Sweden (see Sect. 2.6). Fffereht modelling chains were considered when tpiag the prototype
(Sect. 2.1.2 — 2.1.5). The performances of diffelmmbinations of these four were tested.. A coitdam of all four
modelling chains was not considered as the analoggel chain is a subset of the historical modairth

Figure 1 shows the generalised schematic of the pratotypes, MEys and MEgys (where the subscripts refer to the
individual modelling chains making up each multigad), including where the current methodologiededisignificantly
from those in previous works. These differences diseussed in the relevant modelling chain sectibak®w. The

prototypes are multi-model ensembles of the outfrots the three respective individual modelling iclsa These outputs
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are pooled together rather than using an asymmetrighting scheme due to the lack of data pointstal of 35 spring
flood events (hindcast period was 1981-2015, set. ¢6), from which to derive a robust weightirdheme. The simple
weighting scheme used by Olsson et al. (2016) asted but, other than improving the ensemble sleagmlid not offer an

improvement over the pooling approach.

2.1.2 Historical ensemble (HE)

The historical model chain, the dark blue chaimdtHiom the left in Figure 1, is an ensemble fostaaade by forcing a
rainfall-runoff model with historical observation$ precipitation and temperature. This approadiitisn referred to as ESP
(ensemble streamflow prediction) in the literatbteg we chose not to as we feel our terminology @endescriptive in the
context of this work. This is the current operasibeeasonal forecasting practice at SMHI. The HBM el (Bergstrém,
1976; Lindstrom et al. 1997) is initialized by ugiobserved meteorological inputs (P and T) to faheemodel up to the
forecast date so that the model state reflectscthieent hydro-meteorological conditions. Then, ¢gly all available
historical daily P and T series for the period friira forecast issue date to the end of the forigpgseriod are used as input
to HBV, generating an ensemble of forecasts thatchmatological in their evolution from the initieonditions. The HE is
used as the reference ensemble unless otherwied.sta

The HBV is run one river system at a time and thedeh outputs are later regrouped into three clas{8ection 2.6).
Typically only historical data prior to the foretaste are used to force the model, however tavadtbs a more robust cross
validation all data including for years after therdcast date were used (excluding the year in muestf course).
Unfortunately, the scope of this work did not alléer the recalibration of the HBV model before earbss validated
hindcast. This will potentially inflate the perfoamce of the model for the hindcasts of years thatewused in the
calibration of the model. This will affect the anglie and dynamical model chains too as they alsorpoorate the HBV

model in their setup.

2.1.3 Analogue ensemble (AE)

The analogue model chain, the light blue chairhist to the left in Figure 1, is a subset of the Hiie hypothesis is that it
is possible to identify a reduced set of historigahars (an analogue ensemble) that describes ththevein the coming
forecasting period better than the full historieasemble used in HE. In this work the circulatiattgrn approach used by
Olsson et al. (2016) was omitted due to data awiitha issues making it impractical for operationapplications.
Additionally, their teleconnection approach wasised to take advantage of the findings by Fostel.g2012) and Foster
et al. (2016) where they identified which telecatitn patterns are related to the SFV and for wipehiod of their
persistence prior to the spring flood this conmettis strongest. The teleconnection indices thewtifled are the Arctic
oscillation (AO) and the Scandinavian pattern (S@AJ the periods of persistence for these indegxessed as the index

mean for the identified period, are the seven agldt enonths leading up to the spring flood respetyi.
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The persistence for each teleconnection indexlsulzded from the beginning of the aforementionediqa to one month

prior to the forecast date (a limitation imposeddaya availability), similarly this was done fol ytars in the climatological

ensemble. If the values of these indices are cersitito be coordinates in Euclidean space we defiatogue years to be
those years whose positions are within a distafi@2ounits in the Euclidean space from the positib the forecast year.
The threshold is a compromise between being smallgh ensuring that the climate setup is indeedasino the year in

guestion and being large enough to actually be tabbapture some analogues from the historicalrebkeThe selection of
the analogues is done at the regional scale, tsterl(Section 2.6), and these selections appliethéoassociated sub-
catchments in turn.

Similar to the HE, the analogue method makes ugdmtf prior and later years to the hindcast yeatHe cross validated

hindcasts.

2.1.4 Dynamical modelling ensemble (DE)

The dynamical model chain, the dark red chairhist to the left in Figure 1, is similar to the Hff; adequately initialised
HBV model is forced by an ensemble of seasonalcists of daily P and T from the ECMWF IFS systerfdct. 2.7
Seasonal data). A change to previous work has theibe P and T data bias adjusted first before dpeised to force HBV.
The bias adjustment method used is version of i$teilslition based scaling approach (DBS; Yang gt28110) which has
been adapted for use on seasonal forecast data.iD8%uantile mapping bias adjustment method whesteorological
variables are fitted to appropriate parametricritistions (e.g. Berg et al., 2015; Yang et al., @0For precipitation, two
discrete gamma distributions are used to adjustitiig seasonal forecast values, one for low-intgn@ecipitation events
(< 95th percentile) and another for extreme event85th percentile). For temperature, a Gaussiamildigion is used to
adjust the daily seasonal forecast values.

Observed (Sect. 2.6 Study area and local datajeamsbnal forecast (Sect. 2.7 Driving Data) timésef P and T spanning
the relevant forecast timeframe (e.g. Jan-Jul doedasts initialised in January) and for the refeeeperiod 1981-2010 are
used to derive the adjustment factors to transfienseasonal forecast data to match the obserggddncy distributions.
First the precipitation data is adjusted then #rapgerature data. The latter is done separateldripiand wet days in an
attempt to preserve the dependence between P dady.TOlsson et al. 2010; Yang et al, 2010). Adjpgstt factors are
calculated for each calendar month as the distabsitcan have different shapes depending on thsigdiycharacteristics of
the precipitation processes that are dominantdtisl be emphasized that the adjustment parametses estimated using
much of the same data to which they were appliddally the parameters would be estimated using thaadoes not
overlap the data which is being adjusted. Howethés,was not possible in the scope of this work.

