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REPLIES TO REFEREE COMMENTS 
 
Reply #1 to Anonymous Referee 1 
 
We thank Referee 1 for reviewing our manuscript and providing constructive, actionable 
feedback.  Below we provide our responses to each point raised. 
 
Comment: P1, L8-16: The abstract should clearly include concrete results. The paper is far more 
interesting than what the abstract suggests. For example, a mention of the way the models are 
used in sequential mode, or the skill achieved, can be mentioned there.  
 
Reply:  This is an excellent comment, and we have added the following text to the abstract of 
the working manuscript (P1, L16-27):  
 
“Skillful results (forecasts outperforming climatology) are produced for short lead-times (September 1st; RPSS 
= 0.31, categorical hit skill score = 61%), with years of Above-Normal (high) and Below-Normal (low) 
streamflow predicted 82% and 64% of the time, respectively.  At longer lead-times, climatological skill 
exceeds forecast skill, largely due to fewer observations of precipitation.  Coupling the September 1st statistical 
forecast model with a Niño 3.4 region sea surface temperature phase and strength statistical model, however, 
allows for equally skillful categorical streamflow forecasts to be produced from a May 1st lead, triggered for 
60% of the years in the period 1950-2015.  Forecasts may not need to be strictly deterministic to be useful for 
water rights holders; early (May) categorical indication of expected conditions are reinforced with a revised 
deterministic forecast (September) as more observations of local variables (e.g. precipitation) become 
available. The reservoir allocation model is skillful at the September 1st lead (categorical hit skill score = 
53%); this skill improves to 79% when the model predicts the observed allocation category with at least 80% 
certainty.  This result has broader implications, suggesting that in water rights managed basins, allocation 
efficiency might improve through the integration of forecasts as part of a reservoir decision framework.  The 
methods applied here advance the understanding of the mechanisms and timing responsible for moisture 
transport to the Elqui Valley, and provide a unique application of streamflow forecasting in the prediction of 
per-water right allocations. Both have the potential to inform water right holder decisions.” 
 
Comment: P7, Section 2.1: Is the data quality-controlled? Maybe add a sentence or two about 
that, so the reader knows if the data can be trusted.  
 
Reply: Observations of streamflow and snow water equivalent are obtained from the Direccion 
General de Aguas (DGA), a department of the Ministry of Public Works of the Chilean 
Government. Collection, validation and quality control of hydrologic measurements are part of 
DGA’s core functions; thus, we treat the data as fully vetted and having met DGA’s quality 
control standards.  The referee’s comment is valid, and warrants an addition to the manuscript.  
We have added the following (P7 L15-18): 
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“One of DGA’s primary functions as the regulator of surface water resources for the Chilean 
Government is to collect, validate, and perform quality control of hydrologic measurements.   
Open source data obtained through DGA is considered as having met DGA quality standards.” 
 
 
Comment: P7, L17, L21 (and other places): vector winds? This is the first time I see that name. 
What the authors mean by that? To use both u and v? Why do not just say “winds”?  
 
Results: We are concerned with both the magnitude (colors) and direction (arrows are the 
resultant of u and v) of vector winds at 500mb (Fig. 4.  (a) and (b), excerpt below).  Both are 
critical in terms of determining the efficiency of moisture transport to the Elqui Valley.  If we 
ignore the direction component, “winds” or “wind speed” should be used.  Additionally, “vector 
winds” is the name commonly utilized by NOAA and other climate agencies. 

  
 
 
 
Comment: P8L8: why to do a spatial average? I do not fully understand that sentence.  
 
Reply:  Gridded potential predictors are identified through spatial composite and/or correlation 
mapping (e.g. sea surface temperatures (SSTs). To extract the signal(s) from within the gridded 
data set and avoid noise present at the grid scale, principal component analysis (PCA) is 
commonly applied to the gridded data. Correlating the first principal component (PC), which is 
the strongest signal, with the spatially averaged data identifies whether the signal is spatially 
homogenous.  Alternatively, if the first PC does not correlate well with the spatial average, the 
heterogeneity of the dataset is important, and thus using the spatial average may not be the 
best approach.   For example, the spatial average of SSTs (Fig. 4 (c)), which is identified as a 
potentially significant as predictor of streamflow for the Elqui River (roughly consistent with 
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the Niño 3.4 region), correlates highly (>0.9) with the first PC of the gridded SST data.  Having 
identified SSTs as spatially homogenous, and consistent with the Niño 3.4 region, we correlate 
and ultimately select the Niño 3.4 Index as a potential predictor of streamflow as it is well-
known, well understood, and well-studied.  We do this as opposed to selecting a marginally 
different (e.g. sub-region of the Niño 3.4 region), but much less understood and perhaps less 
defensible area. Furthermore, using the spatial average rather than selecting a sub-regional 
area may be a more conservative approach as it does not guarantee that the strongest possible 
relationship is identified.  In addition, using an index avoids grid cell selection bias (cherry-
picking), which could result in an insufficient number of grid cells to be statistically significant, 
or produce vastly different regions of high correlation (spurious correlations.)  The following 
papers support the claim of teleconnections between precipitation and SST in north-central 
Chile (Aceituno 1988; Falvey and Garreaud 2007; Garreaud et al. 2009; Montecinos and 
Aceituno 2003).   
 

 
 
 
Comment: P9L1: are the authors talking about CFSR? They are talking about NCEP-NCAR 
reanalysis but then they cite Saha et al 2013. Is there a confusion here?  
 
 
Reply: We appreciate the reviewer catching this improper citation.  Clearly, the citation should 
be (Kalnay et al. 1996) as opposed to Saha et al 2013.  We also add (Huang, van den Dool, and 
Georgarakos 1996) to specifically reference CPC’s soil moisture data.  The working manuscript 
has been updated with the appropriate citations. 
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Comment: P11L21: why a forecast is not issued in that case? Explain in the text.  
 
Reply:  The statistical phase and strength model (Stat-P&S) at the May lead does not provide 
a categorical streamflow forecast for Niño 3.4 Index = (+0.5C, +0.75C) or (-0.5C, -0.75C) as 
the range is considered transitional (not weak or moderate as identified by NOAA). Both the 
magnitude and persistence of SST observations in this range do not allow for production of 
skillful forecasts.  The May 1st forecast lead uses January-April Niño 3.4 Index values to 
categorically forecast October-January streamflow, which requires prediction through the 
Spring Barrier (Duan and Wei 2013).  Typically, SSTs within the transitional range are not 
stable and actively moving to either a neutral or strengthened phase.  Until these changes 
occur, at some date beyond May 1st (typically beyond the Spring Barrier), a categorical or 
deterministic forecast is typically not skillful. Deferring to the September 1st statistical 
principal component regression model (Stat-PCR) is warranted when SSTs are in the 
transitional range.     
 
The question is valid, and our original manuscript does not address the reasons for which the 
transitional range within the Niño 3.4 Index is not used by the Phase and Strength model at 
the May lead.  To provide clarity in our approach we have added the following to the working 
manuscript (P11 L21-24): 
 
“For these ranges, neither the magnitude (not weak or moderate as defined by NOAA) nor 
persistence of SST observations allow for production of skillful categorical streamflow forecasts.  
For years where SSTs fall within these ranges at forecast leads prior to the Spring Barrier, 
strength and phase are subject to rapid transition, and categorical forecasts are typically not 
skillful.” 
 
 
Comment: P11Section2.2: I suggest to change the title of the subsection, as it seems to be about 
a proper dynamical prediction model, and it is really about using dynamical model output in a 
statistical model.  
 
Reply:  Regarding dynamical model prediction, we initially considered raw dynamical climate 
model outputs of precipitation and SSTs to predict streamflow (since clearly streamflow is not 
an output of dynamical climate models), but the results were poor.  We thus proceeded with 
statistical post-processing as a means of correcting dynamical model outputs (Gheti 2008).  The 
reviewer’s point is valid as the sub-section title may be interpreted as dynamically modeled 
streamflow, including a physically-based hydrology model.  To avoid confusion and as a means 
of accurately describing the forecast approach we have changed the title of 2.2 to “Hybrid 
dynamical-statistical streamflow prediction model” to capture the fact that predictors come 
from the dynamical model, but the prediction model formulation is still statistical in nature. 
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Comment: P12L8: authors should be a bit more explicit about when local variables have 
predictive strength. Conditions? Dates? Proportion of total cases? More information is needed.  
 
Reply:  Local variables and their predictive strength are discussed in 2.1, and shown in Figure 
5 (a) and (c) and in Table 1.  The same variables are used, when appropriate, for the statistical 
model using corrected (quantile mapping) GCM outputs for precipitation and SSTs (Stat-Dyn), 
with forecasts issued January 1st , May 1st and June 1st.  For these leads, local variables are not 
useful, and therefore only GCM predictions of precipitation and SSTs are used (Table 2. Excerpt 
below).  This is not a surprising result considering local variables are skillful in the prediction 
of October-January streamflow only during months of peak precipitation (May-August) as 
shown in the manuscript in Figure 5 (a) and (c).   
 
Still, we recognize readers may benefit from additional explanation and have added the 
following for clarity of local variable inclusion in the working manuscript (P12 L10-13): 
 
“The Stat-Dyn model is meant to provide streamflow forecasts at extended leads, beyond what is possible 
with global and local observed data used to inform the Stat-PCR model.  Local variables (e.g. precipitation, 
snow water equivalent and soil moisture) hold the most predictive strength during the season of peak 
precipitation (May-August) and thus are only considered for the Stat-Dyn model for leads at prior to June 1st 
(Fig. 5 (a.) and (c.).”  
 

 
 
Comment: P14L1-2: please check the syntax of the sentence.  
 
 
Reply:  We agree the structure of the sentence can be improved to better illustrate the point.  
We have changed the sentence in the working manuscript to: 
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“Allocation, as issued annually by JVRE, and storage outcomes are hindcast in a cross-validated 
mode for the period of record (1950 – 2015) by coupling the streamflow prediction models to a 
simple reservoir balance model.” 
 
 
Comment: P14Section2.4: I suggest to remind the reader that all these results are obtained 
using cross-validation (a lot of studies out there do not even bother to cross-validate!)  
 
Reply: We thank the referee for the comment, and have included language which reminds the 
reader the forecast outputs are cross-validated.  
 
Comment: P15L9: why Pearson coefficient?  
 
Reply: Pearson’s correlation coefficient is commonly used to assess both the general parametric 
association between forecast and observed values, and phase error.   While it doesn’t account 
for forecast bias and is sensitive to outliers, it is selected because it is well known and well 
understood.  In addition, we utilize RPSS and categorical skill score metrics which describe 
additional performance and features of the forecasts.    
 
Comment: P19L20: approach or model? Which one?  
 
Reply: We appreciate the referee noticing and highlighting this error.  For consistency, we use 
“model”. 
 
Comment: P19L20-21: I do not understand the sentence. When the other 40% occur?  
 
Reply: 40% refers to a fraction of the number of years in the record (1950-2015) not predicted 
by the Stat-P&S model at the May lead using January-April Niño 3.4 Index because the index 
values fall within the transitional ranges (+0.5C, +0.75C) or (-0.5C, -0.75C).  The 
transitional ranges do not provide skillful categorical forecasts for the May 1st lead.  For this 
reason we do not forecast these years until the Stat-PCR model is skillful for the September 
lead.  Our coupled statistical prediction model defers prediction for these years to September.      
 
Comment: P20Step2a and Step2b: what is the real difference here?  
 
