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Abstract 6 
In groundwater hydrology, two simple linear equations exist describing the relation 7 
between groundwater flow and the gradient driving it: Darcy's equation and the linear 8 
reservoir. Both equations are empirical and straightforward, but work at different 9 
scales: Darcy's equation at the laboratory scale and the linear reservoir at the 10 
watershed scale. Although at first sight they appear similar, it is not trivial to upscale 11 
Darcy's equation to the watershed scale without detailed knowledge of the structure or 12 
shape of the underlying aquifers. This paper shows that these two equations, 13 
combined by the water balance, are indeed identical provided there is equal resistance 14 
in space for water entering the subsurface network. This implies that groundwater 15 
systems make use of an efficient drainage network, a mostly invisible pattern that has 16 
evolved over geological time scales. This drainage network provides equally 17 
distributed resistance for water to access the system, connecting the active 18 
groundwater body to the stream, much like a leaf is organized to provide all stomata 19 
access to moisture at equal resistance. As a result, the time scale of the linear reservoir  20 
appears to be inversely proportional to Darcy's "conductance"; the proportionality 21 
being the product of the porosity and the resistance to entering the drainage network. 22 
The main question remaining is which physical law lies behind pattern formation in 23 
groundwater systems, evolving in a way that resistance to drainage is constant in 24 
space. But that is a fundamental question that is equally relevant for understanding the 25 
hydraulic properties of leaf veins in plants or of blood veins in animals. 26 
 27 
 28 
1. Introduction 29 
One of the more fundamental questions in hydrology is how to explain system 30 
behaviour manifest at catchment scale from fundamental processes observed at 31 
laboratory scale. Although scaling issues occur in virtually all earth sciences, what 32 
distinguishes hydrology from related disciplines, such as hydraulics and atmospheric 33 
science, is that hydrology seeks to describe water flowing through a landscape that 34 
has unknown or difficult-to-observe structural characteristics. Unlike in river 35 
hydraulics or atmospheric circulation, where answers can be found in finer grid 3-D 36 
integration of equations describing fluid mechanics, in hydrology this cannot be done 37 
without knowing the properties of the medium through which the water flows. The 38 
subsurface is not only heterogeneous, it is also virtually impossible to observe. We 39 
may be able to observe its behaviour and maybe its properties, but not its exact 40 
structure. Groundwater is not a continuous homogeneous fluid flowing between well-41 
defined boundaries (as in open channel hydraulics), but rather a fluid flowing through 42 
a medium with largely unknown properties. In other words, the boundary conditions 43 
of flow are uncertain or unknown. As a result, hydrological models need to rely on 44 
effective, often scale-dependent, parameters, which in most cases require calibration 45 
to allow an adequate representation of the catchment. These calibration efforts 46 
typically lead to considerable model uncertainty and, hence, to unreliable predictions. 47 
 48 
But fortunately, there is good news as well. The structure of the medium through 49 
which the water flows is not random or arbitrary; it has predictable properties that 50 
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have emerged by the interaction between the fluid and the substrate. Similar structures 51 
manifest themselves in the veins of vegetation, in infiltration patterns in the soil, and 52 
in drainage networks in river basins, emerging at a wide variety of spatial and 53 
temporal scales. Patterns in vegetation or preferential infiltration in a soil can appear 54 
at relatively short, i.e. human, time scales, but surface and subsurface drainage 55 
patterns, particularly groundwater drainage patterns, evolve at geological time scales. 56 
Under the influence of strong gradients, these patterns can evolve more quickly, but 57 
even in groundwater systems with relatively small hydraulic gradients "high 58 
permeability features" appear to be present, regulating spring flow (Swanson and 59 
Bahr, 2004).  60 
  61 
There is a debate on the physical process causing pattern formation. Most scientists 62 
agree that it has something to do with the second law of thermodynamics, but what 63 
precisely drives pattern formation, is still debated. Terms in use are: maximum 64 
entropy production, maximum power, minimum energy expenditure (e.g. Rodriguez-65 
Iturbe et al., 1992, 2011; Kleidon et al., 2013; Zehe et al., 2013; Westhoff et al., 2016) 66 
and the "constructal law" (Bejan, 2015). However, this paper is not about the process 67 
that creates patterns, but rather on using the fact that such patterns exist in 68 
groundwater systems to explore the connection between laboratory and catchment 69 
scale. 70 
 71 