There have been some criticisms raised lately dégguthe applicability of quantile mapping for biadjusting seasonal data
(e.g. Zhao et al., 2017). They point out that aldito quantile mapping approaches are effective @ borrection they

cannot ensure reliability in forecast ensemble agprer guarantee coherence. Unfortunately, the sobpies work did not
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allow the testing of other bias adjustment methiogisthe criticism is noted and further work is plad to address these
points.

These bias adjusted data are then converted inté iHButs by mapping them from their native grid @the HBV sub-
catchments. The mapping is done by areal weighdimgj the resulting sub-catchment average P and Uewalre then
adjusted to represent different altitude fractiaithin the catchment. These data are then useorte the HBV model from
the same initial state as used in the HE procedure.

No changes to this methodology are needed to acoda® the cross-validated hindcasting as done tivéhother model

chains.

2.1.5 Statistical modelling ensemble (SE)

The statistical model chain, the orange chain sgdoom the left in Figure 1, is an ensemble foréeqa®duced by
downscaling forecasted or modelled large-scaleabées (predictors) to the SFV for each cluster djotand). The
downscaling is done using an SVD approach (singutaiable decomposition). The predictors are thismge scale
circulation variables (Section 2.7) and the modk#aow depths from the HBYV initial conditions. Téwetputted ensembles
of SFV are combined using a simple arithmetic weighsystem. The normalised squared covariance dstwhe four
predictors and the predictands are ranked for &aelcast initialisation date and weights betweem@ 1 are applied to the
different predictors according to their rank. Thevést ranked predictor is assigned a weight 0{98.1/10), the next lowest
predictor is assigned a weight of 0.2 (= 2/10), andon until all four have been assigned a weifht reason that an
asymmetric weighting scheme is used here is tlaetis physical support for it. Early in the seag@snowpack, which is
the majority contributor to the spring flood volunig still a fraction of what it will be and is Btaccumulating. Therefore,
the coming meteorological conditions, which dictat®wpack evolution, are more important earlielirothe season than
they are later giving physical support for asymioetweighting. Additionally, the relative importancef these
meteorological predictors with respect to each rodliffers with time too.

The relative simplicity of the statistical modelaith means that it was possible to retrain the mbeébre each hindcast

during the cross-validation calculations allowing fio overlap between the calibration and validaegieriods.

2.2 Defining the spring flood

In previous works the spring flood period has ofberen defined in terms of calendar months e.g. Mae-July (Nilsson et
al., 2008; Foster and Uvo, 2010; Arheimer et @11 Olsson et al., 2016; Foster et al., 2016)s Heifinition of the spring
flood period is not ideal as it does not take iat@wount the interannual and geographical variatiorthe timing of the
spring flood onset. In this work we propose an iowement to this practice where we define the spfiogd to be the

period from the onset date to the end of July.
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We define the onset as the nearest local minintadrhydrograph before the date after which thewdl are above the 90th
percentile, with reference to the inflows during first 80 days of the current year, for a peribcdtoeast 30 days (Figure
2). For forecasts made after January i.e. thosgermaFebruary, March, April, and May, the missinfiow data between
the 1 January and the forecast date are filled siithulated inflow data from the HBV model using eb&d precipitation
and temperatures as input data.

A drawback to this definition is that it is not cprehensive as the end of the spring flood is néiheeé according to the
hydrograph but rather by date. The reasons fodabhing the end of the spring flood objectivele awofold. Firstly, the
forecast horizon for the ECMWEF-IFS is seven monthich means that forecasts initialised in Januaay mot encompass
the entire spring flood period, and secondly, ausbland objective definition of what constitutes #nd of the spring flood

was difficult to realise within the scope of thisnk. Further work is needed to resolve this in agrgatisfactory manner.

2.3 Experimental setup

The challenge in this work was to perform a robasluation on a limited dataset (35 spring floot831-2015) while

minimising the risk of unstable or over fitted &tts. Therefore, a leave-one-out cross validaflddOCV) protocol was
adopted. Additionally, as it was not practical &xalibrate the HBV model before each step of th®©DV process; the
statistical model uses the same periods for trgiis those used to calibrate and validate the HRMdah LOOCV is a

model evaluation technique that uses n-1 data ptintrain the models and the data point left sutsed for validation. This
process is repeated n times to give a validatidasgs of length n. This allowed for a more robwstlgation with a limited

dataset and to be able to sample more of the \titjah the training period than if a traditionghlidation were performed.
The second point is especially advantageous foluatiag the statistical model which is especialynstive to situations
that were not found within the training period. LO®@ was applied to the individual model chains.

To assess the relative skill for different leadeimwe evaluate hindcasts issued on theflanuary (Jan),*lof February

(Feb), ' of March (Mar), I of April (Apr), and F' of May (May) for the spring floods 1981-2015. Teealuation of

performance is done in terms of how well the SF¥bigcasted.

2.4 Evaluation

As it has been mentioned above, we are interestditei ability of a multi-model ensemble’s ability forecast the SFV at
differing lead-times i.e. forecasts initialised tme first of the month for the months of Januarsotigh May. It was
suggested by Cloke and Pappenberger (2008) thad fagorous assessment of the quality of a hydicddgensemble
prediction system (HEPS) it is not only importamistlect appropriate verification measures but tlacse several different
measures so that different properties of the fatesldll can be estimated resulting in a more cahpnsive evaluation.
The evaluations in this paper are designed to anthedollowing questions:

» Can the forecasts improve on the reference forecest?

« How often do the forecasts perform better tharrdifierence forecast?

7
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» Are the forecasts better at capturing the interahwariability than the reference forecast?

» Are the forecasts better at discriminating betweesnts and non-events than the reference forecast?
» Are the forecasts sharper than the reference feteca

» Are the forecasts more sensitive to uncertainty tthereference forecasts?

