
1 
 

REPLIES TO COMMENTS 
 
Reply to the Editor 
 
We thank Referees 1 & 2 for reviewing our manuscript and providing constructive, actionable 5 

feedback.  In compliance with the request of the Editor, below we provide our responses to 
concerns raised by Referee 2 during the ‘Revision’ stage of peer review.   
 
Comment: The manuscript has certainly improved since the first version. However, I think that 
it is still much longer than necessary, and that one can expect the average HESS reader to be 10 

familiar with most if not all the presented concepts (and surely be able to look them up in other 
sources). From that perspective, I expect that a more condensed presentation would make the 
paper more accessible and increase its impact significantly. 
 
Reply:  We thank Referee 2 for acknowledging improvements made to the manuscript.  We have 15 

made a significant effort to balance (decrease) the length of data, methods, and metrics 
discussion while maintaining contextual details for readability and reproducibility.  Further, 
many of the additions to the manuscript due to comments by Referee 1, which we agree are 
necessary for completeness, are in sections which Referee 2 suggests consolidation.  As such, 
we feel strongly that the level of detail provided in the manuscript is appropriate.  Still, we have 20 

further condensed some explanatory language in section 2 “Modelling Framework and 
Performance Metrics”.   
 
Comment: Similarly, the structure has improved, but especially the modelling section still 
combines introduction with methodology and process description in an uncomfortable way. A 25 

more traditional (and condensed) structure in which the model justification is followed by a 
concise description of the technical details of the model implementation would in my opinion 
help both readability and reproducibility. 
 
Reply: Again, we thank Referee 2 for noting improvements to the manuscript.  Our position is 30 

that completely separating data from the three modelling approaches is unnecessary and would 
likely add to manuscript length, without significant gains to readability and reproducibility.  
Each model uses unique variables, data sets, data time sequences, or configurations which we 
assert are best presented as a precursor to each model.  We recognize this approach to 
manuscript presentation is less conventional than traditional approaches.  To alleviate this 35 

concern, we add subheadings 2.1.1 and 2.2.1 “Data and Predictor Selection”, 2.1.2 “Statistical 
Modelling Approaches”, and 2.2.2 “Dynamic Model Informed Statistical Modelling Approach” 
as a means of segregating each model’s data from its approach within the same section heading.   
 

 40 
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LIST OF RELEVANT CHANGES MADE TO MANUSCRIPT 

 

1. P7, L135 Add sub-heading 2.1.1 Data and Predictor Selection 

2. P11, L187 Add sub-heading 2.1.2 Statistical Modelling Approaches 45 

3. P11, L193-199 Various deletions and rewording 

4. P112, L207-209 Delete “The Stat-P&S approach utilizes Niño 3.4 Index values, prior 

to ONDJ season of interest, to provide a categorical streamflow prediction.”  This 

language is potentially unnecessary. 

5. P12, L222 Add subheading 2.2.1 Data and Predictor Selection 50 

6. P12, L 225-226 Delete “GCMs have proven skilful in prediction of large scale physical 

processes such as SSTs and pressure systems, however, their” and retain the 

following sentence which focuses on GCM limitations in prediction of smaller scale 

climate variables, e.g. precipitation. 

7. P13, L239 Add sub-heading 2.2.2 Dynamic Model Informed Statistical Modelling 55 

Approach 

8. P16, L302-303 Delete “and is the count of years predicted correctly in a category, 

divided by the number of years observed in the same category.”  This language is 

unnecessary as Hit Score calculation is likely well-understood by HESS readers. 

9. P16, L305-307 Delete “The ‘Extreme Miss Score’ is the fraction of the sum of times 60 

Above normal is predicted but Below normal is observed plus the sum of times Below 

normal is predicted but Above normal is observed and the total number of hindcast 

years.”  This statement in perhaps redundant considering the explanation from L304-

305.   

 65 
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Abstract.  

In many semi-arid regions, agriculture, energy, municipal, and environmental demands often stress available water supplies.  75 

Such is the case in the Elqui River valley of northern Chile, which draws on a limited capacity reservoir and annually variable 

snowmelt.  With infrastructure investments often deferred or delayed, water managers are forced to address demand-based 

allocation strategies, particularly challenging in dry years.  This is often realized through a reduction in the volume associated 

with each water right, applied across all water rights holders.  Skillful season-ahead streamflow forecasts have the potential to 

inform managers with an indication of likely future conditions upon which to set the annual water right volume and thereby 80 

guide reservoir allocations.  This work evaluates season-ahead statistical prediction models of October-January (austral 

growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions 

with a simple reservoir allocation tool.  Skillful results (forecasts outperforming climatology) are produced for short lead-times 

(September 1st; RPSS = 0.31, categorical hit skill score = 61%), with years of Above-Normal (high) and Below-Normal (low) 

streamflow predicted 82% and 64% of the time, respectively.  At longer lead-times, climatological skill exceeds forecast skill, 85 

largely due to fewer observations of precipitation.  Coupling the September 1st statistical forecast model with a Niño 3.4 region 

sea surface temperature phase and strength statistical model, however, allows for equally skillful categorical streamflow 

forecasts to be produced from a May 1st lead, triggered for 60% of the years in the period 1950-2015.  Forecasts may not need 

to be strictly deterministic to be useful for water rights holders; early (May) categorical indication of expected conditions are 

reinforced with a revised deterministic forecast (September) as more observations of local variables (e.g. precipitation) become 90 

available. The reservoir allocation model is skillful at the September 1st lead (categorical hit skill score = 53%); this skill 

improves to 79% when the model predicts the observed allocation category with at least 80% certainty.  This result has broader 

implications, suggesting that in water rights managed basins, allocation efficiency might improve through the integration of 

forecasts as part of a reservoir decision framework.  The methods applied here advance the understanding of the mechanisms 

and timing responsible for moisture transport to the Elqui Valley, and provide a unique application of streamflow forecasting 95 

in the prediction of per-water right allocations. Both have the potential to inform water right holder decisions.                 
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1 Introduction.  

The sustainability of many water systems is challenged by current climate variability, and may come under additional stress 

with changes in future climate and user demands.  Concerns over increasing water scarcity have prompted progressive 

governments, institutions, water resource managers, and end-users to adopt a wide variety of conservation policies, typically 100 

targeting supply augmentation or demand reduction at the basin or jurisdictional boundary scale (Tanaka et al., 2006). These 

decisions, which are ideally informed by a variety of models, are inherently uncertain across time-scales, and produce 

numerous risks stemming from human activity and hydroclimatic variability/change (Narula and Lall, 2009).  Advanced 

hydroclimatic information is often attractive to progressive water managers to support management and planning of water 

systems (Barsugli et al., 2012).  At the seasonal scale, a skillful streamflow forecast may allow more efficient water allocation 105 

and predictable tradeoffs between flows for energy, irrigation, municipalities, environmental services, etc.  Such forecasts 

often provide the ability to prepare for anticipated conditions, not simply react to existing conditions, potentially reducing 

climate‐related risks and offering opportunities (Helmuth et al., 2007).  This may be especially informative in years with 

extreme conditions (floods, droughts.)  Further motiviation stems from evidence that addressing climate variability as part of 

water development is key for stabilizing and improving country economies (Brown and Lall, 2006). 110 

 

While improvements in seasonal climate forecast skill and advocacy for integration into risk reduction strategies are well 

documented (Barnston et al., 1994; Block, 2011; Block et al., 2009; Dee et al., 2011; Hansen et al., 2004; Mason and 

Stephenson, 2008), demonstrated use of forecasts in current water allocation and policy strategies is limited (Barnston et al., 

1994; Christensen et al., 2004; Hamlet et al., 2002; Sankarasubramanian et al., 2009; Stakhiv, 1998). This is partially 115 

attributable to the wide-spread use of static operational policies, which may be based on average streamflow or the drought of 

record, and established with minimal to no accounting of uncertainty, thus limiting water system flexibility (You and Cai, 

2008). Effectively translating emerging climate information into hydrology to support adaptable water resources decision-

making, and ultimately policy, warrants further study. 

