
Dear Editor, 

Please find below a point-by-point response to the reviews and a marked-up manuscript 
version. We have substantially changed the original manuscript to accommodate the demands 
from the second reviewer. Major changes are: (1) better explaining why we are limited to this 
sample of three ET products; (2) working with product anomalies to address the issues related 
to biases between the products; (3) implementing an inverse error-variance scheme to weight 
the anomalies, including the use of the full error covariance matrix to address the data sets 
dependencies; (4) better describing the NN methodology; and (5) more clearly stating whether 
for this particular exercise the weighted average can be considered advantageous compared 
with the simple average. Moreover, the readability has been improved by accommodating 
minor textual edits throughout the document. To guide the reviewers through the manuscript 
we have marked up specific request in red, clearly indicating the page and concerned lines in 
the response to the reviews, and adding short sentences in red in the manuscript to signal 
major changes to the text.  

Sincerely yours,  

  
Carlos Jimenez (on behalf of all co-authors)  

 
 
 
Reviewer 1 
 
The authors have successfully addressed my comments on the previous version of the 
manuscript. The extension of the number of merged models as well as the extrapolation 
to the global scale improved the value of the analysis.As such, I only have minor 
comments/corrections at this stage. Note that the line numbers in the following refer to 
the file hess-2017-573-manuscript-version5.pdf. 
 
We thank the reviewer by going again through the manuscript and providing us with 
comments to improve it.  
 
Specific comments: 
 
line 205: how was the cross validation performed (leave-one-out)? 
 
 
R: The cross-validation mentioned here is a standard technique to prevent the NN to over-fit 
to the training dataset, and it is applied here any time the NN is trained, no matter which 
training dataset is used. The leave-one-out is a different strategy, having the objective of 
assessing the quality of the dataset in terms of capturing the general distribution of the data. In 



practical terms we test this by removing one station from the training data set, and checking if 
the weights of the station left aside can be properly replicated by the NN. If it is not the case, 
this is a strong indication pointing towards training dataset not robust enough to represent the 
all-conditions true distribution. These two options are now better discussed in P7-L209-227 of 
the revised manuscript, with the results of the tests presented in Section 7.3. 
 
line 212: remove one of the double "the" 
 
R: Corrected. 
 
line 218: wrong placement of brackets for Willmott (1982). 
 
R: Corrected. 
 
line 240: semicolon after "Release 3.1" 
 
R: Corrected 
 
line 321: "World" instead of "Wordl" 
 
R: Corrected 
 
line 392: delete "also" (the previous station showed large inter-annual variability, not 
seasonal variability) 
 
R: Corrected 
 
Figure 7 caption: "axes" instead of "axis" in the last sentence 
 
R: Corrected 
 
 
Figure 8: adjust the size of the lower right panel to match the other panels. 
 
R: Done. 
 
line 514: "first" instead of "firs" 
 
R: Corrected 
 
line 574: missing "and" in "0.93 (MSWEP) 0.88 (WorldClim)" 
 
R: Corrected 
 
line 577: "catchment water budget" sounds more commonly used to me (here and some 
other instances)? 
 
R: Replaced. 
 
line 631: "In" instead of "Tn" 



 
R: Corrected. 
 
line 634: "factor" instead of "factors" 
 
R: Corrected. 
 
 
 
Reviewer 2 
 
The authors have expanded on their original submission, by extrapolating the estimated 
weights using a neural network, and adding a third product to the merger. While the 
manuscript is certainly improved from the first submission, I still have major 
reservations about the motivation for this work, and the appropriateness/accuracy of 
the chosen methodology. These issues would need to be address prior to publication.  
 
We thank the reviewer by going again through the manuscript and providing us with valuable 
comments to improve it. We have better motivated our work, updated the methodology to 
work with anomalies, and more clearly stated the conclusions of our exercise concerning the 
adequacy of using a weighted or unweigthed average for this particular combination of 
products. 
 
1.  
The motivation for merging these particular products needs to be provided in the 
manuscript (not just in the reviewer response). Also, there are other products available 
that you could use, say from reanalyses.  
 
R: We are rephrasing this part of the introduction to more clearly state that this merging effort 
is within a specific ET modelling framework: the WACMOS-ET project.  We are also 
mentioning that as far as we know there are no other daily global ET products publicly 
available. All this is added in P3-L58-68.  
 
Concerning the reanalysis, their surface fluxes are a different type of product than the ones 
targeted here. They are normally classified as “derived” quantities, as their estimates are not 
directly constrained by the observations, and we do not intend to merge them here with the 
more observation-driven fluxes of the WACMOS-ET project. We have added an statement in 
the introduction to highlight this (P2-L43-48). 
 
Given that all three input ET products are forced with the same data, it is not clear to 
me why using a statistical method (based on random errors) would be beneficial to 
account for systematic differences (driven by model structure / parameters) between the 
three products. This is a fundamental flaw in this work. 
 
R: The three ET products share some common forcing data (namely the surface radiation and 
the air humidity), but they also use different products (e.g. the vegetation products and 
precipitation only being used by GLEAM). This is described in Section 3.1. Therefore, the 
differences are not only driven by model structure/parameters and the difference between the 
gridded products and the tower ET contains both random and systematic components, as 



shown in the original Figure 11. Below, we discuss further why our merging methodology is 
adequate after updating it as suggested by the reviewer (see below). 
 
While this is not actually stated, it seems to me that the main point of this work is to 
determine whether these three products can be improved upon by merging them, and if 
so, can they be merged more effectively than using an (unweighted) average.  
 
R: We already stated in the introduction: “As such we pose the question: can a product 
combining the GLEAM, PT-JPL, and PM-MOD estimates result in a more accurate ET 
estimate? To make the paper objective clearer we are now also mentioning the simple average 
in the introduction, and that we are comparing it with the weighted product (P3-L76-79). 
 
There are two steps to this: 
  
i. Are the weights (or more importantly, the final product) significantly different 
between the standard averaged, and with the eights calculated using a more 
sophisticated approach?  
Currently this has not been adequately answered, due to the flawed method used to 
estimate the weights.  
 
R: See our comments below regarding our changes to the methodology. 
 
 
ii. Can the weights calculated at the limited number of tower locations be usefully 
extrapolated globally?  
Currently this cannot be answered, as not enough information is given regarding the NN 
used to extrapolate the weights.  
 
R: See our comments below regarding the application of the NN. 
 
 
2. As in the first review. The inverse-error variance weights are based on the assumption 
of unbiased and independent data sets. The data sets used here are strongly dependent 
and biased, and this cannot be ignored. At a minimum for publication, the weights (and 
consequently the averaging) needs to be based on anomalies (to remove the bias, and the 
more systematic aspects of the dependence), and the lack of independence needs to be 
acknowledged prominently, including qualifying all conclusions by noting that these 
data sets were not independent. If you don't have enough data to use anomalies, then 
you cannot apply this method by ignoring the inconvenient biases.  
 
R: We fully agree with the reviewer that an inverse-error variance merging requires unbiased 
estimates. Only under those conditions this statistical method can be considered and optimal 
estimator, with the resulting merged product minimizing the error variance. Therefore, strictly 
speaking, if we consider the in situ observations unbiased with respect to the truth, the 
products should be debiased against the in situ observations. This kind of debiasing will 
strongly constrain the merged product to the tower absolute values, and would require a 
global estimation of the bias for the final product. In essence, this would be trying to 
reproduce the fluxes, as in Yao et al., 2017. Note that this is not the objective here, but the 
intention is to weight the original gridded products giving more weight to the products that 
reproduce the tower variations more closely.  



 
After some tests we finally implemented a new merging scheme that allows working with 
anomalies, but without correcting to the tower absolute values. In short, we first derive time 
series of anomalies for each product and the tower observations by removing their individual 
seasonal climatologies. Then, we calculate the full covariance matrix of the difference of the 
gridded product anomalies and the tower anomalies as the basis for the weighting, so we 
account for the expected product correlations due to modelling/forcing similarities. Finally, 
we weight the anomalies and add them to the climatology of the simple-averaged product. 
This is now fully explained in P5-L155 to P6-L186. 
 
 
3. The NN network is not adequately explained, and reads like it has been blindly 
applied rather than carefully investigated. As with the first review, I still have concerns 
about over-fitting. Since so little information is given, it is not clear whether the NN was 
not useful for extrapolation, because of the limited locations of the tower observations, 
or because the NN itself was inadequate. 
 
R: We have ample experience applying a similar NN setup for different geophysical problems 
(e.g., Jiménez et al., 2003, Jiménez et al., 2009, Jiménez et al., 2012) and are certain that the 
NN is adequate for this application.  The NN description was short as we firmly believe that 
the limitations here are coming from the data set, not from the method used to find the 
statistical relationship between the weights and the model inputs. Multi-layer perceptrons can 
be trained with different backpropagation algorithms, and their generalisation capacity can be 
optimised by techniques such as structural stabilisation, cross-validation, or regularisation. In 
our experience all these different NNs perform very similarly when properly set up. This has 
been further explained in the text (see below). 
 
For publication, the NN needs to be more adequately explained. This includes details of 
how the training data sets were split into training and evaluation data within the NN 
algorithm (and how this then relates to the experiments where a single station was 
removed), how the input data was selected / what else was tested, and how you ensure 
that the output weights equal 1.  
 
R: Full details are given now at P7-L197-227. It is worth indicating that controlling the 
optimal complexity of the model underlined by the NN is relatively easy by using some of the 
techniques mentioned before, so we are confident that we are not over-fitting in that sense. 
However, this does not tell much about the “quality” of the data set to truly sample all 
possible conditions, which will be always a concern when using the existing pool of tower 
data for global applications. Therefore, the typical stratification of the training data sets to test 
whether the available sampling of the true distribution is adequate to capture most possible 
conditions.  
 