The verification measures used to answer thesdignesre described below and summarised in Table 1

Mean absolute error skill score (MAESS)

One of the most commonly published scores, evenett@nmended method, when evaluating HEPS is theéncmus rank
probability score (CRPS, Hersbach, 2000). Howesieige we have a limited number of data points, @&lyross validated
hindcasts per subbasin, and that the CRPS comgesteibutions we deemed its use unsuitable for Wask. We chose to
use the mean absolute error (MAE) to evaluate gérferecast performance as the CRPS collapsesetdVtAE for
deterministic forecasts (Hersbach, 2000). Therefigrassuming the ensemble mean to be the detetimiftisecast a MAE

skill score (MAESS) can be expressed as

MAESS = 1 — AEr 1
T MAE, €Y)

wheref andr denote forecast and reference respectively B is defined as
10 |SFV; — SFV?

MAE = —Z — (2)
n SFV;

wherey denotes yeam denotes the total number of years, andenotes observations. The MAESS has a range betwee

negative infinity and 1 with positive values indiog skill over the reference forecast and a valuene a perfect forecast.

Frequency of years (FY)

In their work Olsson et al. (2016) proposed R a complimentary performance measure to scomdsas the MAESS.
They are complimentary in that the MAESS is a measfihow much better the forecast is than thereefge forecast while
FY™"is the frequency or how often the forecast is Ibétte how often the absolute error is lower."B¢ores range from 0 to
100% where values above 50% indicate that the fmdtiel forecast has skill over the reference fagedy assuming the

ensemble mean to be the deterministic forecastiE¥xpressed as

100 ¢
FY*=—)> HY
n
y=1
whereH is the Heaviside function defined by
{0, AbsE] < AbsE}
HY =

1, AbsE{ > AbsE}

whereAE is the absolute error.
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Nash-Sutcliffe model efficiency (NSE)

The NSE (Nash and Sutcliffe 1970) is a normalizdisgic that determines the relative magnitud¢hefresidual variance
compared to the measured data variance. The NS& taamge fromoe to 1 with 1 being a perfect match and values alfove
denoting that the forecast has skill over climaggloFor this work it can be interpreted as how we# forecasted SFV
matches the observed SFV year on year and as secmiplimentary to MAESS and FYBy assuming the ensemble mean

to be the deterministic forecast the NSE can beesged as

b (SFV) — sFV)’

NSE =1 - (5)

;:1(51:‘/0y - mo)z
To assess the skill of the multi-model ensembléh waspect to the reference historical ensembéediffierence in their NSE
is calculated
ANSE = NSE; — NSE, (6)

whereANSE > 0 indicates that the multi-model forecast$ial over the reference forecast.

Relative operating characteristic skill score (ROCS)

The ROCSS is a skill score based on the area uhdarurve (AUC) in a relative operating charactaridiagram. ROCSS
values below 0 indicate the forecast has no skilrclimatology while values over 0 indicate skilith 1 being a perfect
forecast. The ROC diagram measures the abilithefforecast ensemble to discriminate between ant erel a non-event
given a specific threshold. For this work the ROG®&Se calculated for the upper tercilex(%6.7%), middle tercile (66.7%
< x < 33.3%) and lower tercile (x < 33.3%). These sca®fmate the skill of ensemble forecasts to distish between
below normal (BN), near normal (NN) and above ndr(#d) anomalies. Hamill and Juras (2006) defihe ROC skill
score to be

ROCSS = 2 * AUC — 1 7)

where AUC is the area under the curve when mappingtei against false alarm rates

AUC — f (FAR, — FAR,_,)(HR, + HR,_,)

> ®

y=1
where FAR = false alarm rate and HR = hit rates€&allarms are defined as both the false positidefalse negative

forecasts, or type | and type Il errors. Hits agéred as correctly forecasted events.

Inter quartile range skill score (IQRSS) and uncerainty sensitivity skill score (USS)
Sharpness is an intrinsic attribute to HEPS, gi\angindication of how large the ensemble sprea@fasecasts ensembles

that are too spread are overly cautious and haviteli value for an end user due to the uncertahthe true magnitude of
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the SFV, conversely ensembles that are not spneauigh are overly confident and may not be a trpeesentation of the
uncertainty thus giving the end user false configeim the forecast (Gneiting et al., 2007). Fos thiork the sharpness is
computed as the difference between th® &5d 28" percentiles of the forecast distribution or theeirguartile range (IQR).
The IQRSS is skill score based on the IQR andnieasure of how much better i.e. sharper the forereemble is over the
reference ensemble, values above 0 indicate thabtiecast ensemble is an improvement over theerde ensemble. The
IQRSS is expressed as
IQR;
IQR,
As mentioned above, sharpness can be misleadimgellAdesigned and calibrated ensemble should digeuser an idea of

IQRSS =1 —

€

the uncertainty of the forecast conveyed throughrétfative sharpness of the ensemble. Thus itvslithat the IQR should
be positively correlated to the absolute forecasirga larger (smaller) IQR would indicate to tier that there is a larger
(smaller) uncertainty in the SFV forecast. The utaipty sensitivity skill score (USS) can be exgesas the skill score of

the Spearman rank correlations between the IQRtandbsolute deterministic error

_(r=py)
(1 - pr)
wherep is the Spearman rank correlation.

USS (10)

2.5 Uncertainty estimation

Due to the limited sample size of data availabl¢his work a bootstrap approach is employed tavesg the verification
measures and determine whether they are statigtisagnificant. Again due to data limitations a reocircumspect
significance level is prudent due to the coursaineadf the resulting statistics, we chose to setsiignificance level at 0.1
resulting in a 90% confidence interval between GHeand 98' percentiles. The cross-validated hindcast ensembkre
sampled, allowing for repetition, 10000 times tdcukate the verification measures. We define altasube statistically
significant if the &' (95" percentile of the bootstrapped ensemble beintuated does not overlap the™g&™) percentile

of the bootstrapped reference ensemble.