 120 

The water system in the semi-arid Elqui Valley in north-central Chile’s IVth Region (Fig. 1) is contending with increasing 

levels of water stress and demand, coupled with insufficient investment in infrastructure, taxing its ability to sufficiently meet 

multiple water uses and maintain environmental quality.  The Valley footprint is relatively small (< 10,000 square kilometers), 

but boasts elevation changes ranging from sea level in the west to nearly 5,000 meters in the east along the Andes, in the span 

of less than 150 kilometers.  The Atacama Desert lies just to the north.  The Valley is fed from a retreating glacier to serve its 125 

600,000 inhabitants, and is very narrow, with vineyards and plantations covering the floor and increasingly moving up the 

Valley sides; forty three percent of the region’s surface land area is devoted to agricultural activities (Cepeda and Lopez-

Cortes, 2004).  Agricultural exports, particularly grapes, fruits, and avocados, dominate the Valley’s economy (Young et al., 

2009), and are maintained by an extensive irrigation channel system latticing the Valley, which diverts water from the main 
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Elqui River.  The Puclaro reservoir is the dominant storage facility in the Valley, with a holding capacity of 200 million cubic 130 

meters (Fig. 1.) The reservoir provides irrigation for about 21,000 hectares of the Elqui Valley, as well as small-scale 

hydropower (5.6 MW capacity) and being a popular tourist destination, particularly for sailing and windsurfing (Cepeda and 

Lopez-Cortes, 2004). 

 

Figure 1: Location of Elqui River Valley, Chile 135 

Chile uses a market-oriented approach to water allocation, guided by its Water Code of 1981 (G Donoso, 2006). The intent is 

to allow for optimal allocation and efficiency through a politically neutral mechanism via permanent trades or leasing 

(Olmstead, 2010; Wheeler et al., 2013).  Rights are granted through the national water authority (Dirección General de Aguas, 

hereafter DGA), while supervision, reservoir management, and issuance of annual per right allocation is left to the privately-

held, local water authority, Junta de Vigilancia del Rio Elqui (JVRE.)  Water rights along the Elqui River are fully allocated, 140 

with 25,000 total rights valued at 1 liter per second each.  In years with above normal precipitation and snowpack, this value 

can be attained, however near normal and below normal precipitation years typically require a reduction in per right allocation, 

on the order of 0.5 liters per second.  Prolonged periods of drought (2009-2015) have resulted in allocations as low as 0.2 liters 

per second (JVRE, personal communication.)  All water rights are of equal standing; no prioritization or junior/senior status 

exists.  Thus, right holders above Puclaro are guaranteed equal per right allocations as their counterparts downstream; under 145 

the current framework, surplus supply cannot be allocated to users downstream of the reservoir once the annual per right 

allocation has been officially issued, to guarantee equality.  Approximately 92% of water rights are held by farmers, with half 

of those held by a small minority engaged in large-scale viticulture.  Municipalities and the mining industry share the balance 
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of water rights.  Meeting targets for renewable energy through hydropower, ecosystem services, specifically minimum instream 

flows, and reservoir storage are also important competing non-consumptive or non-water right holding priorities. 150 

 

The decision framework driving water allocation and market activity in the Valley is complex and involves many actors. For 

the water year October to September, the local water authority initially projects the annual per right allocation in the preceding 

May and officially sets it in September.  Water rights holders (users) thus have two decision points, May and September, to 

evaluate their allocation and weigh the need to supplement through market activity (trade or lease.)  This setting serves as an 155 

impetus for developing a framework to advance streamflow and water allocation forecasts at those decision points to better 

guide decision-making across the Valley. 

1.1 Elqui Hydro-climate Characteristics. 

The Elqui Valley is one of the most sensitive areas to water variability in all of South America, given its dryland ecosystem 

nature, susceptible to even small changes in the water cycle (Santibañez et al. 1992; N Kalthoff et al. 2006). The climate of 160 

the region is affected by three major factors that lead to its semi-arid nature: the southeast Pacific anticyclone, the cold 

Humboldt current along the Pacific coast, and the eastern longitudinal barrier created by the Andes mountains (Kalthoff et al., 

2002).  The majority of precipitation is frontal in nature, falling in the austral winter (May-August, MJJA) as rain in the Valley 

and snow in the mountains; this leaves the remaining months extremely dry (Fig. 2;(Aceituno, 1988).  Annual rainfall totals 

approach 90mm on average and express a high degree of variability (Young et al., 2009).  The El Niño Southern Oscillation 165 

(ENSO) is well known to have a role in this variability, with positive precipitation anomalies during El Niño events, and below 

normal precipitation mostly associated with La Niña conditions (Fig. 3; (Aceituno, 1988; Falvey and Garreaud, 2007; Garreaud 

et al., 2009; Montecinos and Aceituno, 2003).  For Vicuña, a city located in approximately the center of the Valley, between 

1950-2000, El Niño years produced average annual precipitation of 134mm, compared with 68 mm during La Niña years – a 

stark difference (Young et al., 2009). 170 
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Figure 2: Annual cycle of average precipitation and streamflow (1950-2015) 
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Figure 3: Total annual precipitation (dashed), streamflow (solid) & May-August Niño 3.4 sea-surface temperature anomalies (bars) 175 

 

The Elqui River is predominantly fed through snowmelt over the October - January (ONDJ) season, dictating the agricultural 

calendar.  Historical rates of average streamflow over this season, however, indicate enormous interannual variability, ranging 

from 2.2 - 89 cubic meters per second at the Algarrobal station (Fig. 3; Santibañez et al. 1992), commonly considered as a 

surrogate for inflow to the Puclaro Reservoir (Fig. 1.)  Recognizing that variable precipitation effects streamflow and 180 

subsequently water right allocation values, this research tests two hypotheses as a means of addressing the unique climate 

conditions of the Elqui Valley, which may be applied more broadly to water rights managed basins with limited water 

resources: 

 

1) Skillful season-ahead streamflow forecasts can be produced for existing water right allocation decision points. 185 

2) Skillful streamflow forecasts coupled with reservoir allocation decision tools can improve allocation efficiency.   



9 
 

2   Modelling Framework and Performance Metrics. 

Historically, water managers in the Elqui Valley have subjectively considered simple analog prediction models for ONDJ 

streamflow at Algarrobal, conditioned on the multivariate ENSO index (MEI), for allocation decisions and reservoir 

operations, with limited success (JVRE, personal communication.)  Previous efforts to evaluate hydro-climate forecast skill 190 

for the Elqui River have considered leads consistent with the current water rights forecast structure; a preliminary May 

allocation forecast and September allocation issuance (Robertson et al., 2014; Verbist et al., 2010).  Roberston et al. (2014) 

report a significant increase in forecast skill, comparing September to May, but suggest further investigation to more fully 

understand forecast skill with increasing lead time.     

 195 

This recommendation is addressed by building a modelling framework to evaluate potential improvement in predicting ONDJ 

streamflow at multiple lead times, starting with a 1-month lead (September 1st) and increasing at monthly intervals (i.e. August 

1st, July 1st, etc.) to May 1st, when the first water allocation forecast is preliminarily issued.  Both statistical and dynamical 

prediction approaches are explored.  Subsequently, the ability to effectively predict water rights allocations is investigated by 

coupling streamflow predictions with a reservoir allocation model. 200 

2.1 Statistical Streamflow Prediction Models 

2.1.1 Data and Predictor Selection 

Statistical forecast methods rely on identification of spatiotemporal patterns in historical data (Chambers et al., 1971).  