Also, it isn't stated whether a separate NN is calculated for each day of the year, or if all 
data is thrown in to a single NN. I suspect it is the former, but would strongly 
recommend the latter.  
 
R: Yes, the NN is trained to model the annual statistical relationship between the weights and 
model inputs. We are making that clear now (P6-L191-193). We would not advice to model 
the daily relationship due to the resulting very small database for the individual daily 
trainings, and the suppression of the temporal variability in the daily training data sets. Both 



things do not help define the link between variations in the NN inputs and weights, and are 
likely to impact the robustness of the found relationships. 
 
How do you deal with hemispheric differences? It doesn't really make sense to predict 
SH weights for a day of year, based on NH data only (there is only one SH tower, in 
Australia).  
 
R: We agree that this is a severe limitation for a global extrapolation. Still, we think it is 
worth presenting a global extrapolation, but testing if the biomes covered by the stations in 
the NH could be somehow representative of the conditions in the SH. This is a gross 
assumption, and our tests indeed showed that it is not the case. A test about this can be found 
in P25-L543 to P26-L560. 
 
By training a single NN using data for all days (and not including day of year in the 
training data) you could withhold data for some days to test whether the NN can at least 
reproduce the sites that are sampled.  
 
R: A similar test is now included in Section 7.3 and described in P25-L517-542. The “all 
stations” statistics are derived from days of the year not seen by the NN during the training 
phase. For that, from the original stations data set 15% of the available days at each station 
are removed before training and used for the statistics. 
 
 
MINOR:  
 
1A general grammar check would be useful, with attention paid to missing possessive 
apostrophes. 
 
R: The whole manuscript has been carefully edited paying attention to the grammar. 
 
L49: please double check that the MTE product is a regression. I thought it was a 
machine learning approach, but could be wrong.  
 
R: Regression predictive modelling, i.e. is the task of approximating a mapping function (f) 
from input variables (X) to a continuous output variable (y), is a standard technique in 
machine learning approaches. Machine learning approaches are typically applied to either 
regression or classification problems. 
 
Section 2.1 (from first review also). Add the spatial resolutions in here.  
 
R: Added. 
 
Replace all instances of 'inverse-variance weighting' with 'inverse error variance 
weighting' 
 
R: Corrected. 
 
L210. "Only the systematic component of the error can potentially be captured by the 
NN, and there is not warranty that all the systematic errors are dependent on the model 
inputs". This is incorrect/misleading. "systematic errors" usually refers to biases, and 



these methods can predict the mean square of the random errors (which is what your 
inverse error variance weights should reflect). Note that statistical methods like this do 
not predict individual errors, rather they predict the tendency towards larger/smaller 
errors.  
 
R: Yes, the sentence is indeed misleading, and we have rephrased it. Apart from that, we 
assume that by statistical methods the reviewer refers to the NN. If that is the case, we are 
certainly not trying to predict individual errors, but to model the distribution of the weights, 
conditioned to the ET model inputs and model ET estimates. For this, the NN is calibrated  by 
minimizing the sum of square errors, where each error is the difference between each target 
weight of the training data set, and the NN prediction. 
 
 
Regarding the second half of the sentence, this is why you need to do some work to show 
that you have selected appropriate input data sets for NN.  
 
R: We agree that this part of the sentence was again not clear.  We meant that the NN is used 
to model the statistical distribution of the weights, with this distribution not only depending 
on the variables used as predictors in the NN approach, which means that we can never 
perfectly predict the weights. This has been added to the manuscript (P7-L194-197). 

 
L273: quantify 'too close'. How is "clearly not representing the overall land cover” 
determined?  
 
R: We agree with the reviewer that this is rather subjective.  In this context, “too close” meant 
that a water body could be visually identified  in an aerial picture of the 25 km cell 
surrounding the eddy-covariance tower. The same visual inspection was used to discard 
stations where the station surroundings were clearly not representative of the station cover. 
This has been added to the manuscript (P10-L285). 
 
Explicitly note here that the towers do not provide comprehensive global coverage, and 
don't cover many biomes, climate regimes, or the Southern Hemisphere.  
 
R: We believe that this was already stated in the paper, but we are further adding that there 
are only 2 stations in the Souther Hemisphere (P11-L290)   
 
L280: representativity errors should be mentioned here (tower to 25 km).  
 
R: Certainly, representativeness errors cannot be ignored given the large mismatch between 
tower fetch and the spatial support of satellite imagery, but this section discusses the tower 
errors independent of the application. We chose to place this comment at the start of the next 
section, when we introduce some ancillary data to investigate the tower surroundings 
homogeneity (P13-L331-334). 
 
Figure 2 : 100 Wm2 is a huge range for each colorbar. Please plot with a finer 
discretization.  
 
R: 100 W/m2 corresponds here to a discretization of the full ET range in 10 intervals and the 
corresponding 10 colours. In our view this is an adequate level of discretization for this type 



of global plots, and we have already used it in other flux related publications without any 
issues (e.g., Jiménez et al., 2009, Jiménez et al., 2010). Therefore, we prefer to leave the plot 
as such. 
 
Figure 4: It is stated repeatedly that the weights don't differ much from 1/3, and yet this 
plot shows a large deviation. Statistics are needed here to quantify the divergence from 
1/3.  
 
R: The weights differ now from the 1/3 value after the new merging scheme. Nevertheless, 
we are replacing Figure 4 with a box plot to display the weight statistics in a more informative 
way.  
 
 
Figure 7: It doesn't really make sense to plot global fields for three month blocks.  
 
R: The authors do not fully agree with this comment, as these maps show the average 
seasonal patterns of evaporation, which helps to assess whether the temporal dynamics in the 
datasets are well represented at the seasonal scale. 
 
 
Figrue 10: This plot is difficult to understand. Why not plot Ih v. RMSE?  
 
R: We thank the reviewer for this suggestion. A scatter plot of Ih versus RMSD is certainly 
also a possibility, but here we intended to show whether a decreasing homogeneity results in 
an increasing RMSD. Plotting like this we can also display the linear square fit of the 
normalized RMSD of the sorted stations, so we prefer this type of figure. We are rewriting the 
figure caption to make this clear. 
 
Ih has not been defined anywhere in the manuscript.  
 
R: We would like to point the reviewer to Eq. 7 of the original manuscript, where Ih was 
already defined.  
 
L507: what about systematic errors in the obs? (inc. representativity)?  
 
R: This is indeed an issue, and it can be problematic when the observations are used to 
improve model estimates. Note that possible systematic errors in the tower observations were 
already discussed in Section 3.2 of the original manuscript though , now at (P11-L292-299).  
 
L509: "if the difference with the observations were mostly random in nature, we should 
not expect the observations to provide much guidance to combined the products".  
This is not correct. See comment on L210.  
 
R: We agree with the reviewer. Only in case of using the observations to improve a particular 
model estimate, the systematic differences are useful to detect and correct model issues.  In 
the framework of an inverse error variance scheme to combine estimates the variance of the 
random errors guides the weighting. 
 
L521: No. You could have defined the bias over the data time period that you do have.  
 



R: We agree with the reviewer that the bias is an issue, and we believe we properly address 
this now by working on anomaly time series. 
 
L565: the occurrence of negative weights is because you have dependent products.  
 
R: This is indeed the underlying reason, and this is clearly acknowledged now throughout the 
manuscript (e.g. P17-L400).    
 
L581: Qualify that this approach assumes that the surface water storage has not 
changed over this time period, and that this assumption will not necessarily hold over 
the limitted time period you are using. 
 
R: This has now been acknowledged at P27-L577-578.   
 
Note that this is the same precip used in the ET products, and that this does not 
represent an independent evaluation.  
 
R: We agree, and we would like to point out that we were already tackling this issue by 
adding a second precipitation product. This is now highlighted again in Section 7.4 (P27-
L570-575).  
 
L605: either explain why the slope is an important statistic here, or delete it. 
 
R: Given that the expectation here is the ET from the models equalling the basin ET inferred, 
closeness of the slope of the linear fit to one is a desirable target. Nevertheless, with the new 
merging scheme the slopes of the merged product are more similar, so we remove the slope 
discussion and add the bias as a third statistic inference.  
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Abstract. An inverse error variance weighting of the anomalies of three terrestrial evaporation (ET)

products from the WACMOS-ET project based on FLUXNET sites is presented. The three ET mod-

els were run daily and at a resolution of 25 km for 2002–2007, and based on common input data

when possible. The local weights, derived based on the variance of the difference between the tower

ET anomalies and the modelled ET anomalies, were made dynamic by estimating them using a 61-5

day running window centered on each day. These were then extrapolated from the tower locations

to the global landscape by regressing them on the main model inputs and derived ET using a neural

network. Over the stations, the weighted scheme usefully decreased the random error component,

and the weighted ET correlated better with the tower data than a simple average. The global extrapo-

lation produced weights displaying strong seasonal and geographical patterns, which translated into10

spatiotemporal differences between the ET weighted and simple average ET products. However,

the uncertainty of the weights after the extrapolation remained large. Out-sample prediction tests

showed that the tower data set, mostly located at temperate regions, had limitations with respect to

the representation of different biome and climate conditions. Therefore, even if the local weighting

was successful, the extrapolation to a global scale resulted problematic, showing a limited added15

value over the simple average. Overall, this study suggests that merging tower observations and ET

products at the time and spatial scales of this study is complicated by the tower spatial representa-

tiveness, the products coarse spatial resolution, the nature of the error in both towers and gridded

data sets, and how all these factors impact the weights extrapolation from the tower locations to the

global landscape.20
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1 Introduction

The surface latent heat flux governs the interactions between the Earth and its atmosphere (Betts,

2009), is an essential component of the water and energy cycles (Sorooshian et al., 2005), and thus

plays a key role in the climate system and on the linking of biochemical cycles (Wang and Dickin-

son, 2012). Terrestrial evaporation (ET) – the associated flux of water from land into the atmosphere25

– is also an important variable in the management of agricultural systems, forests, and hydrological

resources. Hence, estimates of ET at different spatial scales, ranging from individual plants for man-

aging irrigation, to basin scales to evaluate water availability, are required by many applications(e.g.

