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Reviewer #1: 

General Comments: Overall, the authors address an interesting comparison in how differences 

in geomorphology can influence landscape surface-water responses in different ecoregions. This 

paper is well written and important for the field of wetland ecohydrology in the Midwestern 

USA. The analytical methods and statistical tools show a compelling story that the PPR contains 

a higher concentration of depressional basins than the NP and therefore surface water in the PPR 

responds very strongly to changes in climate. Most of my suggestions are areas where the 

authors can clarify and citations they can add to give the reader a better understanding of climate 

shifts in the region.  

Response: Thank you for your thoughtful comments which are addressed below. 

 

Specific Comments  

Comment: Your paper alludes to other studies that looked at the relationship between surface 

water and climate, but you do not cite a recent paper from the PPR. It would be helpful to cite 

this paper especially in your discussion about shifts in climate patterns: McKenna, O.P., Mushet, 

D.M., Rosenberry, D.O., LaBaugh, J.W. Evidence for a climate-induced ecohydrological state 

shift in wetland ecosystems of the southern Prairie Pothole Region. Climatic Change (2017) 145: 

273. https://doi.org/10.1007/s10584-017-2097-7 L363-373  
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study area.”  

 

Comment: L471-472 how is a metric regarding amount of surface area disconnected from 

stream network an independent variable? Isn’t this overlapping with the definition of DCW?  
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water as a proxy of the relative distribution of water storage across the watershed between 

riparian and non-riparian water bodies.” 

 

Comment: I would like to see something in the discussion about table 7 regarding differences in 

DCW vs CCW area in NP and PPR. When controlling for wetland density are there significant 

differences between proportion of DCW vs CCW in NP as compared to PPR? This would help 

specify some of the discussion points in L501-511. 
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and Table 9 are giving more advanced analyses on significant independent variables  
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Missouri River seems to be the border between the two regions.  
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Comment: The final models from Table 9 need to be used more in the discussion especially 

building on how CCW and DCW responses may change in the face of climate and land-use 

change  

Response: We have modified the Discussion section, especially its organization, and in 

particular the Conclusion section to more adequately address this comment, in particular how 

responses relate to climate and land-use change. 

 

Comment: Why in Figure 6 are Yellowstone River and tributaries so responsive to climate as 

compared to other CCW and DCW sites in NP? Also, isn’t Devils Lake naturally a DCW and it 

is only CCW because of pumping into Sheyenne River?  

Response: These are good questions. In regards to Yellowstone River and its tributaries, I 

suspect the climate signal was clear because this path/row had relatively low wetland density 

(see Figure 6A), and the rivers were of such a size that as they started to fill up/widen, they 

began to be more consistently mapped by Landsat. However, this is mostly speculation so I 

haven’t added this to the text. In regards to Devils Lake, you are correct, however we used the 

intersection of water with the NHD lines to define stream connected consistently. We recognize 

that in certain cases, this means stream lines may or may not connect to downstream waters.   

 

Comment: L70-73 long and confusing sentence, consider re-wording or breaking up.  

Response: We broke this sentence into 2 sentences. 

 

Comment: L541-552 This paragraph seems unnecessary. Either give more context or remove.  
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Response: We heavily modified this paragraph and better contextualized it with the model 

results. As annual minimum depth to water table was a significant variable in the DCW SWCR 

model we feel that it is important to retain discussion of this variable. 

 

Comment: Fig 6 legend should read “DCW SWCR” and “CCW SWCR” 

Response: We have updated the figure as recommended. 

 

Reviewer # 2 

 

General Comments: The authors attempted to analyze the spatiotemporal variations of surface-

water expansion and contraction across the Prairie Pothole Region (PPR) and the adjacent 

Northern Prairie (NP) of the United States using time-series Landsat images (1985- 2015). By 

delineating the time-series surface-water extent, the authors investigated how landscape 

characteristics (infiltration capacity, surface storage capacity, stream density, etc.) influenced the 

relationships between climate inputs and surface-water dynamics differently in the PPR and NP. 

Overall, the manuscript is well written and it is a welcome contribution to the field of wetland 

hydrology in the Prairie Pothole Region I have a few minor comments that might help improve 

the quality of the manuscript.  

Response: Thank you for your thoughtful comments which are addressed below. 

 

Specific Comments:  

Comment: One of the major undertakings of this paper is mapping surface-water extent by 

classifying 157 Landsat images, which is a huge amount of effort. The authors stated that the 

image classification algorithm is trained on a water spectral signature, which was derived from 

open-water polygons manually selected within each path/row, resulting in a water signature 

specific to each image (see Lines 217-219). To make the research reproducible, I suggest the 

authors elaborate the manual delineation of open-water polygons for deriving water spectral 

signature. For example, what’s the minimum size of polygons? On average, how many polygons 

were manually delineated for each Landsat image? Did the Landsat images with the same 

path/row use the same openwater polygons?  

Response: Additional text has been added to expand on the selection of training polygons. 

“Three to four polygons (minimum size of 1 ha per polygon, total training area per path/row was 

approximately 20 ha) per path/row were selected. The same open-water polygons were used to 

train the time series for each path/row.”  

 

Comment: It seems the authors did not mention the minimum wetland/surface-water size they 

were trying to map. To my knowledge, the median size of PPR wetlands is less than 2000 m2, 

which is approximately equal to the size of two Landsat pixels. On the one hand, image objects 

with only a few pixels might not be reliable classification results. On the other hand, small 

wetlands (< 2 pixels) might be more sensitive to climate change. How would the minimum size 

of wetlands influence the regression results?  

Response: We agree that the small median size of PPR wetlands truly presents a challenge for 

remotely sensed analysis at a landscape scale. We have added a new analysis to the validation 

section in which we randomly selected 400 NWI wetlands (from <0.1 ha to 1.0 ha) visibly 

inundated in the NAIP imagery. Wetlands larger than 0.2 ha were reliably detected (73%), which 
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is better than most efforts using Landsat imagery (minimum wetlands size is typically 0.8 to 1.0 

ha). We have also added text to the Discussion section explaining this source of uncertainty. 

 

Lines 291-293: How about p31r29? This Landsat scene also lies across both PPR and NP.  

Response: The NP and PPR portions of p31r29 were analyzed separately. We have added this 

text to the Methods section. 

 

Table 2 shows that the overall accuracy for p33r28 is 85.5%, which is significantly lower than 

other Landsat images (90∼97%). I think this deserves some explanation.  

Response: The higher commission error in p33r28 can be attributed to confusion with bare rock 

which is abundant in the northwest portion of the path/row as well as uncertainty across 

agricultural fields. We added the following text, “Errors of commission were higher for p33r28 

which can be attributed to confusion in agricultural fields and with bare rock formations.” 

 

Appendix Table 1: It would make more sense to me if the Landsat images of each path/row are 

listed in a chronological order of image acquisition dates. I would also suggest adding a dashed 

line to separate different path/row (e.g., between p26r30 and p26r32), which can make this long 

table a bit easier to read. I also noticed that the PHDI for p36r28-1994-142 is missing. Why?  

Response: We have made all changes to the Appendix Table 1 as recommended. 

 

Comment: It would increase the impact of this paper and benefit the community if the authors 

can make the surface-water mapping products available to the public.  

Response: We agree, supporting USGS Data Policies, the Landsat surface-water maps will be 

published in ScienceBase (https://www.sciencebase.gov/catalog/), following the article’s 

publication. 

 

Technical Corrections:  

Lines 226/338: National Wetland Inventory -> National Wetlands Inventory Line 227: "Select 

images"?  

Response: Changed as recommended. 

 

Lines 892/897: National Agricultural Imaging Program -> National Agricultural Imagery 

Program 

Response: Changed as recommended. 
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Abstract 19 

Effective monitoring and prediction of flood and drought events requires an improved 20 

understanding of how and why surface-water expansion and contraction in response to climate 21 

varies across space. This paper sought to (1) quantify how interannual patterns of surface-water 22 

expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent 23 

Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics 24 

influence the relationship between climate inputs and surface-water dynamics. Due to differences 25 

in glacial history, the PPR and NP show distinct patterns in regards to drainage development and 26 

wetland density, together providing a diversity of conditions to examine surface-water dynamics. 27 

We used Landsat imagery to characterize variability in surface-water extent across 11 Landsat 28 

path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only 29 

experienced a 2.6-fold greater surface-water extent under median conditions relative to the NP, 30 

but also showed a 3.4-fold greater change in surface-water extent between drought and deluge 31 

conditions. The relationship between surface-water extent and accumulated water availability 32 

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=mvanderhoof@usgs.gov
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(precipitation minus potential evapotranspiration) was quantified per watershed and statistically 33 

related to variables representing hydrology-related landscape characteristics (e.g., infiltration 34 

capacity, surface storage capacity, stream density). To investigate the influence stream 35 

connectivity has on the rate at which surface water leaves a given location, we modeled stream-36 

connected and stream-disconnected surface water separately. Stream-connected surface water 37 

showed a greater expansion with wetter climatic conditions in landscapes with greater total 38 

wetland area, but lower total wetland density. Disconnected surface water showed a greater 39 

expansion with wetter climatic conditions in landscapes with higher wetland density, lower 40 

infiltration and less anthropogenic drainage. From these findings, we can expect that shifts in 41 

precipitation and evaporative demand will have uneven effects on surface-water quantity. 42 

Accurate predictions regarding the effect of climate change on surface-water quantity will 43 

require consideration of hydrology-related landscape characteristics including wetland storage 44 

and arrangement. 45 

 46 

Keywords 47 

Drought, evapotranspiration, Landsat, prairie pothole region, precipitation, surface water  48 

 49 

1. Introduction 50 

Surface-water dynamics have strong implications for ecosystem functioning and human 51 

land use including biogeochemical balances (Hoffmann et al., 2009), species distribution 52 

(Boschilia et al., 2008; Calhoun et al., 2017), hydrologic connectivity (Heiler et al., 1995; 53 