Observations of streamflow at Algarrobal (monthly, 1948-present), valley-wide precipitation stations (daily, 1950-present), 

and snow-water equivalent (daily, 1950-2009) are each readily available through the Chilean DGA.  One of DGA’s primary 205 

functions as regulator of surface water resources for the Chilean Government is to collect, validate, and perform quality control 

of hydrologic measurements.   Open source data obtained through DGA is considered as having met DGA quality standards. 

A suite of potential predictor variables are evaluated which have been shown to influence either streamflow or precipitation, 

including sea surface temperatures (SST), specifically in the Niño 1.2 and Niño 3.4 regions, sea level pressure (SLP), 

geopotential height, vector (also referred to as wind vectors) and meridional winds, local soil moisture, and the Multivariate 210 

ENSO Index (MEI), which combines several equatorial Pacific atmospheric and oceanic anomalies (Montecinos and Aceituno, 

2003; Wolter and Timlin, 1993).  These variables can illustrate the mechanisms controlling moisture transport to the basin, 

and subsequent inter-annual variability in streamflow.  For example, in the ten lowest ONDJ streamflow years (dry), vector 

winds follow a weak, dissociated pattern in the preceding season, which indicates that moisture transport from the Pacific 

Ocean is inefficient (Fig. 4(a.))  In the ten highest ONDJ streamflow years (wet), vector winds are anomalously strong, and 215 

follow a coherent clockwise pattern off the coast of Chile, which suggests more efficient moisture transport is possible from 

the Pacific Ocean to the Elqui Valley (Fig. 4(b.))  
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Figure 4: (a) Composite May-August (MJJA) vector wind anomaly preceding ten lowest October-January (ONDJ) streamflow years, 
(b) same as (a) for ten highest ONDJ streamflow years, (c) correlation of MJJA sea-surface temperature anomaly with ONDJ 220 
streamflow (1950-2015) 

 

To identify potential predictors, each variable is correlated with ONDJ streamflow at lead times consistent with those discussed 

above (Fig. 5; not all variables shown.)  Regions (gridded data sets) with statistically significant correlations in locations that 

have the potential to affect moisture transport (Table 1) are spatially averaged and retained for further evaluation. The first 225 

principal component (PC) from the gridded variable region, representing the dominant signal in the gridded field, correlated 

with the spatial average of the gridded variable region can identify if the signal is spatially homogenous (representative) across 

the region.  If the first PC does not correlate well with the spatial average, the heterogeneity of the dataset is likely important, 

and adopting the spatial average as a predictor may be insufficient.  For example, the spatial average of SSTs (Fig. 4 (c.)), a 

potentially significant predictor of streamflow for the Elqui River, correlates highly (>0.9) with the first PC of the gridded SST 230 
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data.  This region of SSTs is closely aligned with the quintessential ENSO pattern in the equatorial Pacific Ocean, and is 

evident when correlating the entire ONDJ streamflow record with SST anomalies in the preceding MJJA, which suggests 

ENSO, in general, plays some role in explaining streamflow variability within the Elqui Valley (Fig. 4(c.))  Having identified 

SSTs across this region as spatially homogenous, and consistent with the Niño 3.4 region, we select the Niño 3.4 Index as a 

potential predictor of streamflow, in lieu of the SST region initially identified (Fig. 4(c.)), as it is well-known, well understood, 235 

and well-studied.  SST, SLP, geopotential height, meridional and vector winds are obtained at a 2.5 x 2.5 degree grid resolution 

from the National Oceanic and Atmospheric Administration’s Climate Diagnostics Center (NOAA-CDC), which are based 

upon the National Center for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis 

data, available from 1949 to the present (Kalnay et al., 1996).  Soil moisture data is obtained from NOAA’s Climate Prediction 

Center’s (CPC) global monthly soil moisture dataset, at 0.5 x 0.5 degree grid resolution, which is available from 1948 to the 240 

present (Huang et al., 1996; Kalnay et al., 1996; Saha et al., 2013).  MEI data is available from NOAA’s Earth System Research 

Laboratory (ESRL) bimonthly as the first unrotated principal component of six spatially filtered variables in the tropical Pacific 

(Wolter and Timlin, 1993, 1998). 
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 245 

 

Figure 5: Temporal correlations of October-January streamflow and potential predictors: (a) precipitation, (b) Niño 3.4 sea surface 
temperatures, (c) soil moisture 

 

 250 

Table 1: List of potential predictors (bold predictors retained for statistical model) 
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2.1.2 Statistical Modelling Approaches 

Principal component regression (PCR) (Lins, 1985) is commonly applied in forecasting to decompose space-time fields, which 255 

reduces both dimensionality and multicollinearity of a set of variables. PCR is a two-step process, the first of which identifies 

modes of dataset variability iteratively, by identifying the direction which maximizes the variance explained in the data.    The 

result is a set of principal components (PC) representing the variance in the predictors, with PCs ordered by the amount of 

variance explained. PCs with eigenvalues greater than one are retained, following Kaiser’s rule; (Zwick and Velicer, 1986). 

The second step of PCR is multiple linear regression, using the PCs retained as predictors.  A leave-one-out cross validated 260 

hindcast is undertaken to produce a deterministic prediction of expected streamflow for each year (1950-2015) (Block and 

Rajagopalan, 2007).  A prediction distribution is generated using prediction errors from the hindcast fit to a normal distribution 

with a mean of zero, and added to the deterministic hindcast prediction. In this work, the median and upper 80th percentile 

hindcasted flows from the ranked outputs are analyzed as a conservative estimate of streamflow to simulate potential risk 

aversion on the part of a reservoir manager.  The 80th percentile streamflow time series is used as a conservative estimate of 265 

streamflow to simulate potential risk aversion on the part of a reservoir manager.   Hereafter the statistical principal component 

regression approach is referred to as Stat-PCR.   

 

As previously mentioned, ENSO influences Elqui River streamflow variability.  The strength of an El Niño or La Niña event 

relates to the degree of SST deviations from the long-term mean; using the Niño 3.4 Index, NOAA has established weak (+/- 270 

0.25 C), moderate (+/- 0.75 C), and strong (+/- 1.0 C) categorical thresholds as a means of describing ENSO phase and 

strength (CPC, 2016).  Recent research has illustrated a potential relationship between streamflow and ENSO phase and 
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strength (Zimmerman et al., 2016). In a separate statistical approach, a streamflow prediction model based on ENSO phase 

and strength (Stat-P&S) is developed to provide categorical predictions of ONDJ streamflow. The Stat-P&S approach utilizes 

Niño 3.4 Index values, prior to the ONDJ season of interest, to provide a categorical streamflow prediction.  To qualify for 275 

prediction using Stat-P&S, at least one month during a selected Niño 3.4 Index window must be at least moderate in strength 

for a given phase, ≥ +0.75C (El Niño) or ≤ -0.75C (La Niña.) Years satisfying this criterion , and are categorically predicted 

as Above Normal (A; highest 33% of long-term streamflow observations) or Below Normal (B; lowest 33% of long-term 

streamflow observations) ONDJ streamflow, respectively.  Window selection determines hindcast date, and may fall prior to 

or during a phenomenon known as the Spring Barrier, when SSTs in equatorial Pacific generally reset, losing predictive 280 

strength (Webster and Hoyos, 2010).  However, the effects of moderate and strong ENSO events have some tendency to persist 

(Balmaseda et al., 1995). When values from the Niño 3.4 Index fail to exceed +/- 0.5C, ONDJ streamflow is predicted to fall 

into the Normal (N; middle 33% of long-term streamflow observations) category.  For years where the Niño 3.4 Index values 

are (+0.5C, +0.75C) or (-0.5C, -0.75C), the Stat-P&S model does not issue a forecast.  For these ranges, neither the 

magnitude (not weak or moderate as defined by NOAA) nor persistence of SST observations allow for production of skillful 285 

categorical streamflow forecasts.  For years in which SSTs fall within these ranges at forecast leads prior to the Spring Barrier, 

strength and phase are subject to rapid transition, and categorical forecasts are typically not skillful. 

