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REPLIES TO COMMENTS 
 
Reply to the Editor 
 
We thank the Editor for reviewing our manuscript and providing constructive, actionable 5 

feedback.  Below we provide our responses to concerns raised during the ‘Minor Revision’ stage.   
 
Comment: As you can see from the reviewer's response, one of them still thinks that the paper 
would benefit from condensing it and restructuring it a bit. I would recommend that you shorten 
it further, especially the abstract, and attend to some other minor corrections. I will then deem 10 

this paper ready for submission. 
 
Reply: 
 
We have further reduced the length of the manuscript (~1 page less text) in response to Editor 15 

and Reviewer #2 comments. 
 

1) We have addressed the abstract length, condensing by 25%, while retaining pertinent 
methodological and results detail.   

2) Changes to the structure of the data and methods section have been made to more 20 

concisely and neatly present the data utilized for the statistical streamflow forecast 
models.  

 
The minor corrections, including date and unit discrepancies, have been made compliant with 
HESS standards.      25 

 

LIST OF RELEVANT CHANGES MADE TO MANUSCRIPT (Refer to “Manuscript_HESS_ 

markedup”) 

 

1. P1, L8-25: Abstract consolidation. 30 

2. P8-13, L157-244: Considerable reorganization of data and methods presentation.  
Specifically, the language pertaining to the collection and post-processing of data is 
extracted from the description of the statistical modelling approaches and presented 
in a more concise way in Section 2.1.1.  

3. P12, L227-235:  Removal of basic explanatory language pertaining to principal 35 

component regression. 
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Abstract.  

In many semi-arid regions, multisectoral demands often stress available water supplies.  Such is the case in the Elqui River 

valley of northern Chile, which draws on a limited capacity reservoir to allocate to 25,000 water rights. Delayed infrastructure 45 

investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized 

through reductions in the volume associated with each water right.  Skillful season-ahead streamflow forecasts have the 

potential to inform managers with an indication of future conditions to guide reservoir allocations.  This work evaluates season-

ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with 

manager and user decision points, and links predictions with a reservoir allocation tool.  Skillful results (streamflow forecasts 50 

outperform climatology) are produced for short lead-times (1 September: RPSS = 0.31, categorical hit skill score = 61%).  At 

longer lead-times, climatological skill exceeds forecast skill, due to fewer observations of precipitation.  However, coupling 

the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally 

skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60% of years (1950-2015), suggesting 

forecasts need not be strictly deterministic to be useful for water rights holders; an early (1 May) categorical indication of 55 

expected conditions are reinforced with a deterministic forecast (1 September) as more observations of local variables become 

available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score = 53%); skill improves 

to 79% when categorical allocation prediction certainty exceeds 80%.  This result implies that allocation efficiency may 

improve when forecasts are integrated into reservoir decision frameworks.  The methods applied here advance the 

understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley, and provide a unique 60 

application of streamflow forecasting in the prediction of water right allocations.  

 

In many semi-arid regions, agriculture, energy, municipal, and environmental demands often stress available water supplies.  

Such is the case in the Elqui River valley of northern Chile, which draws on a limited capacity reservoir and annually variable 

snowmelt.  With infrastructure investments often deferred or delayed, water managers are forced to address demand-based 65 

allocation strategies, particularly challenging in dry years.  This is often realized through a reduction in the volume associated 

with each water right, applied across all water rights holders.  Skillful season-ahead streamflow forecasts have the potential to 

inform managers with an indication of likely future conditions upon which to set the annual water right volume and thereby 
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guide reservoir allocations.  This work evaluates season-ahead statistical prediction models of October-January (austral 

growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions 70 

with a simple reservoir allocation tool.  Skillful results (forecasts outperforming climatology) are produced for short lead-times 

(September 1st; RPSS = 0.31, categorical hit skill score = 61%), with years of Above-Normal (high) and Below-Normal (low) 

streamflow predicted 82% and 64% of the time, respectively.  At longer lead-times, climatological skill exceeds forecast skill, 

largely due to fewer observations of precipitation.  Coupling the September 1st statistical forecast model with a Niño 3.4 region 

sea surface temperature phase and strength statistical model, however, allows for equally skillful categorical streamflow 75 

forecasts to be produced from a May 1st lead, triggered for 60% of the years in the period 1950-2015.  Forecasts may not need 

to be strictly deterministic to be useful for water rights holders; early (May) categorical indication of expected conditions are 

reinforced with a revised deterministic forecast (September) as more observations of local variables (e.g. precipitation) become 

available. The reservoir allocation model is skillful at the September 1st lead (categorical hit skill score = 53%); this skill 

improves to 79% when the model predicts the observed allocation category with at least 80% certainty.  This result has broader 80 

implications, suggesting that in water rights managed basins, allocation efficiency might improve through the integration of 

forecasts as part of a reservoir decision framework.  The methods applied here advance the understanding of the mechanisms 

and timing responsible for moisture transport to the Elqui Valley, and provide a unique application of streamflow forecasting 

in the prediction of per-water right allocations. Both have the potential to inform water right holder decisions.                 

1 Introduction.  85 

The sustainability of many water systems is challenged by current climate variability, and may come under additional stress 

with changes in future climate and user demands.  Concerns over increasing water scarcity have prompted progressive 

governments, institutions, water resource managers, and end-users to adopt a wide variety of conservation policies, typically 

targeting supply augmentation or demand reduction at the basin or jurisdictional boundary scale (Tanaka et al., 2006). These 

decisions, which are ideally informed by a variety of models, are inherently uncertain across time-scales, and produce 90 

numerous risks stemming from human activity and hydroclimatic variability/change (Narula and Lall, 2009).  Advanced 

hydroclimatic information is often attractive to progressive water managers to support management and planning of water 

systems (Barsugli et al., 2012).  At the seasonal scale, a skillful streamflow forecast may allow more efficient water allocation 

and predictable tradeoffs between flows for energy, irrigation, municipalities, environmental services, etc.  Such forecasts 

often provide the ability to prepare for anticipated conditions, not simply react to existing conditions, potentially reducing 95 

climate‐related risks and offering opportunities (Helmuth et al., 2007).  This may be especially informative in years with 

extreme conditions (floods, droughts.)  Further motiviation stems from evidence that addressing climate variability as part of 

water development is key for stabilizing and improving country economies (Brown and Lall, 2006). 
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While improvements in seasonal climate forecast skill and advocacy for integration into risk reduction strategies are well 100 

documented (Barnston et al., 1994; Block, 2011; Block et al., 2009; Dee et al., 2011; Hansen et al., 2004; Mason and 

Stephenson, 2008), demonstrated use of forecasts in current water allocation and policy strategies is limited (Barnston et al., 

1994; Christensen et al., 2004; Hamlet et al., 2002; Sankarasubramanian et al., 2009; Stakhiv, 1998). This is partially 

attributable to the wide-spread use of static operational policies, which may be based on average streamflow or the drought of 

record, and established with minimal to no accounting of uncertainty, thus limiting water system flexibility (You and Cai, 105 

2008). Effectively translating emerging climate information into hydrology to support adaptable water resources decision-

making, and ultimately policy, warrants further study. 