Dunn and Mackay, 1995; Le Maitre and Versfeld, 1997; Gowda et al., 2008; Fisher et al., 2017).

Point-based measurements of land heat fluxes are typically conducted during field experiments30

(Pauwels et al., 2008) or by more permanent monitoring systems, such as lysimeters (Hirschi et al.,

2017) and flux tower networks (Baldocchi et al., 2001). However, these are ultimately point mea-

surements that require specific equipment and cannot be applied for routine monitoring over large

areas. Therefore, more readily available meteorological observations are often combined with well

known flux formulations (e.g., Monteith, 1965; Priestley and Taylor, 1972) to obtain regional-scale35

estimates.

To derive global estimates, a central challenge remains: ET does not have a direct signature that

can be remotely detected. As an alternative, satellite remote sensing observations related to surface

temperature, soil moisture, or vegetation can again be combined with traditional flux formulations

(e.g., Monteith, 1965; Priestley and Taylor, 1972) to derive global estimates at different time and40

spatial scales. This has led to the raise and proliferation of satellite observation-based retrieval mod-

els (and subsequent data sets) of ET over the last few years (for overview see Wang and Dickinson,

2012; Zhang et al., 2016). Global flux estimates are also available from atmospheric reanalyses (e.g.

Dee et al., 2011), but are often treated separately as they are not as directly constrained by observa-

tions as the satellite data-driven data sets (Jimenez et al., 2011; Mueller et al., 2013). In addition, the45

latter are specifically designed to estimate ET, and while also uncertain, their errors are in principle

more traceable due to their lower complexity. Nonetheless, satellite-based ET products also show

large discrepancies which are put in evidence when inter-compared and evaluated against in situ flux

networks (Jimenez et al., 2011; Mueller et al., 2011; McCabe et al., 2016).

Far from discouraging the use of these ET datasets, the inter-product differences have been per-50

ceived as an opportunity to foster research and find new means to combine these datasets in an

optimal manner. So far, these efforts have ranged from simply averaging a number of ET products

(Mueller et al., 2013) to more complex approaches, such as weighted averages (Hobeichi et al.,

2018), fusion algorithms where the original ET products are combined to reproduce flux observa-

tions (Yao et al., 2017), or integration methodologies that seek consistency between ET products and55

related products of the water cycle (Aires, 2014; Munier and Pan, 2014). ET products based on a

direct regression of tower ET on a set of explanatory variables also exist(Jung et al., 2011).
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Aiming at improving the predictive capability for ET, the WAter Cycle Multi-mission Observation

Strategy – ET project (WACMOS-ET, http://wacmoset.estellus.eu) compiled a forcing data set cover-

ing the period 2005–2007, and ran four established ET models using common forcing to explore the60

uncertainties and accuracy of the underlying algorithms (Michel et al., 2016; Miralles et al., 2016).

Three of the models – the Priestley-Taylor Jet Propulsion Laboratory model (PT-JPL, Fisher et al.,

2008), the Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2016), and the

Penman–Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS)

evaporation product (PM-MOD, Mu et al., 2011) – were run to produce 3-hourly and daily estimates65

at 0.25o spatial resolution. As far as we know, they remain the only publicly available global ET

estimates at these spatiotemporal resolutions.

Analyses of the WACMOS-ET estimates showed substantial differences between the three model

products, both at the point scale (Michel et al., 2016) as well as globally (Miralles et al., 2016). As

such we here pose the question: can a combination of these estimates result in accurate ET? The70

simplest approach is to assume that all products are equally uncertain, merging them with a simple

average. A more elaborated approach is to assign weights to each product based on an accurate

description of the specific product uncertainties. However, even if some attempts to derive model

uncertainty exist (Miralles et al., 2011a; Badgley et al., 2015; Loew et al., 2016), the complexity

to derive estimates of ET from remote sensing data means that reliable quality assessment is only75

attained through validation against tower flux measurements. Therefore, here we explore a local flux

tower-based weighting of GLEAM, PT-JPL, and PM-MOD and compare it with the more typical

simple average, followed by an appraisal of the potential to globally extrapolate the resulting merging

framework.

2 Methods80

2.1 ET models

The GLEAM, PT-JPL, and PM-MOD models, and the inputs required to run them globally at a 0.25o

spatial resolution are extensively described by Michel et al. (2016) and Miralles et al. (2016). Only

the main differences with respect to the original WACMOS-ET runs are fully detailed here. Note

that the original 2005-2007 period is extended here to cover 2002-2007, and that the models are only85

run at daily time resolutions.

2.1.1 GLEAM

GLEAM is a simple land surface model fully dedicated to deriving evaporation. It distinguishes be-

tween direct soil evaporation, transpiration from short and tall vegetation, snow sublimation, open-

water evaporation, and interception loss from tall vegetation. Interception loss is independently cal-90

culated based on the Gash (1979) analytical model forced by observations of precipitation. The re-
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maining components of evaporation are based upon the formulation by Priestley and Taylor (1972)

for potential evaporation, constrained by multiplicative stress factors. For transpiration and soil evap-

oration, the stress factor is calculated based on the content of water in vegetation (microwave vege-

tation optical depth) and the root zone (multilayer soil model driven by observations of precipitation95

and updated through assimilation of microwave surface soil moisture). For regions covered by ice

and snow, sublimation is calculated using a Priestley and Taylor equation with specific parameters

for ice and supercooled waters. For the fraction of open water at each grid cell, the model assumes

potential evaporation.

The recent GLEAM v3 model of Martens et al. (2016) is adopted here and replaces the model of100

Miralles et al. (2011) previously applied for the WACMOS-ET runs. Major differences related to the

previous model are a revised formulation of the evaporative stress, an optimized drainage algorithm,

and a new soil moisture data assimilation system.

2.1.2 PT-JPL

The PT-JPL model by Fisher et al. (2008) is a relatively simple algorithm to derive ET. It uses the105

Priestley and Taylor (1972) approach to estimate potential evaporation, and then applies a series of

stress factors to reduce from potential to actual evaporation. The land evaporation is partitioned first

into soil evaporation, transpiration, and interception loss by distributing the net radiation to the soil

and vegetation components. Unlike GLEAM, the stress factors in PT-JPL are based on atmospheric

moisture (vapour pressure deficit and relative humidity) and vegetation indices (normalized differ-110

ence vegetation index, and soil adjusted vegetation index) to constrain the atmospheric demand for

water. The partitioning between transpiration and interception loss is done using a threshold based

on relative humidity, and is therefore conceptually quite different from the precipitation based calcu-

lation in GLEAM. There is no independent estimation of snow sublimation, and the same algorithms

are applied for snow-covered areas.115

For this study, optimized vegetation products are used as inputs to the model. In WACMOS-ET,

the Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetic Active Radiation (FAPAR)

products, derived from the Joint Research Centre Two-Stream Inversion (JRC-TIP) package (Pinty

et al., 2007, 2011a, b), were converted by a simple biome-dependent calibration to a LAI/FAPAR

product consistent with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI/FAPAR120

before being used as inputs to the model (Michel et al., 2016). Under the assumptions that the JRC-

TIP FAPAR is related to the radiation absorption by the green fraction of the canopy, while the

MODIS FAPAR is more related to green and non-green leaf area, a new use of the WACMOS-ET

vegetation products is proposed. First, the WACMOS-ET JRC-TIP FAPAR is assumed to be close

to an Enhanced Vegetation Index (EVI), and it is scaled by the factor 1.2 to become closer to the125

FAPAR expected by the model, as in the original PT-JPL equations (Fisher et al., 2008). Second,

the WACMOS-ET MODIS-like FAPAR is used as the Fraction of Intercepted Photosynthetic Active
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Radiation (FIPAR) expected by the model, which in turn is used by the model as a proxy for the

fractional total vegetation cover. Using the original relationships in the model, the fractional total

vegetation cover is related to a total (green and non-green) LAI, which is then used to partition the130

net radiation into their soil and canopy components.

2.1.3 PM-MOD

The PM-MOD is based on the Monteith (1965) adaptation of Penman (1948), and the version ap-

plied here follows the implementation of Mu et al. (2011). It estimates ET as the sum of interception

loss, transpiration, and soil evaporation. Aerodynamic and surface resistances for each component of135

evaporation are based on extending biome-specific conductance parameters to the canopy scale using

vegetation phenology and meteorological data. The surface resistance schemes uses LAI, with fur-

ther constrains based on air temperature and vapour pressure deficit, avoiding the need of soil mois-

ture and wind speed to parameterize the resistances. Different from GLEAM and PT-JPL, which do

not use tower-based calibration, some of the resistance parameters require a biome-based calibration140

derived from a selection of tower measurements. As for PT-JPL, there is no specific parameterization

for snow-covered areas.