2.2 Dynamical Climate Model Informed Statistical Streamflow Prediction Model. 

2.2.1 Data and Predictor Selection 

General Circulation Models (GCM) and Regional Climate Models (RCM) are physically-based, three dimensional 290 

representations of gridded atmospheric, oceanic and land surface processes, with typical spatial resolutions at or below 20 

kilometer resolution (Fowler and Ekström, 2009; Kendon et al., 2014).  GCMs have proven skillful in prediction of large scale 

physical processes, such as SSTs and pressure systems, however, their The relatively coarse resolution of GCMs often limits 

predictive ability for smaller scale weather and climate phenomena, including precipitation (Bosilovich et al., 2008).  

Furthermore, oOutputs from each GCM are unique, and based on individualized parameterization schemes, initial conditions, 295 

data assimilation processes, etc.  Considering the National American Multi-Model Ensemble (NMME) (CPC, 2012) suite of 

models, (Verbist et al., 2010) demonstrate skillful prediction of North Central Chile precipitation based on equatorial Pacific 

SSTs in the ENSO region using NOAA’s National Centers for Environmental Protection’s (NCEP) Climate Forecast System 

Version 2 GCM, available 1982 – present (CFSv2; (Kalnay et al., 1996). Considering both the findings of Verbist et al. (2010), 

and a strong Pearson’s correlation coefficient between observed ONDJ streamflow and MJJA precipitation in the Elqui Valley 300 

(0.80), both precipitation and SSTs outputs from CFSv2 are retained for further evaluation. Specifically, the mean value of the 

40-member ensemble of outputs for gridded precipitation (29˚- 30˚S, 70˚-71˚W) and the Niño 1.2 and 3.4 indices at leads 

between January 1st and May 1st are obtained and independently corrected using a statistical quantile mapping approach based 
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on the cumulative distribution functions of both predicted and observed data (Maraun, 2013).  For each lead, predicted values 

are replaced with values from the observed distribution, based on matching probabilities (Fig. 6; not all variables shown.)  305 

2.2.2 Dynamic Model Informed Statistical Modelling Approach 

 

 The same PCR framework as in the Stat-PCR approach is applied using GCM corrected precipitation and SSTs to predict 

ONDJ streamflow, referred to as the Stat-Dyn model.  The Stat-Dyn model is meant to provide streamflow forecasts at 

extended leads, beyond what is possible with global and local observed data used to inform the Stat-PCR model.  Local 310 

variables (e.g. precipitation, snow water equivalent and soil moisture) hold the most predictive strength as observations during 

the season of peak precipitation (May-August) and thus are only considered for the Stat-Dyn model for leads beginning with 

June 1st (Fig. 5 (a.) and (c.). 
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Figure 6: (a) Quantile mapping of predicted and observed NOAA NCEP CFSv2 Niño 3.4 sea surface temperature (SST) data, (b) 315 
observed, predicted and statistically corrected NOAA NCEP CFSv2 Niño 3.4 SST data 
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2.3 Allocation Forecast Model. 

Allocation, as issued annually by JVRE, and storage outcomes are hindcast in a cross-validated mode for the period of record 

(1950 - 2015) by coupling the streamflow prediction models to a simple reservoir balance model.  As previously mentioned, 320 

if allocations are reduced to less than the defined maximum of 1 liter per second, all rights are reduced equivalently across 

rights holders, per Chile’s Water Code.  The Puclaro operating rules adopted here focus on the end of water year (February 

1st) target reservoir volume, set at 100 million cubic meters (50% capacity), which is consistent with current management 

practices for Puclaro Reservoir.  To account for annual deviation from the end of water year storage target, allocation for 

ONDJ in year i+1 is adjusted by the difference between end of water year storage and the target in year i.  Allocations may be 325 

larger if end of year storage exceeds target storage, or smaller if there is a shortfall in end of year storage, as shown by Eq. (1), 

where  

 

𝐴௜ାଵ,ைே஽௃೛ೝ೐೏೔೎೟೔೚೙
=

ொ೔శభ೛ೝ೐೏೔೎೟೔೚೙
ೈೃೠ
ೈೃವ

ାଵ
 

− ቀ100𝑀𝑚ଷ − 𝑆௜,ி௘ ೌ೏ೕೠೞ೟೐೏
ቁ      (1) 

 330 

 𝐴௜ାଵ,ைே஽௃೛ೝ೐೏೔೎೟೔೚೙
 is the predicted allocation for ONDJ in year i+1. 𝑄௜ାଵ೛ೝ೐೏೔೎೟೔೚೙

 is the prediction of inflow in year i+1, with 

streamflow predictions for the non-ONDJ months constructed by regressing median ONDJ streamflow predictions onto 

February – September streamflow observations to produce predicted February – September streamflow.  𝑊𝑅௨ and  𝑊𝑅஽ are 

the number of water rights upstream and downstream of Puclaro, respectively, and 𝑆௜,ி௘௕ೌ೏ೕೠೞ೟೐೏
 is the previous end of water 

year adjusted storage volume, as shown by Eq. (2), where  335 

 

𝑆௜,ி௘ ೌ೏ೕೠೞ೟೐೏
= 𝑆௜,ௌ௘௣೛ೝ೐೏೔೎೟೔೚೙

− (𝐴௜,ைே஽௃௣௥௘ௗ௜௖௧௜௢௡
− 𝐴௜,ைே஽௃௢௕௦௘௥௩௔௧௜௢௡

)      (2) 

 

𝑆௜,ௌ௘௣೛ೝ೐೏೔೎೟೔೚೙
 is the predicted storage at the time of ONDJ allocation issuance in year i, and 𝐴௜,ைே஽௃௣௥௘ௗ௜௖௧௜௢௡

 and 

𝐴௜,ைே஽௃௢௕௦௘௥௩௔௧௜௢௡
 are the forecast-based and observed allocation values in year i. This adjusted volume (predictions – 340 

observations) accounts for storage deficit or surplus resulting from forecast-based allocations (forecasts never perfectly match 

observations), and allows for adjustment of allocation in the following year.  Effectively, this accounts for the error in forecast-

based allocations.  The February storage shortfall or surplus is applied to the subsequent October-January per-water right 

allocation value, as the storage target is non-binding (can be violated by over or under allocation in the previous year), but 

consequential, in the allocation model.  This functions as a mechanism to compensate for over or under allocation in the 345 

previous year.  
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Annual per water right allocations based on forecasts of September 1st reservoir volume, probabilistic inflow predictions, and 

end-of-water-year target reservoir volumes, are reported as a probability of falling into three allocation categories: “Moderate” 

(≥ 0.5 Liters per second), “Severe” (0.5 Liters per second – 0.25 Liters per second), and “Extreme” (<0.25 Liters per second.) 350 

The selected categories are consistent with those used by the U.S. Drought Monitor to describe similar ranges of industrial, 

social and environmental impacts expected due to reduced access to water resources (Svoboda et al., 2002).  Numerical 

thresholds assigned to the categorical boundaries align approximately with tercile values from the cumulative distribution of 

allocations derived from observed inflow and storage data, using the same reservoir operating rules as forecast-based 

allocations.  Further, the breaks in categories closely follow decisions made by JVRE: a water right value of 0.5 liters per 355 

second is not uncommon and approximately represents the lower bound in normal years (Hearne and Easter, 1995); during the 

most recent severe drought (2009-2014) water right values of 0.2 liters per second were common (JVRE, personal 

communication.) 

