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Abstract 6 
In groundwater hydrology, two simple linear equations exist describing the relation 7 
between groundwater flow and the gradient driving it: Darcy's equation and the linear 8 
reservoir. Both equations are empirical and straightforward, but work at different 9 
scales: Darcy's equation at the laboratory scale and the linear reservoir at the 10 
watershed scale. Although at first sight they appear similar, it is not trivial to upscale 11 
Darcy's equation to the watershed scale without detailed knowledge of the structure or 12 
shape of the underlying aquifers. This paper shows that these two equations, 13 
combined by the water balance, are indeed identical provided there is equal resistance 14 
in space for water entering the subsurface network. This implies that groundwater 15 
systems make use of an efficient drainage network, a mostly invisible pattern that has 16 
evolved over geological time scales. This drainage network provides equally 17 
distributed resistance for water to exit the system, connecting the active groundwater 18 
body to the stream, much like a leaf is organized to provide all stomata access to 19 
moisture at equal resistance. As a result, the "residence time" of the linear reservoir 20 
appears to be inversely proportional to Darcy's "conductance", the proportionality 21 
being the product of the porosity and the resistance to entering the drainage network. 22 
The main question remaining is which physical law lies behind pattern formation in 23 
groundwater systems, evolving in a way that resistance to drainage is constant in 24 
space. But that is a physical question that is equally relevant for understanding the 25 
hydraulic properties of leaf veins in plants or of blood veins in animals. 26 
 27 
 28 
1. Introduction 29 
One of the more fundamental questions in hydrology is how to explain system 30 
behaviour manifest at catchment scale from fundamental processes observed at 31 
laboratory scale. Although scaling issues occur in virtually all earth sciences, what 32 
distinguishes hydrology from related disciplines, such as hydraulics and atmospheric 33 
science, is that hydrology seeks to describe water flowing through a landscape that 34 
has unknown or difficult-to-observe structural characteristics. Unlike in river 35 
hydraulics or atmospheric circulation, where answers can be find in finer grid 3-D 36 
integration of equations describing fluid mechanics, in hydrology this cannot be done 37 
without knowing the properties of the medium through which the water flows. The 38 
subsurface is not only heterogeneous, it is also virtually impossible to observe. We 39 
may be able to observe its behaviour and maybe its properties, but not its exact 40 
structure. Groundwater is not a continuous homogeneous fluid flowing between well-41 
defined boundaries (as in open channel hydraulics), but rather a fluid flowing through 42 
a medium with largely unknown properties. In other words, the boundary conditions 43 
of the flow are uncertain or unknown. As a result, hydrological models need to rely on 44 
effective, often scale-dependent, parameters, which in most cases require calibration 45 
to facilitate an adequate representation of the catchment. These calibration efforts 46 
typically lead to considerable model uncertainty and, hence, to unreliable predictions. 47 
 48 
But fortunately, there is good news as well. The structure of the medium through 49 
which the water flows is not random or arbitrary; it has predictable properties that 50 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-580
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 6 October 2017
c© Author(s) 2017. CC BY 4.0 License.