How to connect laboratory scale to system scale? 72 
Dooge (1986) was one of the first to emphasize that hydrology behaves as a complex 73 
system with some form of organisation. Hydrologists have been surprised that in very 74 
heterogeneous and complex landscapes a relatively simple empirical law, such as the 75 
linear reservoir, can manifest itself. Why is there simplicity in a highly complex and 76 
heterogeneous system such as a catchment? 77 
 78 
The analogy with veins in leaves, or in the human body, immediately comes to mind. 79 
Watersheds and catchments look like leaves. In a leaf, due to some organising 80 
principle, the stomata, which take CO2 from the air and combine it with water to 81 
produce hydrocarbons, require access to a supply network of water and access to a 82 
drainage network that transports the hydrocarbons to the plant. Such networks are 83 
similar to the arteries and veins in our body where oxygen-rich blood enters the cells, 84 
and oxygen-poor blood is returned. The property of veins and arteries is 'obviously' 85 
that all stomata in the leaf, and cells in our body, have 'equal' access to water or 86 
oxygen-rich blood and can evacuate the products and residuals, respectively. Having 87 
equal access to a source or to a drain implies experiencing the same resistance to the 88 
hydraulic gradient. If a human cell has too high a resistance to the pressure exercised 89 
by the heart, then it is likely to die off. Likewise, too low resistance could lead to cell 90 
failure/erosion. As a result, the network evolves to an optimal distribution of 91 
resistance to the hydraulic gradient. 92 
 93 
In a similar way, drainage networks have developed on the land surface of the Earth. 94 
Images from space show a wide variety of networks, looking like fractals. Rodriguez-95 
Iturbe and Rinaldo (2001) connected these patterns to minimum energy expenditure. 96 
Hergarten et al. (2014) used the concept of minimum energy dissipation to explain 97 
patterns in groundwater drainage. Kleidon et al. (2013), however, showed that such 98 
patterns are components of larger Earth system functioning at maximum power, 99 
whereby the drainage system indeed functions at minimum energy expenditure. 100 
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 101 
In general, we see that patterns emerge wherever a liquid flows through a medium, 102 
provided there is sufficient gradient to build or erode such patterns. Likewise, such 103 
patterns must be present in the substrate through which groundwater flows, although 104 
these are generally not considered in groundwater hydrology. If such patterns were 105 
absent, then the groundwater system would be the only natural body without patterns, 106 
which is not very likely. 107 
 108 
This paper is an opinion paper. The author does not provide proof of concept. It is 109 
purely meant to open up a debate on how the linear drainage of an active groundwater 110 
body can be connected to Darcy's law. The discussion forum of this paper contains an 111 
active debate between the author, reviewers and commenters that provides more 112 
background.  113 
 114 
2. The linear reservoir 115 
At catchment scale, the emergent behaviour of the groundwater system is the linear 116 
reservoir. Figure 1 shows a hydrograph of the Ourthe Occidentale in the Ardennes, 117 
which on a semi-log paper shows clear linear recession behaviour, overlain by short 118 
and fast rainfall responses by rapid subsurface flow, infiltration excess overland flow, 119 
or saturation overland flow. The faster processes are generally non-linear, but as the 120 
catchment dries out, the fast processes die out, the recharge to the groundwater system 121 
stops and only the groundwater depletion remains. Even during depletion, short runoff 122 
events may superimpose the depletion process without additional recharge, in which 123 
case the depletion continues following a straight line on semi-logarithmic paper (see 124 
Figure 1). 125 
 126 
This behaviour is very common in first order streams, and even in higher order 127 
streams. In water resources management it is well know that recession curves of 128 
stream hydrographs can be described by exponential functions, which is congruent 129 
with the linear reservoir of groundwater depletion. It follows from the combination of 130 
the water balance with the linear reservoir concept. During the recession period there 131 
appears to be a disconnect between the root zone system that interacts with the 132 
atmosphere and the groundwater that drains towards the stream network. These two 133 
separate "water worlds" are well described by Brooks et al. (2009) and by McDonnell 134 
(2014) and are substantiated by different isotopic signatures. As a result, we see that 135 
during recession only the groundwater reservoir is active. 136 
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 137 
Figure 1. During the recession period, The Ourthe has a time scale of 1772 hours for groundwater depletion, 138 
acting as a linear reservoir. Superimposed on the recession we see faster processes with much shorter time 139 
scales. 140 