2.4 Performance Metrics. 

The performance of each cross-validated modelling approach is assessed deterministically (Pearson’s correlation coefficient) 360 

and with a variety of categorical metrics to assess model skill in the prediction of specific categories, as opposed to a specific 

quantity or pattern (Regonda et al., 2006; Souza Filho and Lall, 2003).  Two sets of categories are evaluated, as previously 

defined.  The first is for streamflow hindcast prediction, with Above- (A), Near- (N), and Below-Normal (B) categories 

(ranges) based on a climatological distribution of observed ONDJ streamflow, each containing 33% of observations.  The 

second is for per water right allocation hindcast prediction, applying the Moderate, Severe, and Extreme categories, as previous 365 

defined and contingent on reservoir storage and forecast inflow. Categorical outputs are illustrated with contingency tables, 

comparing predicted versus observed categorical occurrences.  Perfect model skill occurs when the cross-validated predicted 

conditions match or ‘hit’ observed conditions, which describes the categorical performance of the entire forecast in comparison 

to observations.  Individual categorical Hit Scores describe under which flow conditions the model is most skillfull, and is the 

count of years predicted correctly in a category divided by the number of years observed in the same category. A ‘Miss’ results 370 

when the predicted value does not fall within the observed category.  An ‘Extreme Miss’ constitutes a categorical prediction 

missing an observation by two categories (model predicts Above-normal while Below-normal is observed or vice-versa.) The 

‘Extreme Miss Score’ is the fraction of the sum of times Above-normal is predicted but Below-normal is observed plus the 

sum of times Below-normal is predicted but Above-normal is observed and the total number of hindcast years.  

 375 

 

Ranked Probability Skill Score (RPSS) is a categorical measure of an ensemble prediction of each modelling approach 

compared to a reference forecast, in this case climatology (Saunders and Fletcher, 2004). The RPSS uses the Ranked 

Probability Score (RPS), a measure of the square differences in the cumulative probability of a multi-categorical ensemble.  

The RPSS ranges from -∞ to 1; values between 0 and 1 indicate greater skill than simply using climatology (i.e. basing 380 
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prediction on long-term averages), while RPSS values less than zero indicate predictions are inferior to climatology.  An RPSS 

value is generated for each of year of the hindcast using Eq. (3); the median RPSS value is reported. 

 

𝑅𝑃𝑆𝑆 =
ோ௉ௌିோ௉ௌೝ೐೑೐ೝ೐೙೎೐

଴ି ோ௉ௌೝ೐೑೐ೝ೐೙೎೐
= 1 −

ோ௉ௌ

 ோ௉ௌೝ೐೑೐ೝ೐೙೎೐
         (3) 

 385 

3 Model Performance. 

3.1 Statistical and Dynamical Streamflow Prediction Models.  

For each cross-validated streamflow modelling hindcast assessment (Stat-PCR: 1950 – 2015; Stat-Dyn: 1982 – present), a 

unique set of predictors and principal components are selected and evaluated with the categorical performance metrics 

(Pearson’s correlation coefficient, ‘Hit Score’, ‘Extreme Miss Score’, and RPSS; Table 2.)  As forecast lead increases, both 390 

Hit Score and RPSS decrease, while Extreme Miss Score increases. This is not surprising, as less MJJA rainy season 

observations are available with increasing lead, which is consistent with decreased correlations between ONDJ streamflow 

and predictors (Fig. 5.) 

 

 395 

 

 

 

 

Table 2: Stat-PCR and Stat-Dyn forecast model performance metrics 400 
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For the Stat-PCR set of models, the predictors for each lead-time follow a similar pattern, utilizing soil moisture and SST from 

the month prior, and precipitation for the two months prior to the forecast date (e.g. September 1st forecast uses August soil 405 

moisture and SST, and July-August precipitation.)  Snow water equivalent (SWE) is not retained as a predictor as its May-

August correlation with October-January streamflow (Pearson’s Correlation Coefficient = 0.68) is not as strong as the 

correlation between precipitation and streamflow for the same lead, and arguably provides the same information to the model.  

As such, observations of precipitation are retained for the Stat-PCR model.  The September 1st lead is promising, however for 

longer leads this relationship does not necessarily hold.  An August 1st lead is approximately equivalent to using climatology, 410 

and by July 1st it is worse.  For the Stat-Dyn modelling approach, using the mean of CFSv2 ensemble forecasts for MJJA 

precipitation, Niño 3.4 and 1.2 SSTs at Jun 1st, May 1st and January 1st lead times, produces low Hit, high Extreme Miss and 

negative RPSS scores (Table 2), confirming the challenges of predicting through the Spring Barrier.     

 

The first principal component of the Stat-PCR September 1st forecast is highly correlated with SST in the Niño 3.4 region 415 

(0.88), which confirms that streamflow and therefore precipitation in the Elqui Valley are at least partially characterized by 

anomalous changes in SSTs.  From a categorical perspective, the statistical model is most skillful in predicting Above-Normal 

streamflow years (Hit Score: 82%; Table 3); categorical outcomes for Near- and Below-Normal streamflow years were less 

successful (Hit Scores: 36% and 64%, respectively.)  The large disparity between Above-, Near-, and Below-Normal 

categorical outcomes may be explained by evaluating cross-validated, global spatial correlation maps (1 x 1) of ONDJ 420 

streamflow with the MJJA MEI, following Zimmerman et. al (2016.)  The spatial correlation plots (1950 – 2015; Fig. 7) 

illustrate that years with positive MEI generally correspond with El Niño events and Above-Normal streamflow conditions, 

while years with negative MEI generally correspond with La Niña events and Below-Normal conditions.  This produces a 

strong positive correlation (0.65) between streamflow and SST in the Niño 3.4 region during years with positive MEI, and a 

moderate positive correlation (0.29) during years with negative MEI in the equatorial Pacific Ocean, but slightly outside the 425 

common ENSO index regions.  Correlation mapping between all years and streamflow produces a moderate correlation (0.35) 

in the common ENSO region, suggesting that El Niño years likely dominate this relationship.  However, ENSO is non-linear, 

and the amount of moisture transported to the basin during El Niño or La Niña years will vary dependent upon strength (Meehl 

et al., 2001), and other factors, as previously discussed and illustrated in Fig. 4.   

 430 

Table 3: September 1st Stat-PCR model categorical streamflow results: observed vs. forecast 
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Figure 7: May-August global Multivariate ENSO Index (MEI) correlated with October-January streamflow at Algarrobal for: (a) 435 
positive MEI years, (b) all MEI years, (c) negative MEI years 
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3.2 ENSO Phase and Strength Streamflow Prediction Models. 

To evaluate ENSO phase-specific models, the Stat-P&S approach is adopted.  While several forecast leads and Niño 3.4 index 440 

windows were evaluated, the Stat-P&S model performs best for a May 1st forecast, when SSTs in the Niño 3.4 region are at 

least moderate in strength for a given phase [≥ +0.75C (El Niño) or ≤ -0.75C (La Niña)], or relatively neutral [within +/- 

0.5C departure from the long-term mean], for at least one month during January-April (JFMA; Table 4.)  For 1950 – 2015, 

60% of years qualify, triggering the May 1st Stat-P&S categorical prediction model.  For moderate conditions (positive and 

negative), this produces categorical Hit Scores of 75% for Above-normal (El Niño) and 58% for Below-normal (La Niña.)  For 445 

moderate La Niña only conditions, 7 of the 10 lowest ONDJ streamflow years on record are captured.  The remaining three 

years of lowest ONDJ streamflow (1969, 1995, 2010) are predicted as Above-normal by the Stat-P&S model due to JFMA 

Niño 3.4 SSTs > 1.0C (strong El Niño conditions.)   

Table 4: Stat-P&S model categorical streamflow results: observed vs. forecast 

 450 

 

3.3 Coupled Statistical Prediction Models. 

The Stat-P&S and Stat-PCR models each provide skillful forecasts, at different leads.  While Stat-P&S performs best for a 

May 1st forecast lead, particularly for predicting high and low ONDJ streamflow, forecasts are issued only categorically; 

deterministic predictions from the Stat-PCR and Stat-Dyn models at this lead are relatively weak.  That is, the Stat-P&S model 455 

relinquishes forecast determinism and in turn increases forecast lead in comparison to the Stat-PCR and Stat-Dyn approaches.  