The WACMOS-ET LAI/FAPAR products are used with PM-MOD as in Michel et al. (2016), i.e.,

the model is run with the vegetation products rescaled by a biome-dependent calibration to make

them consistent with the expected MODIS values. As the biome-based calibration of PM-MOD was145

derived with MODIS products, any errors introduced by this simple rescaling can propagate to the

PM-MOD estimates and can be responsible for some ET patterns differing from the official use of

the Mu et al. (2011)algorithm for the MODIS ET product.

2.2 Merging technique

2.2.1 Tower weighting150

The weights in a merging scheme are typically based on an estimation of some measure of product

uncertainty. New description of weighted strategy Here the idea is to estimate the weights propor-

tionally to the agreement between the variations of each ET product and the tower measurements. In

order to do so, we propose the following merging scheme:

1. At each tower location, both the different ET products and the tower observations are decom-155

posed into a time series of anomalies and a seasonal climatology as follows:

Em = Eam +Ecm (1)

where Em is the GLEAM (G), PT-JPL (P), PM-MOD (M), and tower observations (O) ET,

Eam their respective anomalies, and Emc their respective seasonal climatologies. For the

ET products, they are obtained by calculating their respective multi-year (2002–2007) daily160
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averages. Given the relatively short period, they are further smoothed by applying a 30-day

moving average filter. For the towers however, the climatology is estimated over all available

site years (even if outside the 2002-2007 period) in order to estimate a climatology that is as

robust as possible (note that the obtained climatologies are also further smoothed using the

same moving average filter).165

2. The product anomalies are weighted as follows:

EaWA =wTEa (2)

where EaWA is the weighted anomaly, Ea= [EaG,EaP ,EaM ]T is the anomaly vector,

and w = [wG,wP ,wM ]T is the weight vector calculated as w = (1TC1)�11TC�1, with

1= [1,1,1]T and C the 3x3 error covariance matrix of the differences Eam �Eao for each170

product. We expect the errors to have a seasonal dependence. Hence, in order to estimate

the temporal evolution of the weights, they are calculated using a moving window, where the

error-covariance at a certain point in time is calculated using all available ET estimates within

the time window. The choice of window length is subjective: shorter time windows produce

more dynamic weights, but their values are likely to be noisier given the smaller number of175

samples available to estimate the time series variability. A number of 30 days before and af-

ter each calendar day was found to provide a good compromise between the smoothness of

weights and the number of samples required, so a 61-day running window is used to calculate

the daily weights.

3. The merged product is finally calculated by adding the weighted anomalies to the average of180

the 3 products climatology:

EWA = EaWA +1/3
X

m=G,P,M

Ecm (3)

where EWA is the weigthed average merged product (WA-merger). Note that the sum of

the weights equals one, and that for equally uncertain anomalies the weight vector becomes

[1/3,1/3,1/3]T . In that case the weighted product corresponds to the simple average (SA-185

merger) of the individual products.

2.2.2 Weights extrapolation

In order to produce a global weighted product, an extrapolation of the weights from the tower space

(i.e., the 84 cells where the towers are located, see Section 3.2) to the entire continental land is

needed. The approach chosen to predict the weights outside the tower space is to non-linearly regress190

the weights based on the main ET model inputs and model ET estimates. For the regression, we use

a single neural network (NN) modelling the annual statistical relationship between the weights and

their predictors. NNs are broadly used given their capability to approximate non-linear functions,
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and are in principle a suitable tool to extrapolate the tower weights. Here it is is used to model the

statistical distribution of the weights. However, given that the this error distribution does not only195

depend on the variables used as predictors in the NN approach, the weights can never be perfectly

predicted.

Improving the NN description A standard multi-layer perceptrons with a 11 inputs first layer, one

hidden layer with 30 neurons and sigmoidal activation functions, and one output layer with 3 neu-

rons and linear activation functions, is used for the regression. Inputs to the NN are the GLEAM,200

PT-JPL, and PM-MOD ET together with the surface net radiation, the near-surface air temperature,

the relative humidity, the soil moisture, the vegetation optical depth, and the project LAI and FAPAR

(see Section 3.1). The outputs to be predicted by the NN are the GLEAM, PT-JPL, and PM-MOD

weights. The NN initial weights are randomly initialized by the Nguyen-Widrow algorithm (Nguyen

and Widrow, 1990), and the final weights assigned by a Marquardt-Levenberg backpropagation al-205

gorithm (Hagan and Menhaj, 1994) minimizing a standard sum of square errors (Bishop, 1995b).

Note that given the statistical nature of the prediction, the sum of weights can slightly differ from the

expected value of one. To assure the sum equalling one, the NN predicted weights are normalized

by their sum.

The objective of any NN is to model the general distribution of the data, not the very specific210

features of the training dataset. The existence of these specific features is unavoidable, as any training

dataset is always limited in terms of being a sample of the true distribution. Modelling the specific

features is often referred to as "over-fitting". To prevent the latter standard techniques such as early

stopping are applied (Bishop, 1995a). In practice this involves monitoring the evolution of the NN

error function for an independent validation data set, here constructed by randomly sampling 20%215

of the original training data set. While this error decreases at the beginning of the training, there is

a moment when starts to increase again. This is taken as an indication of the NN starting to over-fit,

and the training is haltered.

Preventing over-fitting only assures the right NN model complexity for the conditions sampled

in the training data set. In this particular case the limited spatial coverage of the tower stations220

suggest a poor sampling of the global conditions (see Section 3.2), and further tests are required

to see the NN capacity to extrapolate to un-sampled conditions. For this, we will apply out-sample

techniques where one tower station is removed from the training data set, followed by assessing the

NN performance at the removed station. If the performance is poor, this strongly suggests that the

training data set is not robust enough to represent conditions not sampled within this training data set225

distribution. Note that for the early-stopping technique training and validation subsets contain data

from the same stations. So, if the out-sample technique is also applied, the data from the removed

station is no longer part of the training nor validation subsets during the cross-validation.

Note that as tower measurements were masked for rainy intervals (see Section 3.2), the inter-

ception loss of the modelled ET is not evaluated. Therefore, only the sum of soil evaporation and230
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transpiration is compared with the tower data and weighted. To derive the total ET merged product,

an estimate of interception loss should also be provided, either by (1) assuming that GLEAM, PT-

JPL, and PM-MOD interception loss are equally uncertain and adding their average to the weighted

soil evaporation and transpiration, or; (2) by adding just one of the individual model interception

losses, if there are reasons to believe that the selected one is less uncertain. Here we adopt the first235

approach, so the total ET product is the sum of the weighted soil evaporation and transpiration,

together with the inter-product interception loss.

2.3 Metrics

Agreement with the towers ET is analyzed by calculating the Pearson correlation coefficient (R), the

Mean Square Difference (MSD), and the Root Mean Square Difference (RMSD) according to the240

expressions:

R =
N

PN
i=1PiOi �

PN
i=1Pi

PN
i=1Oiq

[N
PN

i=1Pi
2 � (

PN
i=1Pi)2]

q
N

PN
i=1Oi

2 � (
PN

i=1Oi)2
(4)

MSD = [
1

N

NX

i=1

(Pi �Oi)
2] = RMSD2 (5)

where P and O are the model-derived and observed (or a second model-derived) variate, and N is245

the number of cases. The MSD can be decomposed into a random (MSDr) and systematic (MSDs)

component following Willmott (1982) by using the expressions:

MSDr =
1

N

NX

i=1

(P̂i �Oi)
2 = RMSDr

2 (6)

MSDs =
1

N

NX

i=1

(Pi � P̂i)
2 = RMSDs

2 (7)250

where P̂i = a+ bOi is the linear least squares regression of P onto O, being a and b the regression

intercept and slope, respectively. Notice that MSD = MSDr + MSDs.

Statistics are calculated for the complete study period, or separately for the boreal winter (DJF),

spring (MAM), summer (JJA), and autumn (SON). For the correlations, statistical significance is

tested by calculating 95% confidence intervals. For the correlation differences, a Fisher Z-transformation255

is applied to the correlations, and a Student t-test at a 5% significance level used to test the signifi-

cance of the difference. The autocorrelation of the daily time series is taken into account by reducing

the degrees of freedom using an effective sampling size (De Lannoy and Reichle, 2016; Lievens

et al., 2017).
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3 Data260

3.1 Model inputs

The GLEAM, PT-JPL, and PM-MOD required global inputs remain unchanged with respect to

Michel et al. (2016) and Miralles et al. (2016), apart from the precipitation product, and are ap-

plied at the same resolution of 0.25o. Common inputs to the models are the surface net radiation,

coming from the NASA and GEWEX Surface Radiation Budget (SRB, Release 3.1 Stackhouse et al.,265

2004), and the near-surface air temperature, sourced from the ERA-Interim atmospheric reanalysis

(Dee et al., 2011). PT-JPL and PM-MOD also require near-surface air humidity, also derived from

ERA-Interim, and the vegetation products discussed in Sections 2.1.2 and 2.1.3. On the other hand,

GLEAM requires precipitation, coming from the Multi-Source Weighted-Ensemble Precipitation

(MSWEP) version 1 product (Beck et al., 2017), soil moisture and vegetation optical depth from the270

European Space Agency (ESA) Climate Change Initiative (CCI) Soil Moisture v2.3 product (Liu

et al., 2011b, a), and information on snow water equivalents, from the ESA GlobSnow product for

the Northern Hemisphere (Takala et al., 2011), and from the National Snow and Ice Data Center

(NSIDC) in snow-covered regions of the Southern Hemisphere (Kelly et al., 2003).
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Table 1. List of the FLUXNET sites used in this study together with their FLUXNET code (ID), IGBP land

cover (LC) and official reference or principal investigator (PI). The CA-NS1-7 refers to seven stations closely

located and run by the same group.