 

The water system in the semi-arid Elqui Valley in north-central Chile’s IVth Region (Fig. 1) is contending with increasing 

levels of water stress and demand, coupled with insufficient investment in infrastructure, taxing its ability to sufficiently meet 110 

multiple water uses and maintain environmental quality.  The Valley footprint is relatively small (< 10,000 square kilometers), 

but boasts elevation changes ranging from sea level in the west to nearly 5,000 meters in the east along the Andes, in the span 

of less than 150 kilometers.  The Atacama Desert lies just to the north.  The Valley is fed from a retreating glacier to serve its 

600,000 inhabitants, and is very narrow, with vineyards and plantations covering the floor and increasingly moving up the 

Valley sides; forty three percent of the region’s surface land area is devoted to agricultural activities (Cepeda and Lopez-115 

Cortes, 2004).  Agricultural exports, particularly grapes, fruits, and avocados, dominate the Valley’s economy (Young et al., 

2009), and are maintained by an extensive irrigation channel system latticing the Valley, which diverts water from the main 

Elqui River.  The Puclaro reservoir is the dominant storage facility in the Valley, with a holding capacity of 200 million cubic 

meters m3 (Fig. 1.) The reservoir provides irrigation for about 21,000 hectares of the Elqui Valley, as well as small-scale 

hydropower (5.6 MW capacity) and being a popular tourist destination, particularly for sailing and windsurfing (Cepeda and 120 

Lopez-Cortes, 2004). 
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Figure 1: Location of Elqui River Valley, Chile 

Chile uses a market-oriented approach to water allocation, guided by its Water Code of 1981 (G Donoso, 2006). The intent is 

to allow for optimal allocation and efficiency through a politically neutral mechanism via permanent trades or leasing 125 

(Olmstead, 2010; Wheeler et al., 2013).  Rights are granted through the national water authority (Dirección General de Aguas, 

hereafter DGA), while supervision, reservoir management, and issuance of annual per right allocation is left to the privately-

held, local water authority, Junta de Vigilancia del Rio Elqui (JVRE.)  Water rights along the Elqui River are fully allocated, 

with 25,000 total rights valued at 1 liter per second L s-1 each.  In years with above normal precipitation and snowpack, this 

value can be attained, however near normal and below normal precipitation years typically require a reduction in per right 130 

allocation, on the order of 0.5 liters per secondL s-1.  Prolonged periods of drought (2009-2015) have resulted in allocations as 

low as 0.2 liters per secondL s-1  (JVRE, personal communication.)  All water rights are of equal standing; no prioritization or 

junior/senior status exists.  Thus, right holders above and below Puclaro are guaranteed equal per right allocations as their 

counterparts downstream; under the current framework, surplus supply cannot be allocated to users downstream of the 

reservoir once the annual per right allocation has been officially issued, to guarantee equality.  Approximately 92% of water 135 

rights are held by farmers, with half of those held by a small minority engaged in large-scale viticulture.  Municipalities and 

the mining industry share the balance of water rights.  Meeting targets for renewable energy through hydropower, ecosystem 

services, specifically minimum instream flows, and reservoir storage are also important competing, non-consumptive or non-

water right holding priorities. 

 140 
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The decision framework driving water allocation and market activity in the Valley is complex and involves many actors. For 

the water year October to September, the local water authority initially projects the annual per right allocation in the preceding 

May and officially sets it in September.  Water rights holders (users) thus have two decision points, May and September, to 

evaluate their allocation and weigh the need to supplement through market activity (trade or lease.)  This setting serves as an 

impetus for developing a framework to advance streamflow and water allocation forecasts at those decision points to better 145 

guide decision-making across the Valley. 

1.1 Elqui Hydro-climate Characteristics. 

The Elqui Valley is one of the most sensitive areas to water variability in all of South America, given its dryland ecosystem 

nature, susceptible to even small changes in the water cycle (Santibañez et al. 1992; N Kalthoff et al. 2006). The climate of 

the region is affected by three major factors that lead to its semi-arid nature: the southeast Pacific anticyclone, the cold 150 

Humboldt current along the Pacific coast, and the eastern longitudinal barrier created by the Andes mountains (Kalthoff et al., 

2002).  The majority of precipitation is frontal in nature, falling in the austral winter (May-August, MJJA) as rain in the Valley 

and snow in the mountains; this leaves the remaining months extremely dry (Fig. 2;(Aceituno, 1988).  Annual rainfall totals 

approach 90mm on average and express a high degree of variability (Young et al., 2009).  The El Niño Southern Oscillation 

(ENSO) is well known to have a role in this variability, with positive precipitation anomalies during El Niño events, and below 155 

normal precipitation mostly associated with La Niña conditions (Fig. 3; (Aceituno, 1988; Falvey and Garreaud, 2007; Garreaud 

et al., 2009; Montecinos and Aceituno, 2003).  For Vicuña, a city located in approximately the center of the Valley, between 

1950-2000, El Niño years produced average annual precipitation of 134mm, compared with 68 mm during La Niña years – a 

stark difference (Young et al., 2009). 
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 160 

Figure 2: Annual cycle of average precipitation and streamflow (1950-2015) 
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Figure 3: Total annual precipitation (dashed), streamflow (solid) & May-August Niño 3.4 sea-surface temperature anomalies (bars) 

 165 

The Elqui River is predominantly fed through snowmelt over the October - January (ONDJ) season, dictating the agricultural 

calendar.  Historical rates of average streamflow over this season, however, indicate enormous interannual variability, ranging 

from 2.2 - 89 m3 s-1cubic meters per second at the Algarrobal station (Fig. 3; Santibañez et al. 1992), commonly considered as 

a surrogate for inflow to the Puclaro Reservoir (Fig. 1.)  Recognizing that variable precipitation effects streamflow and 

subsequently water right allocation values, this research tests two hypotheses as a means of addressing the unique climate 170 

conditions of the Elqui Valley, which may be applied more broadly to water rights managed basins with limited water 

resources: 

 

1) Skillful season-ahead streamflow forecasts can be produced for existing water right allocation decision points. 