If during recession, the catchment is only draining from the groundwater stock, then 141 
the water balance can be described by: 142 
dSg
d t

= −Qg  143 

where Sg [L3]is the active groundwater storage and Qg [L3T-1]is the discharge of 144 
groundwater to the stream network.  145 
 146 
The linear reservoir concept assumes a direct proportionality between the active (i.e. 147 
dynamic) storage of groundwater and the groundwater flowing towards the drainage 148 
network: 149 

Qg ==
Sg
τ

 150 

where τ is the time scale of the drainage process, which is assumed to be constant. 151 
Combination with the water balance leads to: 152 
Qg =Q0 exp −t / τ( )  153 
where Q0 is the discharge at t=0. So the exponential recession, which we observe at 154 
the outfall of natural catchments, is congruent with the linear reservoir concept. But 155 
how does this relate to Darcy's law, which applies at laboratory scale? 156 
 157 
3. Upscaling Darcy's law 158 
 159 
Darcy's law reads: 160 

v = −k dϕ
d x

 161 

where: v  is the discharge per unit area, or filter velocity [LT-1]; k is the conductance 162 
[LT-1]; ϕ  is the hydraulic head [L]; and x [L] is the distance along the stream line. In 163 
a drainage network, these streamlines generally form semi-circles, perpendicular to 164 
the lines of equipotential, draining almost vertically downward from the point of 165 
recharge and subsequently upward when seeping to the open drain (see Figure 2 for a 166 
conceptual sketch). 167 
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 168 
Figure 2. Conceptual sketch of an unconfined freatic groundwater body draining towards a surface drain. 169 
H is the head of the freatic water table with respect to the nearest open water. 170 