2.6 Study area and local data

The subbasins used in this work are divided integlgroups using the clusters defined by Fostak €012 and Foster et al.
2016, namely clusters,'SS, and $ (Figure 3). Sweden was divided into five regiorfshomogeneous streamflow
variability; three clusters located in the northgarts of the country, where snow dominates therdigdical processes
(northern group), and two located in the southeart, pvhere rain dominates the hydrological procggseuthern group).
For the purposes of this work we are intereste¢ amlthe northern group. The numbers of subbasarseach of these
clusters are 25, 19, and 40 respectively. The $héncluster's designation denotes that the hydicddgegimes are

dominated by snow processes and the superscripgstige relative strength of the signal from thesecesses in the
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hydrological regime. During the winter months mofthe precipitation that falls within these basis stored in the form of
a snowpack and does not immediately contributereasflow. During the warmer spring months, whea thmperatures
rise above freezing, these snowpacks begin to yplically around mid- to late-April, which resulis a period of high
streamflow commonly referred to as the spring floate focus on forecasts of the accumulated streamflolume during
this period or SFV.

For this work, 84 subbasins from seven hydropowedycing rivers in northern Sweden (Figure 3) wesed to for the
development and testing of the multi-model protetyphese are those used in the current operatsazdonal forecast
system at SMHI plus the two unregulated subbassesl by Olsson et al. (2016). Daily reservoir inflofer each subbasin
are available from the SMHI archives starting fré®861 to the end of the last hydrological year;da& used in our work
are for the period 1981-2015 due to some of therotlatasets used in this work only being availdtien 1981. These
inflows are derived by adding the local streamflmithe change in reservoir storage then subtra¢tiagstreamflow from
upstream basins i.e.

Qin = AS + Qiocat — Qupstream (11
Missing inflow data were filled by a multiple lineaegression approach using simulated inflows fer subbasin and
observations from the surrounding subbasins asigioes. Of the 84 subbasins used in this work 68 less than 1%
missing data (50 of these had no missing data), liad 1-10% missing data, five had 20-30% missiag,dfour had 30-
40% missing data, and three had 61%, 63% and 719ingi data respectively. As these subbasins asgtafthe current
operational forecast system they were includedhénstudy despite some of them having a significasissing data fraction.
The average NSE for the data used for filling wa®Qthe NSE scores for the intervals above weé&,®.75, 0.77, 0.61,
and 0.73 respectively) which suggests that thisaaagh is acceptable.

Daily observations of precipitation and temperatde¢a used in this work were obtained from the PVHtaset from
SMHI (Johansson, 2002). The PTHBYV dataset is a xgkdded observation dataset of daily precipitagmd temperature
data that has been created by optimal interpolatitim elevation and wind taken into account. Theéat are available from
1961 to the present.

Table 2 gives a summary of some basic basin clarstits and statistics regarding the SFV as weliaected performance
measures for the HBV rainfall-runoff model for thgbbasins in each cluster. Although, the rangesilibasin areas in the

different clusters are similar, except for the mawin in S, the SFV statistics increase with each clusternatbeking from

cluster $ to S. This is due to the effects that elevation anitudé have on how much snow processes dominate the

hydrological regimes in each cluster. Subbasinsluster $ are typically at a latitude or elevation lower rihénose in
clusters $and $, similarly the subbasins in*Svith respect to those in>SThe ranges in the NSE and the relative MAE
imply that in general the HBV model is adequatalywell calibrated for most subbasins, however tregeesome subbasins
for which the HBV model appears to not be well lzadted and for which there is some scope for imgpmment. This can be
somewhat misleading as these data are a functidghreé different observations and as such can bgauto noise and

uncertainties.
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2.7 Driving Data
Teleconnection indices

This work uses monthly indices of the Arctic Ositbn and Scandinavian Pattern collected from thma&e Prediction
Center (Climate Prediction Center, 2012) for thequeOctober 1960 to May 2015.

Seasonal data

The ECMWEF seasonal forecast system model from sydtéMolteni et al., 2011) is the cycle36r4 versafrECMWF IFS
(Integrated Forecast System) coupled with a 1°ieeref the NEMO ocean model. The seasonal forectsta the
ECMWEF IFS were used in the following two differdotms, a field of seasonal monthly averages astitgthe statistical
model and individual grid points of daily data faput into the HBV model. The choice to use ECMW&Eadis primarily a
practical one. The ECMWEF is an established and garoproducer of medium range forecasts and SMHladilrehas
operational access to their products.

The seasonal forecast averages are the seasonas foeaeach ensemble member of the different ptediovhich had a
domain covering 75°W to 75°E and 80°N to 30°N (F&g@) with a 1°x1° resolution. For each predictatyahe first 15
ensemble members were used in this work. This caume the number of ensemble members availableeilc CMWF
seasonal forecast is limited to 15 for the hindpastod while the operational seasonal forecastrabg has 51 members.
The predictors considered in this part of the waweke the following: 850 hPa geopotential, 850 hérapterature, 850 hPa
zonal wind component, 850 hPa meridional wind conepd, 850 hPa specific humidity, surface sensielat filux, surface
latent heat flux, mean sea level pressure, 10mlzgima component, 10m meridional wind component, @mperature,
total precipitation.

The daily time series data are the ECMWF IFS seddonecasts of daily values of temperature (2mig the accumulated
total precipitation (pr). These data have a resmubf 0.5°x0.5° and spans a period from 1981 tb528nd had a domain
covering 11° to 23°E and 55° to 70°N.

3 Results and Discussion

The following section outlines and discusses tlsailte from the cross-valuated hindcasts of thesgbffit approach’s ability
to hindcast the SFV for the period 1981-2015. Rhiit evaluation is done for each system usingatiihogy as a reference
to assess their general skill. After that the mekidful of the two multi-model ensembles is evakditusing the HE as a
reference to assess any improved skill and thugdddlue of the multi-model ensemble approach twercurrent HE
approach. The analysis is carried out on the cvadated hindcasts of the SFV initialised on tieol January, February,
March, April, and May.
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3.1 Evaluating the different forecast systems agagh climatology

The different forecast approach’s general skilptedict the SFV was estimated using MAESS, thait &kreproduce the
interannual variability was estimated using NSH inally the skill to discriminate between belowBNN, and AN SFVs
is estimated using ROCSS. Table 3 gives an overuofetlvese scores across all subbasins and cldstegsch initialisation
month as well as the percentage of subbasins wherhindcasts outperformed climatology, the valunelsrackets are the
percentage of subbasins where the hindcasts ootpedl climatology and the result is statisticaingficant.