2) Skillful streamflow forecasts coupled with reservoir allocation decision tools can improve allocation efficiency.   175 
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2   Modelling Framework and Performance Metrics. 

Historically, water managers in the Elqui Valley have subjectively considered simple analog prediction models for ONDJ 

streamflow at Algarrobal, conditioned on the multivariate ENSO index (MEI), for allocation decisions and reservoir 

operations, with limited success (JVRE, personal communication.)  Previous efforts to evaluate hydro-climate forecast skill 

for the Elqui River have considered leads consistent with the current water rights forecast structure; a preliminary 1 May 180 

allocation forecast and 1 September allocation issuance (Robertson et al., 2014; Verbist et al., 2010).  Roberston et al. (2014) 

report a significant increase in forecast skill, comparing September to May, but suggest further investigation to more fully 

understand forecast skill with increasing lead time.     

 

This recommendation is addressed by building a modelling framework to evaluate potential improvement in predicting ONDJ 185 

streamflow at multiple lead times, starting with a 1-month lead (1 September 1st) and increasing at monthly intervals (i.e. 1 

August 1st, 1 July 1st, etc.) to 1 May 1st, when the first water allocation forecast is preliminarily issued.  Both statistical and 

dynamical prediction approaches are explored.  Subsequently, the ability to effectively predict water rights allocations is 

investigated by coupling streamflow predictions with a reservoir allocation model. 

2.1 Statistical Streamflow Prediction Models 190 

2.1.1 Data and Predictor Selection 

Statistical forecast methods rely on identification of spatiotemporal patterns in historical data (Chambers et al., 1971).  

Observations of streamflow at Algarrobal (monthly, 1948-present), valley-wide precipitation stations (daily, 1950-present), 

and snow-water equivalent (daily, 1950-2009) are each readily available through the Chilean DGA.  One of DGA’s primary 

functions as regulator of surface water resources for the Chilean Government is to collect, validate, and perform quality control 195 

of hydrologic measurements.   Open source data obtained through DGA is considered as having met DGA quality standards. 

A suite of potential predictor variables areis evaluated which have been shown to influence either streamflow or precipitation, 

including global predictors: sea surface temperatures (SST), specifically in the Niño 1.2 and Niño 3.4 regions, sea level 

pressure (SLP), geopotential height, vector (also referred to as wind vectors), and meridional winds, and the Multivariate 

ENSO Index (MEI) and local predictors: precipitation, snow-water equivalent, and soil moisture, and the Multivariate ENSO 200 

Index (MEI), which combines several equatorial Pacific atmospheric and oceanic anomalies (Montecinos and Aceituno, 2003; 

Wolter and Timlin, 1993).  Global predictors, except MEI, are obtained at a 2.5 x 2.5 degree grid resolution from the National 

Oceanic and Atmospheric Administration’s Climate Diagnostics Center (NOAA-CDC), which are based upon the National 

Center for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, available 

from 1949 to the present (Kalnay et al., 1996).  Bimonthly MEI data is available from NOAA’s Earth System Research 205 

Laboratory (ESRL) (Wolter and Timlin, 1993, 1998).  Local predictors, Observations of streamflow at Algarrobal (monthly, 

1948-present), valley-wide precipitation stations (daily, 1950-present), and snow-water equivalent (daily, 1950-2009) are each 
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readily available through the Chilean DGA.  One of DGA’s primary functions as regulator of surface water resources for the 

Chilean Government is to collect, validate, and perform quality control of hydrologic measurements.   Soil moisture data is 

obtained from NOAA’s Climate Prediction Center’s (CPC) global monthly soil moisture dataset, at 0.5 x 0.5 degree grid 210 

resolution, which is available from 1948 to the present (Huang et al., 1996; Kalnay et al., 1996; Saha et al., 2013).  These 

variables can illustrate the mechanisms controlling moisture transport to the basin, and subsequent inter-annual variability in 

streamflow available through DGA at Algarrobal (monthly, 1948-present).  For example, in the ten lowest ONDJ streamflow 

years (dry), vector winds follow a weak, dissociated pattern in the preceding season, which indicates that moisture transport 

from the Pacific Ocean is inefficient (Fig. 4(a.))  In the ten highest ONDJ streamflow years (wet), vector winds are anomalously 215 

strong, and follow a coherent clockwise pattern off the coast of Chile, which suggests more efficient moisture transport is 

possible from the Pacific Ocean to the Elqui Valley (Fig. 4(b.))  
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Figure 4: (a) Composite May-August (MJJA) vector wind anomaly preceding ten lowest October-January (ONDJ) streamflow years, 
(b) same as (a) for ten highest ONDJ streamflow years, (c) correlation of MJJA sea-surface temperature anomaly with ONDJ 220 
streamflow (1950-2015) 

 

To identify potential predictors, eEach variable is correlated with ONDJ streamflow at lead times consistent with those 

discussed above (Fig. 5; not all variables shown.).  Regions (gridded data sets) with statistically significant correlations in 

locations that have the potential to affect moisture transport (Table 1) are spatially averaged and retained for further evaluation. 225 

Spatial averaging is warranted when Tthe first principal component (PC) and spatial average from the gridded variable region 

are highly correlated, representing the dominant signal in the gridded field, correlated with the spatial average of the gridded 

variable region can identify if the signal is spatially homogenous (representative) across the region.  If the first PC does not 

correlate well with the spatial average, the heterogeneity of the dataset is likely important, and adopting the spatial average as 

a predictor may be insufficient.  For example, the spatial average of SSTs (Fig. 4 (c.)), a potentially significant predictor of 230 

streamflow for the Elqui River, correlates highly (>0.9) with the first PC of the gridded SST data.  This region of SSTs is 

closely aligned with the quintessential ENSO pattern in the equatorial Pacific Ocean, and is evident when correlating the entire 