Pringle, 2001), and agricultural productivity (Mokrech et al., 2008; Gornall et al., 2010). Natural 54 

variability in surface-water extent, however, makes gathering timely, accurate information, a 55 
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challenge (Poff et al., 1997; Beeri and Phillips, 2007). While satellite imagery can be used to 56 

map variability in surface-water extent over time, predicting future changes in surface-water 57 

extent (e.g., in response to changes in climate, land use, or natural disasters) requires improving 58 

our understanding of how the landscape influences surface-water extent over time and space. The 59 

relative importance of hydrologic processes and flowpaths across a landscape (e.g., surface 60 

storage, infiltration, evapotranspiration, runoff) can be expected to influence the timing, duration 61 

and extent of surface water for a given location (Euliss and Mushet, 1996; LaBaugh et al., 1996, 62 

van der Kamp et al., 1999). 63 

Winter (2001) presented the concept of hydrologic landscapes as a means to classify 64 

landscape units based on their hydrologic attributes (land-surface form, geology and climate). 65 

These attributes, it is argued, could then be used to predict the partitioning of water into storage, 66 

infiltration, evapotranspiration, and runoff (Wagener et al., 2007). In many landscapes storage is 67 

minimal and when rainfall intensity is greater than both the rate of soil infiltration and the soil 68 

moisture deficit, runoff via overland and subsurface flows will dominate, contributing to 69 

increased stream discharge (Eamus et al., 2006). These landscapes could be described as 70 

exhibiting a low potential for surface-water expansion. Alternatively, in landscapes with low 71 

topographic gradients and poorly developed drainage networks, runoff events rarely deplete 72 

available surface storage. In these landscapes, although stream discharge may elevate, much of 73 

the surplus water remains as surface water (Shaw et al., 2012; Kuppel et al., 2015). These 74 

landscapes show a high potential for surface-water expansion with evapotranspiration often the 75 

primary mechanism for water loss (Winter and Rosenberry, 1998). Landscapes with a tendency 76 

to accumulate surface water are relatively common across the globe and include former glacial 77 

landscapes including the Prairie Pothole Region (PPR) (Sass and Creed, 2008; Shaw et al., 78 
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2012), parts of China (Yao et al., 2007) and Russia (Stokes et al., 2007), and permafrost regions 79 

(Smith et al., 2007), as well as low-gradient landscapes including the Argentine Pampas (Kuppel 80 

et al., 2015), the Pantanal in Brazil (Hamilton, 2002), and the Orinoco Llanos in Columbia and 81 

Venezuela (Hamilton, 2004). Although such landscapes have previously been shown to 82 

experience surface-water expansion in response to increased precipitation (Huang et al., 2011; 83 

Kuppel et al., 2015; Vanderhoof et al., 2016) or melting ice (Stokes et al., 2007; Yao et al., 84 

2007), we are unaware of studies that have explicitly compared surface-water expansion and 85 

contraction between landscapes of differing surface-water expansion potential.  86 

The PPR and adjacent Northern Prairie (NP), which span the upper Midwest of the 87 

United States, occur within and beyond the last glacial maximum, respectively, and together 88 

represent a range in the potential for surface-water expansion. The PPR is characterized by a 89 

high density of depressional wetland and lake features (Zhang et al., 2009), a relic of glacial 90 

retreat (Flint, 1971). Most wetlands are relatively small (<1 ha) depressions, underlain by glacial 91 

till with low permeability, and occur within a landscape matrix of natural grassland and 92 

agriculture (Winter and Rosenberry, 1995; Zhang et al., 2009; Cohen et al., 2016). This is in 93 

contrast to the adjacent NP which includes ecoregions such as the Northwestern Great Plains 94 

(Montana, western North and South Dakota) and the Central Irregular Plains (southern Iowa and 95 

northern Missouri), which lack the high density of small wetlands and show a well-developed 96 

drainage network due to their occurrence outside of the last maximum glacial extent (USGS, 97 

2013). The NP and PPR are also characterized by substantial spatial and interannual variability 98 

in air temperature and precipitation (Bryson and Hare 1974). Variations in temperature and 99 

moisture content of competing air masses results in a strong north-south temperature and east-100 

west precipitation gradient. The precipitation-evaporation deficit is least in the east (i.e., 101 
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Minnesota and Iowa), and increases to the west (i.e., Montana) (Kantrud et al., 1989; Millet et 102 

al., 2009). This variability in climate has a strong influence on water levels across the region. In 103 

the PPR in spring, wetland depressions receive water from both precipitation and snowmelt. In 104 

the summer, water level is controlled by direct precipitation, evaporation and wetland vegetation 105 

transpiration (Winter and Rosenberry, 1995; LaBaugh et al., 1998; Carroll et al., 2005), with 106 

evapotranspiration typically dominating water loss (Rosenberry et al., 2004).  107 

Monitoring variation in water levels across the PPR has been of high interest as it is a key 108 

factor in flood abatement, water quality, biodiversity, carbon management and aquifer recharge 109 

(Gleason et al., 2008). Water level data at Devils Lake, North Dakota, for example, have been 110 

collected as far back as 1867 and provide a regional indicator of hydrological conditions 111 

(LaBaugh et al., 1996; Wiche, 1996). Efforts have been expanded to map interannual changes in 112 

surface-water extent across the PPR at a landscape scale using remotely sensed imagery (Kahara 113 

et al., 2009; Niemuth et al., 2010; Vanderhoof et al., 2016). However, while substantial 114 

interannual variation in water level has been documented across the PPR (Huang et al., 2011; 115 

Vanderhoof et al., 2016), and primarily attributed to interannual variation in temperature and 116 

precipitation (Johnson et al., 2005; Zhang et al., 2009), such surface-water patterns have to date 117 

been minimally characterized for the remainder of the NP. In addition to interannual patterns of 118 

temperature and precipitation, we would also expect that surface-water extent will depend on 119 

landscape parameters such as infiltration capacity, storage capacity, and drainage characteristics 120 

(Euliss and Mushet, 1996; LaBaugh et al., 1996; van der Kamp et al., 1999). Spatial models 121 

incorporating some of these factors can provide additional insights into the risk of flood and 122 

drought events across the region (Niemuth et al., 2010). 123 
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The PPR, in conjunction with adjacent NP, provides an ideal physiographic example in 124 

which to analyze the influence of landscape characteristics on surface-water expansion and 125 

contraction. Although the interaction between water level and climate has been studied 126 

extensively at select locations within the PPR (e.g., Cottonwood Lake) (Winter and Rosenberry, 127 

1998; Huang et al. 2011), minimal research has sought to understand spatial variability in the 128 

relationship between climate and surface-water extent. Our research questions addressed in this 129 

study are:  130 

(1) How do interannual patterns of surface-water expansion and contraction vary 131 

spatially across the Prairie Pothole Region and adjacent Northern Prairie of the 132 

United States?  133 

(2) How do landscape characteristics influence the relationship between climate inputs 134 

and surface-water dynamics?  135 

 The successful exploration of this spatial patterning and landscape-scale statistical functions will 136 

inform hydrologic and biogeochemical modeling and has implications for biodiversity/habitat 137 

modeling and management (e.g., Allen et al., 2016; Golden et al., 2017) 138 

 139 

2. Methods 140 

In this study, we used Landsat imagery to map surface-water extent under dry, average, 141 

and wet conditions across portions of the PPR and adjacent NP. We compared the expansion and 142 

contraction of surface-water extent between the PPR and adjacent NP. As stream-connected 143 

surface water can leave a location easily as stream flow, stream-connected and disconnected 144 

surface water were analyzed separately. We then used a two-level modeling approach to 145 

investigate the influence of landscape variables on surface-water dynamics. In the first stage, 146 
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surface-water extent per watershed was statistically related to accumulated water availability, 147 

defined as precipitation (P) minus potential evapotranspiration (PET). This first stage produced 148 

the dependent variable for the second model, the slope of the relationship between surface-water 149 

extent and climate inputs per hydrological unit (a watershed) or the Surface Water Climate 150 

Response (SWCR). The SWCR was then regressed against independent variables representing 151 

landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density, 152 

long-term climate normals). This approach allowed us to explore what landscape characteristics 153 

drive spatial variability in the relationship between surface-water extent and climate.   154 

2.1 Study Area 155 

Our study area consisted of 11 Landsat path/rows (total area = 308,439 km2) in the U.S. 156 

portion of the PPR and adjacent NP (Figure 1). The PPR across North and South Dakota, western 157 

Minnesota, northern Iowa and northern Nebraska, is dominated by the North and Northwest 158 

Glaciated Plains. This ecoregion is characterized by landscape features formed during its recent 159 

glacial history. Drift plains, large glacial lake basins and shallow river valleys support row crop 160 

agriculture. Grasslands and livestock grazing dominate areas where glaciers left deposits of 161 

uneven glacial till (Sayler et al., 2015). The PPR is dominated by cultivated crops (59%), 162 

herbaceous land cover (18%) and hay/pasture (10%) (Homer et al., 2015). Adjacent to the PPR, 163 

the Northwestern Great Plains, across western North and South Dakota, is a semiarid unglaciated 164 

plain which tends to have shallow soils with a clay texture not conducive to growing crops and 165 

instead dominated by livestock grazing across grasslands (Sayler et al., 2015). To the southeast 166 

of the North Glaciated Plains lies the Western Corn Belt and the Central Irregular Plains in Iowa 167 

and Nebraska. Glacial till forms the parent material for most of the soil in Western Corn Belt and 168 

the northern part of the Central Irregular Plains, within the study area. Level and gently rolling 169 
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hills and fertile soils support agriculture (Sayler et al., 2015). The NP is dominated by 170 

herbaceous land cover (47%) with cultivated crops (28%) and hay/pasture (9%) is also common 171 

(Homer et al., 2015). Using the precipitation averages (1981-2010) defined by the Parameter-172 

elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 2008), the PPR study 173 

area receives 6% more precipitation on average than the NP study area (626 mm yr-1 relative to 174 

592 mm yr-1, respectively) and 1.5% less evaporative demand or potential evapotranspiration 175 

(PET) (603 mm yr-1 relative to 594 mm yr-1, respectively). These differences were not found to 176 

be statistically different using the Wilcoxon rank sum test.  177 

Our regression analysis used eight-digit Hydrologic Unit Codes (HUC8s; USDA NRCS, 178 