 2 

have emerged by the interaction between the fluid and the substrate. This structure 51 
manifests itself in the veins of vegetation, in infiltration patterns in the soil, and in 52 
drainage networks in river basins, emerging at a wide variety of temporal scales. 53 
Patterns in vegetation and preferential infiltration in a soil can appear at relatively 54 
short, i.e. human, time scales, but surface and subsurface drainage patterns, 55 
particularly groundwater drainage patterns, evolve at geological time scales. 56 
  57 
There is a debate on which physical law lies behind pattern formation. Scientist agree 58 
that it has something to do with the second law of thermodynamics, but what it 59 
exactly is, is still debated. Terms in use are: maximum entropy production, maximum 60 
power and minimum energy production (e.g. Rodriguez-Iturbe et al., 1992, 2011; 61 
Kleidon et al., 2013; Zehe et al., 2013; Westhoff et al., 2016) and the existence of a 62 
"constructal law" (Bejan, 2015). However, this paper is not about the process that 63 
creates patterns, but rather on using the fact that such patterns exist in groundwater 64 
drainage as the means of connecting laboratory to catchment scale. 65 
 66 
How to connect laboratory scale to system scale? 67 
Dooge (1986) was one of the first to emphasize that hydrology behaves as a complex 68 
system with some form of organisation. Hydrologists have been surprised that in very 69 
heterogeneous and complex landscapes a relatively simple empirical law, such as the 70 
linear reservoir, can manifest itself. Why is there simplicity in a highly complex and 71 
heterogeneous system such as a catchment? 72 
 73 
The analogy with veins in leaves, or in the human body, immediately comes to mind. 74 
Watersheds and catchments look like leaves. In a leaf, due to some organising 75 
principle, the stomata, which take CO2 from the air and combine it with water to 76 
produce hydrocarbons, require access to a supply network of water and access to a 77 
drainage network that transports the hydrocarbons to the plant. Such networks are 78 
similar to the arteries and veins in our body where oxygen-rich blood enters the cells, 79 
and oxygen-poor blood is returned. The property of veins and arteries is 'obviously' 80 
that all stomata in the leaf, and cells in our body, have 'equal' access to water or 81 
oxygen-rich blood and can evacuate the products and residuals, respectively. Having 82 
equal access to a source or to a drain implies experiencing the same resistance to the 83 
hydraulic gradient. If a human cell has too high a resistance to the pressure exercised 84 
by the heart, then it is likely to die off. Likewise, too low resistance could lead to cell 85 
failure/erosion. As a result, the network evolves to an optimal distribution of 86 
resistance to the hydraulic gradient. 87 
 88 
In a similar way, drainage networks have developed on the land surface of the Earth. 89 
Images from space show a wide variety of networks, looking like fractals. Rodriguez-90 
Iturbe and Rinaldo (2001) connected these patterns to minimum energy expenditure, 91 
while Kleidon and Renner (2013) showed that such patterns are components of larger 92 
Earth system functioning at maximum power, whereby the drainage system indeed 93 
functions at minimum energy expenditure. 94 
 95 
In general, we see that patterns emerge wherever a liquid flows through a medium, 96 
provided there is sufficient gradient to build or erode such patterns. Similar patterns 97 
must also be present in the substrate through which groundwater flows, which are 98 
generally not considered in groundwater hydrology. If such patterns were absent, then 99 
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the groundwater system would be the only natural body without patterns, which is not 100 
very likely. 101 
 102 
This paper is an opinion paper. The author does not provide proof of concept. It is 103 
purely meant to open up a debate on how the linear drainage of groundwater from a 104 
hillslope can be connected to Darcy's law.  105 
 106 
2. The linear reservoir 107 
At catchment scale, the emergent behaviour of the groundwater system is the linear 108 
reservoir. Figure 1 shows a hydrograph of the Ourthe Occidentale in the Ardennes, 109 
which on a semi-log paper shows clear linear recession behaviour, overlain by short 110 
and fast rainfall responses by rapid subsurface flow, infiltration excess overland flow, 111 
or saturation overland flow. This behaviour is very common in first order streams, and 112 
even in higher order streams. In water resources management it is well know that 113 
recession curves of stream hydrographs can be described by exponential functions, 114 
which is congruent with the linear reservoir of groundwater depletion. It follows from 115 
the combination of the water balance with the linear reservoir concept. During the 116 
recession period there appears to be a disconnect between the root zone system that 117 
interacts with the atmosphere and the groundwater that drains towards the stream 118 
network. These two separate "water worlds" are well described by Brooks et al. 119 
(2009) and by McDonnell (2014) and are substantiated by different isotopic 120 
signatures. As a result, we see that during recession only the groundwater reservoir is 121 
active. 122 

 123 
Figure 1. During the recession period, The Ourthe has a time scale of 4419 hours of the groundwater, acting 124 
as a linear reservoir. 125 

The water balance during the recession period can thus be described by: 126 
dSg
d t

= −Qg  127 

where Sg [L3]is the active groundwater storage and Qg [L3T-1]is the discharge of 128 
groundwater to the stream network.  129 
 130 
The linear reservoir concept assumes a direct proportionality between the active (is 131 
dynamic) storage of groundwater and the groundwater flowing towards the drainage 132 
network: 133 
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Qg =
Sg
K