ONDJ streamflow record with SST anomalies in the preceding MJJA, which suggests ENSO, in general, plays some role in 

explaining streamflow variability within the Elqui Valley (Fig. 4(c.))  Having identified SSTs across this region as spatially 

homogenous, and consistent with the Niño 3.4 region, Thus, we select the Niño 3.4 Index as a potential predictor of streamflow, 235 

in lieu of the SST region initially identified (Fig. 4(c.)), as it is well-known, well understood, and well-studied.  SST, SLP, 

geopotential height, meridional and vector winds are obtained at a 2.5 x 2.5 degree grid resolution from the National Oceanic 

and Atmospheric Administration’s Climate Diagnostics Center (NOAA-CDC), which are based upon the National Center for 

Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, available from 1949 to 

the present (Kalnay et al., 1996).  Soil moisture data is obtained from NOAA’s Climate Prediction Center’s (CPC) global 240 

monthly soil moisture dataset, at 0.5 x 0.5 degree grid resolution, which is available from 1948 to the present (Huang et al., 

1996; Kalnay et al., 1996; Saha et al., 2013).  MEI data is available from NOAA’s Earth System Research Laboratory (ESRL) 

bimonthly as the first unrotated principal component of six spatially filtered variables in the tropical Pacific (Wolter and 

Timlin, 1993, 1998). 

 245 
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Figure 5: Temporal correlations of October-January streamflow and potential predictors: (a) precipitation, (b) Niño 3.4 sea surface 
temperatures, (c) soil moisture 

 250 

 

 

 

 

 255 
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Table 1: List of potential predictors (bold predictors retained for statistical model) 

 

 260 

2.1.2 Statistical Modelling Approaches 

Principal component regression (PCR) (Lins, 1985) is commonly applied in forecasting to decompose space-time fields, which 

reduces both dimensionality and multicollinearity of a set of variables. PCR is a two-step process, the first of which identifies 

modes of dataset variability iteratively, by identifying the direction which maximizes the variance explained in the data.    The 

result is a set of principal components (PC) representing the variance in the predictors., with PCs ordered by the amount of 265 

variance explained. PCs with eigenvalues greater than one are retained, following Kaiser’s rule; (Zwick and Velicer, 1986). A 

leave-one-out cross validated hindcast is undertaken to produce a deterministic prediction of expected streamflow for each 

year (1950-2015) (Block and Rajagopalan, 2007).  A prediction distribution is generated using prediction errors from the 

hindcast fit to a normal distribution with a mean of zero, and added to the deterministic hindcast prediction. In this work, the 

median and upper 80th percentile hindcasted flows from the ranked outputs are analysed as a conservative estimate of 270 

streamflow to simulate potential risk aversion on the part of a reservoir manager.   Hereafter the statistical principal component 

regression approach is referred to as Stat-PCR.   

 

In a separate statistical approach, a streamflow prediction model based on ENSO phase and strength (Stat-P&S) is developed 

to provide categorical predictions of ONDJ streamflow. The strength of an El Niño or La Niña event relates to the degree of 275 

SST deviations from the long-term mean; uUsing the Niño 3.4 Index, NOAA has established weak (+/- 0.25 C), moderate 

(+/- 0.75 C), and strong (+/- 1.0 C) categorical thresholds as a means of describing ENSO phase and strength (CPC, 2016).  

Recent research has illustrated a potential relationship between streamflow and ENSO phase and strength (Zimmerman et al., 
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2016). In a separate statistical approach, a streamflow prediction model based on ENSO phase and strength (Stat-P&S) is 

developed to provide categorical predictions of ONDJ streamflow. To qualify for prediction using Stat-P&S, at least one month 280 

during a selected Niño 3.4 Index window must be at least moderate in strength for a given phase, ≥ +0.75C (El Niño) or ≤ -

0.75C (La Niña), and are categorically predicted as Above Normal (A; highest 33% of long-term streamflow observations) 

or Below Normal (B; lowest 33% of long-term streamflow observations) ONDJ streamflow, respectively.  Window selection 

determines hindcast date, and may fall prior to or during a phenomenon known as the Spring Barrier, when SSTs in equatorial 

Pacific generally reset, losing predictive strength (Webster and Hoyos, 2010).  However, the effects of moderate and strong 285 

ENSO events have some tendency to persist (Balmaseda et al., 1995). When values from the Niño 3.4 Index fail to exceed +/- 

0.5C, ONDJ streamflow is predicted to fall into the Normal (N; middle 33% of long-term streamflow observations) category.  

For years where the Niño 3.4 Index values are (+0.5C, +0.75C) or (-0.5C, -0.75C), the Stat-P&S model does not issue a 

forecast.  For these ranges, neither the magnitude (not weak or moderate as defined by NOAA) nor persistence of SST 

observations allow for production of skillful categorical streamflow forecasts.  For years in which SSTs fall within these ranges 290 

at forecast leads prior to the Spring Barrier, strength and phase are subject to rapid transition, and categorical forecasts are 

typically not skillful. 

2.2 Dynamical Climate Model Informed Statistical Streamflow Prediction Model.2.2.1 Data and Predictor Selection 

General Circulation Models (GCM) and Regional Climate Models (RCM) are physically-based, three dimensional 

representations of gridded atmospheric, oceanic and land surface processes, with typical spatial resolutions at or below 20 295 

kilometer resolution (Fowler and Ekström, 2009; Kendon et al., 2014).  The relatively coarse resolution of GCMs often limits 

predictive ability for smaller scale weather and climate phenomena, including precipitation (Bosilovich et al., 2008). Outputs 

from each GCM are unique, and based on individualized parameterization schemes, initial conditions, data assimilation 

processes, etc.  However, Cconsidering the National American Multi-Model Ensemble (NMME;) (CPC, 2012) suite of models, 

(Verbist et al., 2010) demonstrate skillful prediction of North Central Chile precipitation based on equatorial Pacific SSTs in 300 

the ENSO region using NOAA’s National Centers for Environmental Protection’s (NCEP) Climate Forecast System Version 

2 GCM, available 1982 – present (CFSv2; (Kalnay et al., 1996). Considering both the findings of Verbist et al. (2010), and a 

strong Pearson’s correlation coefficient between observed ONDJ streamflow and MJJA precipitation in the Elqui Valley 

(0.80), both precipitation and SSTs outputs from CFSv2 are retained for further evaluation. Specifically, the mean value of the 

40-member ensemble of outputs for gridded precipitation (29˚- 30˚S, 70˚-71˚W) and the Niño 1.2 and 3.4 indices at leads 305 

between 1 January 1st and 1 May 1st are obtained and independently corrected using a statistical quantile mapping approach 

based on the cumulative distribution functions of both predicted and observed data (Maraun, 2013).  For each lead, predicted 

values are replaced with values from the observed distribution, based on matching probabilities (Fig. 6; not all variables 

shown.)  