Reply: The difference between Step 2a and 2b relates to whether the Stat-P&S model issues a 
May forecast.  If January-April Niño 3.4 region SSTs meet the Stat-P&S criteria, a May 1st 
categorical forecast is issued (Step 2a).  Otherwise, the Stat-PCR model is used to produce a 
September 1st forecast (Step 2b). The novelty of coupling the Stat-P&S and Stat-PCR models is 
the Stat-P&S model provides an initial, categorical indication (May 1st lead) of October-January 
streamflow for 60% of years between 1950-2015.  From the perspective of a water rights holder, 
a skillful categorical forecast at a May 1st lead may provide relevant information to inform 
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October-January decision making (e.g. cropping decisions by water right holding farmers).   The 
initial forecast is reinforced by the Stat-PCR model, which provides a skillful deterministic 
forecast, but only for a September 1st lead.  The key is that the agreement between the May 1st 
categorical forecast produced by the Stat-P&S model (when issued) and the September 1st 
deterministic Stat-PCR model is very high.  In applied terms, a water right holder seeking to 
make forecast informed decisions has information which outperforms climatology at leads up 
to 4 months prior to the issuance of the actual allocation value.         
 
 
Comment: P25L25: 92% is extremely high. Can you please confirm there is not a typo there? 
Reply: We agree, 92% is a very high ‘hit score’. However, this is a calculation of how often the forecast 
category aligns with the observed category, and is not a correlation. The hit score referenced here is for two 
categories, divided at 0.75 L s-1 as opposed to three categories as discussed at length in the paper.  This case 
provides less overall information (probability of the allocation above or below the threshold) and thus we are 
not overly surprised that the score increases dramatically.  In fact, we select this case specifically to compare 
with the three-category allocation model, to illustrate how categorical skill is a product of the bounds selected 
by the stakeholder.           
 
Comment: P14, eqs 3 and 4: how are these equations obtained?  
 
Reply: The purpose of the reservoir allocation model is to compare allocation and storage 
outcomes from the forecast and climatology informed reservoir operations against observations 
(which constitute a perfect forecast); this provides a means of evaluating the streamflow 
forecast in an applied context.  Thus, equations 3 and 4 are simply a modified version of the 
reservoir balance.  To include the annual, end-of-year storage target used by reservoir operators 
in the Elqui (100 million cubic meters), we adjust allocation for period ݅ + 1 by the storage 
deficit or surplus at the end-of-year ݅.  For example, if the forecast informed allocation, ܣ௜ைே஽௃ , 
results in an end-of-year storage ௜ܵಷ೐್

≤ ௜ାଵೀಿವ಻ is penalized by the difference 100ܣ ,ଷ݉ ܯ100 −

௜ܵಷ೐್
.   In contrast, if ௜ܵಷ೐್

≥  ௜ାଵೀಿವ಻ is boosted by the absolute value of the differenceܣ ,ଷ݉ ܯ100
of  100 − ௜ܵಷ೐್

. It is important to note that the equations are applied uniformly to the forecast, 
climatology, and observations, so a fair assessment of performance can be achieved. 
 
Comment: P16L22-24: confusing sentence… too many commas?  
 
Reply: We thank the referee for this comment, and agree that the sentence is confusing.  We 
have replaced it the working manuscript with the following: 
 
“As forecast lead increases, both Hit Score and RPSS decrease, while Extreme Miss Score increases. These 
results occur because less information regarding the MJJA rainy season is available, which is consistent with 
decreased correlations between ONDJ streamflow and predictors (Fig. 5.)”   
 
 



8 
 

Minor Comments: (all accepted and corrected in the manuscript) 
P1L20: “institutions”  
 
P4, L13, L16: something is wrong with the way the references are being written. E.g., it should 
be Aceituno, 1988. 
 
P10: define N.  
 
P15L10: …as opposed to a specific quantity….  
 
P11L28: I think the authors mean “North American Multi-Model Ensemble”.  
 
P16L2: references in capital 
 
P17L11: maybe change “affirming” to “confirming”?  
 
 

References: 
Aceituno, Patricio 
 1988 On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. 
Monthly Weather Review 116(3): 505–524. 

 
Duan, Wansuo, and Chao Wei 
 2013 The “spring Predictability Barrier” for ENSO Predictions and Its Possible Mechanism: Results from a 
Fully Coupled Model. Internation Journal of Climatology 33: 1280–1292. 

 
Falvey, Mark, and René Garreaud 
 2007 Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and 
Orographic Influences. Journal of Hydrometeorology 8(2): 171–193. 

 
Garreaud, René D., Mathias Vuille, Rosa Compagnucci, and José Marengo 
 2009 Present-Day South American Climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3–
4). Long-Term Multi-Proxy Climate Reconstructions and Dynamics in South America (LOTRED-SA): State 
of the Art and Perspectives: 180–195. 

 
Gheti, Rares 
 2008 Statistical Post-Processing of Dynamical Surface Air Temperature Seasonal Predictions Using the 
Leading Ocean-Forced Spatial Patterns. http://digitool.library.mcgill.ca/R/?func=dbin-jump-
full&object_id=18670&local_base=GEN01-MCG02, accessed March 30, 2017. 
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Reply #2 to Anonymous Referee 1 
 
We thank Referee 1 for reviewing our responses and once again providing valuable feedback.  
Below we provide our responses to each point raised. 
 
Comment: P8L8 – on the spatial average. (Add text to manuscript) 
 
Reply: To further clarify the purpose for and process by which spatial data is averaged we have 
added the following to the working manuscript (P8, L8 – P9, L5): 
 
 “The first principal component (PC) from the gridded variable region, representing the 
dominant signal in the gridded field, correlated with the spatial average of the gridded variable 
region can identify if the signal is spatially homogenous (representative) across the region.  If 
the first PC does not correlate well with the spatial average, the heterogeneity of the dataset is 
likely important, and adopting the spatial average as a predictor may be ineffective.  For 
example, the spatial average of SSTs (Fig. 4 (c.)), a potentially significant predictor of 
streamflow for the Elqui River, correlates highly (>0.9) with the first PC of the gridded SST 
data.   This region of SSTs is closely aligned with the quintessential ENSO pattern in the 
equatorial Pacific Ocean, and is evident when correlating the entire ONDJ streamflow record 
with SST anomalies in the preceding MJJA, which suggests ENSO, in general, plays some role 
in explaining streamflow variability within the Elqui Valley (Fig. 4(c.))  Having identified SSTs 
as spatially homogenous, and consistent with the Niño 3.4 region, we select the Niño 3.4 Index 
as a potential predictor of streamflow, in lieu of the SST region initially identified (Fig. 4c), as 
it is well-known, well understood, and well-studied.”  
Comment: P19L20-21 –on the 40%. (Add text to manuscript) 
 
Reply: To further clarify the Stat-P&S model criteria we have added the following to the 
working manuscript (P20, L21-25): 
“These ranges are transitional and do not provide skillful categorical forecasts for the May 1st 
lead.  For this reason, the coupled statistical prediction model defers prediction for these years 
to September 1st, when the Stat-PCR model is skillful.”  The Stat-PCR approach provides 
deterministic forecasts of ONDJ streamflow, it is only skillful at a September 1st forecast lead, 
which may limit water rights holders ability to benefit from longer lead times.”   
Comment: It is better to call them "wind vectors" rather than "vector winds", but not asking the 
authors to make any change about that. 
 
Reply: To avoid any confusion, we provide reference to both vector winds and wind vectors in 
the manuscript.  The term “vector winds” is common amongst the climate community, thus we 
have opted to retain it as well. (P7, L20): 
“…vector (also referred to as wind vectors) and meridional winds….” 
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Reply to Anonymous Referee 2 
 
We thank Referee 2 for carefully reviewing our manuscript and providing thoughtful feedback.  
Below we provide our responses to each point raised.  We cite several instances where changes 
are made to the working manuscript, which will be submitted to HESS (if accepted to move 
forward) consistent with the review timeline. 
 
Comment: The manuscript is limited to the study case, and as such it is not likely to help 
readers “gain broader insights in hydrological processes, modelling concepts, and/or 
improvements of existing modelling tools and methods.”  
 
Reply:  We agree that the streamflow forecast component represents a location-specific 
contribution, however we believe this forecast coupled with the human managed allocation 
system is collectively novel and broadly relevant. While we address the unique set of 
circumstances posed by the Elqui Valley, Chile, the implications of the framework apply to 
basins where water rights represent a mechanism to promote equity and efficiency in the use 
of limited water resources.    
 
The comment is valid, and accordingly we have made this point clearer in the discussion and 
conclusions.  We address this in the working manuscript by describing how water rights driven 
basins might increase allocation efficiency by implementing forecasts as opposed to climatology 
based information as part of their decision framework.   
 
Additional novelty lies in the coupling of the Stat-P&S and Stat-PCR forecast models, which 
provides a May 1st categorical prediction followed by a deterministic prediction on September 
1st.  The high level of agreement between the models suggests that while determinism is lost 
extending the lead from September 1st to May 1st, accurate categorical predictions are possible.  
We are not aware of work which has produced similar forecast skill at a May 1st lead in North 
Central Chile.  This result also holds the potential for broader applications.  Coupled forecasts 
need not be strictly deterministic, and using early categorical forecasts to provide an indication 
of expected conditions, and reinforcing the prediction with a revised deterministic forecast as 
more observations of local variables (e.g. precipitation) become available may be useful for a 
water rights holder.      
  
Our discussion and conclusions section does address this point, but is lacking in terms of linking 
to a broader application.  We address this in the working manuscript by bolstering the existing 
discussion. 
   
Comment: The manuscript contains no clear hypothesis against which the research can be 
assessed.  
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Reply:  This is a valid comment and is addressed in the working manuscript both in the introduction, 
discussion and conclusions by reframing the purpose of the research, namely to test if: 
“…skillful streamflow forecasts can be coupled with reservoir allocation decision models to improve 
allocation efficiency as compared to climatology based decisions.”   
Additional discussion pertaining to the outcome of the research, as it pertains to addressing the hypothesis, is 
included in the discussion and conclusions. 
Comment: Separating Section 2 into distinct ‘data’ and ‘modelling approach’ sections may make 
the modelling approaches more clear to the reader.  
 
Reply:  We are compelled to combine both the data and the modelling approaches in a common section as the 
data are not shared by each model.  The Stat-PCR models are informed by observations of precipitation, soil 
moisture and sea surface temperatures, while the Stat-P&S model makes use of Niño 1.2 and 3.4 Index values, and 
the Stat-Dyn uses dynamical model outputs of both precipitation and sea surface temperatures.  Rather than 
consistently refer to a data section when describing the modelling approach, we feel the logical approach is to 
introduce the data as it corresponds to the appropriate model and lead. 
Still, we acknowledge the validity of this comment, noting that data and methods are presented separately in 
many peer reviewed papers.  If the Referee feels strongly about separating the sections, we are happy to do 
so. 
Comment: The Referee notes a lack of description of the reasons for which the modelling 
approaches are selected.  Specifically, the Stat-P&S model, which uses Niño 1.2 and 3.4 Index 
values seems inappropriate, and leads are not well described.  
 
Reply:  We recognize the presentation of forecast leads for each model are not clearly described in the 
manuscript.  To address this concern, we add additional language to the description of each model to clarify 
the leads considered, and provide supplemental text in the results section further reinforcing the leads and 
corresponding model skill. Additional information and detail are provided below (and added to the working 
manuscript.) 
There are three distinct streamflow modelling approaches used in this research, aimed at balancing model skill 
and lead time.  All are classified as statistical. 

1) The Principal Component Analysis (Stat-PCR) model is meant to provide a deterministic prediction 
of streamflow using the most skillful and defensible predictors possible for increasing leads.  Use of 
PCR is common in research focused on season-ahead streamflow prediction, and applying the leave-
one-out cross-validated methodology adds additional credibility of the approach.  Leads extend 
monthly from June 1st to September 1st.  As described in the manuscript, observed data before June 
does not add to model skill. 
 