 134 

where K [T] is the system time scale, or the average residence time in active storage. 135 
Combination with the water balance leads to: 136 
Qg =Q0 exp(−t /K )  137 
which is the exponential recession with the system time scale K. So the exponential 138 
recession, which we observe at the outfall of natural catchments, is congruent with the 139 
linear reservoir concept. But how does this relate to Darcy's law, which applies at 140 
laboratory scale? 141 
 142 
3. Upscaling Darcy's law 143 
 144 
Darcy's law reads: 145 

v = −k dϕ
d x

 146 

where v  is the discharge per unit area or filter velocity [LT-1], k is the conductance 147 
[LT-1], ϕ  is the hydraulic head [L] and x [L] is the distance along the stream line. In a 148 
drainage network, these streamlines generally form semi-circles, perpendicular to the 149 
lines of equipotential, draining almost vertically downward from the point of recharge 150 
and subsequently upward when seeping to the open drain (see Figure 2 for a 151 
conceptual sketch). 152 

 153 
Figure 2. Conceptual sketch of an unconfined freatic groundwater body draining towards a surface drain. 154 
H is the head of the freatic water table with respect to the nearest open water. 155 

Darcy's law appears to work fine in regions with modest slopes, where one can  156 
assume layers to exist with conductivities representative for the sediment properties of 157 
the layer. In such relatively flat areas, upscaling from the laboratory scale to a region 158 
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with well-defined layer structure appears to work rather well. This is clear from the 159 
many groundwater models, such as MODFLOW, that do well at representing 160 
hydraulic heads. However, such regional groundwater models are generally calibrated 161 
solely on water levels (hydraulic head) and seldom on flow velocities or flows, 162 
leading to equifinality in the determination of spatially variable k values.  163 
 164 
In more strongly sloping areas, however, the subsurface is organised and cannot be 165 
assumed to consist of layers with relatively homogeneous properties. Under the 166 
influence of a stronger hydraulic gradient, drainage patterns occur in the substrate 167 
more or less following the hydraulic gradient along the streamlines. This happens 168 
everywhere in nature where water flows through an erodible or soluble material. An 169 
initial disturbance leads to the evolution of a drainage network that facilitates the 170 
transport of water through the erodible material. The erosion can be physical 171 
(breaking up and transporting particles) but can also be chemical (minerals going into 172 
solution). The latter is the dominant process in groundwater flow. The precipitation 173 
that enters the groundwater system through preferential infiltration (Brooks et al. 174 
2009; McDonnell, 2014) is low in mineral composition and hence aggressive to the 175 
substrate. The minerals that we find in the stream during low flow (when the river is 176 
fed by groundwater) are the erosion products of the drainage network being 177 
developed. In the mineral composition of the stream we can see pattern formation at 178 
work and derive the rate at which this happens. 179 
 180 
In contrast to the physical drainage structures that we can see on the surface (e.g. river 181 
networks, seepage zones on beaches, etc.), sub-surface drainage structures are hard to 182 
observe. But they are there. On hillslopes, individual preferential sub-surface flow 183 
channels have been observed in trenches, but complete networks are hard to observe 184 
without destroying the entire network. 185 
 186 
The hypothesis is that under the ground a drainage system evolves that facilitates the 187 
transport of water to the surface drainage network in the most efficient manner. As 188 
was demonstrated by Kleidon et al. (2013) an optimal drainage network maximizes 189 
the power of the sediment flux, which involves maximum dissipation in the part of the 190 
catchment where erosion takes place and minimum energy expenditure in the 191 
drainage network. This finding is in line with the findings of Rodriguez-Iturbe and 192 
Rinaldo (1997, p.253), who found that minimum energy expenditure defines the 193 
structure of surface drainage. Although a surface drainage network has 2-D 194 
characteristics on a planar view, the groundwater system has a clear 3-D drainage 195 
structure. So we can build on the analogy with a fractal-like 2-D structure of a leaf or 196 
a river drainage network, but it is not the same. 197 
 198 
Fractal networks can be described by width functions that determine the average 199 
distance of a point to the network. Let's call this distance W. Let's now picture a 200 
cross-section over a catchment with an unconfined freatic groundwater body draining 201 
towards an open water drain (see Figure 2 for a conceptual sketch). At a certain 202 
infinitesimal area dA of the catchment, the drainage distance to the sub-surface 203 
network is W. The head difference to the open drain is H. Darcy's equation then 204 
becomes: 205 