The performance measures for each of the threeagipes are positively related to the relative tgmifi the hindcasts i.e.
hindcasts initialised in any month are generallyengess) skilful than the hindcasts initialisedlie preceding (following)
months. This can be expected as the further awtignafrom the spring flood that the hindcast isiatised, increasing lead
time, the less the initial hydrological conditiooentribute to predictability and the more uncertdie forcing data become
(e.g. Wood et al., 2016; Arnal et al., 2017).

With respect to general skill and the ability tgorae the interannual variation shown by the obms@ous, the prototypes
tend to perform better than HE with MEtypically having the best performance. This iseesgly so when we consider the
percentage of the subbasins where this improvefbpesince is statistically significant. The gap betw HE and the two
prototypes in MAESS, NSE, and percentage of subbasith improved performance over climatology tetmlget smaller
as the season progresses while the gap in therpageeof subbasins where improved performancaisstally significant
appears to grow, at least early in the season.

However, if we turn our attention to the forecastfslity to discriminate between BN, NN, and AN Sithen the HE holds
an advantage over the two prototypes especiallynitheomes to identifying NN events from all foretanitialisation dates
and, to a lesser extent, BN events for the latexcfasts. The proposed prototypes are better atifideg AN events for all
forecasts except those initialised in May whereah#ity of the HE is comparable. The advantaggldiged by the HE to
identify NN events is to be expected due to itsnatiological nature while the advantage with respedBN events can
probably be attributed to a cold bias in the hisairforcing data caused by climate change. The draelative skill by the
prototypes in the later forecasts is in part duthéir sharpness being worse than the HE in tlee fatecast (Section 3.3).
From these results we are now able to make anm&drchoice as to which prototype to proceed witlk,M(hereafter
referred to as the prototype unless stated othejwliswe take all the results and rank the peréomoes of the three methods
then the prototype would rank first followed clgsbly ME.qsand HE would rank third. However, all three forgtamethods

have been shown to be skilful at forecasting the &lBeit a naive skill.

3.2 Evaluating the prototype against HE

The frequency at which the prototype outperforms idEestimated using FY its general skill to predict the SFV is

estimated using MAESS, its skill to reproduce thieriannual variability is estimated usiAglSE, and finally its skill to

discriminate between BN, NN, and AN SFVs is estadatisingAROCSS. Figure 4 shows the bootstrapped scores for
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MAESS, FY+, andANSE calculated for each hindcast initialisation thofor the subbasins in clustef. The medians of
these bootstrapped scores are presented as arhmt@mmary statistics are documented above #tegnam. On the left-
hand side are the max, mean, and min scores focltister i.e. the subbasins with the highest amee$d scores and the
mean for the basin. On the right-hand side argéneentage of subbasins where the prototype owipeet HE, shows skill
over HE(n},,), the percentage of subbasins where the prototypesstatistically significant skill over Hg&¢ ,), and the
percentage of subbasins where HE statisticallyifsigmt skill over the prototypény ).

FY*

The prototype has a FY> 50% for the majority of the subbasins in clus®&rranging from 98% of the subbasins with a
mean FY of 61% for hindcasts initialised in January down78% of the subbasins and mean"Ff 56% for hindcasts
initialised in May. These figures are similar, eeelittle higher, for subbasins in clustervghile somewhat lower for cluster
S'. The number of subbasins for which the prototype 4 statistically significant FY> 50% ranges between 10% and 28%
in cluster $ (S°= 5-37%, and 5= 12-16%). While the prototype has a statisticalynificant FY" < 50% (performs worse
than HE more often than not) for 5% of subbasinshiadcasts initialised in April in cluste @nd 4% of subbasins in
hindcasts initialised in May for clustet.S

MAESS

The prototype shows skill at improving the volumeoe hindcasted by HE for the majority of the sukiba, ranging
between 65% and 100% of the subbasins in clusté®S 74-95%, and 'S 64-80%). This improvement tends to be largest
for hindcasts initialised in January, mean MAES®df2 ($ = 0.11, and 5= 0.04), and lowest for those in May, 0.04%S
0.05, and &= 0.02). The percentage of subbasins for which MBS0 is statistically significant ranges betwe®r58%

for all clusters and hindcast initialisations, wehihe percentage of subbasins for which MAESS scdiatistically significant
are 8% and 4% for hindcasts initialised in Marckl &fay in cluster $and 3% for hindcasts initialised in both April and
May in cluster & These results also show that the prototype gyéras a smaller MAE than HE especially for earlie
hindcast initialisations and again for clustefsisd .

ANSE

The prototype shows skill at improving the repréaton of the interannual variability of the obsedvSFV again for most
of the subbasins, ranging between 63% and 100%hifasins in cluster’§S* = 74-100%, and 'S 76-92%), and the mean
ANSE ranges between 0.06 and 0.33 for subbasifsstec S (5= 0.09 and 0.32, and'S 0.06 and 0.15). The percentage
of subbasins for whicdNSE > 0 is statistically significant ranges betwed% and 63% for all clusters and hindcast
initialisations, while the percentage of subbadims which ANSE < 0 is statistically significant are 4% for thdasts

initialised in January, March and May in clustéy &d 5% for hindcasts initialised in May in clusg

AROCSS
Figure 5, which has the same information preseatagtructure as Figure 4, shows the bootstragfp@CSS for the lower

(BN), middle (NN), and upper (AN) terciles calc@dtfor each hindcast initialisation month for thélsasins in cluster’s
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The prototype shows skill over HE to discriminattviieen BN events and non-BN events for the majofitthe subbasins
in cluster 8 for hindcasts initialised in January and Febru@8f6 and 68% respectively{S 63%, 53% and 'S= 68%,
32%) but this drops to less than half the subbasitsndcasts initialised thereafter. The megROCSS ranges between -
0.04 and 0.14 in cluster $S* = -0.03 and 0.05, and"$ -0.06 and 0.02) with only statistically signditt results being
found in favour of the prototype for 15% and 5%sobbasins for hindcasts initialised in Januarylusters S3 and S2
respectively and in favour of HE for 4% of subbasdior hindcasts initialised in April in clustef.S

Out of the three terciles the prototype shows #astl skill over HE at discriminating between NN r@geand non-NN
events. The percentage of subbasins for which th®type outperforms HE ranges between 23% and &% 37-63%,
and S = 24-60%) with meal\ROCSS ranges between -0.07 and 0.51=(8.06 and 0, and'$ -0.05 and 0.02) and no
statistically significant results for any subbasinsth in favour or against the prototype.