The Stat-P&S model is also triggered for only 60% of the period of record.  The other 40% of years occur when Niño 3.4 

SSTs, for at least one month during JFMA, are (+0.5C, +0.75C) or (-0.5C, -0.75C.)  These ranges are transitional and do 

not provide skillful categorical forecasts for the May 1st lead.  For this reason, the coupled statistical prediction model defers 

prediction in these years to September 1st, when the Stat-PCR model is skillful in producing deterministic forecasts of ONDJ 460 

streamflow.   

 

To address the limitations of both the Stat-PCR and Stat-P&S models, a coupled, sequential forecast approach is adopted which 

utilizes both the Stat-P&S and Stat-PCR models in the following manner: 
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 465 

Step 1. The Stat-P&S model issues a May 1st categorical forecast of ONDJ streamflow when the Niño 3.4 conditions are 

met.  Otherwise no forecast is issued. 

 

Step 2a. If the Stat-P&S model issued a May 1st forecast, the Stat-PCR model re-evaluates this prediction on September 

1st forecast, updating as necessary, and provides a deterministic forecast. 470 

 

Step 2b. If the Stat-P&S model did not issue a May 1st forecast, the Stat-PCR model produces a deterministic forecast on 

September 1st.   

 

For performance evaluation, a categorical hit by Stat-P&S model becomes a miss if Stat-PCR model predicts a different (and 475 

wrong) category.  The Stat-PCR model may also correct a categorical miss by the Stat-P&S model. The May 1st Stat-P&S and 

September 1st Stat-PCR coupled forecast model revels a large degree of categorical forecast consistency (change between 

Table 4 and Table 3.)  The Stat-PCR model only predicts a different category than the Stat-P&S model in two of the 39 years 

evaluated, and for these two cases, it changes extreme misses (least desirable outcome) to hits.  One such change was for the 

year 1995, one of the three lowest years of ONDJ streamflow not correctly categorized by the Stat-P&S model (initially 480 

predicted Above-normal while Below-normal streamflow observed.)  Thus, the coupling of these two Stat models appears to 

perform superiorly as compared to models individually by skilfully increasing the prediction lead time and allowing for 

prediction updating, as necessary.  

3.4 Allocation Prediction Model 

A streamflow prediction-reservoir water balance model system is used to evaluate the performance of water right allocations, 485 

as compared with using streamflow observations and streamflow climatology, for a September 1st issuance.  Utilizing 

streamflow observations is synonymous with a perfect forecast.  The system is tested in hindcast mode using streamflow 

median and 80th percentile streamflow prediction scenarios of ONDJ streamflow separately.  Both the median and 80th 

percentile approaches outperform climatology, achieving Hit Scores of 53%, as compared with only a 30% Hit Score using 

climatology (Table 5.)  Additionally, the climatological median fails to predict any years with Extreme reductions (< 0.25 490 

liters per second); the climatology-based approach over-allocates in 55% of years, as opposed to only 27% of years when 

applying the 80th percentile forecast approach.  This is noteworthy from a management perspective, as over-allocation is often 

considered more problematic than under-allocation from a long-term, drought-focused perspective.  The distributions of 

forecast-based allocations also more closely match observations than climatology, with the median and the 80th percentile 

forecast scenarios exceeding observation-based allocations by only 0.06 and 0.04 liters per second, respectively, on average 495 

(Fig. 8(a.)  Over-allocation using climatological streamflow is again evident, as the interquartile range (IQR) of climatological 

allocations does not align with observations. While the IQR of the forecast-based scenario is larger than the observation-based 
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scenario, it does not systematically over-allocate (Fig. 8(a.)  This can also be illustrated by calculating the ratio of each 

approach (climatology and forecasts) to observed allocations (Fig. 8(b.) In this case, a perfect score would be a consistent 

value of one, as a climatological or forecast allocation would match each observation-based allocation.  The forecast-based 500 

allocation ratios produce smaller IQRs and lower median values than climatology-based allocations, implying that the forecasts 

are better aligned with observations and slightly more conservative.   

 

 

 505 

Table 5: Categorical water right allocation results: observed vs forecast 
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Figure 8: Reservoir model-derived forecast allocations: (a) absolute allocation values, (b) ratio of forecast allocations to observed 510 
allocations 

The probabilistic modelling approach also allows for an understanding of categorical forecast certainty and strength, that is, 

the degree to which the model suggest a category (Fig. 9.)  In this case, the forecast-based allocations more often indicate a 

stronger forecast tendency (higher probability) toward one category, whereas the climatology-based allocations often indicate 

a weaker tendency to shift.  While this is not always the case, from a reservoir management perspective, climatology-based 515 

allocations provide less actionable information, as the strength of the predicted categories are often not too dissimilar, even in 

years where correct predictions are made.  In contrast, for the 28 years where forecast-based allocations of a category exceed 

80% (a strong prediction), the Hit Score is 79%, a high success rate, and further, no extreme misses occur (Moderate category 

predicted, Extreme category observed), avoiding over-allocation in dry years.  

 520 
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Figure 9: Probabilistic water right allocation forecast using (a) September 1st PCR-Stat model 80th percentile, (b) long-term 
averages (climatology)   

The effect of over- and under-allocation by both forecast- and climatology-based approaches on end of year reservoir storage 

is also evaluated.  Large deviations from the 100 million cubic meter target volume (February 1st) are viewed as problematic 525 

to the JVRE and water rights holders (Fig. 10.) The prior analysis demonstrates the propensity for the climatology-based 

approach to consistently over-allocate, resulting in reservoir volumes consistently below the target.  The forecast-based 

scenarios have a smaller IQR with median values approaching the target value.  The climatology-based approach also allocates 

the full reservoir volume in 33% of years (leaving the reservoir empty), which happens in only 11% of years under the forecast-

based scenarios, due to prediction error (Fig. 10.)   530 
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Figure 10: End of year reservoir storage under three allocation approaches; 100 M m3 is the target 

4 Discussion. 

The framework developed here, although applied specifically to the Elqui Valley in Chile, can provide a broad pathway for 

managers and rights holders in water rights managed basins to benefit from streamflow forecast-informed reservoir allocations.  535 

Although streamflow predictions hold modest skill for the Elqui, the coupling of the Stat-P&S and Stat-PCR models, and 

subsequent coupling of forecasts with the human managed allocation framework, provide for increases in system efficiency as 

compared with climatology based forecasts. Specifically, the Stat-PCR streamflow prediction-reservoir water balance model 

system produces values closely matched with observations over the historical period, and each forecast (median, 80th 

percentile) outperforms climatology. Use of the 80th percentile Stat-PCR forecast is intended to represent risk aversion; 540 

however, the probabilistic framework allows assessment for any risk preference. Ensemble predictions illustrate the general 

propensity of a climatology-based allocation to provide limited actionable information in contrast to forecast-based allocations, 
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which exhibit enhanced skill when the model issues strong predictions (>80% categorical likelihood.)  However, in years when 

the Stat-PCR forecast-based allocation model issues a weak prediction (no dominant tendency toward any specific category) 

other allocation decision frameworks may be worth investigating (e.g. allocation based on existing storage only as a hedge 545 

against inflow uncertainty.)  The development and implementation of the probabilistic framework by reservoir managers, as a 

mechanism to convert streamflow forecasts into forecast allocations, may arguably necessitate a higher level of communication 

with water rights holders.  Probabilistic forecasts can provide option value to water rights holders if the strength of the category 

predicted would alter water rights holders’ decisions (e.g. change cropping decisions, prompt water procurement or sales) 

acting under the presumption of economic rationality.  This hypothesis may also be worth investigating.   550 

 

Selection of categorical thresholds (three for this case study) is based on equal distribution of observations, and does not 

necessarily represent the preferences of reservoir managers or rights holders, however these thresholds are easily adjustable.  