2) The use of quantile mapping to correct dynamical model outputs of precipitation and sea surface 
temperatures (Stat-Dyn) is implemented in the same manner as the Stat-PCR.  The main purpose of 
the Stat-Dyn approach is to increase the lead time of the streamflow predictions beyond what is 
possible with the Stat-PCR model.  For example, the January 1st dynamical model outputs for May-
August precipitation and sea surface temperatures are used to produce statistical streamflow 
predictions with a January 1st lead.  Leads extend monthly from January 1st to June 1st. 
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3) The Phase and Strength model (Stat-P&S) makes use of the persistence of sea surface temperatures 
by using the Niño 1.2 and 3.4 indices, as opposed to other predictors which are shorter-lived or only 
become apparent at later leads (e.g. precipitation, soil moisture, pressure).  The Stat-P&S approach is 
only use to provide a categorical prediction of streamflow, and ultimately proves more skillful at a 
May 1st lead than the Stat-PCR approach.  May 1st is the only lead-time fir Stat-P&S.  

The coupling of the Stat-P&S and Stat-PCR approach provides a skillful categorical streamflow prediction at 
May 1st (Stat-P&S), which is solidified by a September 1st deterministic prediction (Stat-PCR).  The strength 
of the coupled model is the high degree of agreement between the two components.  For all but two of the 39 
years predicted by the Stat-P&S model, the Stat-PCR model provides a deterministic prediction which falls 
within the same category as the Stat-P&S model.   
 
Comment: The Referee suggests producing predictions of rainfall and subsequently coupling 
with a physically-based runoff model as a more obvious approach to predicting streamflow.  
 
Reply:  This is a valid comment.  However, while the method of precipitation runoff routing is well 
documented, and certainly applicable to the study area, it is perhaps unnecessary considering the correlation 
between May-August precipitation and October-January streamflow (Pearson’s Correlation Coefficient = 
0.80) suggests a strong, direct link exists.  As such, predicting precipitation to inform a hydrology model is 
unlikely to add additional (appreciable) skill, while perhaps introducing additional uncertainty.  This is further 
compounded by the relative lack of spatially diverse observational data and the complex topography of the 
upper basin.  Previous research has also found a strong link between precipitation and streamflow within North 
Central and Central Chile  (Waylen and Caviedes 1990; Verbist et al. 2010). Further, a concurrent study 
(performed by others) utilized the Water Evaluation and Planning (WEAP) model to address the contribution 
of rainfall runoff to streamflow in the Elqui basin, and found similar skill in predicting October-January 
streamflow.  
 
Comment: The (Giorgi 1990) reference should be updated. 
In the working manuscript, we substitute (Giorgi 1990) for (Fowler and Ekström 2009; Rauscher et al. 2010; 
Kendon et al. 2014) which each cite the use of general circulation models or regional climate models in 
seasonal and sub-seasonal precipitation forecasting at or below 20 kilometer resolution, as opposed to 600 
kilometers. 
 

Comment:  Given that October-January streamflow is heavily influenced by concurrent season 
snow-melt, snow cover and snow depth should provide predictive strength. 
 
The link between snow-melt and streamflow in the basins of North Central Chile is well documented 
(Souvignet et al. 2008; Vicuña, Garreaud, and McPhee 2011; Ribeiro et al. 2015). However, snow depth, snow 
cover, snow water equivalent (SWE) are not well sampled in the Elqui both spatially and temporally.  The 
Dirección General de Aguas (DGA), the body charged with hydrologic and meteorological monitoring for 
Chile, provides SWE for a single location (La Laguna) for the period 1976-2005, which includes significant 
data gaps.  The correlation between May-August SWE and October-January streamflow (Pearson’s 
Correlation Coefficient = 0.67) is not as strong as the correlation between May-August precipitation and 
October-January streamflow (see above), and arguably provides the same information to the model.  As such, 
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we retain precipitation observations as a predictor in the Stat-PCR model. We agree with the Referee that 
snow observations would seemingly be an obvious predictor of streamflow, and have explored this thoroughly, 
however in this case, for the reasons mentioned above, it explains less of the overall variance in streamflow 
as compared with precipitation.  We discuss this explicitly in the manuscript and have further highlighted this 
point in the working version.  
Comment:  The allocation model description is unclear.  Specifically, the end of year (February) 
target volume seems too high, and the requirement to carry storage shortfall to the next year 
implies the reservoir has does not replenish.  Is this realistic?  
 
While we agree, for a variety of reasons, that a static target volume is generally a suboptimal operational 
policy, the target volume (50% of maximum storage) is the operating rule enacted by Puclaro’s operators as a 
response to critically low reservoir levels (< 20 MCM) observed during the recent extended hydrologic 
drought (2009-2014).  It was not the purpose of this research to address the performance of existing reservoir 
operating policies.  Rather, we evaluate the performance of the October-January streamflow and 
climatological forecasts, translated to per-water right allocation values using the reservoir allocation model, 
against perfect foresight as a means of assessing the value of the forecast.  A concurrent project is aimed at 
optimizing Puclaro’s operational policies.   
The purpose of carrying the storage shortfall or surplus from February and using it as a constraint or benefit 
for the subsequent October-January per-water right allocation value is that it recognizes the storage target as 
non-binding (can be violated by over or under allocation in the previous year), but consequential, in the 
allocation model.  As such, the reasonable place to impose the effect is in terms of the following year’s 
allocation.  Effectively, it represents a mechanism for the reservoir operator to compensate for over or under 
allocation in the previous year.  In addition, reservoir replenishment from snow melt typically does not occur 
until December, which is three months after the allocation issuance date of September 1st, and such is the 
reason why a forecast is produced.  The use of the deficit or surplus becomes a hedge against the uncertainty 
of the forecast.  Ultimately, we believe the carryover of deficit or surplus is an appropriate way to include the 
operational goal of the reservoir operators.    
Comment:  The summary and discussion are uninformative.  As such, they should be split into 
distinct “Discussion” and “Conclusions” sections and significant effort applied to drawing more 
scientific conclusions from the research.  
                      
We agree with the Referee’s comment to break the “Summary and Discussion” section into and “Discussion” 
and “Conclusions” sections, and have done this in the working manuscript.  The Discussion section now more 
thoroughly describes where models are both successful and limited in terms of prediction, and how the 
limitations (e.g. tradeoff between lead and skill) of the models we construct align with previous research.  The 
Conclusions section establishes the broader insights gained from the research, including the potential for 
improved water right allocation efficiency achieved by coupling hydroclimate streamflow prediction with a 
reservoir allocation framework which may benefit both reservoir operators and water rights holders.  In 
addition, the Conclusion presents the coupled Stat-P&S and Stat-PCR models as achieving both increase in 
forecast lead while maintaining skill, by adjusting the type of forecast provided (categorical to deterministic).  
The broader insight gained here is that by sacrificing forecast precision, the lead can be skillfully extended.  
We hypothesize this information to be of potential value to water rights holders who must make decisions 
(e.g. cropping) prior to the annual setting of the per-water right allocation value.           
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Comment:  The manuscript should be shortened.  In depth descriptions of well understood 
methods and metrics may be removed. 
 
We recognize that the interdisciplinary nature of this manuscript may draw readers who have limited 
methodological knowledge of hydroclimate prediction and reservoir allocation forecasts.   Therefore, we 
provide explicit detail of both methods and metrics used to construct and evaluate models, respectively.  The 
comment is reasonable, and in the working manuscript we have removed all but necessary discussion of 
principal component analysis, multiple linear regression, cross-validation, and metrics.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

LIST OF RELEVANT CHANGES MADE TO MANUSCRIPT 

Most of the relevant changes to the manuscript are addressed explicitly in responses to 

Referees.  We list a summary of the areas of the paper most substantially revised. 

 

1. The abstract was bolstered significantly.  It now contains quantitative results and 

broader implications for the research.   

“Skillful results (forecasts outperforming climatology) are produced for short lead-times (September 1st; RPSS = 0.31, 

categorical hit skill score = 61%), with years of Above-Normal (high) and Below-Normal (low) streamflow predicted 

82% and 64% of the time, respectively.  At longer lead-times, climatological skill exceeds forecast skill, largely due 

to fewer observations of precipitation.  Coupling the September 1st statistical forecast model with a Niño 3.4 region 

sea surface temperature phase and strength statistical model, however, allows for equally skillful categorical 

streamflow forecasts to be produced from a May 1st lead, triggered for 60% of the years in the period 1950-2015.  

Forecasts may not need to be strictly deterministic to be useful for water rights holders; early (May) categorical 

indication of expected conditions are reinforced with a revised deterministic forecast (September) as more 

observations of local variables (e.g. precipitation) become available. The reservoir allocation model is skillful at the 

September 1st lead (categorical hit skill score = 53%); this skill improves to 79% when the model predicts the observed 

allocation category with at least 80% certainty.  This result has broader implications, suggesting that in water rights 

managed basins, allocation efficiency might improve through the integration of forecasts as part of a reservoir decision 

framework.  The methods applied here advance the understanding of the mechanisms and timing responsible for 

moisture transport to the Elqui Valley, and provide a unique application of streamflow forecasting in the prediction 

of per-water right allocations. Both have the potential to inform water right holder decisions.” 

                 

2. Referee #2 identified the need to clearly state the research hypotheses.  We address this 

in the Introduction with the following: 

“Recognizing that variable precipitation effects streamflow and subsequently water right allocation values, this research tests 

two hypotheses as a means of addressing the unique climate conditions of the Elqui Valley, which may be applied more broadly 

to water rights managed basins with limited water resources: 

 

1) Skillful season-ahead streamflow forecasts can be produced for existing water right allocation decision points. 

2) Skillful streamflow forecasts coupled with reservoir allocation decision tools can improve allocation efficiency.” 
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3. The reasons for which spatial averaging (e.g. sea surface temperature) was done was 

unclear.  We address this in the manuscript with the following: 

 

The first principal component (PC) from the gridded variable region, representing the dominant signal in the gridded 

field, correlated with the spatial average of the gridded variable region can identify if the signal is spatially 

homogenous (representative) across the region.  If the first PC does not correlate well with the spatial average, the 

heterogeneity of the dataset is likely important, and adopting the spatial average as a predictor may be insufficient.  

For example, the spatial average of SSTs (Fig. 4 (c.)), a potentially significant predictor of streamflow for the Elqui 

River, correlates highly (>0.9) with the first PC of the gridded SST data.  This region of SSTs is closely aligned with 

the quintessential ENSO pattern in the equatorial Pacific Ocean, and is evident when correlating the entire ONDJ 

streamflow record with SST anomalies in the preceding MJJA, which suggests ENSO, in general, plays some role in 

explaining streamflow variability within the Elqui Valley (Fig. 4(c.))  Having identified SSTs across this region as 

spatially homogenous, and consistent with the Niño 3.4 region, we select the Niño 3.4 Index as a potential predictor 

of streamflow, in lieu of the SST region initially identified (Fig. 4(c.)), as it is well-known, well understood, and well-

studied.   

  

4. Referee #2 identified excessive explanation of methods (e.g. principal component 

analysis, Ranked Probability Skill Score, etc…)  To address this, we remove equations 1, 

2, 5, 6 and 7 and corresponding explanations.  We retain more basic language which 

shorten the manuscript. 

 

5. Referee #2 indicated use of snow depth or snow water equivalent as influential as a 

predictor of streamflow.  We address this comment in the manuscript with the following:  

 

“Snow water equivalent (SWE) is not retained as a predictor as its May-August correlation with October-January 

streamflow (Pearson’s Correlation Coefficient = 0.68) is not as strong as the correlation between precipitation and 

streamflow for the same lead, and arguably provides the same information to the model.  As such, observations of 

precipitation are retained for the Stat-PCR model 
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6. The Summary and Discussion were lacking both in depth of analysis and in liking the 

forecast and allocation framework to broader applications.  We address this in the 

manuscript by constructing both Discussion and Conclusion sections which retain 

elements of the first submission, and include new language which addresses the broader 

insights and usefulness of the framework.  A sample of additional content is provided 

below. 
 