The prototype shows the best performance whenidis@ating between AN events and non-AN events. péeentage of
subbasins for which the prototype shows skill ot in the upper tercile ranges between 85% and #8%indcasts
initialised in the first three months{S 47-89%, and ‘S= 48-84%) then 57% and 25% for the last two mondispectively
(S? = 63% and 53%, and'S 80% and 32%). The mea&ROCSS ranges between -0.02 and 0.3=($.01 and 0.14, and
S'=-0.01 and 0.07). The percentage of subbasiatuster $ for which AROCSS > 0 is statistically significant are 18%,
10%, and 3% for hindcasts initialised in Januambrgary, and March respectively, and 16% for fosecanitialised in

January and February in clustér Shere are no statistically significant resultsawour of HE.

3.3 Analysis of the forecast ensemble sharpness

Figure 6 shows the cross validated hindcasts bytbttype initialised in January (top panel) andyMbottom panel) for
Gouta-Ajaure, a cluster’Subbasin in upper reaches of the Ume River sysféuis. basin was chosen as an example of a
where the prototype showed typical performanceli®se. neither the best nor the worst. The tetsdemble spread (the
whiskers) of the forecasts initialised in Januaggnains somewhat consistent from year to year whielQR (the blue
boxes) displays a more pronounced variation. Ttle dd variation in total spread is primarily thesudt of the climatological
nature of the HE component which tends to havegefaand more consistent spread than that for RES#h at longer lead
times. The greater variation exhibited by the I@GRniostly due to the ‘true’ forecast nature of the &hd SE components in
the multi-model ensemble. If we turn our attentiorthe forecasts initialised in May we see a magmpunced variation in
both the total spread and the IQR. This is becthesspread in the DE and SE components is now cabjgato and often
larger than the spread in the HE component. Taldlkofvs how the IQRSS drops as the spring floodoseapproaches. It
can also be seen in figure 6 that the ensembleamérkd line) is more responsive to the year om yadation in SFV in the
May forecasts than in the January forecasts. BHiecause the relative contribution to predictibily the initial conditions
is greater than the contribution from the meteayiwial drivers closer to the spring flood periode$a patterns are generally

true for both the forecasts initialised in the imiediate months and for the other subbasins.
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If we assume that the more sensitive an ensembitile iscertainty the more the forecast sharpnedsvasly. We would
therefore expect the USS values to generally béipose. that the forecast sharpness of prototgpeetter correlated with
the forecast error than for HE. This is largelymonped by the USS values in Table 4 where onlyetvaues are negative,
the January forecast in clusteT &d the April forecasts in both clusterse®d $, and even then not by very much. This
suggests that at least one but probably both oDtheand SE ensembles are responsible for this ivegpnent due to their
variability. There is a general decreasing trenth\wiitialisation date in the USS values in clustér and $ (if we ignore
the value for January irPBwhile the values are more consistent in clusfe’A$ the uncertainty correlation values for both
the HE and the prototype are significant at thel@vel (not shown for brevity) suggesting that betthibit sensitivity to
uncertainty to some extent, however the prototgpgenerally more so which should instil more coerfice for the forecast
in the users.

The IQRSS values show that the prototype tendsddyze sharper forecasts than HE early in the seiasofor forecasts
initialised in January and February in cluster 8d forecasts initialised in January, February aratdd in clusters S2 and
S3. This is reversed for the remaining initialisatidates where HE tends to produce sharper fosedhsin the
prototype.This is probably due to the climatologicature of the HE having less of an impact on dast sharpness as the
initialisation date approaches the spring floodiquertogether with the uncertainties and biaseshim ather individual

ensembles exacerbating the situation.

3.4 Spatial and temporal variations and transferaHity of the prototype

Both multi-model ensembles show skill at forecas®#V with respect to forecast error, ability tpneduce the interannual
variability in SFV, and the ability to discriminabeetween BN, NN, and AN events. The prototype,artipular, is at worst
comparable to the HE and at best clearly moreuwkilthis relative performance of the prototype garboth in space and
time. Figure 7 shows maps of the median bootsti@f€ values. For hindcasts initialised in January thatial pattern in
the FY+ scores show that the prototype tends tpesfdrm HE more in subbasins that have a high&udhk or elevation.
However, as the initialisation date approachesstiwing flood period this pattern becomes less @3sd toherent. This
general pattern is also true for MAESS scores. $hggests that the change in the performance®girtitotype and HE, as
a function of initialisation date, are not alwaymitar for subbasins that are near one anothethBumork would be needed
to find out what the underlying reason for this is.

Data availability is the biggest limiting factor tbe transferability of this approach to other areehe HE, AE, and SE
approaches are all dependant on good quality oagenvtime-series. Additionally, the skill all tlereof these approaches
would be expected to be affected by length of thiese-series. They length of the time-series shdwaldong enough to be a
good representative sample of the climatology etiser the forecasts would be biased in favour ofdiveate represented
in the data and not the true climatology.

The SE and AE approaches require an understandlingvwothe variability in the local hydrology is affted by large scale
circulation phenomena such as teleconnection patter help select predictors and teleconnectioitésdfor inputs to each
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approach respectively. The hydrological rainfathwtf model used in the prototype should not pogwablem, although
HBV has been successfully setup for snow dominaeééchments outside of Sweden (e.g. Seibert e2@L0; Okkonen and
Klgve, 2011), any sufficiently well calibrated r&lt-runoff model would suffice.