ID LC Reference/PI ID LC Reference/PI ID LC Reference/PI

AT-Neu GRA George Wohlfahrt AU-How SAV Jason Beringer BE-Bra MF Ivan Janssens

BE-Bra MF Ivan Janssens BE-Lon CRO Moureaux et al. (2006) BE-Vie MF Aubinet et al. (2001)

BR-Sa3 EBF Steininger (2004) CA-Gro MF McCaughey et al. (2006) CA-Man ENF Dunn et al. (2007)

CA-NS1-7 ENF B.Lamberty et al. (2004) CA-Oas MF Bond-Lamberty et al. (2004) CA-Obs ENF Bond-Lamberty et al. (2004)

CA-Qfo ENF Bergeron et al. (2007) CA-SF1 ENF Coursolle et al. (2012) CA-SF2 MF Amiro et al. (2006)

CH-Dav ENF Lukas Hoertnagl CH-Fru GRA Zeeman et al. (2010) CH-Oe1 GRA Christof Ammann

CH-Oe2 CRO Christof Ammann CN-Cha MF Shijie Han CN-Dan GRA Shi Peili

CN-Din EBF Guoyi Zhou CN-Du2 GRA Chen Shiping CN-Ha2 WET Yingnian Li

CN-HaM GRA Kato et al. (2006) CN-Qia ENF Huimin Wang CZ-BK1 ENF Marian Pavelka

DE-Geb CRO Antje Moffat DE-Gri GRA Christian Bernhofer DE-Hai DBF Knohl et al. (2003)

DE-Kli CRO Christian Bernhofer DE-Tha ENF Christian Bernhofer DE-Lnf DBF Alexander Knohl

DK-Sor DBF Andreas Ibrom ES-Lju CSH Penelope Serrano FI-Hyy ENF Timo Vesala

FR-Fon DBF Bazot et al. (2013) FR-Gri CRO Pierre Cellier FR-LBr CRO Denis Loustau

FR-Pu MF Jean-Marc Ourcival IT-Col DBF Giorgio Matteucci IT-Lav ENF Damiano Gianelle

IT-MBo GRA Damiano Gianelle IT-PT1 DBF Günther Seufert IT-Ren ENF Stefano Minerbi

IT-Ro1 CRO Nicola Arriga IT-Ro2 DBF Nicola Arriga JP-SMF CRO Ayumi Kotani

MY-PSO EBF Yoshiko Kosugi NL-Loo ENF Eddy Moors RU-CHE OSH Corradi et al. (2005)

RU-Fyo ENF Milyukova et al. (2002) RU-Ha1 GRA Dario Papale US-Wi9 MF Jiquan Chen

US-ARM CRO Fischer et al. (2007) US-ARb GRA Margaret Torn US-ARc GRA Margaret Torn

US-Blo ENF Goldstein et al. (2000) US-Cop GRA David Bowling US-IB2 CRO Roser Mantamala

US-Goo GRA Tilden Meyers US-Ha1 DBF Goulden et al. (1996) US-Los MF Ankur Desai

US-Ivo WET McEwing et al. (2015) US-MMS DBF Schmid et al. (2000) US-Me2 ENF Campbell and Law (2005)

US-Me3 ENF Bond-Lamberty et al. (2004) US-Ne1 CRO Simbahan et al. (2006) US-Ne2 CRO Amos et al. (2005)

US-Ne3 CRO Verma et al. (2005) US-Oho DBF Noormets et al. (2008) US-PFa MF Richardson et al. (2006)

US-SRM WSA Scott et al. (2009) US-Syv MF Ankur Desai US-Ton WSA Chen et al. (2007)

US-Var GRA Ma et al. (2007) US-WCr DBF Cook et al. (2004) US-Wi3 DBF Jiquan Chen

US-Wi4 MF Jiquan Chen

3.2 Tower data275

The FLUXNET 2015 synthesis data set (http://fluxnet.fluxdata.org/) is used to obtain point-based

measurements of evaporation (referred to as tower ET), and it is processed as in Martens et al. (2016)

to retain only high-quality data appropriate to evaluate the evaporation estimates. Starting from the

original time resolution (generally 30 minutes or 1 hour), the processing involves: (1) masking mea-

surements using the originally provided quality flags; (2) masking measurements for rainy intervals,280

only leaving observations if both the global precipitation product and the local measurements (if

available) do not indicate precipitation (as eddy-covariance measurements are less reliable during

precipitation events), and; (3) aggregating to daily values if more than 75 percent of remaining sub-

hourly data exists for a given day. This quality-check yielded 97 stations. This sample was further

reduced to 84 by visually inspecting aerial pictures of the tower surroundings and removing stations285

close to water bodies, or not representative of the overall land cover within the 0.25o cells of the

gridded ET estimates. The geographical locations of the 84 stations, and their location in an air tem-

perature and precipitation space, are plotted in Fig. 1, with the station names, land covers (based on
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the International Geosphere-Biosphere Programme (IGBP) classification), and reference or Princi-

pal Investigator listed in Table 1. Note that nearly all stations are in Europe and US, with only two290

stations located in the Southern Hemisphere.

Figure 1. Distribution of tower sites used in the study. Top: geographical location (green crosses) on a map of the

multi-annual simple average of the three ET products (GLEAM, PT-JPL, and PM-MOD). Middle: distribution

of the averaged multi-annual ET (left), and the number of global grid cells (right), as function of the annual air

temperature and precipitation, together with the location of the tower sites in this space (black dots). Bottom: the

relative GLEAM (left), PT-JPL (middle), and PM-MOD (right) ET differences normalized by the multi-annual

simple average of the three ET products.

Eddy-covariance measurements are subject to errors, both random and systematic, and any merg-

ing technique using them as reference is likely to be impacted by those errors. Systematic errors
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can arise from instrumental calibration and unmet assumptions about the meteorological conditions,

while random errors are typically related to turbulence sampling errors, the assumptions of a con-295

stant footprint area, and instrumental limitations (Moncrieff et al., 1996). Estimating these errors is

far from simple, and typically requires dedicated experiments (Nordbo et al., 2012; Post et al., 2015;

Wang et al., 2015). As such, reporting them is not a widespread practice and error statistics for the

individual sites are not commonly available.

The propagation of systematic errors typically results in the lack of energy balance closure ob-300

served at many eddy-covariance sites (Wilson et al., 2002; Foken, 2008). Methods to correct the

energy unbalance exist, with the Bowen ratio approach (Twine et al., 2000) and the energy balance

residual approach (Amiro, 2009) being the most frequently adopted. Corrected fluxes are typically

preferred over the original uncorrected observations, but these corrections implies the need for sur-

face radiation and soil heat flux measurements, which are not routinely measured at all stations. At305

the sites where they are available, the FLUXNET 2015 data set offers a test product containing a cor-

rected version of the heat fluxes based on the Bowen ratio approach, i.e. assuming that the measured

Bowen ratio is correct. For the 84 stations selected here, 26 do not have Bowen Ratio Corrected

(BRC) fluxes. For the remaining 58 stations, the relative mean difference between the original and

BRC latent heat fluxes averaged over all stations is 6.1%, with a maximum value of 16.5%. If the310

correlation coefficient between original and BRC fluxes is calculated at each station and then aver-

aged over all stations, we obtain 0.96, showing that the original and BRC ET correlate well in time.

Also, if the weights of Equation 2 are calculated with the original and BRC fluxes, they display a

0.91 average correlation over all stations and models, with an average RMSD of 0.035. These num-

bers do not suggest strong differences between both, thus the original (uncorrected) fluxes for all315

stations are retained for our analyses in order to maximize the number of sites.

Moreover, not all stations cover completely the 2002-2007 period, with 6, 14, 24, 9, and 31 stations

reporting 2, 3, 4, 5, and 6 years of data withing the period, respectively. At stations where inter-

annual variability is large the weights may not be representative of the overall climate conditions

at the tower if only a relatively short number of years exist. Limiting the study to stations with a320

relatively large number of years could minimize this drawback, but it would severely reduce the

number of towers, so this filtering has not been applied. For instance, if we only derive weights for

towers with at least 4 years of data, half of the towers would have been removed. Notice also that

due to the masking of the tower data the 61 consecutive daily estimates required to estimate our

temporally-varying weights (see Section 2.3) are generally not all available. Therefore, in the case325

of the tower data we set a minimum threshold of 15 daily values within the 61-day running window

for the error to be estimated. Most stations have weights for nearly all days, but in a few stations

there are recurrent gaps. A clear example is the tropical BR-Sa3 station, where the frequent rainy

episodes complicate the derivation of the weights.
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3.3 Ancillary data330

Because the substantial mismatch between the size of the model grid cells and the tower footprint

is likely to result in representativeness errors, ancillary data sets are required to characterize the

spatial homogeneity of the grid cells where the stations are located. Two data sets are considered:

the MODIS Land Cover Type product MCD12Q1 at a native resolution of 500 meters, and the Terra

MODIS Vegetation Continuous Fields product MOD44B, available at a spatial resolution of 250335

meters. A homogeneity index (Ih) is constructed as:

Ih =
1

2
FgtIGBP +

1

2
(1� | Fgbare �Ftbare |� | Fgherb �Ftherb |� | Fgforest �Ftforest |) (8)

where FgtIGBP is the fraction of MCD12Q1 500 meter cells included in the 25 km model grid cell

containing the tower and having the same IGBP land cover than the model cell, Ftbare, Ftherb and

Ftforest are, respectively, the bare, herbaceous, and forest fractions of the MOD44B 250 meter cell340

containing the tower, and Fgbare, Fgherb and Fgforest are the same fractions but calculated for the

entire 25 km model grid cell where the tower is situated. The first term is the mismatch between the

land cover at the tower and at the grid cell level, and the remaining terms are the net mismatch in

land cover types across the two resolutions. Ih takes values in the range [0,1], the larger the value

the more representative the grid cell is of the landscape of the tower footprint. Finally, to evaluate the345

merged products, we use river run-off from a compilation of monthly data using different sources, as

described in Beck et al. (2015) and annual precipitation estimates from WorldClim Fick and Hijmans

(2017) and MSWEP (Beck et al., 2017).