 310 
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2.2.2 Dynamic Model Informed Statistical Modelling Approach 

 

 The same PCR framework as in the Stat-PCR approach is applied using GCM corrected precipitation and SSTs to predict 

ONDJ streamflow, referred to as the Stat-Dyn model.  The Stat-Dyn model is meant to provide streamflow forecasts at 315 

extended leads, beyond what is possible with global and local observed data used to inform the Stat-PCR model.  Local 

variables (e.g. precipitation, snow water equivalent and soil moisture) hold the most predictive strength as observations during 

the season of peak precipitation (May-August) and thus are only considered for the Stat-Dyn model for leads beginning with 

1 June 1st (Fig. 5 (a.) and (c.). 
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 320 

Figure 6: (a) Quantile mapping of predicted and observed NOAA NCEP CFSv2 Niño 3.4 sea surface temperature (SST) data, (b) 
observed, predicted and statistically corrected NOAA NCEP CFSv2 Niño 3.4 SST data 
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2.3 Allocation Forecast Model. 

Allocation, as issued annually by JVRE, and storage outcomes are hindcast in a cross-validated mode for the period of record 325 

(1950 - 2015) by coupling the streamflow prediction models to a simple reservoir balance model.  As previously mentioned, 

if allocations are reduced to less than the defined maximum of 1 L s-1 liter per second, all rights are reduced equivalently across 

rights holders, per Chile’s Water Code.  The Puclaro operating rules adopted here focus on the end of water year (1 February 

1st) target reservoir volume, set at 100 million cubic meters m3 (50% capacity), which is consistent with current management 

practices for Puclaro Reservoir.  To account for annual deviation from the end of water year storage target, allocation for 330 

ONDJ in year i+1 is adjusted by the difference between end of water year storage and the target in year i.  Allocations may be 

larger if end of year storage exceeds target storage, or smaller if there is a shortfall in end of year storage, as shown by Eq. (1), 

where  

 

𝐴 , =

 

− 100𝑀𝑚 − 𝑆 ,       (1) 335 

 

 𝐴 ,  is the predicted allocation for ONDJ in year i+1. 𝑄  is the prediction of inflow in year i+1, with 

streamflow predictions for the non-ONDJ months constructed by regressing median ONDJ streamflow predictions onto 

February – September streamflow observations to produce predicted February – September streamflow.  𝑊𝑅  and  𝑊𝑅  are 

the number of water rights upstream and downstream of Puclaro, respectively, and 𝑆 ,  is the previous end of water 340 

year adjusted storage volume, as shown by Eq. (2), where  

 

𝑆 , = 𝑆 , − (𝐴 , − 𝐴 , )      (2) 

 

𝑆 ,  is the predicted storage at the time of ONDJ allocation issuance in year i, and 𝐴 ,  and 345 

𝐴 ,  are the forecast-based and observed allocation values in year i. This adjusted volume (predictions – 

observations) accounts for storage deficit or surplus resulting from forecast-based allocations (forecasts never perfectly match 

observations), and allows for adjustment of allocation in the following year.  Effectively, this accounts for the error in forecast-

based allocations.  The February storage shortfall or surplus is applied to the subsequent October-January per-water right 

allocation value, as the storage target is non-binding (can be violated by over or under allocation in the previous year), but 350 

consequential, in the allocation model.  This functions as a mechanism to compensate for over or under allocation in the 

previous year.  

 



18 
 

Annual per water right allocations based on forecasts of 1 September 1st reservoir volume, probabilistic inflow predictions, 

and end-of-water-year target reservoir volumes, are reported as a probability of falling into three allocation categories: 355 

“Moderate” (≥ 0.5 Liters per secondL s-1), “Severe” (0.5 Liters per second L s-1  – 0.25 Liters per second L s-1), and “Extreme” 

(<0.25 Liters per second L s-1.) The selected categories are consistent with those used by the U.S. Drought Monitor to describe 

similar ranges of industrial, social and environmental impacts expected due to reduced access to water resources (Svoboda et 

al., 2002).  Numerical thresholds assigned to the categorical boundaries align approximately with tercile values from the 

cumulative distribution of allocations derived from observed inflow and storage data, using the same reservoir operating rules 360 

as forecast-based allocations.  Further, the breaks in categories closely follow decisions made by JVRE: a water right value of 

0.5 liters per second L s-1  is not uncommon and approximately represents the lower bound in normal years (Hearne and Easter, 

1995); during the most recent severe drought (2009-2014) water right values of 0.2 liters per second L s-1 were common (JVRE, 

personal communication.) 

2.4 Performance Metrics. 365 

The performance of each cross-validated modelling approach is assessed deterministically (Pearson’s correlation coefficient) 

and with a variety of categorical metrics to assess model skill in the prediction of specific categories, as opposed to a specific 

quantity or pattern (Regonda et al., 2006; Souza Filho and Lall, 2003).  Two sets of categories are evaluated, as previously 

defined.  The first is for streamflow hindcast prediction, with Above- (A), Near- (N), and Below-Normal (B) categories 

(ranges) based on a climatological distribution of observed ONDJ streamflow, each containing 33% of observations.  The 370 

second is for per water right allocation hindcast prediction, applying the Moderate, Severe, and Extreme categories, as previous 

defined and contingent on reservoir storage and forecast inflow. Categorical outputs are illustrated with contingency tables, 

comparing predicted versus observed categorical occurrences.  Perfect mModel skill occurs when the cross-validated predicted 

conditions match or ‘hit’ observed conditions, which describes the categorical performance of the entire forecast in comparison 

to observations.  Individual categorical Hit Scores describe under which flow conditions the model is most skillfull. A ‘Miss’ 375 

results when the predicted value does not fall within the observed category.  An ‘Extreme Miss’ constitutes a categorical 

prediction missing an observation by two categories (model predicts Above-normal while Below-normal is observed or vice-

versa.)  