We believe that, if the above requirements are megasonal hydrological forecast system similahéoprototype can be

setup in other snow dominated regions around thédwo

4 Conclusions

In this paper we present the development and etiatuaf a hydrological seasonal forecast systentopype for predicting
the SFV in Swedish rivers. Initially, two versiootthe prototype, MEsand MEgys were evaluated together with the HE
using climatology as a reference to both help $elddch version of the prototype to proceed witldao get a general
impression of their skill to forecast the SFV. Tdedfter the chosen prototype was evaluated usinga$ig reference and
finally the sharpness of the hindcast ensembles aealysed.
The main findings are summarized below:
» The prototype is able to outperform the HE apprdat¥h of the time on average. It is at worst comiplaréo the
HE in forecast skill and at best clearly more skilf
» The prototype is able to reduce the forecast doyo8% on average. This translates to an averagenmbf 9.5 x
10° v,
e The prototype is generally more sensitive to umiety, that is to say that the ensemble spreadstémdbe more
correlated with the forecast error. This is potahtiuseful to users as the ensemble spread caailldskd as a
measure of the forecast quality.

*  The prototype is able to improve the predictiombbve and below normal events early in the season.

Looking forward, future studies need to addressqinestions raised by Zhao et al. (2017) regardiegbias adjustment of
meteorological seasonal forecast data using geamgipping. Results from this study show that wthite seasonal forecasts
were bias adjusted the performance of the DE wsepgiointing, although it still had value within thamulti-model setting
suggesting that it has more of a modulating rolltbe other modelling chains as opposed to contriputlirectly to
predictability.

How the individual model ensembles are combinedive the multi-model output needs to be revisitdthen we applied
the asymmetric weighting scheme proposed by Olggtoal. (2016) we did not find that it improved thaulti-model
performance in general across all stations anccésts and so did not use it. However, we do beliesemore work should

be done to find a more appropriate weighting schéinas simple pooling. Perhaps by better understandiow the
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performance of the different modelling chains dfecied by the initial conditions and lead-timentl shed more light on
how to best approach this issue. Further developemahtesting along these lines are planned fofutuze.

The AE approach did not exhibit the promising perfances found by Olsson et al. (2016) using citmigpattern analysis
to select the analogues. A part of the explandtorthis poor performance is that the teleconnectidormation used to
select the analogues only partially span the felliqus Foster et al. (2016) identified, from OctdNevember to the
beginning of the spring flood. The missing dataldde filled by making forecasts of the indices.offrer approach would
be to revisit the circulation pattern analysis lblaapproach now that data inhomogeneity issuesaagellyy addressed by the
new ERAS reanalysis data that is becoming availétitp://climate.copernicus.eu/products/climateqadgsis). Yet another
approach would be to use GCM forecasts to selecatialogues (e.g. Crochemore et al., 2016).

Lastly, the post processing of model outputs (eugatero et al., 2017) has been shown to be béalefiice incorporation of
a simple approach like linear scaling is possilhlg most appealing due to its ease of implementatican operational

environment.

Data availability. ECMWF seasonal forecasts are available under geraf licences, for more information visit
http://www.ecmwf.int. AO and SCAND teleconnectiomdices are available for download from the ClimBrediction
Center website (http://www.cpc.ncep.noaa.gov). Fweamflow data and the PTHBV dataset please comtastomer

services at SMHI (customerservice@smhi.se).
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Figure 1. Schematic of the multi-model forecast sysm. The three individual model chains that are inaided in the multi-model are

(from left to right) the dynamic model chain (red ines), the statistical model chain (orange linesgnd the historical (dark blue

lines) or analogue (light blue lines) model chainThe dashed boxes labelled (a) and (b) indicate theagis of the system that have
5 non trivial changes from the multi-model describedn Olsson et al. (2016).
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Figure 2. Schematic of how the spring flood is defed. The spring flood is the period between the onisand the last day of July
(day 211/212 since the®LJanuary). The hydrograph from which the spring fload period is to be derived (blue line), the onset da
(red line), and the 98" percentile of the inflow for first 80 days (dashedine).
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Table 1. The validation metrics used to evaluate theulti-model performance. The threshold for skill is50 for FY* and O for all

the other metrics.

Name Equation Description

Measure of the model’s general

Mean absolute error skill MAE performance; it quantifies the relative
MAESS =1 — —2 _

score WAESS) MAE, forecast error against a reference

forecast.

n
100
FYyt=—> W,
n
y=1

whereH is the Heaviside function defined by

Measure of the model’s general

Frequency of Years{/™) performance; it quantifies how often the

0, AE} < AEfy

HY = ) forecast outperforms a reference forecast.
1, AE} > AEfy
AE is the absolute error.
Measure of the model’s general
Nash-Sutcliffe efficiency NSE = 1 — Yr o (SFVY, — SFVJ’)2 performance; it quantifies the model’s
J— 2 . . .

(NSE) ;zl(spvz’bs — SFVobs) residual variance against a reference

forecast’s variance.

Relative operating
characteristic skill score
(ROCSY

ROCSS =2 +xAUC - 1,

where AUC is the area under the curve

5 (FRY — FRY™Y)(HRY + HRY™Y)
AUC = Z ; ,

y=1
whereFR is the false alarm rate aftR is the

hit rate.

Measure of the model’s probabilistic
performance; it quantifies the model’s
ability of the discriminate between an
event and a non-event given a specific
threshold.

Interquartile range skill
score [QRSS)

IQR;
IQR,

where IQR is the interquartile range.

IQRSS =1 -—

Measure of the forecast sharpness, it
guantifies the relative spread in the

forecast against a reference forecast.

Uncertainty sensitivity skill
score US9

_pr—pp)
(1 - pr) '
wherep is the Spearman rank correlation

Uss

between théQR and absolute error.

Measure of the model’s sensitivity to
uncertainty; it quantifies the correlation
between forecast sharpness and absolute

error
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Table 2. Basic information on the study area includig overall performance of the HBV model for the subasins in each cluster.