(Discussion): “While the approaches in this research are predominantly a demonstration of concept, the model 

framework is consistent with the current operations of Puclaro Reservoir. However, it is not optimized to hedge 

against expected future (multi-year) conditions. While the model may be informative over the long-term, resulting in 

allocation and storage values better matched with observations than climatology-based allocations, it performs poorly 

in certain years, most notably during the 2009 – 2015 hydrologic and meteorological drought (Fig. 9(a.))  While poor 

model performance during this period is undoubtedly due in part to the limited reservoir operating rules, the Stat-

PCR approach tends to under predict extremes, especially when they occur consecutively.  Further forecast model 

development will focus on improving predictive skill of extreme events, particularly dry periods, making use of non-

parametric methods and additional multi-model approaches, and dynamic rule structures and simulation techniques.  

Even so, adoption of the approaches presented here by water managers and rights holders bodes well for improved 

economic efficiency and benefits across the Elqui Valley.” 

 

(Conclusions): “The broader insight gained is in the coupling of the Stat-P&S and Stat-PCR models to produce 

initial (May 1st) and updated (September 1st) forecasts which may be valuable to both reservoir managers and water 

rights holders.  From a reservoir management perspective, properly setting the per right water allocation (September 

1st) is critically important to satisfy rights holders and maintain adequate reservoir storage for the uncertain future.  

The Stat-PCR component of the coupled model provides skill superior to climatology, and likely better informs 

allocation decisions.  Reservoir managers, however, are also expected to provide a non-binding May 1st allocation 

forecast, allowing rights holders, specifically farmers with crop choice flexibility and/or water right leasing potential, 

to supplement through the water market as necessary.  The Stat-P&S categorical forecast with a May 1st lead can 

inform these longer planning actions.  The strong categorical consistency between the May 1st Stat-P&S and 

September 1st Stat-PCR forecasts may also serve to reinforce confidence in the forecast outcomes; the two models 

only differ in prediction categories twice in the 66 years evaluated.  The conclusion here is that coupled forecasts 

need not be strictly deterministic, and using early categorical forecasts to provide an indication of expected conditions, 

and reinforcing the prediction with a revised deterministic forecast as more observations of local variables (e.g. 
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precipitation) become available may be useful for water rights holders.  In addition, linking the streamflow forecast 

with the human managed allocation system is broadly relevant as a mechanism to promote efficiency in the use of 

limited water resources. The framework presented here addresses the unique set of circumstances in water rights 

managed basins, and represents an advancement in linking season-ahead streamflow forecasts to water resources 

systems.”  
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2Department of Industrial and Civil Engineering, University of La Serena, La Serena, 1700000, Chile 
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Abstract.  

In many semi-arid regions, agriculture, energy, municipal, and environmental demands often stress available water supplies.  

Such is the case in the Elqui River valley of northern Chile, which draws on a limited capacity reservoir and annually variable 10 

snowmelt.  With infrastructure investments often deferred or delayed, water managers are forced to address demand-based 

allocation strategies, particularly challenging in dry years.  This is often realized through a reduction in the volume associated 

with each water right, applied across all water rights holders.  Skillful season-ahead streamflow forecasts have the potential to 

inform managers with an indication of likely future conditions upon which to set the annual water right volume and thereby 

guide reservoir allocations.  This work evaluates season-ahead statistical prediction models of October-January (austral 15 

growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions 

with a simple reservoir allocation tool.  Skillful results (forecasts outperforming climatology) are produced for short lead-times 

(September 1st; RPSS = 0.31,), where categorical hit skill score =is 61%), with years of Above-Normal (wethigh) and Below-

Normal (drylow) streamflow years achievingpredicted 82% and 64% skillof the time, respectively.  At longer lead-times, 

climatological skill exceeds forecast skill, largely due to lessfewer observations of precipitation in the statistical model (August 20 

1st RPSS = 0.02 and July 1st RPSS = -0.39).  Coupling the September 1st statistical forecast model with a Niño 3.4 region sea 

surface temperature phase and strength statistical model, however, allows for equally skillful categorical streamflow forecasts 

to be produced forfrom a May 1st lead, triggered for 60% of the years in the period 1950-2015.  The key insight here arises 

from the coupling of statistical models which we concludeForecasts may need not need to be strictly deterministic to be useful 

for water rights holders;, such that early (May) categorical indication of expected conditions are, reinforced with a revised 25 

deterministic forecast (September) as more observations of local variables (e.g. precipitation) become available. The reservoir 

allocation model is skillful at the September 1st lead (categorical hit skill score = 53%); this skill improves to 79% when , and 

using a probabilistic modelling approach, forecast-based allocations are categorically skillful (79%) when the model predicts 

the observed allocation category with at least 80% certainty.  This result has broader implications, and suggestings that in 

water rights drivenmanaged basins, allocation efficiency might improve through the implementationintegration of forecasts as 30 

opposed to climatology based information as part of a reservoir manager decision framework.  The methods applied here 

advance the understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley, and provide 
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a unique application of streamflow forecasting in the prediction of per-water right allocations. Both have the potential to inform 

water right holder decisions.                 

 35 

1 Introduction.  

The sustainability of many water systems is challenged by current climate variability, and may come under additional stress 

with changes in future climate and user demands.  Concerns over increasing water scarcity have prompted progressive 

governments, institutions, water resource managers, and end-users to adopt a wide variety of conservation policies, typically 

targeting supply augmentation or demand reduction at the basin or jurisdictional boundary scale (Tanaka et al., 2006). These 40 

decisions, which are ideally informed by a variety of models, are inherently uncertain across time-scales, and produce 

numerous risks stemming from human activity and hydroclimatic variability/change (Narula and Lall, 2009).  Advanced 

hydroclimatic information is often attractive to progressive water managers to support management and planning of water 

systems (Barsugli et al., 2012).  At the seasonal scale, a skillful streamflow forecast may allow more efficient water allocation 

and predictable tradeoffs between flows for energy, irrigation, municipalities, environmental services, etc.  Such forecasts 45 

often provide the ability to prepare for anticipated conditions, not simply react to existing conditions, potentially reducing 

climate‐related risks and offering opportunities (Helmuth et al., 2007).  This may be especially informative in years with 

extreme conditions (floods, droughts.)  Further motiviation stems from evidence that addressing climate variability as part of 

water development is key for stabilizing and improving country economies (Brown and Lall, 2006). 

 50 

While improvements in seasonal climate forecast skill and advocacy for integration into risk reduction strategies are well 

documented (Barnston et al., 1994; Block, 2011; Block et al., 2009; Dee et al., 2011; Hansen et al., 2004; Mason and 

Stephenson, 2008), demonstrated use of forecasts in current water allocation and policy strategies is limited (Barnston et al., 

1994; Christensen et al., 2004; Hamlet et al., 2002; Sankarasubramanian et al., 2009; Stakhiv, 1998). This is partially 

attributable to the wide-spread use of static operational policies, which may be based on average streamflow or the drought of 55 

record, and established with minimal to no accounting of uncertainty, thus limiting water system flexibility (You and Cai, 

2008). Effectively translating emerging climate information into hydrology to support adaptable water resources decision-

making, and ultimately policy, warrants further study. 

 

The water system in the semi-arid Elqui Valley in north-central Chile’s IVth Region (Fig. 1) is contending with increasing 60 

levels of water stress and demand, coupled with insufficient investment in infrastructure, taxing its ability to sufficiently meet 

multiple water uses and maintain environmental quality.  The Valley footprint is relatively small (< 10,000 square kilometers), 

but boasts elevation changes ranging from sea level in the west to nearly 5,000 meters in the east along the Andes, in the span 

of less than 150 kilometers.  The Atacama Desert lies just to the north.  The Valley is fed from a retreating glacier to serve its 
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600,000 inhabitants, and is very narrow, with vineyards and plantations covering the floor and increasingly moving up the 65 

Valley sides; forty three percent of the region’s surface land area is devoted to agricultural activities (Cepeda and Lopez-

Cortes, 2004).  Agricultural exports, particularly grapes, fruits, and avocados, dominate the Valley’s economy (Young et al., 

2009), and are maintained by an extensive irrigation channel system latticing the Valley, which diverts water from the main 

Elqui River.  The Puclaro reservoir is the dominant storage facility in the Valley, with a holding capacity of 200 million cubic 

meters (Fig. 1.) The reservoir provides irrigation for about 21,000 hectares of the Elqui Valley, as well as small-scale 70 

hydropower (5.6 MW capacity) and being a popular tourist destination, particularly for sailing and windsurfing (Cepeda and 

Lopez-Cortes, 2004). 

 

Figure 1: Location of Elqui River Valley, Chile 

Chile uses a market-oriented approach to water allocation, guided by its Water Code of 1981 (G Donoso, 2006). The intent is 75 

to allow for optimal allocation and efficiency through a politically neutral mechanism via permanent trades or leasing 

(Olmstead, 2010; Wheeler et al., 2013).  Rights are granted through the national water authority (Dirección General de Aguas, 

hereafter DGA), while supervision, reservoir management, and issuance of annual per right allocation is left to the privately-

held, local water authority, Junta de Vigilancia del Rio Elqui (JVRE.)  Water rights along the Elqui River are fully allocated, 

with 25,000 total rights valued at 1 liter per second each.  In years with above normal precipitation and snowpack, this value 80 

can be attained, however near normal and below normal precipitation years typically require a reduction in per right allocation, 

on the order of 0.5 liters per second.  Prolonged periods of drought (2009-2015) have resulted in allocations as low as 0.2 liters 

per second (JVRE, personal communication.)  All water rights are of equal standing; no prioritization or junior/senior status 
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exists.  Thus, right holders above Puclaro are guaranteed equal per right allocations as their counterparts downstream; under 

the current framework, surplus supply cannot be allocated to users downstream of the reservoir once the annual per right 85 

allocation has been officially issued, to guarantee equality.  Approximately 92% of water rights are held by farmers, with half 

of those held by a small minority engaged in large-scale viticulture.  Municipalities and the mining industry share the balance 

of water rights.  Meeting targets for renewable energy through hydropower, ecosystem services, specifically minimum instream 

flows, and reservoir storage are also important competing non-consumptive or non-water right holding priorities. 

 90 

The decision framework driving water allocation and market activity in the Valley is complex and involves many actors. For 

the water year October to September, the local water authority initially projects the annual per right allocation in the preceding 

May and officially sets it in September.  Water rights holders (users) thus have two decision points, May and September, to 

evaluate their allocation and weigh the need to supplement through market activity (trade or lease.)  This setting serves as an 

impetus for developing a framework to advance streamflow and water allocation forecasts at those decision points to better 95 

guide decision-making across the Valley. 

1.1 Elqui Hydro-climate Characteristics. 

The Elqui Valley is one of the most sensitive areas to water variability in all of South America, given its dryland ecosystem 

nature, susceptible to even small changes in the water cycle (Santibañez et al. 1992; N Kalthoff et al. 2006). The climate of 

the region is affected by three major factors that lead to its semi-arid nature: the southeast Pacific anticyclone, the cold 100 

Humboldt current along the Pacific coast, and the eastern longitudinal barrier created by the Andes mountains (Kalthoff et al., 

2002).  The majority of precipitation is frontal in nature, falling in the austral winter (May-August, MJJA) as rain in the Valley 

and snow in the mountains; this leaves the remaining months extremely dry (Fig. 2;(Aceituno, 1988).  Annual rainfall totals 

approach 90mm on average and express a high degree of variability (Young et al., 2009).  The El Niño Southern Oscillation 

(ENSO) is well known to have a role in this variability, with positive precipitation anomalies during El Niño events, and below 105 

normal precipitation mostly associated with La Niña conditions (Fig. 3; (Aceituno, 1988; Falvey and Garreaud, 2007; Garreaud 

et al., 2009; Montecinos and Aceituno, 2003).  For Vicuña, a city located in approximately the center of the Valley, between 

1950-2000, El Niño years produced average annual precipitation of 134mm, compared with 68 mm during La Niña years – a 

stark difference (Young et al., 2009). 
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 110 

Figure 2: Annual cycle of average precipitation and streamflow (1950-2015) 
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Figure 3: Total annual precipitation (dashed), streamflow (solid) & May-August Niño 3.4 sea-surface temperature anomalies (bars) 

 115 

The Elqui River is predominantly fed through snowmelt over the October - January (ONDJ) season, dictating the agricultural 

calendar.  Historical rates of average streamflow over this season, however, indicate enormous interannual variability, ranging 

from 2.2 - 89 cubic meters per second at the Algarrobal station (Fig. 3; Santibañez et al. 1992), commonly considered as a 

surrogate for inflow to the Puclaro Reservoir (Fig. 1.)  Recognizing thethat effect variable precipitation effects has on 

streamflow and subsequently water right allocation values, this research tests two hypotheses as a means of addressing the 120 

unique climate conditions of the Elqui Valley, which may be applied more broadly to water rights drivenmanaged basins with 

limited water resources: 

 

3) Skillful season- ahead streamflow seasonal forecasts of streamflow can be produced consistent withfor existing 

water right allocation decision points. 125 
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4) Skillful streamflow forecasts can be coupled with reservoir allocation decision tools tocan improve allocation 

efficiency as compared to climatology based decisions.   