2015) as the unit of analysis (n=150) across all 11 Landsat path/rows (Figure 1). HUC8s were 179 

used instead of smaller watersheds such as HUC10s or HUC12s to ensure that patterns in 180 

surface-water expansion and contraction represented landscape patterns, not individual or small 181 

groups of water features. HUC8s that occurred at the edge of a Landsat path/row with an area of 182 

< 50 ha were excluded from further regression analysis to limit the inclusion of incompletely 183 

characterized watersheds. The threshold of 50 ha was selected as it was a natural break in the 184 

distribution of HUC8 sizes. Patterns of surface-water expansion and contraction were compared 185 

between the PPR and NP. We note that one path/row (p37r26) in northern Montana was 186 

technically within the western most section of the PPR, but was found to behave dissimilarly 187 

from the PPR and similarly to the NP in terms of both its landscape characteristics (e.g., stream 188 

density, wetland density) and surface-water expansion and contraction. Because of this, p37r26 189 

was included in the adjacent NP for analyses where findings were organized by PPR and NP. 190 

2.2 Landsat Image Processing 191 

2.2.1 Path-Row and Image Selection 192 
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Surface-water extent was mapped for a series of images across 11 Landsat path/rows 193 

(Figure 1). These path/rows were selected to represent the PPR and adjacent NP and were 194 

intentionally selected to represent a range of ecoregions, climate conditions (west to east and 195 

north to south) and densities of wetlands and streams. Snow-free images (acquired 196 

approximately from April through October) containing less than 10% cloud cover from the 197 

Landsat 4-5 TM, Landsat 7 ETM+ (prior to failure of the scan-line corrector in 2003) and 198 

Landsat 8 OLI sensors were selected between 1985 and 2015. The number of images processed 199 

within each path/row averaged 14 (range: 9 to 17 acceptable images) and were intentionally 200 

selected to document interannual variability in surface-water extent, by selecting images from 201 

wet, average and dry years (Table 1). The terms “wet,” “average” and “dry” were defined in 202 

reference to local norms, using the Palmer Hydrological Drought Index (PHDI) and the 12-203 

month Standardized Precipitation Index (SP12) (NOAA, NCDC, 2014). The range of conditions 204 

captured by the time series within each path/row in relation to the historical climate conditions 205 

(1895-2015) are shown in Table 1. The PHDI is based on a monthly water balance accounting 206 

approach that considers precipitation, evapotranspiration, runoff and soil moisture. The indices 207 

rely on weather station data and are interpolated at 5 km (NOAA NCDC, 2014). A complete list 208 

of images included in the analysis is presented in the Appendix (Table A1).  209 

2.2.2 Image Processing  210 

Images were atmospherically corrected and converted to surface reflectance values using 211 

the Landsat Ecosystem Disturbance Adaptive Processing System (Masek et al., 2006). A 212 

minimum noise fraction transformation was applied to reduce within-image noise (Green et al., 213 

1988). The per-pixel water fraction was estimated using the Matched Filtering algorithm, a 214 

partial unmixing method in the ENVI software package (Exelis Visual Information Solutions, 215 
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Inc, Herndon, Va) (Turin, 1960; Vanderhoof et al., 2016). This algorithm is trained on a water 216 

spectral signature, which was derived from open-water polygons manually selected within each 217 

path/row, resulting in a water signature specific to each image. Three to four polygons (minimum 218 

size of 1 ha per polygon, total training area per path/row was approximately 20 ha) per path/row 219 

were selected. The same open-water polygons were used to train the time series for each 220 

path/row. The water fraction output was linearly stretched to maximize our ability to separate 221 

water from non-water. CFmask, a quality-control layer provided with Landsat images, was used 222 

to mask out clouds and cloud shadows (Zhu and Woodcock, 2014), while the National Land 223 

Cover Database (NLCD) (2011) was used to mask out impervious surfaces, defined as low, 224 

medium and high-density development (Homer et al., 2015), which can show spectral confusion 225 

with surface water. Each surface-water image was visually inspected for quality using visual 226 

interpretation as well as ancillary datasets (e.g., National Agricultural Imagery Program (NAIP) 227 

imagery, National Wetlands Inventory (NWI) dataset (USFWS, 2010)). Select images were 228 

removed or edited primarily due to spectral confusion between water and bare rock or shadowed 229 

vegetation.   230 

2.2.3 Surface-Water Extent Validation 231 

The surface-water extent maps were validated using 1-m resolution NAIP imagery. 232 

Landsat images were selected for validation based on the temporal coincidence of the Landsat 233 

and NAIP imagery collections (Table 2). Because terrestrial surface water is a relatively rare 234 

cover type, it is difficult to generate enough inundated reference points through a simple random-235 

point generation. Therefore, random points were generated in reference to NWI polygons 236 

overlapping with the NAIP and Landsat imagery. Points were then visually identified as 237 

inundated or non-inundated using the NAIP imagery. To account for the scale difference 238 
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between a random point and a 900 m2 Landsat pixel, the Landsat pixel boundaries for each 239 

random point were identified. The point was classified as the majority class (inundated or non-240 

inundated) identified by NAIP within the Landsat pixel boundary surrounding each random 241 

point. Reference points were generated per Landsat/NAIP pair (500 or 1000), with the number of 242 

reference points varying depending on the amount of NAIP imagery available within the Landsat 243 

path/row extent, and the number of random points that occurred within Landsat NA pixels. 244 

Metrics presented included overall accuracy, omission error, commission error, dice coefficient, 245 

and relative bias. Omission and commission errors were calculated for the category “water.” The 246 

dice coefficient is the conditional probability that if one classifier (product or reference data) 247 

identifies a pixel as water, the other one will as well, and therefore integrates omission and 248 

commission errors (Fleiss, 1981; Forbes, 1995). The relative bias provides the proportion that 249 

water is under (negative) or overestimated (positive). 250 

The Landsat per-pixel fraction water was binned into inundated (≥0.3) and non-inundated 251 

(<0.3) classes. This threshold was selected as it best balanced errors of omission and 252 

commission. Overall accuracy for the Landsat surface-water maps across the 11 path/rows was 253 

93.9% with errors of omission for surface water averaging 8.5% and errors of commission for 254 

surface water averaging 8.2% (Table 3). Errors of commission were higher for p33r28 which can 255 

be attributed to confusion in agricultural fields and with bare rock formations. The surface-water 256 

maps showed no relative bias and a dice coefficient of 92%. To determine the minimum wetland 257 

size that was reliably detected, we randomly selected 400 NWI wetlands (from <0.1 ha to 1.0 ha) 258 

visibly inundated in the NAIP imagery (Table 2). Wetlands larger than 0.2 ha were reliably 259 

detected by the Landsat surface-water maps (73%). Errors of omission and commission can be 260 

primarily attributed to mixed Landsat pixels occurring over small wetlands (a few pixels in size) 261 
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or at the edge of larger wetlands or open water features. In some images, parts of or entire 262 

agricultural fields were classified as water. It is common in both the spring months, when crops 263 

need to be planted, and fall months, when crops are being harvested, for fields to experience wet 264 

conditions (Fausey et al., 1987; King et al., 2014). In addition, poorly drained soil is common 265 

across this region (Skaggs et al., 1994) and wetland depressions often occur within agricultural 266 

fields. Consequently, subsurface tile drainage has become increasingly popular across the region 267 

to speed up the removal of excess soil water (Blann et al., 2009). It is often unclear to what 268 

extent surface water mapped within agricultural fields represents historical or current wetlands, 269 

poorly drained fields, or misclassified pixels. Lastly, a close match in acquisition date between 270 

the Landsat and NAIP images is essential for the NAIP imagery to accurately represent ground 271 

conditions. Variability in the date match can be considered one potential source of error, as the 272 

occurrence of a rain event or seasonal variability can change surface-water conditions over even 273 

short time periods. 274 

2.3 Surface-Water Extent Analysis 275 

Surface-water abundance (ha km-2) was calculated per HUC8 with HUC8 area being 276 

adjusted for each image based on the abundance of not applicable (NA) pixels (e.g., cloud cover, 277 

cloud shadow) in each image. We used the high-resolution National Hydrography Dataset (NHD, 278 

1:24,000) to classify surface water as (1) continuous connected with the stream network, or (2) 279 

disconnected from the stream network. The NHD line dataset was buffered by 14 m, the reported 280 

digital horizontal accuracy of the dataset (USGS, 2000) and NHD area was added to account for 281 

the width of large rivers. Surface-water polygons that intersected the stream network in a given 282 

image were classified as continuously connected water (CCW). Surface-water polygons that did 283 

not intersect the stream network in a given image were classified as discontinuous water (DCW) 284 
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or discontinuous from the stream network. We acknowledge that the NHD is known to be 285 

incomplete (e.g., lacking short and ephemeral stream lines) and that some stream lines within the 286 

NHD are disconnected from downstream waters (Heine et al., 2004). However, the NHD is the 287 

most complete nationally available stream dataset. 288 

Processed images within each path/row were ranked from least-to-most amount of 289 

surface water per area. Median condition was defined as the image or two images representing 290 

the median amount of surface-water extent, estimated from all images within a path/row. 291 

Drought and deluge conditions were defined as the average of the two end-member images 292 

showing the least and most amount of total surface-water extent for each path/row, respectively. 293 

Surface-water extent was then summed across the PPR and NP path/rows and divided by the 294 

total area to calculate the hectares of surface-water extent per km2 for each region. The NP 295 

portion of path 27, row 30 (p27r30) and p30r30 were deleted, as was the PPR portion of p26r30 296 

to avoid double-counting overlapped path/rows. The NP and PPR portions of p31r29 were 297 

analyzed separately. 298 

2.4 Stage 1 – Derivation of the Surface Water Climate Response (SWCR) 299 

 In stage 1, surface-water extent in each HUC8 was related, using linear regression, to 300 

water availability, defined as precipitation minus PET summed over a time interval. Water 301 

availability provided an estimate of the amount of water in each watershed available to either (1) 302 

runoff, (2) infiltrate to shallow or deep groundwater sources, or (3) be stored as surface-water. 303 

Surface water was again partitioned into CCW and DCW using its spatial relationship to the 304 