 

Ranked Probability Skill Score (RPSS) is a categorical measure of an ensemble prediction of each modelling approach 380 

compared to a reference forecast, in this case climatology (Saunders and Fletcher, 2004). The RPSS uses the Ranked 

Probability Score (RPS), a measure of the square differences in the cumulative probability of a multi-categorical ensemble.  

The RPSS ranges from -∞ to 1; values between 0 and 1 indicate greater skill than simply using climatology (i.e. basing 

prediction on long-term averages), while RPSS values less than zero indicate predictions are inferior to climatology.  An RPSS 

value is generated for each of year of the hindcast using Eq. (3); the median RPSS value is reported. 385 
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𝑅𝑃𝑆𝑆 =
 

= 1 −
 

         (3) 

 

3 Model Performance. 

3.1 Statistical and Dynamical Streamflow Prediction Models.  390 

For each cross-validated streamflow modelling hindcast assessment (Stat-PCR: 1950 – 2015; Stat-Dyn: 1982 – present), a 

unique set of predictors and principal components are selected and evaluated with the categorical performance metrics 

(Pearson’s correlation coefficient, ‘Hit Score’, ‘Extreme Miss Score’, and RPSS; Table 2.)  As forecast lead increases, both 

Hit Score and RPSS decrease, while Extreme Miss Score increases. This is not surprising, as less MJJA rainy season 

observations are available with increasing lead, which is consistent with decreased correlations between ONDJ streamflow 395 

and predictors (Fig. 5.) 

 

Table 2: Stat-PCR and Stat-Dyn forecast model performance metrics 

 

 400 

 
For the Stat-PCR set of models, the predictors for each lead-time follow a similar pattern, utilizing soil moisture and SST from 

the month prior, and precipitation for the two months prior to the forecast date (e.g. 1 September 1st forecast uses August soil 

moisture and SST, and July-August precipitation.)  Snow water equivalent (SWE) is not retained as a predictor as its May-

August correlation with October-January streamflow (Pearson’s Correlation Coefficient = 0.68) is not as strong as the 405 

correlation between precipitation and streamflow for the same lead, and arguably provides the same information to the model.  

As such, observations of precipitation are retained for the Stat-PCR model.  The 1 September 1st lead is promising, however 

for longer leads this relationship does not necessarily hold.  An 1 August 1st lead is approximately equivalent to using 

climatology, and by 1 July 1st it is worse.  For the Stat-Dyn modelling approach, using the mean of CFSv2 ensemble forecasts 
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for MJJA precipitation, Niño 3.4 and 1.2 SSTs at 1 June 1st, 1 May 1st and 1 January 1st lead times, produces low Hit, high 410 

Extreme Miss and negative RPSS scores (Table 2), confirming the challenges of predicting through the Spring Barrier.     

 

The first principal component of the Stat-PCR 1 September 1st forecast is highly correlated with SST in the Niño 3.4 region 

(0.88), which confirms that streamflow and therefore precipitation in the Elqui Valley are at least partially characterized by 

anomalous changes in SSTs.  From a categorical perspective, the statistical model is most skillful in predicting Above-Normal 415 

streamflow years (Hit Score: 82%; Table 3); categorical outcomes for Near- and Below-Normal streamflow years were less 

successful (Hit Scores: 36% and 64%, respectively.)  The large disparity between Above-, Near-, and Below-Normal 

categorical outcomes may be explained by evaluating cross-validated, global spatial correlation maps (1 x 1) of ONDJ 

streamflow with the MJJA MEI, following Zimmerman et. al (2016.)  The spatial correlation plots (1950 – 2015; Fig. 7) 

illustrate that years with positive MEI generally correspond with El Niño events and Above-Normal streamflow conditions, 420 

while years with negative MEI generally correspond with La Niña events and Below-Normal conditions.  This produces a 

strong positive correlation (0.65) between streamflow and SST in the Niño 3.4 region during years with positive MEI, and a 

moderate positive correlation (0.29) during years with negative MEI in the equatorial Pacific Ocean, but slightly outside the 

common ENSO index regions.  Correlation mapping between all years and streamflow produces a moderate correlation (0.35) 

in the common ENSO region, suggesting that El Niño years likely dominate this relationship.  However, ENSO is non-linear, 425 

and the amount of moisture transported to the basin during El Niño or La Niña years will vary dependent upon strength (Meehl 

et al., 2001), and other factors, as previously discussed and illustrated in Fig. 4.   

 

Table 3: 1 September 1st Stat-PCR model categorical streamflow results: observed vs. forecast 

 430 
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Figure 7: May-August global Multivariate ENSO Index (MEI) correlated with October-January streamflow at Algarrobal for: (a) 
positive MEI years, (b) all MEI years, (c) negative MEI years 

 435 

 

 

 

 

 440 
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3.2 ENSO Phase and Strength Streamflow Prediction Models. 

To evaluate ENSO phase-specific models, the Stat-P&S approach is adopted.  While several forecast leads and Niño 3.4 index 445 

windows were evaluated, the Stat-P&S model performs best for a 1 May 1st forecast, when SSTs in the Niño 3.4 region are at 

least moderate in strength for a given phase [≥ +0.75C (El Niño) or ≤ -0.75C (La Niña)], or relatively neutral [within +/- 

0.5C departure from the long-term mean], for at least one month during January-April (JFMA; Table 4.)  For 1950 – 2015, 

60% of years qualify, triggering the 1 May 1st Stat-P&S categorical prediction model.  For moderate conditions (positive and 

negative), this produces categorical Hit Scores of 75% for Above-normal (El Niño) and 58% for Below-normal (La Niña.)  For 450 

moderate La Niña only conditions, 7 of the 10 lowest ONDJ streamflow years on record are captured.  The remaining three 

years of lowest ONDJ streamflow (1969, 1995, 2010) are predicted as Above-normal by the Stat-P&S model due to JFMA 

Niño 3.4 SSTs > 1.0C (strong El Niño conditions.)   