For example, if only two categories are selected as allocations above and below 0.75 L/s, the Hit Score rises to 92%, which 

could be representative of some productivity threshold (e.g. crop water requirement).  The framework is thus sufficiently 555 

flexible to allow managers to select categories which reflect true differences in the utility of allocations to water rights holders.   

 

While the approaches in this research are predominantly a demonstration of concept, the model framework is consistent with 

the current operations of Puclaro Reservoir. However, it is not optimized to hedge against expected future (multi-year) 

conditions. While the model may be informative over the long-term, resulting in allocation and storage values better matched 560 

with observations than climatology-based allocations, it performs poorly in certain years, most notably during the 2009 – 2015 

hydrologic and meteorological drought (Fig. 9(a.))  While poor model performance during this period is undoubtedly due in 

part to the limited reservoir operating rules, the Stat-PCR approach tends to under predict extremes, especially when they occur 

consecutively.  Further forecast model development will focus on improving predictive skill of extreme events, particularly 

dry periods, making use of non-parametric methods and additional multi-model approaches, and dynamic rule structures and 565 

simulation techniques.  Even so, adoption of the approaches presented here by water managers and rights holders bodes well 

for improved economic efficiency and benefits across the Elqui Valley.  

 

5 Conclusions. 

The focus of this research is to develop an understanding of the mechanisms contributing to austral summer streamflow in the 570 

Elqui Valley, investigate model skill at varied forecast leads, and produce forecast-based water-right allocations to inform 

water resources management decision-making. Like many regions, the dynamic nature of ocean, atmosphere and terrestrial 

interactions, which contribute to moisture transport in the Elqui Valley, are undoubtedly complex and challenge hydrologic 

prediction models at increasing leads.  The mixed success of streamflow forecasts currently in use for the Elqui reflect this.  
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Here, a framework is established by which streamflow forecasts can be produced and coupled with human managed allocation 575 

systems to promote equity and efficiency in the use of limited water resources.   

 

Correlation and composite mapping suggest moisture transport to the Elqui Valley is dependent on the phase, strength and 

timing of many variables (Fig. 4.)  While austral winter precipitation, SST, and soil moisture correlations with ONDJ 

streamflow at varied leads are encouraging (Fig. 5), the Stat-PCR approach, which makes use of these predictors, is skillful 580 

only at a September 1st lead, as indicated by RPSS scores and other forecast validation metrics (Table 2.)  The Stat-Dyn 

approach, using precipitation and SSTs, results in inferior outcomes compared with the Stat-PCR model.  The Stat-P&S model, 

however, provides skillful predictions of ONDJ streamflow at a May 1st lead, albeit categorically and is triggered in only 60% 

of the period 1950 – 2015.   

 585 

The broader insight gained is in the coupling of the Stat-P&S and Stat-PCR models to produce initial (May 1st) and updated 

(September 1st) forecasts which may be valuable to both reservoir managers and water rights holders.  From a reservoir 

management perspective, properly setting the per right water allocation (September 1st) is critically important to satisfy rights 

holders and maintain adequate reservoir storage for the uncertain future.  The Stat-PCR component of the coupled model 

provides skill superior to climatology, and likely better informs allocation decisions.  Reservoir managers, however, are also 590 

expected to provide a non-binding May 1st allocation forecast, allowing rights holders, specifically farmers with crop choice 

flexibility and/or water right leasing potential, to supplement through the water market as necessary.  The Stat-P&S categorical 

forecast with a May 1st lead can inform these longer planning actions.  The strong categorical consistency between the May 1st 

Stat-P&S and September 1st Stat-PCR forecasts may also serve to reinforce confidence in the forecast outcomes; the two 

models only differ in prediction categories twice in the 66 years evaluated.  The conclusion here is that coupled forecasts need 595 

not be strictly deterministic, and using early categorical forecasts to provide an indication of expected conditions, and 

reinforcing the prediction with a revised deterministic forecast as more observations of local variables (e.g. precipitation) 

become available may be useful for water rights holders.  In addition, linking the streamflow forecast with the human managed 

allocation system is broadly relevant as a mechanism to promote efficiency in the use of limited water resources. The 

framework presented here addresses the unique set of circumstances in water rights managed basins, and represents an 600 

advancement in linking season-ahead streamflow forecasts to water resources systems.  

Code Availability. 

Should future reproduction of results become necessary, any codes will be made available, by the corresponding author, upon 

request. 



31 
 

Data Availability. 605 

The data used to produce this research come from open sources, including the Chilean Ministry of Public Works – Dirrecion 

de Aguas (DGA) and the National Oceanic and Atmospheric Administration.  Through use of the International Research 

Institute’s Data Library, all relevant data sets may be obtained.  

Appendices. 

None. 610 

Supplemental Link. 

To be included by Copernicus 

Team List. 

Justin Delorit 

Edmundo Cristian Gonzalez Ortuya 615 

Paul Block 

Author Contribution. 

Justin Delorit, Edmundo Cristian Gonzalez Ortuya, Paul Block each contributed to the hydroclimatological analysis, developed 

model code and evaluated simulations.   

Competing Interests. 620 

None. 

Disclaimer. 

To be added later. 

Acknowledgements. 

This work is partially funded by a scholarship provided by the Air Force Institute of Technology. 625 



32 
 

References. 

Aceituno, P. (1988). On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. 
Mon. Weather Rev. 116, 505–524. 

Balmaseda, M.A., Davey, M.K., and Anderson, D.L.T. (1995). Decadal and Seasonal Dependence of ENSO Prediction Skill. 
J. Clim. 8, 2705–2715. 630 

Barnston, A.G., van den Dool, H.M., Rodenhuis, D.R., Ropelewski, C.R., Kousky, V.E., O’Lenic, E.A., Livezey, R.E., Zebiak, 
S.E., Cane, M.A., Barnett, T.P., et al. (1994). Long-Lead Seasonal Forecasts—Where Do We Stand? Bull. Am. Meteorol. Soc. 
75, 2097–2114. 

Barsugli, J.J., Vogel, J.M., Kaatz, L., Smith, J.B., Waage, M., and Anderson, C.J. (2012). Two Faces of Uncertainty: Climate 
Science and Water Utility Planning Methods. J. Water Resour. Plan. Manag. 138, 389–395. 635 

Block, P. (2011). Tailoring seasonal climate forecasts for hydropower operations. Hydrol Earth Syst Sci 15, 1355–1368. 

Block, P., and Rajagopalan, B. (2007). Interannual Variability and Ensemble Forecast of Upper Blue Nile Basin Kiremt Season 
Precipitation. J. Hydrometeorol. 8, 327–343. 

Block, P.J., Souza Filho, F.A., Sun, L., and Kwon, H.-H. (2009). A Streamflow Forecasting Framework using Multiple Climate 
and Hydrological Models1. JAWRA J. Am. Water Resour. Assoc. 45, 828–843. 640 

Bosilovich, M.G., Chen, J., Robertson, F.R., and Adler, R.F. (2008). Evaluation of Global Precipitation in Reanalyses. J. Appl. 
Meteorol. Climatol. 47, 2279–2299. 

Brown, C., and Lall, U. (2006). Water and economic development: The role of variability and a framework for resilience. Nat. 
Resour. Forum 30, 306–317. 

Cepeda, J., and Lopez-Cortes, F. (2004). Sistemas Naturales de La Hoya Hidrografica del Rio Elqui: Variabilidad Climatica a 645 
Vulnerabilidad. 

Chambers, J.C., Mullick, S.K., and Smith, D.D. (1971). How to Choose the Right Forecasting Technique. 