NHD. Precipitation data were compiled using the Parameter-elevation Regressions on 305 

Independent Slopes Model (PRISM, Daly et al., 2008). PET, or the atmospheric demand for 306 

evaporation and transpiration in the absence of water limitations, which can be expected over 307 
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open surface water, was compiled using gridded surface meteorological data PRISM and the 308 

North American Land Data Assimilation System Phase 2 (Abatzoglou et al., 2011). PET was 309 

calculated using the Penman-Monteith equation that required inputs of minimum and maximum 310 

temperature, daily average dewpoint temperature (equivalently, vapor pressure or vapor pressure 311 

deficit), wind speed and downward shortwave radiation (Abatzoglou et al., 2011, Mitchel et al., 312 

2004). The datasets were resampled to 125 m using cubic convolution and summarized for each 313 

HUC8. Water availability was summed for a series of monthly periods preceding each image 314 

date (3, 6, 9, 12, 18, 24, 30 and 36 months) to identify the accumulation period for which the 315 

greatest number of HUC8s showed a significant (p<0.05) slope between water availability and 316 

surface-water extent. This logic was meant to reduce the probability that a zero slope resulted 317 

from surface water responding more strongly to climate drivers at a different time interval. This 318 

first stage produced surface water climate response (SWCR), our dependent variables for stage 2, 319 

i.e., the slope of the relationship between CCW and DCW surface-water extent to accumulated 320 

water availability (Figure 2). The slope or stage 2 dependent variable is referred to as the surface 321 

water climate response (SWCR) from this point forward.  322 

Cloud cover makes it challenging to restrict analysis of Landsat imagery to a specific 323 

season, while including imagery that covers more than one season potentially conflates seasonal 324 

surface-water dynamics with interannual surface-water dynamics. The influence of seasonal 325 

change in surface-water extent within our analysis contributed to the uncertainty (primarily 326 

through sampling error) in the SWCR. For example, if we included an image from June 1993 and 327 

one from August 1993 and related both images to the last nine months of precipitation and PET 328 

(Sept 1992 - May 1993 and November 1992 – July 1993, respectively), greater seasonal 329 

dynamics or variation in surface-water extent between the two dates can be expected to show up 330 
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as greater uncertainty in the slope, defined by the standard error of the slope or standard error of 331 

the SWCR. This becomes more evident as the accumulated period becomes larger (e.g., 36 332 

months). By explicitly considering the uncertainty of the SWCR in the regression analysis, as 333 

described below in the Stage 2 Analysis (Section 2.6), we can, to the extent possible, account for 334 

seasonally induced variation in surface-water extent.  335 

2.5 Landscape Variables for Stage 2 Analysis 336 

The independent variables summarized for each HUC8 and included in the analysis were 337 

selected to characterize mechanisms through which water can leave the landscape (e.g., 338 

infiltration, runoff, tile drainage), mechanisms through which water can remain and expand on 339 

the landscape (e.g., wetland density, wetland size, topography), as well as other potential 340 

influences on surface water dynamics (e.g., climate norms, land cover). The NWI (USFWS, 341 

2010) and NHD stream dataset (USGS, 2013) were used to calculate wetland and stream 342 

characteristics including stream density, wetland count and areal density, and proportion of total 343 

wetland area attributed to large (>8 ha) features. A threshold of 8 hectares was selected as this is 344 

the size threshold used by USFWS to define a lacustrine system (Cowardin et al., 1979). We do 345 

not refer to these features as lakes, however, as water depth and associated vegetation are also 346 

important features to defining lacustrine systems, and were not evaluated. We did not include 347 

distance variables, which were previously found to be highly correlated with simpler variables 348 

already in the analyses: mean wetland-to-wetland distance was previously found to be highly 349 

correlated with wetland density (r = -0.95, p<0.01) and mean wetland-to-stream distance highly 350 

correlated with stream density (r = 0.88, p<0.01) (Vanderhoof et al., 2017). We included the 351 

proportion (%) DCW was of total surface water as a proxy of the relative distribution of water 352 

storage across the watershed between riparian and non-riparian water bodies.  Surface 353 
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topography can influence the capacity for surface water to expand and was quantified as the 354 

weighted averaged slope gradient, as defined by the U.S. Department of Agriculture’s Soil 355 

Survey Geographic (SSURGO) Database (Soil Survey Staff, 2017). Topographic Wetness Index 356 

was not included because of the relative weakness of such indices in landscapes with little relief 357 

(e.g., Schmidt and Persson, 2003) and the data intensive nature of calculating TWI with a 10 m 358 

digital elevation model (DEM) across such a large study area. Additional variables derived from 359 

the SSURGO database to characterize infiltration capacity include available water storage (0 - 360 

150 cm), annual minimum depth to water table, and saturated hydraulic conductivity (Ksat). 361 

Human influence was quantified as the abundance of agricultural activities, or the percent of 362 

each HUC8 classified as agriculture, defined as the National Land Cover Database (NLCD; 363 

Homer et al., 2015) cover categories hay/pasture and row crop. Anthropogenic modifications to 364 

drainage systems, or the percent land cover artificially drained, was estimated as the percent of 365 

each HUC8 where row crop cover type (NLCD 2011) and very poorly drained or poorly drained 366 

soils as defined by the National Resources Conservation Service’s SSURGO database were 367 

collocated following Christensen et al., (2013). The climate normals per HUC8 (1989-2013) 368 

were calculated to represent the Landsat image range. Multi-decadal climate normals were 369 

included to test for the potential effect of a climate gradient across the study area. The 370 

precipitation averages are provided as part of the PRISM dataset (Daly et al., 2008). PET was 371 

calculated as a function of monthly mean PRISM temperature and day length following Hamon 372 

(1961). The Moisture Index (MI) was calculated as the ratio of precipitation and PET where, if 373 

PET exceeded precipitation, MI = precipitation/PET – 1, and if precipitation exceeded or equaled 374 

PET, then MI = 1 = PET/precipitation. Values range from -1 (dry) to 1 (wet) (Willmott and 375 

Feddema, 1992; Feddema, 2005). The climate averages were resampled to 1 km from 4 km using 376 
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inverse-distance weighting, prior to being averaged per HUC8. The distribution of values within 377 

each of the independent variables is shown in Table 4. Spearman rank correlations with a 378 

Bonferroni correction (Dunn, 1961) were calculated for the independent variables (Table A2).  379 

2.6 Stage 2 - Analysis - Landscape Mechanisms Explaining Variability in SWCR 380 

In stage 2, CCW and DCW SWCRs, or the slope of the relationship between CCW and 381 

DCW and accumulated water availability, were related to landscape variables using feasible 382 

generalized least-squares (FGLS) regression, with HUC8s (n=150) as the unit of analysis. FGLS 383 

allowed us to estimate the heteroscedastic structure of the residuals (Lewis and Linzer, 2005) and 384 

has been previously applied within landscape ecology contexts (e.g., Acharya, 2000; Villalobos-385 

Jimenéz and Hassall, 2017). The SWCRs were found to be significant for the largest number of 386 

HUC8s using a 9-month period of accumulation for both CCW and DCW, which was therefore 387 

used as the accumulation period for further analyses (Table 5). The SWCRs were found to be 388 

spatially autocorrelated using Global Moran’s I (spatial relationship conceptualized using inverse 389 

distance) (DCW SWCR, 9 months, z-score=7.8, p<0.01, CCW SWCR, 9 month, z-score=4.1, 390 

p<0.01), violating the assumption of independence between samples. To account for spatial 391 

autocorrelation in the SWCRs, we calculated an autocovariate in ArcGIS 10.3, Geostatistical 392 

Analyst (ESRI, Redmond CA) which uses adjacent HUC8s to create a neighbor value. By 393 

including a spatial autocovariate in the ordinary least-squares (OLS) regression model, we 394 

controlled for how much the response variable reflected response values of adjacent HUCs, 395 

before identifying additional significant explanatory variables (Dormann et al., 2007; Betts et al., 396 

2009). The autocovariate was automatically retained while only significant independent variables 397 

(p<0.05) were additionally retained. The dependent variable was normalized using a Box-Cox 398 

power transformation (R package MASS, Venables and Ripley, 2002). Multicollinearity was 399 
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formally assessed using the regression collinearity diagnostics described by Belsley et al. (1980) 400 

and implemented in the R package perturb (Hendrickx, 2012). Collinearity may affect parameter 401 

estimation when a condition index greater than 10 is associated with variance decomposition 402 

proportions greater than 0.5 for two or more explanatory variables (Belsley, 1991). Both models 403 

complied with collinearity requirements. 404 

Having an estimated dependent variable (e.g., SWCR) does not necessarily present a 405 

problem for a regression analysis, but we must recognize that the regression model error term 406 

contains two components: (1) the expected random error resulting from sources of variation not 407 

taken into account in the model, and (2) the difference between the true value of the dependent 408 

variable and the estimated value (sampling error). In this study, the uncertainty around the 409 

dependent variable (SWCR) was not constant across observations. Instead, the dependent 410 

variable showed a strong positive correlation with its standard error (DCW SWCR, R2 = 0.59, 411 

p<0.05; CCW SWCR, R2 = 0.70, p<0.05) (Figure 3). FGLS allowed us to estimate both 412 

components of the error. To do so we, (1) calculated the logarithm of squared residuals from the 413 

OLS model, (2) regressed the log-residuals on the independent variables included in the OLS 414 

model, (3) calculated the exponential of fitted values from that regression, which estimates the 415 

variance of the regression residual that is not due to sampling of the dependent variable, z, and 416 

(4) estimated the basic model again now including weights (1 z-1) (Hanushek, 1974; Lewis and 417 

Linzer, 2005). We found the final model residuals to be random using the studentized Breusch-418 

Pagan test (Breusch and Pagan, 1979).  419 

To help add confidence regarding which landscape variables were more or less important, 420 

we also fit random forest models in R using the package randomForest (Liaw and Wiener, 2015). 421 

The random forests were run with the SWCRs as the dependent variable and landscape 422 
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characteristics as independent variables. We derived 500 binary trees or bootstrap iterations 423 

using out of bag (OOB) samples (70% of samples to train and 30% of samples to validate). 424 