4 Inter-product comparison

The multi-annual GLEAM, PT-JPL, and PM-MOD total ET, together with their absolute and relative350

differences, are shown in Fig. 2. Differences of the same order can be observed when other products

are inter-compared (Jimenez et al., 2011). Given the use of common meteorological forcing (see

Section 3.1), the observed differences are mainly introduced by the different approaches to model

ET. The disagreement also extends to the the models partitioning of ET into its different components,

as shown in Miralles et al. (2016) and (Talsma et al., 2018). We recall here that, as discussed in355

Section 2.3, only the sum of the soil evaporation and transpiration is compared against tower fluxes.
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Figure 2. Summary of GLEAM, PT-JPL, and PM-MOD annual ET differences. Top: The GLEAM (left), PT-

JPL (middle), and PM-MOD (right) total annual ET in mm/year. Middle: differences between each product

and the simple inter-product mean, in mm/year. Bottom: same differences, but normalized by the inter-product

mean ET, and expressed as a percentage.

Next, the ET estimates of GLEAM, PT-JPL, and PM-MOD are evaluated at the available tower

sites. If we look at the towers spatial distribution in Fig. 1, we can see that there are mostly located

in temperate regions. The tropical rain forest and savannas, where the relative ET differences seem

larger, are less represented in the selected tower data. Therefore, some regions that would have360

been relevant to characterize the model ET differences are missing in the evaluation with tower data.

Seasonal distributions of ET for three vegetation classes are presented in Fig. 3. The first one includes

forest stations (forest), the second one shrublands and savannas (shrub/savanna), and the third one

croplands and grasslands (crop/grass). The stations are not evenly distributed within the three groups,

with the forest (50 stations) being more represented than the shrubs/savanna and crops/grass (10 and365

24, respectively), indicating that summary statistics could be more robust in the case of forests. The

surface available energy (Ae) is also plotted. For the models, Ae is the difference between the surface

net radiation and the modelled ground flux. For the towers, as the surface net radiation and/or ground

flux are not measured at all towers, Ae is given by the sum of the sensible and latent heat fluxes. Clear

differences between GLEAM, PT-JPL, PM-MOD and the tower probability distributions are visible.370

Overall GLEAM and PT-JPL agree better with each other than with PM-MOD, which may be related

to the common modelling framework of Priestley-Taylor for GLEAM and PT-JPL, compared with

the more different Penman–Monteith approach of PM-MOD.
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Figure 3. Normalized histograms of ET and available energy (Ae) from GLEAM, PT-JPL, PM-MOD, and the

tower observations. The histograms are calculated with the ET values at the tower locations separated first by

season and land cover.

An example of good agreement is the forest group in autumn, with the distributions of both ET

and Ae being quite similar for the observed and modelled variables. The crops/grass group in sum-375

mer also shows reasonable agreement between the GLEAM and PT-JPL ET distributions, but larger

differences with PM-MOD and the tower ET. In that case, the tower ET shows a clear bimodal distri-

bution, which cannot be replicated any of the models. This may be due to agricultural management

practices being poorly captured by the models (e.g., irrigation), but may also reflect the large het-

erogeneity of croplands and their (a priori) low representativeness of the larger pixel scale. For the380

shrubs/savanna group during summer, the four ET distributions are quite different, with the Ae dis-

tributions also showing differences. For these cases it is difficult to identify whether tower and model

ET differences are due to biases in the surface radiation, or discrepancies in the ET formulations.
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5 Local merging

5.1 Local weights385

Updating the text describing the new weights A summary of daily weight statistics over all the sites

belonging to a given land cover group is given in Fig. 4. These weights have been derived based

on the differences between the ET product anomalies and the tower ET anomalies as explained in

Section 2.2.1. As expected, the simple average product (SA-merger) equally weights all products

with a value of 1/3 and is added here as reference. Notice that the weights can take negative values,390

although the sum of the weights is still one. This happens when the full error covariance matrix has

large off-diagonal values reflecting the correlation between the different product errors (e.g. Jones

et al., 2008; Hobeichi et al., 2018). This correlation is expected given that the products share some

common inputs and model formulations, and it is specially noticeable for GLEAM and PT-JPL. On

average, GLEAM has the largest weights and contributes more to the weighted anomalies, but the395

relative weight of each model is not uniform per season or land cover. For instance, for the forest

class PT-JPL is more weighted than GLEAM in winter, while the reverse is true in autumn.

Figure 4. New figure displaying weight statistics Box plots of the GLEAM (red), PT-JPL (blue), and PM-MOD

(green) seasonal weights for the three land cover groups. The central mark of the box plots is the median of the

group population, the box edges are the 25th (Q1) and 75th (Q3) percentiles.

An example of the temporal variability of the weights at three towers is given in Fig. 5. At the

FR-Pue site, a Mediterranean forest located in France (Rambal et al., 2004), GLEAM starts to be
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clearly more weighted for the second part of the year. The correlation between the GLEAM and400

PT-JPL anomalies is visible in the anti-correlation displayed by the weights. At the US-SRM site, a

semi-arid grassland site in southwest of US (Scott et al., 2009), PM-MOD is typically more weighted

than GLEAM and PT-JPL in spring, and all weights depart less from the 0-1 range, suggesting more

independent errors at this particular station. The last site, the US-Ne1 cropland station situated in

North America (Verma et al., 2005), is an example of closer weights for all models for some periods405

of the year. This happens during the first half of the year. For the second part of the year, the weights

change more, with PT-JPL being the most weighted product during some months.

Figure 5. Updating figure with new weights Example of GLEAM (red), PT-JPL (blue), and PM-MOD (green)

weights at the FR-Pue (top, forest), US-SRM (middle, grassland), and US-Ne1 (bottom, cropland) stations. The

thick black line marks the 1/3 value of the SA-merger weights; the thin black lines mark the 0-1 interval.

5.2 Merged products

Fig. 6 shows – for the same three towers in Fig. 5 – time series of ET from the three products,

SA-merger and the weighted average (WA-merger), and the in situ measurement for 2006. Updat-410

ing text to reflect the new merged products At the FR-Pue site, for this specific year all products

disagree with the tower ET for a large part of the year, with PT-JPL and PM-MOD having much

larger absolute values overall. Differences between SA-merger and WA-merger are mainly visible

in spring and summer, where GLEAM is weighted more strongly, making WA-merger follow the

GLEAM estimates more closely. The US-SRM site shows a relatively large ET seasonal variability,415
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with the ET tightly linked to the precipitation and associated increases in soil moisture (Scott et al.,

2009). GLEAM and PT-JPL capture this variability, especially the sudden increase in ET values at

the beginning of summer related to the rainfall coming from the North American monsoon. For the

first half of summer there are sometimes large differences between SA-merger and WA-merger, with

WA-merger correlating better with the tower ET. For the second half, all products fail to replicate420

the ET increase measured by the tower, and WA-merger and SA-merger are closer to each other as

the models anomalies cannot provide information to guide the merging. The US-Ne1 is an irrigated

maize-soybean site, where the seasonal cycle of ET is expected to be more pronounced, and accom-

panied by higher absolute values resulting from irrigation (Verma et al., 2005). The original products

have more similar values, not capturing well the ET rise associated with start of the growing season.425

This may have to do with irrigation not being well captured by any of the models. The closer weights

shown in Figure 5 result in closer SA-merger and WA-merger ET.

Figure 6. Updating Figure with new weights 2006 time series of the different ET products and the sites shown

in Fig. 5: FR-Pue (top), US-SRM (middle), and US-Ne1 (bottom). The daily values are time smoothed using a

10-day moving averaged window to better display the more persistent temporal features.

Updating text to discuss changes in the figure The performance of the individual and merged prod-

ucts across the different stations is summarized in Fig. 7 by plotting seasonal averaged correlations

and RMSDs for the three land cover classes. The statistics are presented for the ET anomalies, and430

for the absolute values. For both, in 10 out of the 12 cases presented (4 seasons x 3 land covers) the

correlation of WA-merger is higher than for SA-merger, indicating that an appropriate characteriza-

tion of the errors – and derived weights – results in better estimates of the ET. The relative increases

in correlation between SA-merger and WA-merger are larger for the ET anomalies, but still occur

for the ET absolute values. This highlights that when the weighted anomalies are added to the multi-435
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product climatology, the resulting product combination still overcomes the simple average. Note

that the lowest correlations occur in winter time, reflecting the low values and low intra-seasonal

variability in this period, while the largest correlations are observed in spring and autumn where

vegetation greening and browning typically results in larger ET variability. Note also that corre-

lations are not significant for some stations and periods; non-significant correlations are typically440

found in wintertime.