Table 4: Stat-P&S model categorical streamflow results: observed vs. forecast 

 455 

 

3.3 Coupled Statistical Prediction Models. 

The Stat-P&S and Stat-PCR models each provide skillful forecasts, at different leads.  While Stat-P&S performs best for a 1 

May 1st forecast lead, particularly for predicting high and low ONDJ streamflow, forecasts are issued only categorically; 

deterministic predictions from the Stat-PCR and Stat-Dyn models at this lead are relatively weak.  That is, the Stat-P&S model 460 

relinquishes forecast determinism and in turn increases forecast lead in comparison to the Stat-PCR and Stat-Dyn approaches.  

The Stat-P&S model is also triggered for only 60% of the period of record.  The other 40% of years occur when Niño 3.4 

SSTs, for at least one month during JFMA, are (+0.5C, +0.75C) or (-0.5C, -0.75C.)  These ranges are transitional and do 

not provide skillful categorical forecasts for the 1 May 1st lead.  For this reason, the coupled statistical prediction model defers 

prediction in these years to 1 September 1st, when the Stat-PCR model is skillful in producing deterministic forecasts of ONDJ 465 

streamflow.   

 

To address the limitations of both the Stat-PCR and Stat-P&S models, a coupled, sequential forecast approach is adopted which 

utilizes both the Stat-P&S and Stat-PCR models in the following manner: 
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 470 

Step 1. The Stat-P&S model issues a 1 May 1st categorical forecast of ONDJ streamflow when the Niño 3.4 conditions 

are met.  Otherwise no forecast is issued. 

 

Step 2a. If the Stat-P&S model issued a 1 May 1st forecast, the Stat-PCR model re-evaluates this prediction on 1 September 

1st forecast, updating as necessary, and provides a deterministic forecast. 475 

 

Step 2b. If the Stat-P&S model did not issue a 1 May 1st forecast, the Stat-PCR model produces a deterministic forecast 

on 1 September 1st.   

 

For performance evaluation, a categorical hit by Stat-P&S model becomes a miss if Stat-PCR model predicts a different (and 480 

wrong) category.  The Stat-PCR model may also correct a categorical miss by the Stat-P&S model. The 1 May 1st Stat-P&S 

and 1 September 1st Stat-PCR coupled forecast model revels a large degree of categorical forecast consistency (change between 

Table 4 and Table 3.)  The Stat-PCR model only predicts a different category than the Stat-P&S model in two of the 39 years 

evaluated, and for these two cases, it changes extreme misses (least desirable outcome) to hits.  One such change was for the 

year 1995, one of the three lowest years of ONDJ streamflow not correctly categorized by the Stat-P&S model (initially 485 

predicted Above-normal while Below-normal streamflow observed.)  Thus, the coupling of these two Stat models appears to 

perform superiorly as compared to models individually by skilfully increasing the prediction lead time and allowing for 

prediction updating, as necessary.  

3.4 Allocation Prediction Model 

A streamflow prediction-reservoir water balance model system is used to evaluate the performance of water right allocations, 490 

as compared with using streamflow observations and streamflow climatology, for a 1 September 1st issuance.  Utilizing 

streamflow observations is synonymous with a perfect forecast.  The system is tested in hindcast mode using streamflow 

median and 80th percentile streamflow prediction scenarios of ONDJ streamflow separately.  Both the median and 80th 

percentile approaches outperform climatology, achieving Hit Scores of 53%, as compared with only a 30% Hit Score using 

climatology (Table 5.)  Additionally, the climatological median fails to predict any years with Extreme reductions (< 0.25 495 

liters per secondL s-1); the climatology-based approach over-allocates in 55% of years, as opposed to only 27% of years when 

applying the 80th percentile forecast approach.  This is noteworthy from a management perspective, as over-allocation is often 

considered more problematic than under-allocation from a long-term, drought-focused perspective.  The distributions of 

forecast-based allocations also more closely match observations than climatology, with the median and the 80th percentile 

forecast scenarios exceeding observation-based allocations by only 0.06 and 0.04 liters per secondL s-1, respectively, on 500 

average (Fig. 8(a.)  Over-allocation using climatological streamflow is again evident, as the interquartile range (IQR) of 

climatological allocations does not align with observations. While the IQR of the forecast-based scenario is larger than the 
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observation-based scenario, it does not systematically over-allocate (Fig. 8(a.)  This can also be illustrated by calculating the 

ratio of each approach (climatology and forecasts) to observed allocations (Fig. 8(b.) In this case, a perfect score would be a 

consistent value of one, as a climatological or forecast allocation would match each observation-based allocation.  The forecast-505 

based allocation ratios produce smaller IQRs and lower median values than climatology-based allocations, implying that the 

forecasts are better aligned with observations and slightly more conservative.   
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Table 5: Categorical water right allocation results: observed vs forecast 
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 540 

Figure 8: Reservoir model-derived forecast allocations: (a) absolute allocation values, (b) ratio of forecast allocations to observed 
allocations 

The probabilistic modelling approach also allows for an understanding of categorical forecast certainty and strength, that is, 

the degree to which the model suggest a category (Fig. 9.)  In this case, the forecast-based allocations more often indicate a 

stronger forecast tendency (higher probability) toward one category, whereas the climatology-based allocations often indicate 545 

a weaker tendency to shift.  While this is not always the case, from a reservoir management perspective, climatology-based 

allocations provide less actionable information, as the strength of the predicted categories are often not too dissimilar, even in 

years where correct predictions are made.  In contrast, for the 28 years where forecast-based allocations of a category exceed 

80% (a strong prediction), the Hit Score is 79%, a high success rate, and further, no extreme misses occur (Moderate category 

predicted, Extreme category observed), avoiding over-allocation in dry years.  550 
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Figure 9: Probabilistic water right allocation forecast using (a) 1 September 1st PCR-Stat model 80th percentile, (b) long-term 
averages (climatology)   

The effect of over- and under-allocation by both forecast- and climatology-based approaches on end of year reservoir storage 555 

is also evaluated.  Large deviations from the 100 million m3 cubic meter target volume (1 February 1st) are viewed as 

problematic to the JVRE and water rights holders (Fig. 10.) The prior analysis demonstrates the propensity for the climatology-

based approach to consistently over-allocate, resulting in reservoir volumes consistently below the target.  The forecast-based 

scenarios have a smaller IQR with median values approaching the target value.  The climatology-based approach also allocates 

the full reservoir volume in 33% of years (leaving the reservoir empty), which happens in only 11% of years under the forecast-560 

based scenarios, due to prediction error (Fig. 10.)   
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Figure 10: End of year reservoir storage under three allocation approaches; 100 M m3 is the target 

4 Discussion. 

The framework developed here, although applied specifically to the Elqui Valley in Chile, can provide a broad pathway for 565 

managers and rights holders in water rights managed basins to benefit from streamflow forecast-informed reservoir allocations.  