Variable importance was calculated as the change in node impurity (i.e., Gini importance). 425 

Random forest models are generally insensitive to collinearity among metrics; however, the 426 

inclusion of correlated variables can deflate variable importance as well as the overall variation 427 

explained by the model (Murphy et al., 2010). We implemented random forest model selection to 428 

select the smallest number of non-redundant variables (varSelRF R package) (Murphy et al., 429 

2010). 430 

 431 

3 Results 432 

3.1 Surface-Water Extent 433 

Median surface-water extent as well as the amount of water added and lost from the 434 

surface between wet and dry periods was found to vary considerably across the study area 435 

(Figures 4 and 5). Analysis of the median total surface-water extent between the PPR and the NP 436 

demonstrated that the PPR had 2.6 times greater surface-water extent than the NP (Table 6). The 437 

PPR also showed greater variability in total surface-water extent, adding 5.7 ha km-2 during very 438 

wet conditions and losing 2.8 ha km-2 during very dry conditions, for a maximum net difference 439 

of 8 ha km-2. This can be compared to the NP which gained 1.6 ha km-2 during very wet 440 

conditions and lost 0.8 ha km-2 during very dry conditions, a net difference of 2.4 ha km-2 (Table 441 

6). DCW, or water that was discontinuous with the stream network, showed greater expansion 442 

and contraction in extent in both the PPR and NP, relative to CCW which intersected the stream 443 

network. Consequently, DCW increased as a percent of total surface water during wet periods 444 

and decreased as a percent of total surface water in dry periods. This suggests that across the 445 
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study area, surface water that was disconnected from the stream network disproportionately 446 

served a surface water storage function during wet periods, reducing the amount of water 447 

contributing to downstream flooding. Similarly, DCWs disproportionately experienced loss 448 

during dry periods.  449 

3.2 Relationship between Surface-Water Extent and Water Availability 450 

 Including PET instead of using precipitation alone tended to increase the percentage of 451 

HUC8s showing a statistically significant relationship between surface-water extent and water 452 

availability across the different accumulation periods that we tested, although this was not true 453 

for all time periods. For instance, the percent change from precipitation to precipitation minus 454 

PET ranged from -1.4 to 38% for DCW and -6.3 to 24.3% for CCW. For DCW there was a jump 455 

in the percentage of HUC8s showing a significant relationship between 6 and 9 months, but the 456 

percentage of HUC8s stabilized after this time period out to 36 months. CCW showed a similar 457 

but smaller jump in the percentage of HUC8s with a significant relationship between 6 and 9 458 

months (Table 5). At 9 months, all images, regardless of being collected in the spring, summer or 459 

fall, would include winter precipitation. We observed substantial spatial variability in the 460 

statistical relationship between surface-water extent and water availability. Using 9 months as 461 

the accumulation period, we observed a strong spatial pattern in DCW. PPR HUC8s tended to 462 

show a greater SWCR, exhibited by a substantial increase in surface-water extent with increased 463 

water availability, while HUC8s across the NP tended to show a smaller SWCR, exhibited by 464 

minor to no increases in surface-water extent with increased water availability (Figures 6 and 7). 465 

For CCW, the spatial pattern was less consistent within the PPR or ecoregion boundaries. 466 

Instead, HUC8s with a greater SWCR tended to be HUC8s with large lakes or floodplains 467 

(Figures 6 and 7). 468 
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3.3 Landscape Variables Explaining Variability in Surface-Water Response                                                                                                 469 

 For DCW SWCR, when independent variables were assessed individually using 470 

Spearman’s rank correlation, the SWCR was greater in locations with fewer streams (R = -0.64, 471 

p<0.05), lower slope gradient (R = -0.59, p<0.05), higher wetland density (R = 0.52, p<0.05) and 472 

total wetland area (R = 0.51, p<0.05), deeper minimum depth to water table (R = 0.59, p<0.05) 473 

and where a greater proportion (%) of the total surface water was disconnected from the stream 474 

network (R = 0.42, p<0.05) (Table 7). When the relative importance of the variables was tested 475 

using random forest, variables found to be the most important included, wetland density, stream 476 

density, annual minimum depth to water table and the slope gradient (Table 7). However, after 477 

accounting for the spatial autocorrelation in the DCW SWCR and the significance of the 478 

variables, the DCW SWCR increased in the final feasible generalized least-squares model 479 

(adjusted R2 = 0.66, F-statistic = 73.6) with (1) greater wetland density, (2) deeper depth to 480 

groundwater, and (3) less anthropogenic drainage (Table 8). The variable most consistently 481 

identified across statistical approaches was wetland density, the relevance of which is 482 

demonstrated in Figure 5A and 5B. 483 

 For CCW SWCR, fewer independent variables showed a significant Spearman rank 484 

correlation. The SWCR for stream-connected water increased in locations with a greater total 485 

wetland area (R = 0.48, p<0.05) and less average precipitation (R = -0.33, p<0.05) (Table 7). 486 

Using random forest, the total wetland area and proportion of total water from large features 487 

were found to be the most important variables in explaining variation. The final feasible 488 

generalized least-squares model (adjusted R2 = 0.54, F-statistic = 37.4) also found the 489 

relationship between CCW and surface-water availability (i.e., SWCR) was stronger with greater 490 

total wetland area, but also found that it decreased with greater wetland density (Table 8). 491 
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 492 

4. Discussion 493 

Surface-water extent, and in particular surface water within well-studied portions of the 494 

PPR, has been previously shown to exhibit seasonal and interannual patterns (Poff et al., 1997; 495 

Beeri and Phillips, 2007; Vanderhoof et al., 2016) that can, in turn, influence the cumulative 496 

hydrologic response of a watershed (Evenson et al. 2016; Golden et al. 2016; Ali and Creed 497 

2017). What has been less studied is how surface-water dynamics vary across diverse 498 

landscapes. This is particularly relevant when we consider the need for communities and local 499 

agencies to plan ahead for expected changes in the precipitation regime associated with climate 500 

change (Dore, 2005; Johnson et al., 2005; Millett et al., 2009; McKenna et al. 2017).  501 

Our study area was intentionally selected to encompass a large area with a wide range of 502 

landscape conditions in regards to wetland and stream density and capacity for infiltration. 503 

Across the study area, variation in the values of many of the variables (e.g., stream density, 504 

wetland density) can be attributed to landscape age or the time since the last glacial retreat, and 505 

corresponding variability in drainage development across the region (Ahnert, 1996). The 506 

Wisconsin glacier retreated from the PPR by 11,300 BP, meaning the drainage system is still 507 

developing and surface water is being stored in glacially formed depressions (Winter and 508 

Rosenberry, 1998; Stokes et al., 2007). In contrast, the landscape to the west and south of the 509 

PPR, is much older (>20,000 BP) with a well-developed drainage network (Clayton and Moran, 510 

1982).  511 

 Our results demonstrated that the relationship between surface-water extent and water 512 

availability (SWCR) is a function of both climate and landscape variables and that the density of 513 

depressional wetlands, in particular, played a key explanatory role in the observed landscape 514 
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response to increased climate inputs. Given our findings, we expect that changes in net 515 

precipitation from climate change or other climatic forcings will disproportionately affect 516 

surface-water extent across the PPR relative to the adjacent NP, and that these effects will be 517 

more evident in disconnected wetland systems (DCWs) than in wetlands connected to the river 518 

network (CCWs). Surface waters that are disconnected from the stream network showed a larger 519 

change in extent in response to wetter conditions in landscapes with higher wetland densities or 520 

storage capacity. That is to say that landscapes with a larger number of depressional features 521 

were found to show a greater increase in surface-water extent in response to a wetter climate, 522 

relative to landscapes with fewer depressional features (e.g., Figure 5A and 5B).  523 

However, a larger DCW SWCR was observed even after controlling for wetland density, 524 

suggesting that landscapes with substantial surface storage (i.e., the PPR) may show other 525 

landscape characteristics conducive to the accumulation of DCW, for example, reduced 526 

infiltration. Correspondingly, the expansion of disconnected water correlated positively with a 527 

greater annual minimum depth to groundwater (Table 8). The low permeability of glacial till 528 

across the PPR is indicative of a reduction in infiltration, relative to the NP (Sloan, 1972; Winter 529 

and Rosenberry, 1995), and would reduce the potential for increased water table elevations, 530 

resulting in a deeper minimum depth to groundwater. With less infiltration, pulses of snowmelt 531 

or precipitation in the PPR will instead be transported as overland flow and fill wetlands with 532 

available storage.  533 

In addition to wetland density and infiltration capacity, DCW SWCR was also found to 534 

be related to anthropogenic drainage. The drainage network across the PPR is increasingly 535 

modified with the expansion of ditch networks and tile drainage in association with agricultural 536 

activities (McCauley et al., 2015). These changes have accompanied extensive human-induced 537 
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wetland loss across the region (Miller et al., 2009; Van Meter et al., 2015). Ditches, pipes and 538 

field tiles on the glacial till can hasten the speed with which water leaves a location and lower the 539 

water table through increased water withdrawal (De Laney, 1995; Blann et al., 2009; McCauley 540 

et al., 2015). We found in the FGLS model, the expansion of disconnected water was inversely 541 

related to the abundance of estimated anthropogenic drainage. Because anthropogenic drainage 542 

increases the rate at which water leaves a location, it results in the loss or reduction of landscape-543 

scale functions of wetlands and other natural water storage features in the PPR (McCauley et al. 544 

2015), and shifts the hydrologic behaviors of watersheds towards those more commonly seen in 545 

the NP.  546 

 When we considered surface waters connected to the stream network, we found that 547 

CCWs showed more substantial expansion with increased water availability in landscapes with 548 

more concentrated water (i.e., greater total wetland area, but lower wetland density) (e.g., Figure 549 

5C and 5D). This finding suggests that the presence of stream-connected lakes within large flat 550 

basins may be an important factor influencing surface-water expansion. Previous research found 551 

lakes within the PPR to be important features that commonly experience extensive surface-water 552 

expansion, subsuming adjacent wetlands during wet periods (Vanderhoof and Alexander, 2016). 553 