Thus, a skillful streamflow forecast characterizing the ONDJ season has utility for providing advanced information 

to guide decisions in the Valley, particularly for dry conditions.   

2   Modelling Framework and Performance Metrics. 130 

Historically, water managers in the Elqui Valley have subjectively considered simple analog prediction models for ONDJ 

streamflow at Algarrobal, conditioned on the multivariate ENSO index (MEI), for allocation decisions and reservoir 

operations, with limited success (JVRE, personal communication.)  Previous efforts to evaluate hydro-climate forecast skill 

for the Elqui River have considered leads consistent with the current water rights forecast structure; a preliminary May 

allocation forecast and September allocation issuance (Robertson et al., 2014; Verbist et al., 2010).  Roberston et al. (2014) 135 

report a significant increase in forecast skill, comparing September to May, but suggest further investigation to more fully 

understand forecast skill with increasing lead time.     

 

This recommendation is addressed by building a modeling framework to evaluate potential improvement in predicting ONDJ 

streamflow at multiple lead times, starting with a 1-month lead (September 1st) and increasing at monthly intervals (i.e. August 140 

1st, July 1st, etc.) to May 1st, when the first water allocation forecast is preliminarily issued.  Both statistical and dynamical 

prediction approaches are explored.  Subsequently, the ability to effectively predict water rights allocations is investigated by 

coupling streamflow predictions with a reservoir allocation model. 

2.1 Statistical Streamflow Prediction Models 

Statistical forecast methods rely on identification of spatiotemporal patterns in historical data (Chambers et al., 1971).  145 

Observations of streamflow at Algarrobal (monthly, 1948-present), valley-wide precipitation stations (daily, 1950-present), 

and snow-water equivalent (daily, 1950-2009) are each readily available through the Chilean DGA.  One of DGA’s primary 

functions as the regulator of surface water resources for the Chilean Government is to collect, validate, and perform quality 

control of hydrologic measurements.   Open source data obtained through DGA is considered as having met DGA quality 

standards. A suite of potential predictor variables are evaluated which have been shown to influence either streamflow or 150 

precipitation, including sea surface temperatures (SST), specifically in the Niño 1.2 and Niño 3.4 regions, sea level pressure 

(SLP), geopotential height, vector (also referred to as wind vectors) and meridional winds, local soil moisture, and the 

Multivariate ENSO Index (MEI), which combines several equatorial Pacific atmospheric and oceanic anomalies (Montecinos 

and Aceituno, 2003; Wolter and Timlin, 1993).  These variables can illustrate the mechanisms controlling moisture transport 

to the basin, and subsequent inter-annual variability in streamflow.  For example, in the ten lowest ONDJ streamflow years 155 

(dry), vector winds follow a weak, dissociated pattern in the preceding season, which indicates that moisture transport from 
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the Pacific Ocean is inefficient (Fig. 4(a.)  In the ten highest ONDJ streamflow years (wet), vector winds are anomalously 

strong, and follow a coherent clockwise pattern off the coast of Chile, which suggests more efficient moisture transport is 

possible from the Pacific Ocean to the Elqui Valley (Fig. 4(b.)  

 160 

Figure 4: (a) Composite May-August (MJJA) vector wind anomaly preceding ten lowest October-January (ONDJ) streamflow years, 
(b) same as (a) for ten highest ONDJ streamflow years, (c) correlation of MJJA sea-surface temperature anomaly with ONDJ 
streamflow (1950-2015) 

 

To identify potential predictors, each variable is correlated with ONDJ streamflow at lead times consistent with those discussed 165 

above (Fig. 5; not all variables shown.)  Regions (gridded data sets) with statistically significant correlations in locations that 

have the potential to affect moisture transport (Table 1) are spatially averaged and retained for further evaluation. The first 

principal component (PC) from the gridded variable region, representing the dominant signal in the gridded field, correlated 

with the spatial average of the gridded variable region can identify if the signal is spatially homogenous (representative) across 
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the region.  If the first PC does not correlate well with the spatial average, the heterogeneity of the dataset is likely important, 170 

and adopting the spatial average as a predictor may be ineffectiveinsufficient.  For example, the spatial average of SSTs (Fig. 

4 (c.)), a potentially significant predictor of streamflow for the Elqui River, correlates highly (>0.9) with the first PC of the 

gridded SST data.   This region of SSTs is closely aligned with the quintessential ENSO pattern in the equatorial Pacific Ocean, 

and is evident when correlating the entire ONDJ streamflow record with SST anomalies in the preceding MJJA, which suggests 

ENSO, in general, plays some role in explaining streamflow variability within the Elqui Valley (Fig. 4(c.))  Having identified 175 

SSTs across this region as spatially homogenous, and consistent with the Niño 3.4 region, we select the Niño 3.4 Index as a 

potential predictor of streamflow, in lieu of the SST region initially identified (Fig. 4c), as it is well-known, well understood, 

and well-studied.  SST, SLP, geopotential height, meridional and vector winds are obtained at a 2.5 x 2.5 degree grid resolution 

from the National Oceanic and Atmospheric Administration’s Climate Diagnostics Center (NOAA-CDC), which are based 

upon the National Center for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis 180 

data, available from 1949 to the present (Kalnay et al., 1996).  Soil moisture data is obtained from NOAA’s Climate Prediction 

Center’s (CPC) global monthly soil moisture dataset, at 0.5 x 0.5 degree grid resolution, which is available from 1948 to the 

present (Huang et al., 1996; Kalnay et al., 1996; Saha et al., 2013).  MEI data is available from NOAA’s Earth System Research 

Laboratory (ESRL) bimonthly as the first unrotated principal component of six spatially filtered variables in the tropical Pacific 

(Wolter and Timlin, 1993, 1998). 185 
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Figure 5: Temporal correlations of October-January streamflow and potential predictors: (a) precipitation, (b) Niño 3.4 sea surface 
temperatures, (c) soil moisture 190 

 

 

Table 1: List of potential predictors (bold predictors retained for statistical model) 
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 195 

Principal component regression (PCR) (Lins, 1985) is commonly applied in forecasting to decompose space-time fields, which 

reduces both dimensionality and multicollinearity of a set of variables. PCR is a two-step process, the first of which identifies 

modes of dataset variability iteratively, by identifying the direction which maximizes the variance explained in the data.  The 

resultant principal component (PC) is the sum of least squares distance between the factor direction and the predictor data.  

The second factor is applied in the direction which maximizes dispersion in the dimension of next greatest variability to form 200 

the second PC, and so forth.  All PCs are orthogonal.  The result is a set of principal components (PC)s representing the 

variance in the predictors, with PCs ordered by the amount of variance explained. PCs with eigenvalues greater than one are 

retained, following Kaiser’s rule; (Zwick and Velicer, 1986). The second step of PCR is multiple linear regression, using the 

PCs retained as predictors.. as shown by Eq. (1): 

 205 

௧ෝݕ = ଴ߚ  + ଵݔଵߚ  + ଶݔଶߚ + ⋯ + ݐ ݎ݋݂  ,௡ݔ௡ߚ =  (1)        ܰ ݋ݐ 1

 

௧ߝ = ௧ෝݕ − ௧ݕ             (2) 

 

where ݕො௧ is the predicted value of ONDJ streamflow in year t, xn, . . ., xn are the PCs retained as predictor variables, εt is an 210 

error coefficient calculated as the difference of predicted and observed values of streamflow, as shown by Eq. (2), βo,. . .,βn  

are the fitted regression coefficients, and ܰ is the number of years predicted. A leave-one-out cross validated hindcast is 

undertaken to produce a deterministic prediction of expected streamflow for each year (1950-2015) (Block and Rajagopalan, 

2007).  A prediction distribution is generated using prediction errors (εt) from the hindcast fit to a normal distribution with a 

mean of zero, and added to the deterministic hindcast prediction. In this work, the median and upper 80th percentile hindcasted 215 
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flows from the ranked outputs are analyzed.  The 80th percentile streamflow time series is used as a conservative estimate of 

streamflow to simulate potential risk aversion on the part of a reservoir manager.   Hereafter the statistical principal component 

regression approach is referred to as Stat-PCR.   

 

As previously mentioned, ENSO influences Elqui River streamflow variability.  The strength of an El Niño or La Niña event 220 

relates to the degree of SST deviations from the long-term mean; using the Niño 3.4 Index, NOAA has established weak (+/- 

0.25 C), moderate (+/- 0.75 C), and strong (+/- 1.0 C) categorical thresholds as a means of describing ENSO phase and 

strength (2016).  Recent research has illustrated a potential relationship between streamflow and ENSO phase and strength 

(Zimmerman et al., 2016).  In a separate statistical approach, a streamflow prediction model based on ENSO phase and strength 

(Stat-P&S) is developed to provide categorical predictions of ONDJ streamflow. The Stat-P&S approach utilizes Niño 3.4 225 

Index values, prior to the ONDJ season of interest, to provide a categorical streamflow prediction.  To qualify for prediction 

using Stat-P&S, at least one month during a selected Niño 3.4 Index window must be at least moderate in strength for a given 

phase, ≥ +0.75C (El Niño) or ≤ -0.75C (La Niña.) Years satisfying this criterion are categorically predicted as Above Normal 

(A; highest 33% of long-term streamflow observations) or Below Normal (B; lowest 33% of long-term streamflow 

observations) ONDJ streamflow, respectively.  Window selection determines hindcast date, and may fall prior to or during a 230 

phenomenon known as the Spring Barrier, when SSTs in equatorial Pacific generally reset, losing predictive strength (Webster 

and Hoyos, 2010).  However, the effects of moderate and strong ENSO events have some tendency to persist (Balmaseda et 

al., 1995). When values from the Niño 3.4 Index fail to exceed +/- 0.5C, ONDJ streamflow is predicted to fall into the Normal 

(N; middle 33% of long-term streamflow observations) category.  For years where the Niño 3.4 Index values are (+0.5C, 

+0.75C) or (-0.5C, -0.75C), the Stat-P&S model does not issue a forecast.  For these ranges, neither the magnitude (not 235 

weak or moderate as defined by NOAA) nor persistence of SST observations allow for production of skillful categorical 

streamflow forecasts.  For years wherein which SSTs fall within these ranges at forecast leads prior to the Spring Barrier, 

strength and phase are subject to rapid transition, and categorical forecasts are typically not skillful. 