Christensen, N.S., Wood, A.W., Voisin, N., Lettenmaier, D.P., and Palmer, R.N. (2004). The Effects of Climate Change on 
the Hydrology and Water Resources of the Colorado River Basin. Clim. Change 62, 337–363. 

CPC (2012). Climate Prediction Center - NMME Forecasts of Monthly Climate Anomalies. 650 

CPC (2016). Climate Prediction Center - Monitoring & Data: ENSO Impacts on the U.S. - Previous Events. 

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., 
Bauer, P., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. 
Meteorol. Soc. 137, 553–597. 

Falvey, M., and Garreaud, R. (2007). Wintertime Precipitation Episodes in Central Chile: Associated Meteorological 655 
Conditions and Orographic Influences. J. Hydrometeorol. 8, 171–193. 

Fowler, H.J., and Ekström, M. (2009). Multi-model ensemble estimates of climate change impacts on UK seasonal 
precipitation extremes. Int. J. Climatol. 29, 385–416. 



33 
 

G Donoso (2006). Water markets: case study of Chile’s 1981 Water Code. Cien. Inv. Agr. 33 (2): 157-171. Cienc. E Investig. 
Agrar. 33, 131. 660 

Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. (2009). Present-day South American climate. Palaeogeogr. 
Palaeoclimatol. Palaeoecol. 281, 180–195. 

Hamlet, A.F., Huppert, D., and Lettenmaier, D.P. (2002). Economic Value of Long-Lead Streamflow Forecasts for Columbia 
River Hydropower. J. Water Resour. Plan. Manag. 128, 91–101. 

Hansen, J.W., Potgieter, A., and Tippett, M.K. (2004). Using a general circulation model to forecast regional wheat yields in 665 
northeast Australia. Agric. For. Meteorol. 127, 77–92. 

Hearne, R.R., and Easter, K.W. (1995). Water Allocation and Water Markets: An Analysis of Gains-from-trade in Chile (World 
Bank Publications). 

Helmuth, M.E., Moorhead, A., Thomson, M.C., and Williams, J. (2007). Climate Risk Management in Africa: Learning from 
practice. 670 

Huang, J., van den Dool, H.M., and Georgarakos, K.P. (1996). Analysis of Model-Calculated Soil Moisture over the United 
States (1931–1993) and Applications to Long-Range Temperature Forecasts. J. Clim. 9, 1350–1362. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., et 
al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–471. 

Kalthoff, N., Bischoff-Gauß, I., Fiebig-Wittmaack, M., Fiedler, F., Thürauf, J., Novoa, E., Pizarro, C., Castillo, R., Gallardo, 675 
L., Rondanelli, R., et al. (2002). Mesoscale Wind Regimes in Chile at 30°S. J. Appl. Meteorol. 41, 953–970. 

Kendon, E.J., Roberts, N.M., Fowler, H.J., Roberts, M.J., Chan, S.C., and Senior, C.A. (2014). Heavier summer downpours 
with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576. 

Lins, H.F. (1985). Interannual streamflow variability in the United States based on principal components. Water Resour. Res. 
21, 691–701. 680 

Maraun, D. (2013). Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. J. Clim. 26, 2137–
2143. 

Mason, D.S.J., and Stephenson, D.B. (2008). How Do We Know Whether Seasonal Climate Forecasts are Any Good? In 
Seasonal Climate: Forecasting and Managing Risk, D.A. Troccoli, D.M. Harrison, P.D.L.T. Anderson, and D.S.J. Mason, eds. 
(Springer Netherlands), pp. 259–289. 685 

Meehl, G.A., Gent, P.R., Arblaster, J.M., Otto-Bliesner, B.L., Brady, E.C., and Craig, A. (2001). Factors that affect the 
amplitude of El Nino in global coupled climate models. Clim. Dyn. 17, 515–526. 

Montecinos, A., and Aceituno, P. (2003). Seasonality of the ENSO-Related Rainfall Variability in Central Chile and 
Associated Circulation Anomalies. J. Clim. 16, 281–296. 

N Kalthoff, Fiebig-Wittmaack, Meißner, Kohler, Uriarte, Bischoff-Gauß, and Gonzales (2006). The energy balance, evapo-690 
transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environ. 65, 420–443. 

Narula, K.K., and Lall, U. (2009). Challenges in Securing India’s Water Future. J. Crop Improv. 24, 85–91. 



34 
 

Olmstead, S.M. (2010). The Economics of Managing Scarce Water Resources. Rev. Environ. Econ. Policy 4, 179–198. 

Regonda, S.K., Rajagopalan, B., and Clark, M. (2006). A new method to produce categorical streamflow forecasts. Water 
Resour. Res. 42, W09501. 695 

Robertson, A.W., Baethgen, W., Block, P., Lall, U., Sankarasubramanian, A., de Assis de Souza Filho, F., and J Verbist, K.M. 
(2014). Climate risk management for water in semi–arid regions. Earth Perspect. 1, 12. 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., et al. (2013). 
The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208. 

Sankarasubramanian, A., Lall, U., Souza Filho, F.A., and Sharma, A. (2009). Improved water allocation utilizing probabilistic 700 
climate forecasts: Short-term water contracts in a risk management framework. Water Resour. Res. 45, W11409. 

Santibañez, F., Romero A, H., Peña T, H., Gwynne, R., Ihl, M., and Riva, A. (1992). Climate Change and Regional 
Development in the Norte Chico, Chile. 

Saunders, M.A., and Fletcher, C. (2004). Verification of Spring 2004 UK city temperature seasonal forecasts. 

Souza Filho, F.A., and Lall, U. (2003). Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: Applications 705 
of a multivariate, semiparametric algorithm. Water Resour. Res. 39, 1307. 

Stakhiv, E.Z. (1998). Policy implications of climate change impacts on water resources management. Water Policy 1, 159–
175. 

Svoboda, M., LeComte, D., Hayes, M., Heim, R., and al,  et (2002). The drought monitor. Bull. Am. Meteorol. Soc. Boston 
83, 1181–1190. 710 

Tanaka, S.K., Zhu, T., Lund, J.R., Howitt, R.E., Jenkins, M.W., Pulido, M.A., Tauber, M., Ritzema, R.S., and Ferreira, I.C. 
(2006). Climate Warming and Water Management Adaptation for California. Clim. Change 76, 361–387. 

Verbist, K., Robertson, A.W., Cornelis, W.M., and Gabriels, D. (2010). Seasonal Predictability of Daily Rainfall 
Characteristics in Central Northern Chile for Dry-Land Management. J. Appl. Meteorol. Climatol. 49, 1938–1955. 

Webster, P.J., and Hoyos, C.D. (2010). Beyond the spring barrier? Nat. Geosci. 3, 152–153. 715 

Wheeler, S., Garrick, D., Loch, A., and Bjornlund, H. (2013). Evaluating water market products to acquire water for the 
environment in Australia. Land Use Policy 30, 427–436. 

Wolter, K., and Timlin, M.S. (1993). Monitoring ENSO in COADS with a Seasonally Adjusted Principal Component Index. 

Wolter, K., and Timlin, M.S. (1998). Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53, 315–324. 

You, J.-Y., and Cai, X. (2008). Determining forecast and decision horizons for reservoir operations under hedging policies. 720 
Water Resour. Res. 44, W11430. 

Young, G., Zavala, H., Wandel, J., Smit, B., Salas, S., Jimenez, E., Fiebig, M., Espinoza, R., Diaz, H., and Cepeda, J. (2009). 
Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Clim. Change 98, 245–276. 



35 
 

Zimmerman, B.G., Vimont, D.J., and Block, P.J. (2016). Utilizing the state of ENSO as a means for season-ahead predictor 
selection. Water Resour. Res. 52, 3761–3774. 725 

Zwick, W.R., and Velicer, W.F. (1986). Comparison of five rules for determining the number of components to retain. Psychol. 
Bull. 99, 432–442. 

 