These findings suggest that if climate conditions within the U.S. portion of the PPR continue to 554 

get wetter, as predicted (e.g., Millett et al. 2009; McKenna et al. 2017), then both small wetland 555 

depressions and larger features, such as lakes and floodplains, will both serve critical roles in 556 

storing increased inputs of surface water, which could prevent downstream flooding.   557 

We must also consider that we may be missing key landscape variables that could explain 558 

variability in the spatial response of surface-water extent to climate inputs. For example, major 559 

landscape characteristics required for stream-connected surface water to expand include (1) 560 
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large, stream-connected water bodies such as lakes and (2) hydrologically-connected floodplains. 561 

The influence of large water bodies was considered by including total wetland area and the 562 

portion of water from larger (>8 ha) features; however, we did not explicitly consider the 563 

presence/absence of active floodplains beyond including stream density as a variable. Floodplain 564 

activity typically exhibits strong seasonal patterns; while the goal of our analysis was focused on 565 

patterns of surface-water extent that occurred on longer-time scales (i.e., interannual variability). 566 

Because of this, we excluded two Landsat path/rows from the analysis that were originally 567 

included because strong seasonal flooding outweighed interannual patterns in climate as 568 

evidenced by a lack of a relationship between climate indices (e.g., Standardized Precipitation 569 

Index (12 months) and Palmer Hydrologic Drought Index) and surface-water extent. These 570 

path/rows included p30r27 which straddles North Dakota and Minnesota and exhibits strong 571 

seasonal flooding of the Red River and p28r32 in the southeastern corner of Nebraska, which 572 

exhibits strong seasonal flooding of the Missouri River. However, even with the exclusion of 573 

these two path/rows, the importance of floodplains was still evident (e.g., Figure 5C and 5D, 574 

Figure 6B) as we observed greater SWCR in areas with an abundance of lakes or floodplain 575 

systems. Because complete floodplain maps across the study area are lacking, we were not able 576 

to explicitly identify the role of floodplains in the CCW models. 577 

It is important to consider decision points and data characteristics that may have 578 

influenced our findings. For example, the period of time for which the greatest number of 579 

HUC8s showed a significant SWCR was used as the climate accumulation period. This logic was 580 

meant to avoid, to the extent possible, a HUC8 showing a zero SWCR because surface water 581 

responded at a time period different than the one selected. However, its usage meant that the 582 

study results are limited to interpreting the relationship of surface-water extent to same year 583 
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climate inputs (or the previous 9 months) and may be less applicable to understanding the 584 

relationship of surface-water extent to shorter (seasonal) or longer (multi-year) time periods. 585 

This means that the role of small (<0.2 ha), ephemeral wetlands, was likely excluded both 586 

because they were too small to be mapped by Landsat imagery and show a surface-water 587 

duration too short to be adequately reflected using a 9-month aggregation period. 588 

In addition, decisions regarding image inclusion may have also influenced the analysis. 589 

Although the Landsat images used in the analysis were selected strategically to represent 590 

historically dry, average, and wet conditions, because the Landsat images were processed 591 

individually we were ultimately limited in the number of Landsat images we could process. As 592 

more remotely sensed products become available, such as the U.S. Geological Survey’s Dynamic 593 

Surface Water Extent (DSWE) Product, which plans to utilize the entire Landsat archive (1984 594 

to present) (Jones, 2015), we could utilize many more images and reduce the uncertainty in 595 

estimates of the SWCR or watershed-specific response to available water. Although decision 596 

points regarding the data included or excluded from the analysis are important to consider, this 597 

study provides an improved understanding of how the relationship between surface-water extent 598 

and climate may vary spatially across different landscapes.  599 

 600 

5. Conclusion 601 

Shifts in climate patterns and the frequency of extreme climate events will influence 602 

surface-water extent. This has implications for habitat availability (Boschilia et al., 2008; 603 

Calhoun et al., 2017), agricultural productivity (Mokrech et al., 2008; Gornall et al., 2010) and 604 

hydrologic connectivity (Golden et al. 2016; Ali and Creed 2017). This study demonstrated that 605 

not only is surface-water extent variable across landscapes, but shifts in climate patterns will 606 
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have an uneven effect on surface-water extent across these different landscapes. The PPR 607 

experienced a 2.6 fold greater surface-water extent than the adjacent NP under average 608 

conditions and a 3.4 fold larger range in surface-water extent between drought and deluge 609 

conditions. To move from ecoregion boundaries to a more functional characterization of the 610 

spatial distribution of surface water on the landscape, we used a statistical approach to explore 611 

potentially significant landscape variables that could explain the spatially variable change in 612 

surface water to climate inputs (precipitation minus evapotranspiration). Landscapes with higher 613 

wetland density (i.e., more surface storage), less infiltration (i.e., deeper annual minimum depth 614 

to groundwater), and less anthropogenic drainage showed a greater expansion of disconnected 615 

(from the stream network) surface water (e.g., depressional wetlands) with wetter climatic 616 

conditions relative to landscapes with fewer wetlands and more anthropogenic drainage. This 617 

suggests that with wetter climate conditions, the PPR will store more of its excess water in DCW 618 

surface storage relative to the NP. However, increased anthropogenic drainage of water across 619 

the PPR has an observable impact on this DCW expansion, suggesting that anthropogenic 620 

modifications are reducing the landscape’s natural ability to buffer runoff. Landscapes with 621 

fewer wetlands, but more total surface water area (e.g., lakes, large river systems) showed a 622 

greater expansion of stream-connected surface water with wetter climatic conditions relative to 623 

landscapes with less total wetland area, suggesting that riparian wetlands, lakes and floodplains 624 

show an important water storage and lag role during wetter climate conditions. Enhancing our 625 

knowledge of spatial and temporal variability in the relationship between surface-water extent 626 

and climate inputs can advance efforts to predict the hydrologic effects of climate change, 627 

including drought and floods, on water resources and improve hydrological modeling in low- 628 

gradient landscapes.  629 
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Tables 908 

Table 1. A summary of the Landsat images utilized within each selected path/row. Landsat TM images were used for dates 2011 and 909 

earlier. Landsat 8 OLI images were used for 2013 forward. DOY: day of year; NP: Northern Prairie, PPR: Prairie Pothole Region,  910 

PHDI: Palmer Hydrological Drought Index. *p37r26 was considered NP because of its dissimilarity with the rest of the PPR. 911 

Path/Row 

PPR/Northern 

Prairie (NP) 

(primary) 

Number 

of 

Images 

Spring 

(DOY 

60-151) 

Summer      

(DOY 

152-243) 

Fall 

(DOY 

244-335) 

Year 

Range 

Min. 

PHDI 

(%) 

Max. 

PHDI 

(%) 

Mean 

PHDI 

(%) 

p26r30 NP 12 6 4 2 1987-2010 4 99 45 

p26r32 NP 17 10 3 4 1988-2010 2 99 51 

p27r30 PPR 9 3 4 2 1988-2008 4 99 54 

p29r29 PPR 17 9 2 6 1990-2011 7 100 69 

p30r30 PPR 13 5 5 3 1988-2013 2 100 45 

p30r31 NP 15 6 5 4 1986-2011 5 94 38 

p31r27 PPR 15 2 6 7 1990-2011 3 100 67 

p31r29 PPR 13 6 5 2 1989-2011 7 99 45 

p33r28 NP 15 8 2 5 1988-2015 1 99 49 

p36r28 NP 16 7 7 2 1985-2013 2 96 38 

p37r26 NP* 15 4 6 5 1987-2013 1 99 52 

  Total 157 66  49  42          

  912 
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Table 2. Landsat images and corresponding National Agricultural Imagery Program (NAIP) images used to validate the Landsat 913 

surface-water extent maps. Accuracy is presented here by Landsat image. PHDI: Palmer Hydrological Drought Index, SP12: 12- 914 

month Standardized Precipitation Index, OE: omission error for water, CE: commission error for water, OA: overall accuracy, DC: 915 

Dice coefficient, RB: relative bias 916 

Landsat 

Path/Row 

Landsat 

date 
NAIP date(s) Gap (days) PHDI SP12 

Number 

of 

points 

OE 

(%) 

CE 

(%) 

OA 

(%) 

DC 

(%) 

RB 

(%) 

p26r32 28-Jun-04 23-Jun-04 and 07-Jul-04 -5 to +9 days 0.57 0.14 947 6.3 5.9 97.4 93.9 -0.5 

p27r30 14-Jul-13 10-Jul-13 and 12-Jul-13 -4 to -2 days -0.34 0.05 707 11.8 9.3 92.5 89.5 -2.7 

p29r29 13-Oct-06 25-Sep-06 -18 days 2.3 -0.08 814 11.1 2.5 93.6 93.0 -8.8 

p29r29 8-Oct-10 17-Sep-10 and 20-Sep-10 +18 to +21 days 9.63 3.06 959 1.9 3.3 97.4 96.4 1.4 

p31r29 17-Jul-04 10-Jul-04 and 14-Jul-04 -7 to -3 days -0.4 -0.04 1302 7.4 1.5 97.2 95.4 -6.0 

p33r28 13-Jul-03 11-Jul-03 and 15-Jul-03 -2 to +2 days -2.74 -0.91 908 10.6 27.0 85.5 80.4 22.5 

p37r26 31-Jul-11 16-Jul-11 and 19-Jul-11 -15 to -12 days 2.96 1.29 498 16.8 9.7 90.2 86.6 -7.9 

 917 

Table 3. Summary of accuracy statistics across all of the Landsat images validated using National Agricultural Imagery Program 918 

(NAIP) imagery. 919 

  

NAIP - 

Inundated 

NAIP - 

Non-

Inundated 

Total 

Landsat - Inundated 2052 183 2235 

Landsat - Non-Inundated 190 3710 3900 

Total  2242 3893 6135 

    
Omission error for water (%) 8.5   
Commission error for water (%) 8.2   
Overall Accuracy (%) 93.9   
Dice Coefficient 91.7   
Relative Bias 0.0     