2.2 Dynamical Climate Model Informed Statistical Streamflow Prediction Model. 

General Circulation Models (GCM) and Regional Climate Models (RCM) are physically-based, three dimensional 240 

representations of gridded atmospheric, oceanic and land surface processes, with typical spatial resolutions of 250 - 600 kmat 

or below 20 kilometer resolution  (Fowler and Ekström, 2009; Kendon et al., 2014)(Giorgi, 1990).  GCMs have proven skillful 

in prediction of large scale physical processes, such as SSTs and pressure systems, however, their relatively coarse resolution 

often limits predictive ability for smaller scale weather and climate phenomena, including precipitation (Bosilovich et al., 

2008).  Furthermore, outputs from each GCM are unique, and based on individualized parameterization schemes, initial 245 

conditions, data assimilation processes, etc.  Considering the National American Multi-Model Ensemble (NMME; (2012) suite 

of models, (Verbist et al., 2010) demonstrate skillful prediction of North Central Chile precipitation based on equatorial Pacific 
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SSTs in the ENSO region using NOAA’s National Centers for Environmental Protection’s (NCEP) Climate Forecast System 

Version 2 GCM, available 1982 – present (CFSv2; (Kalnay et al., 1996). Considering both the findings of Verbist et al. (2010), 

and a strong Pearson’s correlation coefficient between observed ONDJ streamflow and MJJA precipitation in the Elqui Valley 250 

(0.80), both precipitation and SSTs outputs from CFSv2 are retained for further evaluation. Specifically, the mean value of the 

40-member ensemble of outputs for gridded precipitation (29˚- 30˚S, 70˚-71˚W) and the Niño 1.2 and 3.4 indices at leads 

between January 1st and May 1st are obtained and independently corrected using a statistical quantile mapping approach based 

on the cumulative distribution functions of both predicted and observed data (Maraun, 2013).  For each lead, predicted values 

are replaced with values from the observed distribution, based on matching probabilities (Fig. 6; not all variables shown.)  The 255 

same PCR framework as in the Stat-PCR approach is applied using GCM corrected precipitation and SSTs to predict ONDJ 

streamflow, referred to as the Stat-Dyn model.  The Stat-Dyn model is meant to provide streamflow forecasts at extended 

leads, beyond what is possible with global and local observed data used to inform the Stat-PCR model.  Local variables (e.g. 

precipitation, snow water equivalent and soil moisture) hold the most predictive strength as observations during the season of 

peak precipitation (May-August) and thus are only considered for the Stat-Dyn model for leads at prior to June 1st (Fig. 5 (a.) 260 

and (c.). 
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Figure 6: (a) Quantile mapping of predicted and observed NOAA NCEP CFSv2 Niño 3.4 sea surface temperature (SST) data, (b) 
observed, predicted and statistically corrected NOAA NCEP CFSv2 Niño 3.4 SST data 

 265 
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2.3 Allocation Forecast Model. 

Allocation, as issued annually by JVRE, and storage outcomes are hindcast in a cross-validated mode for the period of record 

(1950 - 2015) by coupling the streamflow prediction models to a simple reservoir balance model.  As previously mentioned, 

if allocations are reduced to less than the defined maximum of 1 liter per second, all rights are reduced equivalently across 

rights holders, per Chile’s Water Code.  The Puclaro operating rules adopted here focus on the end of water year (February 270 

1st) target reservoir volume, set at 100 million cubic meters (50% capacity), which is consistent with current management 

practices for Puclaro Reservoir.  To account for annual deviation from the end of water year storage target, allocation for 

ONDJ in year i+1 is adjusted by the difference between end of water year storage and the target in year i.  Allocations may be 

larger if end of year storage exceeds target storage, or smaller if there is a shortfall in end of year storage, as shown by Eq. 

(13), where  275 

 

௜ାଵ,ைே஽௃೛ೝ೐೏೔೎೟೔೚೙ܣ
=

ொ೔శభ೛ೝ೐೏೔೎೟೔೚೙
ೈೃೠ
ೈೃವ

ାଵ
 

− ቀ100݉ܯଷ − ௜ܵ,ி௘ ೌ೏ೕೠೞ೟೐೏
ቁ      (13) 

 

௜ାଵ,ைே஽௃೛ೝ೐೏೔೎೟೔೚೙ܣ 
 is the predicted allocation for ONDJ in year i+1. ܳ௜ାଵ೛ೝ೐೏೔೎೟೔೚೙

 is the prediction of inflow in year i+1, with 

streamflow predictions for the non-ONDJ months constructed by regressing median ONDJ streamflow predictions onto 280 

February – September streamflow observations to produce predicted February – September streamflow.  ܹܴ௨ and  ܹܴ஽ are 

the number of water rights upstream and downstream of Puclaro, respectively, and ௜ܵ,ி௘௕ೌ೏ೕೠೞ೟೐೏
 is the previous end of water 

year adjusted storage volume, as shown by Eq. (24), where  

 

௜ܵ,ி௘௕ೌ೏ೕೠೞ೟೐೏
= ௜ܵ,ௌ௘௣೛ೝ೐೏೔೎೟೔೚೙

− ௜,ைே஽௃௣௥௘ௗ௜௖௧௜௢௡ܣ)
௜,ைே஽௃௢௕௦௘௥௩௔௧௜௢௡ܣ −

)      (24) 285 

 

௜ܵ,ௌ௘௣೛ೝ೐೏೔೎೟೔೚೙
 is the predicted storage at the time of ONDJ allocation issuance in year i, and ܣ௜,ைே஽௃௣௥௘ௗ௜௖௧௜௢௡

 and 

௜,ைே஽௃௢௕௦௘௥௩௔௧௜௢௡ܣ
 are the forecast-based and observed allocation values in year i. This adjusted volume (predictions – 

observations) accounts for storage deficit or surplus resulting from forecast-based allocations (forecasts will not be perfect, i.e. 

notnever perfectly match observations), and allows for adjustment of allocation in the following year to either replenish the 290 

reservoir or provide additional allocation, respectively.  Effectively, this accounts for the error in forecast-based allocations.  

The purpose of carrying the February storage shortfall or surplus from February andis using it as a constraint or benefit 

forapplied to the subsequent October-January per-water right allocation value, is that it recognizesas the storage target asis 

non-binding (can be violated by over or under allocation in the previous year), but consequential, in the allocation model.  As 

such, the reasonable place to impose the effect is in terms of the following year’s allocation.  Effectively, it representsThis 295 
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functions as a mechanism for the reservoir operator to compensate for over or under allocation in the previous year. In addition, 

reservoir replenishment from snow 

melt typically does not occur until December, which is three months after the allocation issuance date of September 1st, and 

such is the reason why a forecast is produced. The use of the deficit or surplus becomes a hedge against the uncertainty of the 

forecast. Ultimately, the carryover of deficit or surplus is one way to include the operational goal of the reservoir operators. 300 

 

 

Annual per water right allocations based on forecasts of September 1st reservoir volume, probabilistic inflow predictions, and 

end-of-water-year target reservoir volumes, are reported as a probability of falling into three allocation categories: “Moderate” 

(≥ 0.5 Liters per second), “Severe” (0.5 Liters per second – 0.25 Liters per second), and “Extreme” (<0.25 Liters per second.) 305 

The selected categories are consistent with those used by the U.S. Drought Monitor to describe similar ranges of industrial, 

social and environmental impacts expected due to reduced access to water resources (Svoboda et al., 2002).  Numerical 

thresholds assigned to the categorical boundaries align approximately with tercile values from the cumulative distribution of 

allocations derived from observed inflow and storage data, using the same reservoir operating rules as forecast-based 

allocations.  Further, the breaks in categories closely follow decisions made by JVRE: a water right value of 0.5 liters per 310 

second is not uncommon and approximately represents the lower bound in normal years (Hearne and Easter, 1995); during the 

most recent severe drought (2009-2014) water right values of 0.2 liters per second were common (D. Betancourt, personal 

communication.) 

2.4 Performance Metrics. 

The performance of each cross-validated modeling approach is assessed deterministically (Pearson’s correlation coefficient) 315 

and with a variety of categorical metrics to assess model skill in the prediction of specific categories, as opposed to a specific 

quantity or pattern (Regonda et al., 2006; Souza Filho and Lall, 2003).  Two sets of categories are evaluated, as previously 

defined.  The first is for streamflow hindcast prediction, with Above- (A), Near- (N), and Below-Normal (B) categories 

(ranges) based on a climatological distribution of observed ONDJ streamflow, each containing 33% of observations.  The 

second is for per water right allocation hindcast prediction, applying the Moderate, Severe, and Extreme categories, as previous 320 

defined and contingent on reservoir storage and forecast inflow. Categorical outputs are illustrated with contingency tables, 

comparing predicted versus observed categorical occurrences.  Perfect model skill occurs when the cross-validated predicted 

conditions match or ‘hit’ observed conditions., which describes the categorical performance of the entire forecast in 

comparison to observations.  Equation (5) illustrates the ‘Hit Score’ summary metric, as applied by (Barnston, 1992), which 

describes the categorical performance of the entire forecast in comparison to observations, where   325 

 

݁ݎ݋ܿܵ ݐ݅ܪ =
∑(ு௜௧௦ಲ,ு௜௧௦ಿ,ு௜௧௦ಳ)

௡
×100%         (5) 
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,஺ݏݐ݅ܪ)∑ ேݏݐ݅ܪ ,  ஻) is the sum of the count of years predicted correctly in each category, while n is the total number ofݏݐ݅ܪ

years in the record.  Individual categorical Hit Scores describe under which flow conditions the model is most skillfull, and is 330 

the count of years predicted correctly in a category divided by the number of years observed in the same category. A ‘Miss’ 

results when the predicted value does not fall within the observed category.  An ‘Extreme Miss’ constitutes a categorical 

prediction missing an observation by two categories (model predicts Above-normal while Below-normal is observed or vice-

versa.) The ‘Extreme Miss Score’ , as shown by Eq. (6), is the fraction of the sum of misses times Above-normal is predicted 

but Below-normal is observed (missA|B) plus the sum of misses times Below-normal is predicted but Above-normal is observed  335 

(missB|A) and the total number of hindcast years., n,  

 

݁ݎ݋ܿܵ ݏݏ݅ܯ ݁݉݁ݎݐݔܧ =  
∑ ௠௜௦௦ಲ|ಳା∑ ௠௜௦௦ಳ|ಲ 

௡
×100%        (6) 

 

Ranked Probability Skill Score (RPSS) is a categorical measure of an ensemble prediction of each modeling approach 340 

compared to a reference forecast, in this case climatology (Saunders and Fletcher, 2004). To calculate RPSS, the Ranked 

Probability Score (RPS), as shown by Eq. (7) must first be calculated for each simulation.  

 

ܴܲܵ =
ଵ

ேିଵ
∑ ሾ∑ ௖݌ − ∑ ௖݋  ௡

௖ୀଵ  ௡
௖ୀଵ ሿଶே

௡ୀଵ          (7) 

 345 

The RPS is a measure of square differences in the cumulative probability of a multi-categorical hindcast ensemble, where N is 

the number of hindcast categories, pc is the probability of the predicted value in category c, and oc is a binary indicator with a 

value of one if the observation falls in category c, or a value of zero otherwise.  The RPS ranges from 0 to 1, increasing for 

predictions farther from the observed outcome.  

 350 

The RPSS utilizes RPS, and ranges from -∞ to 1; values between 0-1 indicate greater skill than simply using climatology (i.e. 

basing prediction on long-term averages), while RPSS values less than zero indicate predictions are inferior to climatology.  

An RPSS value is generated for each of year of the hindcast using Eq. (38); the median RPSS value is reported. 

 

ܴܲܵܵ =
ோ௉ௌିோ௉ௌೝ೐೑೐ೝ೐೙೎೐

଴ି ோ௉ௌೝ೐೑೐ೝ೐೙೎೐
= 1 −

ோ௉ௌ

 ோ௉ௌೝ೐೑೐ೝ೐೙೎೐
         (38) 355 
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3 Model Performance. 

3.1 Statistical and Dynamical Streamflow Prediction Models.  

For each cross-validated streamflow modelling hindcast assessment (Stat-PCR: 1950 – 2015; Stat-Dyn: 1982 – present), a 

unique set of predictors and principal components are selected and evaluated with the categorical performance metrics 360 

(Pearson’s correlation coefficient, ‘Hit Score’, ‘Extreme Miss Score’, and RPSS; Table 2.)  As forecast lead increases, both 

Hit Score and RPSS decrease, while Extreme Miss Score increases. These results occur becauseThis is not surprising, as less 

information regarding the MJJA rainy season observations areis available with increasing lead, which is consistent with 

decreased correlations between ONDJ streamflow and predictors (Fig. 5.) 