Henry Darcy (1803-1858) found this relationship under laboratory conditions, but the 171 
law also appears to work fine in regions with modest slopes, where one or more layers 172 
can be identified with conductivities representative for the sediment properties of 173 
these layers. In such relatively flat areas, upscaling from the laboratory scale to a 174 
region with well-defined layer structure appears to work rather well. This is clear 175 
from the many groundwater models, such as MODFLOW, that do well at representing 176 
hydraulic heads. However, such regional groundwater models are generally calibrated 177 
solely on water levels (hydraulic head) and seldom on flow velocities, transport of 178 
solutes, or flows, leading to equifinality in the determination of spatially variable k 179 
values.  180 
 181 
Swanson and Bahr (2004) identified preferential flow even in mildly sloping terrain. 182 
Therefore it is reasonable to assume that under stronger gradients preferential flow 183 
becomes more prominent. In sloping areas, the hypothesis is that the subsurface is 184 
organised and cannot be assumed to consist of layers with relatively homogeneous 185 
properties. Under the influence of a stronger hydraulic gradient, drainage patterns 186 
occur in the substrate more or less following the hydraulic gradient along the 187 
streamlines. This happens everywhere in nature where water flows through an 188 
erodible or soluble material. An initial disturbance leads to the evolution of a drainage 189 
network that facilitates the transport of water through the erodible material. Initial 190 
disturbances can be cracks, sedimentation patterns, animal burrows, former root 191 
channels, etc. The formation of the network can be by physical erosion and deposition 192 
(breaking up, transporting and settling particles) but can also be by chemical activity 193 
(minerals going into solution or precipitating). The latter is the dominant process in 194 
groundwater flow. The precipitation that enters the groundwater system through 195 
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preferential infiltration (Brooks et al. 2009; McDonnell, 2014) is low in mineral 196 
composition and hence aggressive to the substrate. The minerals that we find in the 197 
stream during low flow (when the river is fed by groundwater) are the erosion 198 
products of the drainage network being developed. In the mineral composition of the 199 
stream we can see pattern formation at work and from the transport of chemicals by 200 
the stream we may derive the rate at which this happens. 201 
 202 
In contrast to the physical drainage structures that we can see on the surface (e.g. river 203 
networks, seepage zones on beaches, etc.), sub-surface drainage structures are hard to 204 
observe. But they are there. On hillslopes, individual preferential sub-surface flow 205 
channels have been observed in trenches, but complete networks are hard to observe 206 
without destroying the entire network. 207 
 208 
The hypothesis is that under the ground a drainage system evolves that facilitates the 209 
transport of water to the surface drainage network in the most efficient manner. As 210 
was demonstrated by Kleidon et al. (2013) an optimal drainage network maximizes 211 
the power of the sediment flux, which involves maximum dissipation in the part of the 212 
catchment where erosion takes place and minimum energy expenditure in the 213 
drainage network. This finding is in line with the findings of Rodriguez-Iturbe and 214 
Rinaldo (1997, p.253), who found that minimum energy expenditure defines the 215 
structure of surface drainage. Although a surface drainage network has 2-D 216 
characteristics on a planar view, the groundwater system has a clear 3-D drainage 217 
structure. The boundary where open water and groundwater interact also has a 218 
complex shape. This is the boundary where the groundwater seeps out at atmospheric 219 
pressure indicated in Figure 2 by the dotted blue line. This boundary of interaction 220 
follows the stream network and moves up and down with the water level of the 221 
stream. To describe this 3-D drainage network conceptually, we can build on the 222 
analogy with a fractal-like (mostly 2-D) structure of a leaf or a river drainage 223 
network, but it is not the same. 224 
 225 
Fractal networks can be described by width functions that determine the average 226 
distance of a point to the network. Let's call this distance W. Let's now picture a 227 
cross-section over a catchment with an unconfined phreatic groundwater body 228 
draining towards an open water drain (see Figure 2 for a conceptual sketch). At a 229 
certain infinitesimal area dA of the catchment, the drainage distance to the sub-surface 230 
network is W. The head difference to the nearest open drain is H. Darcy's equation 231 
then becomes: 232 

 233 
where rg [T] is the resistance against drainage. This way of expressing the resistance 234 
is similar to the aerodynamic resistance and the stomatal resistance of the Penman-235 
Monteith equation. It is the resistance of the flux to a difference in head. So, instead 236 
of assuming a constant width to the drainage network, we assume a constant 237 
resistance to flow. This is in fact the purpose of veins in systems like leaves or body 238 
tissues, such as lungs or brains or muscles. The veins make sure that the resistance of 239 
liquids to reach stomata in the leaf, or cells in living tissue, is optimal and equal 240 
throughout the organ. But also in innate material, where gravity and erosive powers 241 
have been at work for millenia, the system is evolving towards an equally distributed 242 

v = k H
W

= H
rg
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resistance to drainage, much in line with the minimum expenditure theory of 243 
Rodriguez-Iturbe and Rinaldo (1997).  244 
 245 
Building on Darcy's equation, an infinitesimal area dA of a catchment drains: 246 
dQg = v dA  247 
Interestingly, this drainage (recharge to the groundwater) is downward, so that we can 248 
assume that dA lies in the horizontal plane. If we integrate the discharge over the area 249 
of the catchment that drains on the outfall, and assuming a constant resistance, we 250 
obtain: 251 

Qg = v d A
A
∫ = 1

rg
H d A

A
∫ = HA

rg
=
Sg
rgn

 252 

where n [-] is the average porosity of the active groundwater body (which is the 253 
groundwater body above the drainage level). We see that the areal integral of the head 254 
H equals the volume of saturated substrate above the level of the drain. Multiplied by 255 
the porosity, this volume equals the amount of groundwater stored above the drainage 256 
level, which equals the active storage of groundwater Sg. Comparison with the linear 257 
reservoir provides the following connection between the system time scale τ, the 258 
resistance rg and the average porosity n: 259 