 920 

  921 
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Table 4. Independent variables considered in the landscape analysis and the distribution of values for each variable across the 8-digit 922 

hydrological units (HUC8s). Mean values for the HUC8s within the Prairie Pothole Region (PPR) and Northern Prairie (NP) are also 923 

shown with significant differences (p<0.01) between the two groups, as determined by the Wilcoxon rank sum test, indicated by 924 

different superscript letters. NHD: National Hydrography Dataset, NWI: National Wetlands Inventory, PRISM: Parameter-elevation 925 

Regressions on Independent Slopes Model, SSURGO: Soil Survey Geographic Database, NLCD: National Land Cover Database, 926 

DCW: disconnected surface water, PET: potential evapotranspiration, avg: average, Ksat: saturated hydraulic conductivity 927 

Independent Variables Units Range 
25th 

% 

50th 

% 

75th 

% 

PPR 

(avg) 

NP 

(avg) Source 

Wetland and Stream Characteristics         
Stream density m ha-1 0.1 to 26.1 7.2 11.4 15.0 7.8a 14.5b High-Resolution NHD (USGS 2013) 

Total wetland density no ha-1 0 to 0.2 0.02 0.03 0.06 0.06a 0.03b NWI (USFWS 2010) 

Total wetland areal abundance ha ha-1 0 to 0.7 0.02 0.03 0.08 0.08a 0.05b NWI (USFWS 2010) 

Portion of total water area from large features % 0.1 to 97.8 32.1 44.7 58.0 45.0a 47.2a NWI (USFWS 2010, Zhang et al., 2009) 

Portion DCW of total surface water % 0 to 100 10.6 24.4 50.0 44.5a 22.8b Landsat and NHD (USGS 2013) 

Climate Averages         

Moisture Index Average ~ -0.4 to 0.7 -0.1 -0.04 0.2 0.04a -0.03a PRISM (Daly et al., 2008) 

Precipitation Average mm yr-1 312.3 to 1007.8  490.3 599.6 790.8 641.5a 624.3a PRISM (Daly et al., 2008) 

PET Average mm yr-1 496.2 to 683.0 564.2 595.5 628.9 595.5a 594.8a PRISM (Daly et al., 2008) 

Soil and Topography         

Available water storage (0-150 cm), weighted cm 7.6 to 29.5 18.0 22.8 24.7 24.0a 19.1b SSURGO (Soil Survey Staff, 2017) 

Annual minimum depth to water table cm 0.1 to 69.0 11 24.8 43.3 40.5a 17.9b SSURGO (Soil Survey Staff, 2017) 

Ksat µm sec-1 2.1 to 107.7 8.4 13.8 22.5 21.4a 21.2a SSURGO (Soil Survey Staff, 2017) 

Slope gradient, weighted average % 1.5 to 19.2 3.0 4.3 7.1 3.3a 7.1b SSURGO (Soil Survey Staff, 2017) 

Human Influence         

Agricultural land cover  % 0.1 to 92.0 25.2 62.8 80.5 72.6a 39.6b 2011 NLCD (Homer et al., 2015) 

Percent drained by anthropogenic means % 0 to 93.0 5.9 50.1 77.8 61.7a 32.5b 2011 NLCD and SSURGO  

 928 

 929 

  930 



42 
 

Table 5. The percent of HUC8s across the study area that showed a significant relationship (p<0.05) between surface-water extent and 931 

(1) precipitation (Precip or P) or (2) precipitation minus potential evapotranspiration (PET) for different accumulation periods. DCW: 932 

disconnected surface water; CCW: continuously, connected surface water. 933 

Accumulated Period 
Precip 

DCW (%) 

P - PET 

DCW (%) 

Inclusion of 

PET change 

(DCW) 

Precip 

CCW (%) 

P - PET 

CCW 

(%) 

Inclusion of 

PET change 

(CCW) 

3 months 19.4 27.1 7.6 15.3 28.5 13.2 

6 months 5.6 31.9 26.4 9.0 33.3 24.3 

9 months 20.8 59.7 38.9 27.1 48.6 21.5 

12 months 45.8 50.7 4.9 42.4 41.0 -1.4 

18 months 24.3 58.3 34.0 25.7 39.6 13.9 

24 months 52.1 50.7 -1.4 43.8 37.5 -6.3 

30 months 28.5 55.6 27.1 27.1 43.1 16.0 

36 months 54.9 54.9 0.0 47.2 44.4 -2.8 

HUC8s with a sig 

relationship in at least 1 

time period 

65.3 75.7 10.4 59.0 67.4 8.3 

 934 
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Table 6. Surface-water extent conditions summarized for the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP). TSW: 935 

total surface-water extent, CCW: continuously connected surface water that intersects the stream network, DCW: disconnected surface 936 

water or surface water that does not directly intersect the stream network. 937 

Region 

Path/ 

rows 

(all or 

part) 

Total 

area 

(km2) 

Min (ha 

km-2) 

Max (ha 

km-2) 

Median 

(ha km-2) 

Added min 

to max (ha 

km-2) 

Reduction 

from median 

to min (%) 

Increase from 

median to 

max (%) 

Min (% 

of all) 

(area) 

Max (% 

of all) 

(area) 

Median 

(% of all) 

(area) 

PPR TSW 7 146,309 3.51 11.99 6.33 8.48 44.6 89.2 ~ ~ ~ 

NP TSW 9 173,026 1.62 4.07 2.45 2.45 33.9 66.1 ~ ~ ~ 

PPR CCW 7 146,309 2.82 7.56 4.44 4.74 36.5 70.4 80.3 63.1 70.1 

NP CCW 9 173,026 1.44 3.11 2.06 1.66 30.0 50.5 89.1 76.3 84.2 

PPR DCW 7 146,309 0.69 4.42 1.90 3.73 63.4 133.4 19.7 36.9 29.9 

NP DCW 9 173,026 0.18 0.97 0.39 0.79 54.4 149.2 10.9 23.7 15.8 
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Table 7. Spearman rank correlation values between the dependent variables and each of the independent variables considered in the 940 

analysis. Bonferonni correction was applied to the p-values and significant correlations (p<0.05) are starred. Relative variable 941 

importance as determined by random forest models are also presented for each variable (i.e., increase in node purity). PET: potential 942 

evapotranspiration, Ksat: saturated hydraulic conductivity, DCW: disconnected surface water, CCW: continuously, connected surface 943 

water 944 

  Response (DCW, 9 months) Response (CCW, 9 months) 

Variable 

Spearman 

rank  

correlation 

Increase in 

node purity 

Spearman 

rank 

correlation 

Increase in 

node purity 

Autocovariate 0.79* 0.081 0.53* 0.108 

Proportion (%) DCW is of total surface water  0.42* 0.012 -0.11 0.3341 

Stream density -0.64* 0.0361 -0.15 0.060 

Wetland density 0.52* 0.0481 0.27 0.0571 

Wetland areal abundance 0.51* 0.0171 0.48* 0.8551 

Portion of total water from large features -0.01 0.004 0.30 0.5561 

Moisture Index (average) -0.03 0.005 -0.28 0.0531 

Precipitation (average) -0.10 0.0081 -0.33* 0.0391 

PET (average) -0.06 0.0111 -0.13 0.034 

Available water storage (0-150 cm) 0.27 0.007 -0.01 0.061 

Annual minimum depth to water table 0.56* 0.0271 0.09 0.046 

Ksat 0.04 0.004 -0.08 0.0701 

Slope gradient, weighted average -0.59* 0.0251 -0.22 0.072 

Agricultural land cover 0.31 0.005 -0.05 0.035 

Percent drained by anthropogenic means 0.22 0.004 -0.04 0.020 
1Variables selected by the random forest model selection process, using the R package rfUtilities, when the autocovariate was not included. 945 

 946 
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Table 8. Feasible generalized least square models with residual weights applied relating the response (of surface-water extent to water 949 

availability) to landscape-related variables. All variables included in the models were significant. DCW: surface water disconnected 950 

from the stream network, CCW: continuously connected surface water, SE: standard error, D.F.: degrees of freedom 951 

Response of DCW water 

to water availability 
Variables Coefficients SE t-value 

D.F. = 145 Intercept 0.17 0.01 12.84 

F-statistic = 73.6 Autocovariate 0.03 0.004 6.32 

adjusted R2 = 0.66 Wetland density 0.90 0.23 3.96 

 Minimum depth to groundwater 0.0021 0.0006 3.29 

 Percent anthropogenically drained -0.0004 0.0003 -1.25 

Response of CCW water 

to water availability 
Variables Coefficients SE t-value 

D.F. = 144 Intercept 0.018 0.01 1.43 

F-statistic = 69.4 Wetland areal abundance 0.96 0.07 14.42 

adjusted R2 = 0.58 Wetland density -0.43 0.21 -2.09 

  Autocovariate -0.12 0.01 -0.89 

 952 
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Figures 955 

 956 

Figure 1. Distribution of Landsat path/rows used to map surface-water extent and corresponding 957 

8-digit Hydrological Units (HUC8s) used for further analysis in relation to the boundary of the 958 

Prairie Pothole Region (PPR). The p37r26 behaved dissimilarly from the PPR and similarly to 959 

the adjacent Northern Prairie (NP) in all regards and was therefore included with the NP for 960 

analyses organized by PPR and NP. 961 

962 
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 963 

Figure 2. Theoretical figure showing the derived dependent variable, or the Surface Water 964 

Climate Response (SWCR), defined as the slope of the statistical relationship between 965 

accumulated water and surface-water extent. Some areas show a greater SWCR or substantial 966 

increase in surface-water extent as more water becomes available via precipitation minus 967 

potential evapotranspiration (PET), while other areas show little to no change in surface-water 968 

extent, presumably as excess water leaves the system through runoff or infiltration. 969 

  970 
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 971 

 972 

Figure 3. Standard errors of the Surface Water Climate Response (SWCR) tended to be 973 

positively correlated with both A) discontinuous surface water (DCW) or surface water 974 

disconnected from the stream network and B) continuously connected water (CCW) or surface 975 

water connected to the stream network. 976 
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 978 

Figure 4. Mean surface-water abundance and the amount of “wetting up” varied substantially 979 

between different Landsat path/rows. Portions of the Northern Prairie (e.g., p26r30) showed 980 

relatively less surface-water extent and expansion (A and B) while portions of the Prairie Pothole 981 