 206 
v = k H

W
= H
rg
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where rg [T] is the resistance against drainage. This way of expressing the resistance 207 
is similar to the aerodynamic resistance and the stomatal resistance of the Penman-208 
Monteith equation. It is the resistance of the flux to a difference in head. So, instead 209 
of assuming a constant width to the drainage network, we assume a constant 210 
resistance to flow. This is in fact the purpose of veins in systems like leaves or body 211 
tissues, such as lungs or brains or muscles. The veins make sure that the resistance of 212 
liquids to reach stomata in the leaf, or cells in living tissue, is optimal and equal 213 
throughout the organ. But also in innate material, where gravity and erosive powers 214 
have been at work for millenia, the system is evolving towards an equally distributed 215 
resistance to drainage, much in line with the minimum expenditure theory of 216 
Rodriguez-Iturbe and Rinaldo (1997).  217 
 218 
Building on Darcy's equation, an infinitesimal area dA of a catchment drains: 219 
dQg = v dA  220 
Interestingly, this drainage (recharge to the groundwater) is downward, so that we can 221 
assume that dA lies in the horizontal plane. If we integrate this over the area of the 222 
catchment that drains on the outfall, and assuming a constant resistance, we obtain: 223 

 224 
where n [-] is the average porosity of the active groundwater body (which is the 225 
groundwater body above the drainage level). We see that the areal integral of the head 226 
H equals the volume of saturated substrate above the level of the drain. Multiplied by 227 
the porosity, this volume equals the amount of groundwater stored above the drainage 228 
level, which equals the active storage of groundwater Sg. Comparison with the linear 229 
reservoir provides the following connection between the system time scale K, the 230 
resistance rg and the average porosity n: 231 

 232 
As a result, we have been able to connect the "residence time" of the linear reservoir 233 
to the key properties of Darcy's equation, being the porosity, the conductance and the 234 
distance to the sub-surface drainage structure, or better, to the porosity and the 235 
resistance to drainage. This resistance to drainage will evolve over time, as the fractal 236 
structure expands. However, at a human time scale, this expansion may be considered 237 
to be so slow that the system can be assumed to be static. 238 
 239 
4. Discussion and conclusion 240 
In groundwater flow, connecting the laboratory scale to the system scale requires 241 
knowledge on the structure, shape and composition of the medium that connects the 242 
recharge interface to the drain. Here we have assumed that, much like we see in a 243 
homogenous medium, the flow pattern follows streamlines perpendicular to the lines 244 
of equal head, forming semicircle-like streamlines. This implies that recharge is 245 
essentially vertical and that integration of Darcy's law over the cross-section of a 246 
stream tube takes place in the horizontal plane, and not in a plain perpendicular to the 247 
gradient of the hillslope.  248 
 249 
The second assumption is that, over time, patterns have evolved along these 250 
streamlines by erosion of the substrate. It is then shown that if the resistance to flow 251 
between the recharge interface and the drainage network is constant over the area of 252 
drainage, that the linear reservoir equation follows from integration. This constant 253 

Qg = v dA
A
∫ = 1

rg
H dA

A
∫ =

Sg
rgn

K = nW
k

= rgn
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resistance to the hydraulic gradient is similar to what we see in leaves or body tissue. 254 
The reason why this property evolves over time is still to be investigated, but it is 255 
likely that the reason should be sought, in some way or another, in the second law of 256 
thermodynamics. 257 
 258 
This paper does not provide an explanation for the fact that in recharge systems 259 
groundwater drains as a linear reservoir. In fact, it raises more fundamental questions: 260 
What causes the resistance to entering the drainage network to be constant? What is 261 
the process of drainage pattern formation? If the sub-surface forms fractal-like 262 
structures, then which formation process lies behind it? And, more practically, what 263 
does this imply for groundwater modelling? 264 
 265 
We know from common practice that in mildly sloping areas, groundwater models 266 
that spatially integrate Darcy's equation are quite well capable of simulating 267 
piezometric heads. We also know that predicting the transport of pollutants in such 268 
systems is much less straightforward, requiring the assumption of dual porosities 269 
(which are in fact patterns). In more strongly sloping areas, such numerical models 270 
are much less efficient to describe groundwater flow. This can, of course, be blamed 271 
on the heterogeneity of the substrate, but one could also ask oneself the question if 272 
Darcy's equation is the right law to be used at this scale. If under the stronger gradient 273 
of a hillslope preferential flow patterns have developed, then we should take the 274 
properties of these patterns into account. Fortunately, nature is kind and helpful. It has 275 
provided us with the linear reservoir that we can use as an alternative for a highly 276 
complex numerical model that has difficulty to reflect the dual porosity of patterns 277 
that we cannot observe directly, but of which we can see its simple signature: the 278 
linear reservoir with exponential recession. 279 
 280 
 281 
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