Although streamflow predictions hold modest skill for the Elqui, the coupling of the Stat-P&S and Stat-PCR models, and 

subsequent coupling of forecasts with the human managed allocation framework, provide for increases in system efficiency as 

compared with climatology based forecasts. Specifically, the Stat-PCR streamflow prediction-reservoir water balance model 

system produces values closely matched with observations over the historical period, and each forecast (median, 80th 570 

percentile) outperforms climatology. Use of the 80th percentile Stat-PCR forecast is intended to represent risk aversion; 

however, the probabilistic framework allows assessment for any risk preference. Ensemble predictions illustrate the general 

propensity of a climatology-based allocation to provide limited actionable information in contrast to forecast-based allocations, 
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which exhibit enhanced skill when the model issues strong predictions (>80% categorical likelihood.)  However, in years when 

the Stat-PCR forecast-based allocation model issues a weak prediction (no dominant tendency toward any specific category) 575 

other allocation decision frameworks may be worth investigating (e.g. allocation based on existing storage only as a hedge 

against inflow uncertainty.)  The development and implementation of the probabilistic framework by reservoir managers, as a 

mechanism to convert streamflow forecasts into forecast allocations, may arguably necessitate a higher level of communication 

with water rights holders.  Probabilistic forecasts can provide option value to water rights holders if the strength of the category 

predicted would alter water rights holders’ decisions (e.g. change cropping decisions, prompt water procurement or sales) 580 

acting under the presumption of economic rationality.  This hypothesis may also be worth investigating.   

 

Selection of categorical thresholds (three for this case study) is based on equal distribution of observations, and does not 

necessarily represent the preferences of reservoir managers or rights holders, however these thresholds are easily adjustable.  

For example, if only two categories are selected as allocations above and below 0.75 L/ s-1, the Hit Score rises to 92%, which 585 

could be representative of some productivity threshold (e.g. crop water requirement).  The framework is thus sufficiently 

flexible to allow managers to select categories which reflect true differences in the utility of allocations to water rights holders.   

 

While the approaches in this research are predominantly a demonstration of concept, the model framework is consistent with 

the current operations of Puclaro Reservoir. However, it is not optimized to hedge against expected future (multi-year) 590 

conditions. While the model may be informative over the long-term, resulting in allocation and storage values better matched 

with observations than climatology-based allocations, it performs poorly in certain years, most notably during the 2009 – 2015 

hydrologic and meteorological drought (Fig. 9(a.))  While poor model performance during this period is undoubtedly due in 

part to the limited reservoir operating rules, the Stat-PCR approach tends to under predict extremes, especially when they occur 

consecutively.  Further forecast model development will focus on improving predictive skill of extreme events, particularly 595 

dry periods, making use of non-parametric methods and additional multi-model approaches, and dynamic rule structures and 

simulation techniques.  Even so, adoption of the approaches presented here by water managers and rights holders bodes well 

for improved economic efficiency and benefits across the Elqui Valley.  

 

5 Conclusions. 600 

The focus of this research is to develop an understanding of the mechanisms contributing to austral summer streamflow in the 

Elqui Valley, investigate model skill at varied forecast leads, and produce forecast-based water-right allocations to inform 

water resources management decision-making. Like many regions, the dynamic nature of ocean, atmosphere and terrestrial 

interactions, which contribute to moisture transport in the Elqui Valley, are undoubtedly complex and challenge hydrologic 

prediction models at increasing leads.  The mixed success of streamflow forecasts currently in use for the Elqui reflect this.  605 
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Here, a framework is established by which streamflow forecasts can be produced and coupled with human managed allocation 

systems to promote equity and efficiency in the use of limited water resources.   

 

Correlation and composite mapping suggest moisture transport to the Elqui Valley is dependent on the phase, strength and 

timing of many variables (Fig. 4.)  While austral winter precipitation, SST, and soil moisture correlations with ONDJ 610 

streamflow at varied leads are encouraging (Fig. 5), the Stat-PCR approach, which makes use of these predictors, is skillful 

only at a 1 September 1st lead, as indicated by RPSS scores and other forecast validation metrics (Table 2.)  The Stat-Dyn 

approach, using precipitation and SSTs, results in inferior outcomes compared with the Stat-PCR model.  The Stat-P&S model, 

however, provides skillful predictions of ONDJ streamflow at a 1 May 1st lead, albeit categorically and is triggered in only 

60% of the period 1950 – 2015.   615 

 

The broader insight gained is in the coupling of the Stat-P&S and Stat-PCR models to produce initial (1 May 1st) and updated 

(1 September 1st) forecasts which may be valuable to both reservoir managers and water rights holders.  From a reservoir 

management perspective, properly setting the per right water allocation (1 September 1st) is critically important to satisfy rights 

holders and maintain adequate reservoir storage for the uncertain future.  The Stat-PCR component of the coupled model 620 

provides skill superior to climatology, and likely better informs allocation decisions.  Reservoir managers, however, are also 

expected to provide a non-binding 1 May 1st allocation forecast, allowing rights holders, specifically farmers with crop choice 

flexibility and/or water right leasing potential, to supplement through the water market as necessary.  The Stat-P&S categorical 

forecast with a 1 May 1st lead can inform these longer planning actions.  The strong categorical consistency between the 1 May 

1st Stat-P&S and 1 September 1st Stat-PCR forecasts may also serve to reinforce confidence in the forecast outcomes; the two 625 

models only differ in prediction categories twice in the 66 years evaluated.  The conclusion here is that coupled forecasts need 

not be strictly deterministic, and using early categorical forecasts to provide an indication of expected conditions, and 

reinforcing the prediction with a revised deterministic forecast as more observations of local variables (e.g. precipitation) 

become available may be useful for water rights holders.  In addition, linking the streamflow forecast with the human managed 

allocation system is broadly relevant as a mechanism to promote efficiency in the use of limited water resources. The 630 

framework presented here addresses the unique set of circumstances in water rights managed basins, and represents an 

advancement in linking season-ahead streamflow forecasts to water resources systems.  
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