Region (e.g., p29r29) showed relatively more surface-water extent and expansion (C and D). 982 

Note: not all water is visible at this reduced scale. PHDI: Palmer Hydrological Drought Index 983 

  984 
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 985 

Figure 5. Examples of minor and substantial expansion of surface-water extent between 986 

historically dry and historically wet points in time. PHDI: Palmer Hydrological Drought Index. 987 
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 988 

Figure 6. The spatial distribution of the Surface Water Climate Response (SWCR) values from 989 

the statistical relationships between available water, defined as precipitation minus potential 990 

evapotranspiration accumulated over the previous 9 months, and surface-water extent. Greater 991 

SWCR values indicate greater change in surface-water extent with increased available water. 992 

Surface-water extent was divided between A) disconnected surface water (DCW), or surface-993 

water extent disconnected from the stream network, and B) continuously connected water 994 

(CCW), or surface-water extent connected to the stream network. 995 



52 
 

996 

 997 

Figure 7. Distribution of Surface Water Climate Response and standard error values organized 998 

by Landsat path/row and primary path/row location, i.e., the Northern Prairie or the Prairie 999 

Pothole Region (PPR) for A) surface water that is disconnected from the stream network (DCW), 1000 

and B) surface water that is connected to the stream network (CCW). HUC8: 8-digit 1001 

Hydrological Units 1002 
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Appendix 1005 

Table A1. A complete list of Landsat TM images used in the analysis and the corresponding 1006 

Palmer Hydrological Drought Index (PHDI).  1007 

Landsat 

path/row 
Date PHDI 

Landsat 

path/row 
Date PHDI 

Landsat 

path/row 
Date PHDI 

p26r30 1987 117 0.06 p30r30 1988 148 -1.23 p31r29 2003 196 -1.22 

p26r30 1988 296 -4.15 p30r30 1989 110 -3.47 p31r29 2004 135 -2.66 

p26r30 1989 170 -4.29 p30r30 1989 294 -4.66 p31r29 2004 279 2.52 

p26r30 1989 186 -4.29 p30r30 1990 121 -4.70 p31r29 2006 172 -3.49 

p26r30 1993 133 3.95 p30r30 1991 236 -2.79 p31r29 2010 167 6.94 

p26r30 1993 277 6.92 p30r30 1993 161 5.40 p31r29 2010 279 8.63 

p26r30 1996 142 0.30 p30r30 2002 122 -1.12 p31r29 2011 154 6.55 

p26r30 1996 222 -0.24 p30r30 2003 141 0.26 p33r28 1988 137 -2.47 

p26r30 2006 153 1.17 p30r30 2003 285 0.88 p33r28 1988 249 -5.68 

p26r30 2008 95 2.82 p30r30 2010 288 8.93 p33r28 1990 254 -3.87 

p26r30 2010 148 1.10 p30r30 2011 179 6.87 p33r28 1995 188 4.09 

p26r32 1988 264 -4.18 p30r30 2011 211 6.49 p33r28 1997 129 5.11 

p26r32 1989 266 -2.92 p30r30 2013 184 -0.94 p33r28 1998 148 0.22 

p26r32 1991 288 -1.88 p30r31 1986 174 2.19 p33r28 1998 260 0.70 

p26r32 1991 96 0.55 p30r31 1990 105 -2.63 p33r28 2003 146 -1.78 

p26r32 1993 133 3.66 p30r31 1990 137 -2.43 p33r28 2005 135 -2.35 

p26r32 1994 104 3.79 p30r31 1990 297 -2.45 p33r28 2005 263 -0.62 

p26r32 1994 136 2.76 p30r31 1994 148 3.63 p33r28 2006 106 0.36 

p26r32 2000 105 -3.03 p30r31 1994 260 4.12 p33r28 2008 112 -2.86 

p26r32 2002 158 1.59 p30r31 2000 125 -2.05 p33r28 2014 160 5.61 

p26r32 2003 145 -2.98 p30r31 2000 173 -2.66 p33r28 2014 256 9.15 

p26r32 2007 108 0.74 p30r31 2000 221 -2.38 p33r28 2015 67 5.37 

p26r32 2008 271 5.07 p30r31 2000 269 -3.75 p36r28 1985 149 -2.04 

p26r32 2010 100 4.06 p30r31 2002 122 -1.84 p36r28 1988 222 -6.07 

p26r32 2010 228 5.90 p30r31 2002 250 -4.62 p36r28 1989 112 -1.94 

p27r30 1988 239 -4.52 p30r31 2003 141 -2.46 p36r28 1993 235 5.17 

p27r30 1989 161 -4.34 p30r31 2003 221 -2.41 p36r28 1993 91 -0.89 

p27r30 1992 122 4.29 p30r31 2005 178 1.58 p36r28 1994 142 2.50 

p27r30 1992 266 3.22 p30r31 2009 173 5.29 p36r28 1996 100 3.81 

p27r30 1993 172 6.52 p30r31 2011 179 5.22 p36r28 1996 244 2.06 

p27r30 2002 141 -1.25 p31r27 1990 160 -4.12 p36r28 1998 121 1.67 

p27r30 2003 104 1.44 p31r27 1991 163 -2.45 p36r28 2002 212 -5.14 

p27r30 2003 280 -1.32 p31r27 1992 118 -1.93 p36r28 2003 135 -2.38 

p27r30 2008 182 3.03 p31r27 1994 299 7.03 p36r28 2004 154 -4.72 

p29r29 1990 130 -3.55 p31r27 1995 270 5.97 p36r28 2004 282 -4.29 

p29r29 1991 133 -0.69 p31r27 1997 195 2.72 p36r28 2008 181 1.70 

p29r29 1992 136 1.35 p31r27 1999 121 2.01 p36r28 2013 178 -0.91 

p29r29 1993 266 6.86 p31r27 2001 190 4.46 p36r28 2013 242 -0.42 

p29r29 1995 288 5.71 p31r27 2004 279 4.38 p37r26 1987 162 2.15 

p29r29 1997 165 5.05 p31r27 2005 169 3.06 p37r26 1988 213 -5.70 

p29r29 1998 120 2.77 p31r27 2006 252 -3.32 p37r26 1991 141 0.14 

p29r29 2001 128 4.47 p31r27 2007 255 2.41 p37r26 1991 269 2.26 

p29r29 2002 323 -1.69 p31r27 2009 244 3.28 p37r26 1994 101 2.76 

p29r29 2003 118 -2.01 p31r27 2010 279 6.43 p37r26 1994 261 -2.54 

p29r29 2005 91 3.15 p31r27 2011 186 6.61 p37r26 1995 168 1.35 

p29r29 2006 286 2.30 p31r27 2011 266 8.92 p37r26 1995 264 1.68 
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p29r29 2006 94 4.20 p31r29 1989 109 -1.62 p37r26 2002 171 -1.85 

p29r29 2010 105 6.19 p31r29 1989 189 -3.38 p37r26 2006 246 -3.41 

p29r29 2010 281 9.63 p31r29 1989 269 -2.31 p37r26 2008 108 -2.37 

p29r29 2011 156 8.37 p31r29 1990 96 -1.65 p37r26 2009 142 0.26 

p29r29 2011 284 5.88 p31r29 1999 121 5.19 p37r26 2011 212 9.14 

   p31r29 2003 100 -2.24 p37r26 2011 276 7.32 

      p31r29 2003 132 -1.84 p37r26 2013 169 3.40 

 1008 

 1009 
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Table A2. Spearman rank correlation values between the independent variables considered in the analysis. Bonferonni correction was 1010 

applied to the p-values and significant correlations (p<0.05) are starred. DCW: surface water disconnected from the stream network, 1011 

CCW: continuously connected surface water, MI: Moisture Index, PET: potential evapotranspiration, precip: precipitation, lg: large, 1012 

ag: agricultural, Ksat: saturated hydraulic conductivity, na: not applicable 1013 

Variable 

DCW 

auto-

covariate 

CCW 

auto-

covariate 

Portion 

dis-

connected 

Stream 

density 

Wetland 

density 

Wetland 

areal 

abund. 

Dominance 

of lg. water 

bodies 

MI  Precip  PET  

Avail 

water 

storage (0-

150 cm) 

Annual 

min 

depth to 

water 

table 

Ksat 
Slope 

gradient 

Ag 

land 

cover 

Percent 

drained 

DCW 

autocovariate 
1 na 0.45* -0.66* 0.48* 0.48* -0.04 0.03 -0.05 0.03 0.29 0.54* 0.21 -0.58* 0.33* 0.22 

CCW 
autocovariate 

 1 -0.11 -0.16 0.15 0.27 0.18 -0.29 -0.26 0.15 0.05 -0.04 0.01 -0.16 -0.03 -0.07 

Portion DCW of 
total water  

  1 -0.38* 0.32* -0.09 -0.63* 0.33* 0.20 
-

0.05 
0.37* 0.54* 0.11 -0.34* 0.46* 0.26 

Stream density    1 -0.33* -0.37* -0.05 -0.34* -0.21 0.09 -0.34* -0.62* 
-

0.47* 
0.66* -0.33* -0.2 

Wetland density     1 0.79* -0.02 0.24 0.19 -0.1 0.26 0.29 -0.03 -0.19 0.11 0.25 

Wetland areal 

abundance 
     1 0.44 0.18 0.06 -0.1 0.21 0.26 -0.01 -0.29 0.05 0.23 

Dominance of lg 

water bodies 
      1 -0.22 -0.16 0 -0.11 -0.1 0.08 0.1 -0.24 -0.01 

MI        1 0.86* -0.2 0.60* 0.67* 0.14 -0.41* 0.80* 0.64* 

Precipitation         1 0.25 0.48* 0.44* 0.03 -0.17 0.66* 0.50* 

PET           1 -0.07 -0.21 -0.2 0.12 -0.08 -0.16 

Avail water 

storage (0-150 
cm) 

          1 0.49* -0.05 -0.44* 0.66* 0.51* 

Annual min 

depth to water 
table 

           1 0.19 -0.61* 0.69* 0.57* 

Ksat             1 -0.25 0.02 -0.07 

Slope gradient              1 -0.63* -0.32* 

Agricultural land 

cover 
              1 0.63* 

1014 
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