 365 

 

 

 

 

 370 

Table 2: Stat-PCR and Stat-Dyn forecast model performance metrics 

 

 

 
For the Stat-PCR set of models, the predictors for each lead-time follow a similar pattern, utilizing soil moisture and SST from 375 

the month prior, and precipitation for the two months prior to the forecast date (e.g. September 1st forecast uses August soil 

moisture and SST, and July-August precipitation.)  Snow water equivalent (SWE) is not retained as a predictor as its May-

August correlation with October-January streamflow (Pearson’s Correlation Coefficient = 0.68), which is not as strong as the 

correlation between precipitation and streamflow for the same lead, and arguably provides the same information to the model.  

As such, observations of precipitation are retained for the Stat-PCR model.  The September 1st lead is promising, however for 380 

longer leads this relationship does not necessarily hold.  An August 1st lead is approximately equivalent to using climatology, 
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and by July 1st it is worse.  For the Stat-Dyn modeling approach, using the mean of CFSv2 ensemble forecasts for MJJA 

precipitation, Niño 3.4 and 1.2 SSTs at Jun 1st, May 1st and January 1st lead times, produces low Hit, high Extreme Miss and 

negative RPSS scores (Table 2), confirming the challenges of predicting through the Spring Barrier.     

 385 

The first principal component of the Stat-PCR September 1st forecast is highly correlated with SST in the Niño 3.4 region 

(0.88), which confirms that streamflow and therefore precipitation in the Elqui Valley are at least partially characterized by 

anomalous changes in SSTs.  From a categorical perspective, the statistical model is most skillful in predicting Above-Normal 

streamflow years (Hit Score: 82%; Table 3); categorical outcomes for Near- and Below-Normal streamflow years were less 

successful (Hit Scores: 36% and 64%, respectively.)  The large disparity between Above-, Near-, and Below-Normal 390 

categorical outcomes may be explained by evaluating cross-validated, global spatial correlation maps (1 x 1) of ONDJ 

streamflow with the MJJA MEI, following Zimmerman et. al (2016.)  The spatial correlation plots (1950 – 2015; Fig. 7) 

illustrate that years with positive MEI generally correspond with El Niño events and Above-Normal streamflow conditions, 

while years with negative MEI generally correspond with La Niña events and Below-Normal conditions.  This produces a 

strong positive correlation (0.65) between streamflow and SST in the Niño 3.4 region during years with positive MEI, and a 395 

moderate positive correlation (0.29) during years with negative MEI in the equatorial Pacific Ocean, but slightly outside the 

common ENSO index regions.  Correlation mapping between all years and streamflow produces a moderate correlation (0.35) 

in the common ENSO region, suggesting that El Niño years likely dominate this relationship.  However, ENSO is non-linear, 

and the amount of moisture transported to the basin during El Niño or La Niña years will vary dependent upon strength (Meehl 

et al., 2001), and other factors, as previously discussed and illustrated in Fig. 4.   400 

Table 3: September 1st Stat-PCR model categorical streamflow results: observed vs. forecast 
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Figure 7: May-August global Multivariate ENSO Index (MEI) correlated with October-January streamflow at Algarrobal for: (a) 405 
positive MEI years, (b) all MEI years, (c) negative MEI years 

 

 

3.2 ENSO Phase and Strength Streamflow Prediction Models. 

To evaluate ENSO phase-specific models, the Stat-P&S approach is adopted.  While several forecast leads and Niño 3.4 index 410 

windows were evaluated, the Stat-P&S model performs best for a May 1st forecast, when SSTs in the Niño 3.4 region are at 

least moderate in strength for a given phase [≥ +0.75C (El Niño) or ≤ -0.75C (La Niña)], or relatively neutral [within +/- 

0.5C departure from the long-term mean], for at least one month during January-April (JFMA; Table 4.)  For 1950 – 2015, 

60% of years qualify, triggering the May 1st Stat-P&S categorical prediction model.  For moderate conditions (positive and 

negative), this produces categorical Hit Scores of 75% for Above-normal (El Niño) and 58% for Below-normal (La Niña.)  For 415 

moderate La Niña only conditions, 7 of the 10 lowest ONDJ streamflow years on record are captured.  The remaining three 
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years of lowest ONDJ streamflow (1969, 1995, 2010) are predicted as Above-normal by the Stat-P&S model due to JFMA 

Niño 3.4 SSTs > 1.0C (strong El Niño conditions.)   

Table 4: Stat-P&S model categorical streamflow results: observed vs. forecast 

 420 

 

3.3 Coupled Statistical Prediction Models. 

The Stat-P&S and Stat-PCR models each provide skillful forecasts, at different leads.  While Stat-P&S performs best for a 

May 1st forecast lead, particularly for predicting high and low ONDJ streamflow, forecasts are issued only categorically; 

deterministic predictions from the Stat-PCR and Stat-Dyn models at this lead are relatively weak.  That is, the Stat-P&S model 425 

relinquishes forecast determinism and in turn increases forecast lead in comparison to the Stat-PCR and Stat-Dyn approaches.  

The Stat-P&S approach model is also hindered in only being triggered in for only 60% of the period of record.  The other 40% 

of years occur when Niño 3.4 SSTs, for at least one month during JFMA, are (+0.5C, +0.75C) or (-0.5C, -0.75C.)  These 

ranges are transitional and do not provide skillful categorical forecasts for the May 1st lead.  For this reason, the coupled 

statistical prediction model defers prediction forin these years to September 1st, when the Stat-PCR model is skillfulskilful in 430 

producing .”  The Stat-PCR approach provides deterministic forecasts of ONDJ streamflow, it is only skillful at a September 

1st forecast lead, which may limit water rights holders ability to benefit from longer lead times.  In contrast, while the Stat-

PCR approach provides deterministic forecasts of ONDJ streamflow, it is only skillful at a September 1st forecast lead, which 

may limit water rights holders ability to benefit from longer lead times.   

 435 

To address the limitations of both the Stat-PCR and Stat-P&S models, a coupled, sequential forecast approach is adopted which 

utilizes both the Stat-P&S and Stat-PCR models in the following manner: 

 

Step 1. The Stat-P&S model issues a May 1st categorical forecast of ONDJ streamflow when the Niño 3.4 conditions are 

met.  Otherwise no forecast is issued. 440 
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Step 2a. If the Stat-P&S model issued a May 1st forecast, the Stat-PCR model re-evaluates this prediction on September 

1st forecast, updating the forecast as necessary, and provides a deterministic forecast. 

 

Step 2b. If the Stat-P&S model did not issue a May 1st forecast, the Stat-PCR model produces the firsta deterministic 445 

forecast on September 1st.   

 

For performance evaluation, a categorical hit by Stat-P&S model becomes a miss if Stat-PCR model predicts a different (and 

wrong) category.  The Stat-PCR model may also correct a categorical miss by the Stat-P&S model.  

The May 1st Stat-P&S and September 1st Stat-PCR coupled forecast model revels a large degree of categorical forecast 450 

consistency (change between Table 4 and Table 3.)  The Stat-PCR model only predicts a different category than the Stat-P&S 

model in two of the 39 years evaluated, and for these two cases, it changes extreme misses (least desirable outcome) to hits.  

One such change was for the year 1995, one of the three lowest years of ONDJ streamflow not correctly categorized by the 

Stat-P&S model (initially predicted Above-normal while Below-normal streamflow observed.)  Thus, the coupling of these 

two Stat models appears to perform superiorly as compared to models individually by skillfully increasing the prediction lead 455 

time and allowing for prediction updating, as necessary.  

3.4 Allocation Prediction Model 

A streamflow prediction-reservoir water balance model system is used to evaluate the performance of water right allocations, 

as compared with using streamflow observations and streamflow climatology, for a September 1st issuance.  Utilizing 

streamflow observations is synonymous with a perfect forecast.  The system is tested in hindcast mode using streamflow 460 

median and 80th percentile streamflow prediction scenarios of ONDJ streamflow separately.  Both the median and 80th 

percentile approaches outperform climatology, achieving Hit Scores of 53%, as compared with only a 30% Hit Score using 

climatology (Table 5.)  Additionally, the climatological median fails to predict any years with Extreme reductions (< 0.25 

liters per second); the climatology-based approach over-allocates in 55% of years, as opposed to only 27% of years when 

applying the 80th percentile forecast approach.  This is noteworthy from a management perspective, as over-allocation is often 465 

considered more problematic than under-allocation from a long-term, drought-focused perspective.  The distributions of 

forecast-based allocations also more closely match observations than climatology, with the median and the 80th percentile 

forecast scenarios exceeding observation-based allocations by only 0.06 and 0.04 liters per second, respectively, on average 

(Fig. 8(a.)  Over-allocation using climatological streamflow is again evident, as the interquartile range (IQR) of climatological 

allocations does not align with observations. While the IQR of the forecast-based scenario is larger than the observation-based 470 

scenario, it does not systematically over-allocate (Fig. 8(a.)  This can also be illustrated by calculating the ratio of each 

approach (climatology and forecasts) to observed allocations (Fig. 8(b.) In this case, a perfect score would be a consistent 

value of one, as a climatological or forecast allocation would match each observation-based allocation.  The forecast-based 
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allocation ratios produce smaller IQRs and lower median values than climatology-based allocations, implying that the forecasts 

are better aligned with observations and slightly more conservative.   475 

 

 

 

Table 5: Categorical water right allocation results: observed vs forecast 
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 480 
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Figure 8: Reservoir model-derived forecast allocations: (a) absolute allocation values, (b) ratio of forecast allocations to observed 
allocations 

The probabilistic modeling approach also allows for an understanding of categorical forecast certainty and strength, that is, the 485 

degree to which the model suggest a category (Fig. 9.)  In this case, the forecast-based allocations more often indicate a stronger 

forecast tendency (higher probability) toward one category, whereas the climatology-based allocations often indicate a weaker 

tendency to shift.  While this is not always the case, from a reservoir management perspective, climatology-based allocations 

provide less actionable information, as the strength of the predicted categories are often not too dissimilar, even in years where 

correct predictions are made.  In contrast, for the 28 years where forecast-based allocations of a category exceed 80% (a strong 490 

prediction), the Hit Score is 79%, a high success rate, and further, no extreme misses occur (Moderate category predicted, 

Extreme category observed), avoiding over-allocation in dry years.  
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Figure 9: Probabilistic water right allocation forecast using (a) September 1st PCR-Stat model 80th percentile, (b) long-term 495 
averages (climatology)   

The effect of over- and under-allocation by both forecast- and climatology-based approaches on end of year reservoir storage 

is also evaluated.  Large deviations from the 100 million cubic meter target volume (February 1st) are viewed as problematic 

to the JVRE and water rights holders (Fig. 10.) The prior analysis demonstrates the propensity for the climatology-based 

approach to consistently over-allocate, resulting in reservoir volumes consistently below the target.  The forecast-based 500 

scenarios have a smaller IQR with median values approaching the target value.  The climatology-based approach also allocates 

the full reservoir volume in 33% of years (leaving the reservoir empty), which happens in only 11% of years under the forecast-

based scenarios, due to prediction error (Fig. 10.)   
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Figure 10: End of year reservoir storage under three allocation approaches; 100 M m3 is the target 505 

4 Summary and Discussion. 

 

While Tthe frameworks developed here, although are applied specifically to the Elqui Valley, in Chile, can provide a broad 

pathway for water resource managers and water rights holders in water rights drivenmanaged basins couldto benefit from the 

streamflow forecast-informed and reservoir allocations.  WhileAlthough streamflow the model predictions of streamflow hold 510 

modest skill for the Elqui, the coupling of the Stat-P&S and Stat-PCR models, and subsequent coupling of streamflow forecasts 

towith the human managed allocation framework, provide for increases in system efficiency as compared with climatology 

based forecasts. Specifically, the The Stat-PCR streamflow prediction-reservoir water balance model system produces values 

closely matched with observations over the historical period, and each forecast (median, 80th percentile) outperforms 
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climatology. Use of the 80th percentile Stat-PCR forecast is intended to represent risk aversion; however, the probabilistic 515 

framework allows assessment for any risk preference. Ensemble predictions illustrate the general propensity of a climatology-

based allocation to provide limited actionable information in contrast to forecast-based allocations, which exhibit enhanced 

skill when the model issues strong predictions (>80% categorical likelihood.)  However, in years when the Stat-PCR forecast-

based allocation model issues a weak prediction (no dominant tendency toward any specific category) other allocation decision 

frameworks may be worth investigating (e.g. allocation based on existing storage only as a hedge against inflow uncertainty.)  520 

The development and implementation of the probabilistic framework by reservoir managers, as a mechanism to convert 

streamflow forecasts into forecast allocations, may arguably constitute a more appropriatenecessitate a higher level of 

communication with water rights holders, as opposed to the current forecast structure (inflow to the reservoir).  Probabilistic 

forecasts can provide option value to water rights holders, if the strength of the category predicted would alter water rights 

holders’ decisions (e.g. changes cropping decisions, drivesprompt water procurement or sales) acting under the presumption 525 

of economic rationality.  This hypothesis may also be worth investigating.   