Figure 7. Updating Figure with new SA-merger and WA-merger Season and land-cover averaged ET corre-

lations and RMSD of the tower and the different products (a and b for the ET anomalies, c and d for the ET

absolute values). To highlight differences with SA-merger, a grey line has been added to its bar. Note that the

axes are not identical, but they cover similar ranges (0.5 for the correlation, 1.2 mm/day for the RMSD).
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Concerning the RMSDs, they are slightly lower for WA-merger for all seasons except for winter

months. As SA-merger and WA-merger share their climatology (see Section 2.2.1), large differences

between both are not expected. This means that the biases between the merged products and the

tower ET are preserved for both mergers, indicating that most of the differences in RMSD is coming445

from changes that are also reflected in the correlations.

6 Global merging

6.1 Global weights

Updating text to discuss the extrapolation of the new weights The local weights at the 84 stations

have been extrapolated by the NN as described in Section 2.2.2. The seasonal averages of the weights450

are presented in Fig. 8. Overall, the spatial patterns of the extrapolated weights for each product do

not change substantially across the seasons. Some exceptions are Europe and Northern Asia for

GLEAM and PT-JPL. The PM-MOD weights are mostly positive, apart from forested areas in the

tropics and some dry areas in Asia and Australia, and are more confined than GLEAM and PT-JPL

to the 0-1 interval, indicating smaller error correlation with the other products. For GLEAM and455

PT-JPL, the weights are a mixture of positive and negative values, and a clear anti-correlation of the

weights is visible, i.e., positive GLEAM weights correspond to negative PT-JPL weights, and vice

versa, similar to the pattern observed in the local weights for some periods.
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Figure 8. Updating Figure with new weights Seasonally averaged global weights for GLEAM (left), PT-JPL

(middle), and PM-MOD (right). Red (blue) colours indicate positive (negative) weights.

6.2 Merged products

Updating text to discuss the merged products after the new weights The seasonally averaged ET460

differences between WA-merger and SA-merger, normalized by the seasonal SA-merger, are plotted

in Fig. 9. The large differences in (semi-)arid areas or the northern latitudes in winter are related to

the very low ET absolute values. For the remaining land, most of the relative differences are within

the ±25% range. Overall, there are more negative than positive differences, indicating that the WA-

merger results in smaller absolute values. Giving that SA-merger and WA-merger have a common465

climatology, this suggests that the weighting results in an overall reduction of the anomalies at many

regions.

Some geographical structures and seasonal changes are visible in some regions. For instance, in

the sub-Saharan transition zone the differences are positive in the first half of the year (WA-merger

> SA-merger), but negative in the second half. Over India the differences are positive in autumn and470

winter, but negative in spring and summer. In contrast, some regions do not display large seasonal

changes. For instance, in most of Europe WA-merger is smaller than SA-merger over all seasons.
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Figure 9. Updating Figure with new products Seasonally averaged normalized ET differences between SA-

merger and WA-merger, expressed as a percentage of the seasonally averaged SA-merger ET. Red (blue) colours

indicate positive (negative) differences.

7 Discussion

7.1 Tower representativeness

Our inverse error variance weighting is based on the differences between the model and tower ET475

anomalies. However, it is expected that part of the difference between in situ measurements of ET

and model estimates respond to the mismatch in spatial resolution (tower footprint versus model

cell). The RMSD of SA-merger against the towers ET, normalized by the mean annual tower ET, is

displayed in Fig. 10 for all the available stations, together with the station Ih described in Section 2.3.

The towers are sorted from maximum to minimum Ih, i.e., starting by the towers better representing480

the grid cells where they fall. Nonetheless, low and high normalized RMSDs can occur at stations

with comparable Ih, indicating that spatial heterogeneity is only one of the contributing factors to

the ET differences. In fact, if the RMSD is linearly regressed on the Ih, the slope of the fit is close

to zero, as shown in Fig. 10. Also for the separate products (GLEAM, PT-JPL, and PM-MOD) and

WA-merger, no significant correlation between their RMSD against in situ measurements and Ih was485

found (results not shown). This indicates that for the calculated Ih, and the selected sample of ET

products and stations, the error related to the inconsistencies between the tower footprint, and the

model pixels does not dominate the total error budget.
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Figure 10. Homogeneity index (Ih) and RMSD of SA-merger and the towers ET. The Ih is plotted as closed

circles in blue for forest stations, green for shrubs/savanna, and red for crops/grass, while the RMSD, normal-

ized by the mean annual tower ET, is plotted in grey. A linear fit to the normalized RMSD is given by the grey

line. The towers are sorted from maximum to minimum Ih, with the tower names given at the bottom and top

of the figure.

7.2 Inverse error variance weighting

Updating text to discuss changes in the random component of the error490

The objective on an inverse error-variance weighting is to find the estimate that minimizes the

variance of the random error (Rodgers, 2000). As such, the merging only results in the optimal

weights if applied over an ensemble of unbiased estimates. Strictly speaking, this requires removing

the bias between the model ensemble and in the situ observations prior to the merging, which is

not the case here (see Equations 1 to 3). The objective here was to correct the product anomalies495

towards the tower anomalies, but not to correct the original estimates toward the tower in absolute

terms. On the one hand the tower observations have their own systematic errors, as discussed in

Section 3.2. On the other hand, debiasing toward the tower ET would require a global correction of

the gridded products towards a global tower climatology. If the ultimate objective is to reproduce the

tower fluxes, other approaches like regressing the tower ET on either the ET products (Yao et al.,500

2017) or the ET explanatory drivers (Jung et al., 2011) may appear more straightforward and be

possibly more appropriate.
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Figure 11. Replacing the components ratio with plots of the individual error components For the three land

cover groups the random (top) and systematic (bottom) MSD between the tower ET and GLEAM (red), PT-JPL

(blue), PM-MOD (green), SA-merger (grey) and WA-merger (yellow). The central mark of the box plots is the

median of the group population, the box edges are the 25th (Q1) and 75th (Q3) percentiles, the whiskers extend

to Q3+1.5(Q3�Q1) and Q1� 1.5(Q3�Q1), and values outside the whisker are plotted individually.

Nevertheless, even if optimality in the sense of minimizing the error variance of the WA-merger

cannot be assured, weighting the anomalies should result in a decrease of the random error. This

is shown in Fig. 11, where box plots of the random (MSDr) and systematic (MSDs) components505

of the difference between the products and the tower observations are displayed (see Equations 6

and 7). From the original products, GLEAM and PT-JPL have comparative error components, while

PM-MOD is more distinctive, having smaller MSDr and larger MSDs. The latter likely relates to

the tendency of the PM-MOD to underestimate ET and its variance (Michel et al., 2016; Miralles

et al., 2016). Comparing WA-merger to SA-merger, the reduction of the MSDr for WA-merger is510

indicative of the merging being effective in this regard. There is also a slight reduction in the MSDs,

with WA-merger having the smallest median error of all products.

7.3 Weights extrapolation

The number of stations used in this merging exercise is certainly limited in terms of covering differ-

ent biomes and climatic conditions. Hence, the ability to represent the full distribution of ET across515

time, space, and biomes is questionable. Updating text to discuss new weights and the test where
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a number of days is removed from the training data set. This is verified here by out-sampling the

NN training data set in two different ways. In the first test all stations are included in the tower data

set, i.e., the standard configuration used to produce the global WA-merger. Before training the NN,

15% of the days at each station are randomly masked from the training data set, and the prediction520

statistics are derived over this independent subset. In the second test, the station where the prediction

will be checked is entirely removed from the training data set, i.e, the weights for that station are

derived using a NN that did not include that station in the training phase (i.e. leave-one out cross

validation).

A box plot summarizing the correlation and RMSD between the station weights and the weights525

predicted by the NN for these two tests is presented in Fig. 12. The results clearly show that the cor-

relation and RMSDs between the predicted and the original weights at the stations degrades notably

when stations are fully removed from the training data set. This implies that the global extrapolation

of the weights will be quite uncertain for conditions not sampled in the available tower data set. For

some stations, the out-sampling from the training data set does not have a large effect, because the530

mapping between the predictors and ET can still be approximated from the relationship presented

by other stations. This is for instance the case for the Canadian forest stations CA-NS1-7 (results not

shown). However, for other stations, the statistics are good when predicted with the standard data set,

but poor with the one-station-removed data set, indicating that the particular conditions of those sta-

tions are not well represented in the out-sampled data set. This happens for stations such as US-Wi4535

(forest with a snowy winter and warm humid summer) and CN-Dan (grasslands with a polar tundra

climate). Finally, there are also stations where statistics are rather poor in both tests, indicating that a

link between the model inputs and the related output error could not be established. This is the case

for stations such as IT-Col (deciduous broadleaf forest with temperate climate) or MY-Pso (tropical

forest). This guaranties that the extrapolation of weights to areas with similar conditions will be very540

uncertain, even if those conditions were represented in the tower data set.

An additional test to check the representativeness of the tower data set is conducted by globally

extrapolating the weights with each of the previous 84 NNs trained without one station, and then

checking the variability of the predicted weights. For the conditions well represented in the training

data set, it is expected that removing one station will only result in slight changes in the extrapolated545

weights. However, for regions that are poorly represented, a slightly different data set is likely to

result in substantially different weights. This is illustrated in Fig. 13, where a weight variability

index is displayed. The index is calculated by: (1) estimating for each global cell the annual standard

deviation of the GLEAM, PT-JPL, and PM-MOD weights, normalized by the sum of the absolute

annual model weights, and; (2) averaging this standard deviation over the three models. To facilitate550

its display in Fig. 13, it has been scaled to span the range 0-1. Overall the variability is larger in

the Southern Hemisphere than in the Northern Hemisphere, which is expected given that all stations

but two are situated in the Northern Hemisphere. The smallest variability in the weights coincides
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with the regions where the database is more representative, namely US, Central Europe, and some

parts of Asia, suggesting a bias in the tower data set linked to the specific location of the towers555

selected. The variability in tropical regions, where only 3 stations are part of the database, is in

general larger than for the previous regions. The largest variability occurs over the very dry regions,

a regime poorly represented in the tower data set as shown in Fig. 1. While a poor extrapolation of

weights is not critical over very dry regions, given their low ET values, uncertain weights over the

very humid regions is more of a concern due to their typically large ET values and their significance560

for the global mean ET.