Cluster Basin SFV HBV

Area elevation (m? x 10%) NSE rMAE

(km?) (m) min mean  max (%)

min 233 135 0.21 0.42 0.82 -0.47 3.9

1 median 1827 282 1.27 3.23 5.30 0.74 11.2
max 6258 584 18.95 34.36 44.36 0.95 445

min 184 429 0.40 0.81 1.68 -0.69 6.2

2 median 1166 598 2.49 3.80 477 0.66 10.2
max 4272 666 9.99 13.56 18.17 0.83 70.1

min 270 212 0.67 1.12 1.54 0.22 3.8

3 median 1309 586 2.96 5.41 7.95  0.74 7.3
max 13177 776 19.39 37.76 48.50 0.92 20.0
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Figure 3. Map showing (left) the domain for the prélictors used in the SE modelling chain, (right) thedomain of the seasonal

forecast data used in the DE modelling chain, and thlocation of the forecasts subbasins used in thisork. The subbasins shown in
blue belong to cluster § those shown in green belong to cluste?Sand those shown in red belong to cluster’s
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Table 3. Bootstrapped (N = 10000) skill scores andi¢ number of subbasins, as a percentage, where thEPS performs better
than climatology averaged over all 84 subbasins. Th& values in brackets show the percentages of the sdsins for which these
scores are statistically significant at the 0.1 lel.

MAESS NSE ROCSS
BN NN AN

n" (%) n* (%) n" (%) n' (%) n" (%)

Jan -0.09 25 (1) -0.24 17 (0) 023 90(21) 0.07 70(0) 0.10 68(11)

Feb 0.00 51 (6) -0.07 42 (5) 041 99(52) 0.1 69(1) 0.26 92(27)

HE Mar 0.09 80(17) 0.13 77(23) 055 100(87) 0.10 73(5) 0.44 99 (56)
Apr  0.15 85 (35) 022 80(35)  0.62 100(92) 0.17 85(7) 0.51 100 (75)

May 0.21 90 (49) 0.32 90(49)  0.68 100(98) 0.23 92(10) 0.61 100 (92)

Jan 0.00 50 (2) 0.00 55 (1) 031 99(31) -0.01 48(0) 0.20 80 (18)

Feb 0.06 73(23) 011 76(21) 039 99(51) 0.08 74(0) 0.36 96 (42)

ME.s Mar 0.11 86 (25) 020 87(36)  0.47 100(76) 0.07 61(4) 0.47 100 (60)
Apr 020 95 (62) 0.32 94(64)  0.60 100(90) 0.16 83(5) 0.52 100 (79)

May 0.22 96 (67) 0.36 98(68)  0.66 100(94) 0.18 82(8) 0.57 100 (76)

Jan 0.02 60 (6) 0.03 63 (5) 0.32 100(31) 0.00 51(0) 0.22 83(24)

Feb 008 80(25) 014 85(29) 041 99(57) 007 69(1) 0.38 99 (44)

MEns Mar 0.14 90 (32) 0.24 92(45) 051 100(81) 0.07 61(5) 0.48 100 (64)
Apr 019 94(56) 032 93(62)  0.60 100(90) 0.17 88(5) 0.54 100 (80)

May 0.24 98 (74) 0.39 96(76)  0.67 100(94) 0.18 85(10) 0.60 100 (88)
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S X . . . .
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Figure 4. Bootstrapped (N = 10000) FY+, MAESS, andNSE scores for MEgs With respect to HE for all subbasins in the cluster
S®. Each subplot is a histogram of the medians of thbootstrapped validations scores for each initialisgon month. Above the
histograms are six related statistics: (left of theed line) the maximum, mean, and minimum of the viidation scores shown in the
histograms; (right of the red line) percentages ofhe subbasins where MEys performed better than HE (n};,), the percentage of
subbasins where MEgs performed better than HE (ng,) at the significance level 0.1, and lastly the peentage of subbasins where
ME n4s performed worse than HE ;) at the 0.1 level.
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Figure 5. Bootstrapped (N = 10000AROCSS for the lower, middle, and upper terciles beteen the ME,ys and HE for subbasins in
the cluster S. Each subplot is a histogram of the medians of thieootstrapped validation score's ensembles for eadhitialisation

month. Above the histograms are six related statigts: (left of the red line) the maximum, mean, andninimum of the validation

scores shown in the histograms; (right of the redre) percentages of the subbasins where Mfg performed better than HE (n,;),

the percentage of subbasins where Mg performed better than HE (n¢ ;) at the significance level 0.1, and lastly the peentage of
subbasins where MEgs performed worse than HE ;) at the 0.1 level.
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Figure 6. The cross validated hindcasts of the SF\bf a subbasin in cluster & made by ME.s (boxplots) together with the

The box plots represenhée entire forecast ensemble, the red lines repredethe ensemble medians, the
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Table 4. Bootstrapped (N = 10000) USS and IQRSS fME 45 using HE as a reference. All values that are in bdlare statistically
significant at the 0.1 level.

USSs IQRSS
Jan Feb Mar Apr May Jan Feb Mar Apr May
g SS 0.21 0.04 0.02 -0.02 0.00 0.01 0.05 -0.02 -0.08 -0.18
n"(%) 80(16) 64(0) 56(8) 48(4) 52(8) 56 (24) 72(20) 40(8) 16(4) 16 (4)
< SS -0.05 0.17 0.07 -0.10 0.17 0.01 0.06 0.05 -0.13 -0.15
n" (%) 48(4) 80(4) 60(4) 40(0) 68(4) 52 (36) 68 (40) 64 (16) 16(4) 12(0)
S SS 0.05 0.06 0.11 0.07 0.06 0.09 0.08 0.02 -0.05 -0.03

N (%) 60(12) 65(10) 65(15) 58(10) 60(12)  70(52) 80(48) 60(25) 32(8) 48 (18)
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Figure 7. Maps of the median bootstrapped FYvalues for each of the initialisation dates.
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