τ =W
k
n = rgn  260 

As a result, we have been able to connect the time scale of the linear reservoir to the 261 
key properties of Darcy's equation, being the average porosity, the conductance and 262 
the distance to the sub-surface drainage structure, or better, to the average porosity 263 
and the resistance to drainage. This resistance to drainage is assumed constant in 264 
space, but will evolve over time, as the fractal structure expands. However, at a 265 
human time scale, this expansion may be considered to be so slow that the system can 266 
be assumed to be static. 267 
 268 
4. Discussion and conclusion 269 
In groundwater flow, connecting the laboratory scale to the system scale requires 270 
knowledge on the structure, shape and composition of the medium that connects the 271 
recharge interface to the drain. Here we have assumed that, much like we see in a 272 
homogenous medium, the flow pattern follows streamlines perpendicular to the lines 273 
of equal head, forming semicircle-like streamlines. This implies that flow in the upper 274 
part of the streamlines is essentially vertical and that integration of Darcy's law over 275 
the cross-section of a stream tube takes place in the horizontal plane, and not in a 276 
plain perpendicular to the gradient of the hillslope.  277 
 278 
The second assumption is that, over time, patterns have evolved along these 279 
streamlines by erosion of the substrate. It is then shown that if the resistance to flow 280 
between the recharge interface and the drainage network is constant over the area of 281 
drainage, that the linear reservoir equation follows from integration. This constant 282 
resistance to the hydraulic gradient is similar to what we see in leaves or body tissue.  283 
 284 
What is the evolutionary dynamics of the drainage network? It is likely that the 285 
drainage network makes use of cracks and fissure present in the base rock, but 286 
subsequently expands and develops by minerals going into solution. As a result, these 287 
networks never stop to develop, continuously refining and expanding the fractal 288 
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structure. In relatively young catchments such structures may not be fully developed. 289 
By sampling the chemical contents of springs and base flow at the outfall of 290 
catchments, we may be able to determine the rate of growth of the drainage network, 291 
and -- if the mineral content of the substrate is known -- the origin of the erosion 292 
material. I think it is an interesting venue of research to study the expansion of such 293 
networks as a function of the mineral composition of the groundwater feeding the 294 
stream network, possibly supported by targeted use of unique tracers. 295 
 296 
This paper does not provide an explanation for the fact that in recharge systems 297 
groundwater drains as a linear reservoir. In fact, it raises more fundamental questions: 298 
If a catchment has exponential recession, congruent with a linear reservoir, then what 299 
causes the resistance to entering the drainage network to be constant? What is the 300 
process of drainage pattern formation? If the sub-surface forms fractal-like structures, 301 
then which formation process lies behind it? The reason why this property evolves 302 
over time is still to be investigated, but it is likely that the reason should be sought, in 303 
some way or another, in the second law of thermodynamics. 304 
 305 
We know from common practice that in mildly sloping areas, groundwater models 306 
that spatially integrate Darcy's equation are quite well capable of simulating 307 
piezometric heads. We also know that predicting the transport of pollutants in such 308 
systems is much less straightforward, requiring the assumption of dual porosities 309 
(which are in fact patterns). In more strongly sloping areas, such numerical models 310 
are much less efficient to describe groundwater flow. This can, of course, be blamed 311 
on the heterogeneity of the substrate, but one could also ask oneself the question if 312 
direct application of Darcy's law is the right approach at this scale. If under the 313 
stronger gradient of a hillslope preferential flow patterns have developed, then we 314 
should take the properties of these patterns into account. Fortunately, nature is kind 315 
and helpful. It has provided us with the linear reservoir that we can use as an 316 
alternative for a highly complex 3-D numerical model that has difficulty to reflect the 317 
dual porosity of patterns that we cannot observe directly, but of which we can see its 318 
simple signature: the linear reservoir with exponential recession. Hopefully 319 
groundwater modellers are going to make use of that property, particularly in larger 320 
scale modelling studies. 321 
 322 
 323 
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