 

Selection of categorical thresholds (three for this case study) is based on equal distribution of observations, and does not 

necessarily represent the preferences of reservoir managers or rights holders, however these thresholds can be updatedare 

easily adjustable.  For example, if only two categories are usedselected as , allocations above and below 0.75 L/s, the Hit Score 530 

rises to 92%, which could be representative of some productivity threshold (e.g. crop water requirement).  The framework is 

thus sufficiently flexible to allow mManagers are thus free to select categories which suit their needs or reflect true differences 

in the utility of allocations to water rights holders.   

 

While the approaches in this research are mostly a demonstration of concept, the model framework is consistent with the 535 

current operations of Puclaro Reservoir, buthowever it is not optimized for orto hedge against expected future (multi-year) 

conditions. While the model may be informative over the long-term, resulting in allocation and storage values better matched 

towith observations than climatology-based allocations, it performs poorly in certain years, most notably during the 2009 – 

2015 hydrologic and meteorological drought (Fig. 9(a.))  While poor model performance during this period is undoubtedly 

due in part to the limited reservoir operating rules, the Stat-PCR approach tends to under predict extremes, especially when 540 

they occur consecutively.  Further forecast model development will focus on improving predictive skill of extreme events, 

particularly dry periods, making use of non-parametric methods and additional multi-model approaches, and dynamic rule 

structures and simulation techniques.  Even so, adoption of the approaches presented here by water managers and rights holders 

bodes well for improved economic efficiency and benefits across the Elqui Valley.  

 545 

The dynamic nature of ocean, atmosphere and terrestrial interactions, which contribute to moisture transport in the Elqui 

Valley, are undoubtedly complex and challenge hydrologic prediction models at increasing leads.  The mixed success of 

streamflow forecasts currently in use for the Elqui reflect this.  The mixed success of streamflow forecasts currently in use for 
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the Elqui reflect this.  In this work, correlation and composite mapping suggest moisture transport to the Elqui Valley is 

dependent on the phase, strength and timing of many variables (Fig. 4.)  While austral winter precipitation, SST, and soil 550 

moisture correlations with ONDJ streamflow at varied leads are encouraging (Fig. 5), the Stat-PCR approach, which makes 

use of these predictors, is skillful only at a September 1st lead, as indicated by RPSS scores and other forecast validation metrics 

(Table 2.)  The Stat-Dyn approach, using precipitation and SSTs, results in inferior outcomes compared with the Stat-PCR 

model.  The Stat-P&S model, however, provides skillful predictions of ONDJ streamflow at a May 1st lead, albeit categorically 

and is triggered in only 60% of the period 1950 – 2015.The coupling of the Stat-P&S and Stat-PCR models to produce initial 555 

(May 1st) and updated (September 1st) forecasts may be valuable to both reservoir managers and water rights holders.  From a 

reservoir management perspective, properly setting the per right water allocation (September 1st) is critically important to 

satisfy rights holders and maintain adequate reservoir storage for the uncertain future.  The Stat-PCR component of the coupled 

model provides skill superior to climatology, and is perhaps sufficient to inform these decisions.  Reservoir managers, however, 

are also expected to provide a non-binding May 1st forecast, upon which rights holders, specifically farmers who have crop 560 

choice flexibility and/or water right leasing potential, may choose to utilize in preparation for the ONDJ growing season (e.g. 

determine whether to supplement through the water market.)  The Stat-P&S categorical forecast with a May 1st lead can inform 

these longer planning actions.  The strong categorical consistency between the May 1st Stat-P&S and September 1st Stat-PCR 

forecasts may also serve to reinforce confidence in the forecast outcomes; the two models only differ in prediction categories 

twice in 66 years.   565 

  

 

  

The coupling of the Stat-P&S and Stat-PCR models to produce initial (May 1st) and updated (September 1st) forecasts may be 

valuable to both reservoir managers and water rights holders.  From a reservoir management perspective, properly setting the 570 

per right water allocation (September 1st) is critically important to satisfy rights holders and maintain adequate reservoir storage 

for the uncertain future.  The Stat-PCR component of the coupled model provides skill superior to climatology, and is perhaps 

sufficient to inform these decisions.  Reservoir managers, however, are also expected to provide a non-binding May 1st forecast, 

upon which rights holders, specifically farmers who have crop choice flexibility and/or water right leasing potential, may 

choose to utilize in preparation for the ONDJ growing season (e.g. determine whether to supplement through the water market.)  575 

The Stat-P&S categorical forecast with a May 1st lead can inform these longer planning actions.  The strong categorical 

consistency between the May 1st Stat-P&S and September 1st Stat-PCR forecasts may also serve to reinforce confidence in the 

forecast outcomes; the two models only differ in prediction categories twice in 66 years.   

5 Conclusions. 

The focus of this research is to develop an understanding of the mechanisms contributing to austral summer streamflow in the 580 

Elqui Valley, investigate model skill at varied forecast leads, and produce forecast-based water-right allocations to inform 
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water resources management decision-making. Like many regions, the dynamic nature of ocean, atmosphere and terrestrial 

interactions, which contribute to moisture transport in the Elqui Valley, are undoubtedly complex and challenge hydrologic 

prediction models at increasing leads.  The mixed success of streamflow forecasts currently in use for the Elqui reflect this.  

This work establishesHere, a framework is established by which streamflow forecasts can be produced and coupled with human 585 

managed allocation systems to promote equity and efficiency in the use of limited water resources.   

 

Correlation and composite mapping suggest moisture transport to the Elqui Valley is dependent on the phase, strength and 

timing of many variables (Fig. 4.)  While austral winter precipitation, SST, and soil moisture correlations with ONDJ 

streamflow at varied leads are encouraging (Fig. 5), the Stat-PCR approach, which makes use of these predictors, is skillful 590 

only at a September 1st lead, as indicated by RPSS scores and other forecast validation metrics (Table 2.)  The Stat-Dyn 

approach, using precipitation and SSTs, results in inferior outcomes compared with the Stat-PCR model.  The Stat-P&S model, 

however, provides skillful predictions of ONDJ streamflow at a May 1st lead, albeit categorically and is triggered in only 60% 

of the period 1950 – 2015.   

 595 

The broader insight gained is in the coupling of the Stat-P&S and Stat-PCR models to produce initial (May 1st) and updated 

(September 1st) forecasts which may be valuable to both reservoir managers and water rights holders.  From a reservoir 

management perspective, properly setting the per right water allocation (September 1st) is critically important to satisfy rights 

holders and maintain adequate reservoir storage for the uncertain future.  The Stat-PCR component of the coupled model 

provides skill superior to climatology, and is perhaps sufficient to inform theselikely better informs allocation decisions.  600 

Reservoir managers, however, are also expected to provide a non-binding May 1st allocation forecast, upon whichallowing 

rights holders, specifically farmers who havewith crop choice flexibility and/or water right leasing potential, may choose to 

utilize in preparation for the ONDJ growing season (e.g. determine whether to supplement through the water market as 

necessary.)  The Stat-P&S categorical forecast with a May 1st lead can inform these longer planning actions.  The strong 

categorical consistency between the May 1st Stat-P&S and September 1st Stat-PCR forecasts may also serve to reinforce 605 

confidence in the forecast outcomes; the two models only differ in prediction categories twice in the 66 years evaluated.  The 

conclusion here is that coupled forecasts need not be strictly deterministic, and using early categorical forecasts to provide an 

indication of expected conditions, and reinforcing the prediction with a revised deterministic forecast as more observations of 

local variables (e.g. precipitation) become available may be useful for water rights holders.  In addition, linking of the 

streamflow forecast with the human managed allocation system is broadly relevant as a mechanism which might be used to 610 

promote efficiency in the use of limited water resources.  The reservoir allocation model is skillful at the September 1st lead 

(categorical hit skill score = 53%), and using a probabilistic modelling approach, forecast-based allocations are categorically 

skillful (79%) when the model predicts the observed allocation category with at least 80% certainty.  In total, Tthe frameworks 

presented here addresses the unique set of circumstances posed by the Elqui Valley, Chilein water rights managed basins, and 

but represents an advancement in linking season-ahead seasonstreamflow forecasts to water resources systems.The Stat-PCR 615 
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streamflow prediction-reservoir water balance model system produces values closely matched with observations, and each 

forecast (median, 80th percentile) outperforms climatology. Use of the 80th percentile Stat-PCR forecast is intended to represent 

risk aversion; however, the probabilistic framework allows assessment for any risk preference. Ensemble predictions illustrate 

the general propensity of a climatology-based allocation to provide limited actionable information in contrast to forecast-based 

allocations, which exhibit enhanced skill when the model issues strong predictions (>80% categorical likelihood.)  However, 620 

in years when the Stat-PCR forecast-based allocation model issues a weak prediction (no dominant tendency toward any 

specific category) other allocation decision frameworks may be worth investigating (e.g. allocation based on existing storage 

only as a hedge against inflow uncertainty.)   

 

Selection of categorical thresholds is based on equal distribution of observations, and does not necessarily represent the 625 

preferences of reservoir managers, however these thresholds can be updated.  For example, if only two categories are used, 

allocations above and below 0.75 L/s, the Hit Score rises to 92%.  Managers are thus free to select categories which suit their 

needs or reflect true differences in the utility of allocations to water rights holders.   

 

The focus of this research is to develop an understanding of the mechanisms contributing to austral summer streamflow in the 630 

Elqui Valley, investigate model skill at varied forecast leads, and produce forecast-based water-right allocations to inform 

water resources management decision-making. While the approaches in this research are mostly a demonstration of concept, 

the model framework is consistent with the current operations of Puclaro Reservoir, but is not optimized for or hedge against 

expected future conditions. While the model may be informative over the long-term, resulting in allocation and storage values 

better matched to observations than climatology-based allocations, it performs poorly in certain years, most notably during the 635 

2009 – 2015 hydrologic and meteorological drought (Fig. 9(a.)  While poor model performance during this period is 

undoubtedly due in part to the limited reservoir operating rules, the Stat-PCR approach tends to under predict extremes, 

especially when they occur consecutively.  Further forecast model development will focus on improving predictive skill of 

extreme events, particularly dry periods, making use of non-parametric methods and additional multi-model approaches, and 

dynamic rule structures and simulation techniques.  Even so, adoption of the approaches presented here by water managers 640 

and rights holders bodes well for improved economic efficiency and benefits across the Elqui Valley.  
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