Figure 12. Updating Figure with newly extrapolated weights Box plot showing for the three land cover groups

the correlation (top) and RMSD (bottom) between the station local weights and the weights predicted by the

NN for the two tests presented in Section 7.3 (first test labelled as [1] in legend, dark colours, second test as [2],

light colours). See the text for details.
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Figure 13. Relative annual variability of the global weights extrapolated by 84 different NNs. Smaller (larger)

values indicate lower (higher) variability. See the text for details.

7.4 Merged products evaluation

The evaluation of ET products is typically conducted by comparing the estimates to point scale tower

fluxes. Alternatively, water balance calculations at larger spatial scales – such as catchment scales -

where ET is estimated as the residual of precipitation (P) and river run-off (Q) are often used as well.565

As the towers are used to derive the merge products, the alternative for an independent assessment

of the merged products is to conduct such catchments mass balance analyses (e.g. Vinukollu et al.,

2011; Miralles et al., 2016). This assessment appears a good means to evaluate the long-term mean

ET estimates. Nonetheless, as WA-merger and SA-merger share a common mean state, large per-

formance differences are not expected. Note that to retain the independence, the precipitation used570

in the water balance calculation should not be the one used as forcing in the ET estimates. Here

this is an issue for GLEAM and the merged products (as they include GLEAM), but not for PT-JPL

and PM-MOD as they do not use precipitation data as input. As such, WordlClim precipitation data

is also used in addition to MSWEP in these comparisons (GLEAM was forced with MSWEP, see

Section 3.1).575

The mass balance of a catchment implies that the space and time integration of P-Q should equal

the ET integrated over the same space and time, if one assumes that the the changes in soil water

storage within the catchment are small compared with the cumulative volume of ET, P, and Q. The

longer the period, the more valid this assumption becomes. Here, the mean 2002-2007 ET estimates

from GLEAM, PT-JPL, PM-MOD, and the merged products are calculated per catchment. The basin580

P-Q estimate is then calculated using the Q and P data described in Section3.3. We only select

catchments for which the P-Q data record is available for a minimum of 3 years in the 2002-2007

period, to assure some common period between ET and P-Q. In addition, to reduce noise in the

basin-integrated ET estimates, only basins with a catchment area containing at least 3x3 cells of the
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25 km resolution gridded estimates are included in the comparison. This results in 685 basins, 75 %585

of them situated in the Northern Hemisphere (i.e showing a similar geographical bias as the tower

data set). Catchments are further divided into three groups of 243, 295, and 147 basins based on the

aridity index (AI, basin potential ET over the basin P) taking values in the intervals AI<1, 1<AI<2,

and AI>2.

Updating text to reflect changes in the merged products Scatter plots showing the correspondence590

between P-Q and ET are given in Fig. 14. Linear fits for the three AI classes are plotted, and the

correlation, RMSD, and bias (ET minus P-Q) given in the plot. Overall, the statistics of the the water

balance comparison using MSWEP or WordlClim as P are close, suggesting that the dependence on

MSWEP is not a determining factor in the agreement. From the original products, PM-MOD shows

the worst agreement with P-Q. GLEAM agrees better than PT-JPL for the wettest and specially595

for the driest basins. For the latter, GLEAM shows correlations of 0.93 (based on MSWEP) and

0.88 (based on World-Clim), compared to the respective 0.74 and 0.69 for PT-JPL. However, PT-

JPL agrees slightly better than GLEAM for the 1<AI<2, although both show similar correlations.

However, PT-JPL agrees slightly better than GLEAM for the 1<AI<2, although both show similar

correlations. The SA-merger shows close statistics to GLEAM and PT-JPL, so adding the PM-MOD600

product neither improves nor degrades the skill to close the catchment water budget. Regarding

a comparison between WA-merger and SA-merger, their statistics are very close. Correlations are

comparable, and only in terms of RMSD WA-merger ET agrees slightly better with P-Q for the

wettest basins (AI>2), with 89/83 (MSWEP/WordlClim) mm/year RMSDs and -64/-46 mm/year

biases for the WA-merge product, and 115/107 mm/year RMSDs and -97/-80 mm/year biases for605

the SA-product. Notice also that for the wettest basins these WA-merger performs better than any

individual product.
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Figure 14. Replacing slope with bias Scatter plots of P-Q and ET from the different products. Linear fits for

three AI classes are plotted, together with the correlation, RMSD and bia s (ET - (P-Q)). From left to right, the

statistics are given for AI<1 (blue line), 1<AI<2 (green), and AI>2 (red), i.e., from dry to wet basins.
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8 Conclusions

Updating to reflect changes in the manuscript

A simple average (SA-merger) and an inverse error variance weighting (WA-merger) of the three610

global ET products generated during the WACMOS-ET project is presented. During the project,

three ET models were forced with common daily inputs at a resolution of 25 km for the period 2002-

2007: GLEAM, PT-JPL, and PM-MOD. GLEAM and PT-JPL share a Priestley-Taylor formulation to

estimate potential evaporation, while PM-MOD uses a more different modeling approach of potential

evaporation based on a Penman-Monteith formulation, but a very similar evaporative stress and615

radiation partitioning formulation to the one by PT-JPL. In WA-merger, the weights were estimated

using the error-variance of the individual product anomalies, with the error defined as the difference

between tower-based ET anomalies and modeled ET anomalies for non-rainy conditions. Then the

final data set was reconstructed by adding the weighted anomalies to the mean seasonal climatology

of the products. A similar approach was followed to generate SA-merger, but in this case giving equal620

weights to the anomalies of all three products. Finally, the potential to extrapolate these locally-

estimated weights to the global scale based on a neural network approach has been explored. Given

the described framework, the intent here is to evaluate the potential of blending these data sets to

yield anomalies of ET that better represent those measured by the global network of eddy-covariance

towers. We note that capturing anomalies in ET is crucial for applications such as drought monitoring625

or irrigation planning.

The resulting local weights showed seasonal patterns and negative values at many stations. This

was to a large extent related to correlation in the errors of the anomalies of GLEAM and PT-JPL.

Nonetheless, seasonal correlations between WA-merger and the tower ET are overall higher than for

the individual products and SA-merger. This is mostly attributed to a successful reduction in the ran-630

dom error. Meanwhile, the globally extrapolated weights showed seasonal and regional variability,

with these patterns resulted in seasonal differences between the global SA-merger and WA-merger of

up to 25% in a large number of regions. However, the limited global coverage of the tower stations,

mostly located in the Northern Hemisphere temperate regions, casted doubts on the ability of the NN

prediction scheme to reliably extrapolate the locally-estimated weights. This was apparent when the635

extrapolation was tested over individual stations with the training data set not including the station

under study, and when reproducing the global extrapolation of the weights with the training data set

missing one station at a time. Both mergers were also compared with the ET inferred from water

balance calculations in different catchments across the globe, and similar correlations and RMSDs

were obtained, with only slightly better results for the WA-merger over wet basins.640

Several limiting factors for the merging exercise are identified, some of which could be informa-

tive for other initiatives aiming to blend ET data sets. A longer study period can give access to more

in situ data and extend the in situ data set to less represented regions. This would clearly help the

global extrapolation of the weights. In addition, the mismatch between the spatial resolution of the
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towers and the products is still an issue, despite the fact that here other error sources were deemed to645

be more dominant. The impact of the mismatch in spatial resolution is expected to be minimized as

ET datasets move towards finer spatial resolutions. Dependency between the ET products can also

have an impact on the merged products. In this study the GLEAM, PT-JPL, and PM-MOD products

are derived with common data sets for their shared inputs. While this was motivated by the pri-

mary objective of WACMOS-ET of studying algorithm differences, this is can become a drawback650

when aiming to achieve an optimal merger. In that case a lower inter-dependency is expected to be

beneficial.

Overall, our study suggests that an inverse error variance scheme combining information from

tower observations and ET products has the potential to improve upon the simple mean proposed

by several previous efforts (e.g. Mueller et al., 2013). However, care should be taken regarding the655

dependence of the products to be merged, the tower coverage, the different product errors, the spatial

representativeness of the in situ measurements at the products resolution, and the nature of the errors

of the ET products. Critical for the success of the merging scheme is the adequate characterization

of the uncertainty of the individual products, and finding an effective method to extrapolate the

weights from the tower space to the global landscape. The latter seems challenging, and given the660

difficulties found here, alternatives should be considered. A possibility could be triple collocation

(Yilmaz et al., 2012). This technique would require two new global ET data sets independent from

the products that need to be merged . This can be demanding, but work in that direction has already

started (Khan et al., 2018). An added advantage of this approach will be that the tower observations

could then be used as an independent evaluation set, similar to the approach carried out for some665

other Earth Observation products, such as the soil moisture estimates from the ESA Climate Change

Initiative (Gruber et al., 2017). This can be of importance, given the very few existing data sets that

can be used to presently evaluate ET estimates.
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